mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-24 02:24:46 +08:00
213516ef31
This commit is the result of running the gdb/copyright.py script, which automated the update of the copyright year range for all source files managed by the GDB project to be updated to include year 2023.
2162 lines
60 KiB
C
2162 lines
60 KiB
C
/* Cache and manage the values of registers for GDB, the GNU debugger.
|
|
|
|
Copyright (C) 1986-2023 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "inferior.h"
|
|
#include "gdbthread.h"
|
|
#include "target.h"
|
|
#include "test-target.h"
|
|
#include "scoped-mock-context.h"
|
|
#include "gdbarch.h"
|
|
#include "gdbcmd.h"
|
|
#include "regcache.h"
|
|
#include "reggroups.h"
|
|
#include "observable.h"
|
|
#include "regset.h"
|
|
#include <unordered_map>
|
|
#include "cli/cli-cmds.h"
|
|
|
|
/*
|
|
* DATA STRUCTURE
|
|
*
|
|
* Here is the actual register cache.
|
|
*/
|
|
|
|
/* Per-architecture object describing the layout of a register cache.
|
|
Computed once when the architecture is created. */
|
|
|
|
struct regcache_descr
|
|
{
|
|
/* The architecture this descriptor belongs to. */
|
|
struct gdbarch *gdbarch = nullptr;
|
|
|
|
/* The raw register cache. Each raw (or hard) register is supplied
|
|
by the target interface. The raw cache should not contain
|
|
redundant information - if the PC is constructed from two
|
|
registers then those registers and not the PC lives in the raw
|
|
cache. */
|
|
long sizeof_raw_registers = 0;
|
|
|
|
/* The cooked register space. Each cooked register in the range
|
|
[0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
|
|
register. The remaining [NR_RAW_REGISTERS
|
|
.. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
|
|
both raw registers and memory by the architecture methods
|
|
gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
|
|
int nr_cooked_registers = 0;
|
|
long sizeof_cooked_registers = 0;
|
|
|
|
/* Offset and size (in 8 bit bytes), of each register in the
|
|
register cache. All registers (including those in the range
|
|
[NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an
|
|
offset. */
|
|
long *register_offset = nullptr;
|
|
long *sizeof_register = nullptr;
|
|
|
|
/* Cached table containing the type of each register. */
|
|
struct type **register_type = nullptr;
|
|
};
|
|
|
|
static const registry<gdbarch>::key<struct regcache_descr>
|
|
regcache_descr_handle;
|
|
|
|
static struct regcache_descr *
|
|
init_regcache_descr (struct gdbarch *gdbarch)
|
|
{
|
|
int i;
|
|
struct regcache_descr *descr;
|
|
gdb_assert (gdbarch != NULL);
|
|
|
|
/* Create an initial, zero filled, table. */
|
|
descr = new struct regcache_descr;
|
|
descr->gdbarch = gdbarch;
|
|
|
|
/* Total size of the register space. The raw registers are mapped
|
|
directly onto the raw register cache while the pseudo's are
|
|
either mapped onto raw-registers or memory. */
|
|
descr->nr_cooked_registers = gdbarch_num_cooked_regs (gdbarch);
|
|
|
|
/* Fill in a table of register types. */
|
|
descr->register_type
|
|
= GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers,
|
|
struct type *);
|
|
for (i = 0; i < descr->nr_cooked_registers; i++)
|
|
descr->register_type[i] = gdbarch_register_type (gdbarch, i);
|
|
|
|
/* Construct a strictly RAW register cache. Don't allow pseudo's
|
|
into the register cache. */
|
|
|
|
/* Lay out the register cache.
|
|
|
|
NOTE: cagney/2002-05-22: Only register_type () is used when
|
|
constructing the register cache. It is assumed that the
|
|
register's raw size, virtual size and type length are all the
|
|
same. */
|
|
|
|
{
|
|
long offset = 0;
|
|
|
|
descr->sizeof_register
|
|
= GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
|
|
descr->register_offset
|
|
= GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
|
|
for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
|
|
{
|
|
descr->sizeof_register[i] = descr->register_type[i]->length ();
|
|
descr->register_offset[i] = offset;
|
|
offset += descr->sizeof_register[i];
|
|
}
|
|
/* Set the real size of the raw register cache buffer. */
|
|
descr->sizeof_raw_registers = offset;
|
|
|
|
for (; i < descr->nr_cooked_registers; i++)
|
|
{
|
|
descr->sizeof_register[i] = descr->register_type[i]->length ();
|
|
descr->register_offset[i] = offset;
|
|
offset += descr->sizeof_register[i];
|
|
}
|
|
/* Set the real size of the readonly register cache buffer. */
|
|
descr->sizeof_cooked_registers = offset;
|
|
}
|
|
|
|
return descr;
|
|
}
|
|
|
|
static struct regcache_descr *
|
|
regcache_descr (struct gdbarch *gdbarch)
|
|
{
|
|
struct regcache_descr *result = regcache_descr_handle.get (gdbarch);
|
|
if (result == nullptr)
|
|
{
|
|
result = init_regcache_descr (gdbarch);
|
|
regcache_descr_handle.set (gdbarch, result);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Utility functions returning useful register attributes stored in
|
|
the regcache descr. */
|
|
|
|
struct type *
|
|
register_type (struct gdbarch *gdbarch, int regnum)
|
|
{
|
|
struct regcache_descr *descr = regcache_descr (gdbarch);
|
|
|
|
gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
|
|
return descr->register_type[regnum];
|
|
}
|
|
|
|
/* Utility functions returning useful register attributes stored in
|
|
the regcache descr. */
|
|
|
|
int
|
|
register_size (struct gdbarch *gdbarch, int regnum)
|
|
{
|
|
struct regcache_descr *descr = regcache_descr (gdbarch);
|
|
int size;
|
|
|
|
gdb_assert (regnum >= 0 && regnum < gdbarch_num_cooked_regs (gdbarch));
|
|
size = descr->sizeof_register[regnum];
|
|
return size;
|
|
}
|
|
|
|
/* See gdbsupport/common-regcache.h. */
|
|
|
|
int
|
|
regcache_register_size (const struct regcache *regcache, int n)
|
|
{
|
|
return register_size (regcache->arch (), n);
|
|
}
|
|
|
|
reg_buffer::reg_buffer (gdbarch *gdbarch, bool has_pseudo)
|
|
: m_has_pseudo (has_pseudo)
|
|
{
|
|
gdb_assert (gdbarch != NULL);
|
|
m_descr = regcache_descr (gdbarch);
|
|
|
|
/* We don't zero-initialize the M_REGISTERS array, as the bytes it contains
|
|
aren't meaningful as long as the corresponding register status is not
|
|
REG_VALID. */
|
|
if (has_pseudo)
|
|
{
|
|
m_registers.reset (new gdb_byte[m_descr->sizeof_cooked_registers]);
|
|
m_register_status.reset
|
|
(new register_status[m_descr->nr_cooked_registers] ());
|
|
}
|
|
else
|
|
{
|
|
m_registers.reset (new gdb_byte[m_descr->sizeof_raw_registers]);
|
|
m_register_status.reset
|
|
(new register_status[gdbarch_num_regs (gdbarch)] ());
|
|
}
|
|
}
|
|
|
|
regcache::regcache (process_stratum_target *target, gdbarch *gdbarch,
|
|
const address_space *aspace_)
|
|
/* The register buffers. A read/write register cache can only hold
|
|
[0 .. gdbarch_num_regs). */
|
|
: detached_regcache (gdbarch, false), m_aspace (aspace_), m_target (target)
|
|
{
|
|
m_ptid = minus_one_ptid;
|
|
}
|
|
|
|
readonly_detached_regcache::readonly_detached_regcache (regcache &src)
|
|
: readonly_detached_regcache (src.arch (),
|
|
[&src] (int regnum, gdb_byte *buf)
|
|
{
|
|
return src.cooked_read (regnum, buf);
|
|
})
|
|
{
|
|
}
|
|
|
|
gdbarch *
|
|
reg_buffer::arch () const
|
|
{
|
|
return m_descr->gdbarch;
|
|
}
|
|
|
|
/* Return a pointer to register REGNUM's buffer cache. */
|
|
|
|
gdb_byte *
|
|
reg_buffer::register_buffer (int regnum) const
|
|
{
|
|
return m_registers.get () + m_descr->register_offset[regnum];
|
|
}
|
|
|
|
void
|
|
reg_buffer::save (register_read_ftype cooked_read)
|
|
{
|
|
struct gdbarch *gdbarch = m_descr->gdbarch;
|
|
int regnum;
|
|
|
|
/* It should have pseudo registers. */
|
|
gdb_assert (m_has_pseudo);
|
|
/* Clear the dest. */
|
|
memset (m_registers.get (), 0, m_descr->sizeof_cooked_registers);
|
|
memset (m_register_status.get (), REG_UNKNOWN, m_descr->nr_cooked_registers);
|
|
/* Copy over any registers (identified by their membership in the
|
|
save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
|
|
gdbarch_num_pseudo_regs) range is checked since some architectures need
|
|
to save/restore `cooked' registers that live in memory. */
|
|
for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
|
|
{
|
|
if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
|
|
{
|
|
gdb_byte *dst_buf = register_buffer (regnum);
|
|
enum register_status status = cooked_read (regnum, dst_buf);
|
|
|
|
gdb_assert (status != REG_UNKNOWN);
|
|
|
|
if (status != REG_VALID)
|
|
memset (dst_buf, 0, register_size (gdbarch, regnum));
|
|
|
|
m_register_status[regnum] = status;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
regcache::restore (readonly_detached_regcache *src)
|
|
{
|
|
struct gdbarch *gdbarch = m_descr->gdbarch;
|
|
int regnum;
|
|
|
|
gdb_assert (src != NULL);
|
|
gdb_assert (src->m_has_pseudo);
|
|
|
|
gdb_assert (gdbarch == src->arch ());
|
|
|
|
/* Copy over any registers, being careful to only restore those that
|
|
were both saved and need to be restored. The full [0 .. gdbarch_num_regs
|
|
+ gdbarch_num_pseudo_regs) range is checked since some architectures need
|
|
to save/restore `cooked' registers that live in memory. */
|
|
for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
|
|
{
|
|
if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
|
|
{
|
|
if (src->m_register_status[regnum] == REG_VALID)
|
|
cooked_write (regnum, src->register_buffer (regnum));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* See gdbsupport/common-regcache.h. */
|
|
|
|
enum register_status
|
|
reg_buffer::get_register_status (int regnum) const
|
|
{
|
|
assert_regnum (regnum);
|
|
|
|
return m_register_status[regnum];
|
|
}
|
|
|
|
void
|
|
reg_buffer::invalidate (int regnum)
|
|
{
|
|
assert_regnum (regnum);
|
|
m_register_status[regnum] = REG_UNKNOWN;
|
|
}
|
|
|
|
void
|
|
reg_buffer::assert_regnum (int regnum) const
|
|
{
|
|
gdb_assert (regnum >= 0);
|
|
if (m_has_pseudo)
|
|
gdb_assert (regnum < m_descr->nr_cooked_registers);
|
|
else
|
|
gdb_assert (regnum < gdbarch_num_regs (arch ()));
|
|
}
|
|
|
|
/* Type to map a ptid to a list of regcaches (one thread may have multiple
|
|
regcaches, associated to different gdbarches). */
|
|
|
|
using ptid_regcache_map
|
|
= std::unordered_multimap<ptid_t, regcache_up, hash_ptid>;
|
|
|
|
/* Type holding regcaches for a given pid. */
|
|
|
|
using pid_ptid_regcache_map = std::unordered_map<int, ptid_regcache_map>;
|
|
|
|
/* Type holding regcaches for a given target. */
|
|
|
|
using target_pid_ptid_regcache_map
|
|
= std::unordered_map<process_stratum_target *, pid_ptid_regcache_map>;
|
|
|
|
/* Global structure containing the existing regcaches. */
|
|
|
|
/* NOTE: this is a write-through cache. There is no "dirty" bit for
|
|
recording if the register values have been changed (eg. by the
|
|
user). Therefore all registers must be written back to the
|
|
target when appropriate. */
|
|
static target_pid_ptid_regcache_map regcaches;
|
|
|
|
struct regcache *
|
|
get_thread_arch_aspace_regcache (process_stratum_target *target,
|
|
ptid_t ptid, gdbarch *arch,
|
|
struct address_space *aspace)
|
|
{
|
|
gdb_assert (target != nullptr);
|
|
|
|
/* Find the map for this target. */
|
|
pid_ptid_regcache_map &pid_ptid_regc_map = regcaches[target];
|
|
|
|
/* Find the map for this pid. */
|
|
ptid_regcache_map &ptid_regc_map = pid_ptid_regc_map[ptid.pid ()];
|
|
|
|
/* Check first if a regcache for this arch already exists. */
|
|
auto range = ptid_regc_map.equal_range (ptid);
|
|
for (auto it = range.first; it != range.second; ++it)
|
|
{
|
|
if (it->second->arch () == arch)
|
|
return it->second.get ();
|
|
}
|
|
|
|
/* It does not exist, create it. */
|
|
regcache *new_regcache = new regcache (target, arch, aspace);
|
|
new_regcache->set_ptid (ptid);
|
|
/* Work around a problem with g++ 4.8 (PR96537): Call the regcache_up
|
|
constructor explictly instead of implicitly. */
|
|
ptid_regc_map.insert (std::make_pair (ptid, regcache_up (new_regcache)));
|
|
|
|
return new_regcache;
|
|
}
|
|
|
|
struct regcache *
|
|
get_thread_arch_regcache (process_stratum_target *target, ptid_t ptid,
|
|
struct gdbarch *gdbarch)
|
|
{
|
|
scoped_restore_current_inferior restore_current_inferior;
|
|
set_current_inferior (find_inferior_ptid (target, ptid));
|
|
address_space *aspace = target_thread_address_space (ptid);
|
|
|
|
return get_thread_arch_aspace_regcache (target, ptid, gdbarch, aspace);
|
|
}
|
|
|
|
static process_stratum_target *current_thread_target;
|
|
static ptid_t current_thread_ptid;
|
|
static struct gdbarch *current_thread_arch;
|
|
|
|
struct regcache *
|
|
get_thread_regcache (process_stratum_target *target, ptid_t ptid)
|
|
{
|
|
if (!current_thread_arch
|
|
|| target != current_thread_target
|
|
|| current_thread_ptid != ptid)
|
|
{
|
|
gdb_assert (ptid != null_ptid);
|
|
|
|
current_thread_ptid = ptid;
|
|
current_thread_target = target;
|
|
|
|
scoped_restore_current_inferior restore_current_inferior;
|
|
set_current_inferior (find_inferior_ptid (target, ptid));
|
|
current_thread_arch = target_thread_architecture (ptid);
|
|
}
|
|
|
|
return get_thread_arch_regcache (target, ptid, current_thread_arch);
|
|
}
|
|
|
|
/* See regcache.h. */
|
|
|
|
struct regcache *
|
|
get_thread_regcache (thread_info *thread)
|
|
{
|
|
return get_thread_regcache (thread->inf->process_target (),
|
|
thread->ptid);
|
|
}
|
|
|
|
struct regcache *
|
|
get_current_regcache (void)
|
|
{
|
|
return get_thread_regcache (inferior_thread ());
|
|
}
|
|
|
|
/* See gdbsupport/common-regcache.h. */
|
|
|
|
struct regcache *
|
|
get_thread_regcache_for_ptid (ptid_t ptid)
|
|
{
|
|
/* This function doesn't take a process_stratum_target parameter
|
|
because it's a gdbsupport/ routine implemented by both gdb and
|
|
gdbserver. It always refers to a ptid of the current target. */
|
|
process_stratum_target *proc_target = current_inferior ()->process_target ();
|
|
return get_thread_regcache (proc_target, ptid);
|
|
}
|
|
|
|
/* Observer for the target_changed event. */
|
|
|
|
static void
|
|
regcache_observer_target_changed (struct target_ops *target)
|
|
{
|
|
registers_changed ();
|
|
}
|
|
|
|
/* Update regcaches related to OLD_PTID to now use NEW_PTID. */
|
|
static void
|
|
regcache_thread_ptid_changed (process_stratum_target *target,
|
|
ptid_t old_ptid, ptid_t new_ptid)
|
|
{
|
|
/* Look up map for target. */
|
|
auto pid_ptid_regc_map_it = regcaches.find (target);
|
|
if (pid_ptid_regc_map_it == regcaches.end ())
|
|
return;
|
|
|
|
/* Look up map for pid. */
|
|
pid_ptid_regcache_map &pid_ptid_regc_map = pid_ptid_regc_map_it->second;
|
|
auto ptid_regc_map_it = pid_ptid_regc_map.find (old_ptid.pid ());
|
|
if (ptid_regc_map_it == pid_ptid_regc_map.end ())
|
|
return;
|
|
|
|
/* Update all regcaches belonging to old_ptid. */
|
|
ptid_regcache_map &ptid_regc_map = ptid_regc_map_it->second;
|
|
auto range = ptid_regc_map.equal_range (old_ptid);
|
|
for (auto it = range.first; it != range.second;)
|
|
{
|
|
regcache_up rc = std::move (it->second);
|
|
rc->set_ptid (new_ptid);
|
|
|
|
/* Remove old before inserting new, to avoid rehashing,
|
|
which would invalidate iterators. */
|
|
it = ptid_regc_map.erase (it);
|
|
ptid_regc_map.insert (std::make_pair (new_ptid, std::move (rc)));
|
|
}
|
|
}
|
|
|
|
/* Low level examining and depositing of registers.
|
|
|
|
The caller is responsible for making sure that the inferior is
|
|
stopped before calling the fetching routines, or it will get
|
|
garbage. (a change from GDB version 3, in which the caller got the
|
|
value from the last stop). */
|
|
|
|
/* REGISTERS_CHANGED ()
|
|
|
|
Indicate that registers may have changed, so invalidate the cache. */
|
|
|
|
void
|
|
registers_changed_ptid (process_stratum_target *target, ptid_t ptid)
|
|
{
|
|
if (target == nullptr)
|
|
{
|
|
/* Since there can be ptid clashes between targets, it's not valid to
|
|
pass a ptid without saying to which target it belongs. */
|
|
gdb_assert (ptid == minus_one_ptid);
|
|
|
|
/* Delete all the regcaches of all targets. */
|
|
regcaches.clear ();
|
|
}
|
|
else if (ptid.is_pid ())
|
|
{
|
|
/* Non-NULL target and pid ptid, delete all regcaches belonging
|
|
to this (TARGET, PID). */
|
|
|
|
/* Look up map for target. */
|
|
auto pid_ptid_regc_map_it = regcaches.find (target);
|
|
if (pid_ptid_regc_map_it != regcaches.end ())
|
|
{
|
|
pid_ptid_regcache_map &pid_ptid_regc_map
|
|
= pid_ptid_regc_map_it->second;
|
|
|
|
pid_ptid_regc_map.erase (ptid.pid ());
|
|
}
|
|
}
|
|
else if (ptid != minus_one_ptid)
|
|
{
|
|
/* Non-NULL target and non-minus_one_ptid, delete all regcaches belonging
|
|
to this (TARGET, PTID). */
|
|
|
|
/* Look up map for target. */
|
|
auto pid_ptid_regc_map_it = regcaches.find (target);
|
|
if (pid_ptid_regc_map_it != regcaches.end ())
|
|
{
|
|
pid_ptid_regcache_map &pid_ptid_regc_map
|
|
= pid_ptid_regc_map_it->second;
|
|
|
|
/* Look up map for pid. */
|
|
auto ptid_regc_map_it
|
|
= pid_ptid_regc_map.find (ptid.pid ());
|
|
if (ptid_regc_map_it != pid_ptid_regc_map.end ())
|
|
{
|
|
ptid_regcache_map &ptid_regc_map
|
|
= ptid_regc_map_it->second;
|
|
|
|
ptid_regc_map.erase (ptid);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Non-NULL target and minus_one_ptid, delete all regcaches
|
|
associated to this target. */
|
|
regcaches.erase (target);
|
|
}
|
|
|
|
if ((target == nullptr || current_thread_target == target)
|
|
&& current_thread_ptid.matches (ptid))
|
|
{
|
|
current_thread_target = NULL;
|
|
current_thread_ptid = null_ptid;
|
|
current_thread_arch = NULL;
|
|
}
|
|
|
|
if ((target == nullptr || current_inferior ()->process_target () == target)
|
|
&& inferior_ptid.matches (ptid))
|
|
{
|
|
/* We just deleted the regcache of the current thread. Need to
|
|
forget about any frames we have cached, too. */
|
|
reinit_frame_cache ();
|
|
}
|
|
}
|
|
|
|
/* See regcache.h. */
|
|
|
|
void
|
|
registers_changed_thread (thread_info *thread)
|
|
{
|
|
registers_changed_ptid (thread->inf->process_target (), thread->ptid);
|
|
}
|
|
|
|
void
|
|
registers_changed (void)
|
|
{
|
|
registers_changed_ptid (nullptr, minus_one_ptid);
|
|
}
|
|
|
|
void
|
|
regcache::raw_update (int regnum)
|
|
{
|
|
assert_regnum (regnum);
|
|
|
|
/* Make certain that the register cache is up-to-date with respect
|
|
to the current thread. This switching shouldn't be necessary
|
|
only there is still only one target side register cache. Sigh!
|
|
On the bright side, at least there is a regcache object. */
|
|
|
|
if (get_register_status (regnum) == REG_UNKNOWN)
|
|
{
|
|
target_fetch_registers (this, regnum);
|
|
|
|
/* A number of targets can't access the whole set of raw
|
|
registers (because the debug API provides no means to get at
|
|
them). */
|
|
if (m_register_status[regnum] == REG_UNKNOWN)
|
|
m_register_status[regnum] = REG_UNAVAILABLE;
|
|
}
|
|
}
|
|
|
|
enum register_status
|
|
readable_regcache::raw_read (int regnum, gdb_byte *buf)
|
|
{
|
|
gdb_assert (buf != NULL);
|
|
raw_update (regnum);
|
|
|
|
if (m_register_status[regnum] != REG_VALID)
|
|
memset (buf, 0, m_descr->sizeof_register[regnum]);
|
|
else
|
|
memcpy (buf, register_buffer (regnum),
|
|
m_descr->sizeof_register[regnum]);
|
|
|
|
return m_register_status[regnum];
|
|
}
|
|
|
|
enum register_status
|
|
regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
|
|
{
|
|
gdb_assert (regcache != NULL);
|
|
return regcache->raw_read (regnum, val);
|
|
}
|
|
|
|
template<typename T, typename>
|
|
enum register_status
|
|
readable_regcache::raw_read (int regnum, T *val)
|
|
{
|
|
assert_regnum (regnum);
|
|
size_t len = m_descr->sizeof_register[regnum];
|
|
gdb_byte *buf = (gdb_byte *) alloca (len);
|
|
register_status status = raw_read (regnum, buf);
|
|
if (status == REG_VALID)
|
|
*val = extract_integer<T> ({buf, len},
|
|
gdbarch_byte_order (m_descr->gdbarch));
|
|
else
|
|
*val = 0;
|
|
return status;
|
|
}
|
|
|
|
enum register_status
|
|
regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
|
|
ULONGEST *val)
|
|
{
|
|
gdb_assert (regcache != NULL);
|
|
return regcache->raw_read (regnum, val);
|
|
}
|
|
|
|
void
|
|
regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
|
|
{
|
|
gdb_assert (regcache != NULL);
|
|
regcache->raw_write (regnum, val);
|
|
}
|
|
|
|
template<typename T, typename>
|
|
void
|
|
regcache::raw_write (int regnum, T val)
|
|
{
|
|
gdb_byte *buf;
|
|
|
|
assert_regnum (regnum);
|
|
buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
|
|
store_integer (buf, m_descr->sizeof_register[regnum],
|
|
gdbarch_byte_order (m_descr->gdbarch), val);
|
|
raw_write (regnum, buf);
|
|
}
|
|
|
|
void
|
|
regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
|
|
ULONGEST val)
|
|
{
|
|
gdb_assert (regcache != NULL);
|
|
regcache->raw_write (regnum, val);
|
|
}
|
|
|
|
LONGEST
|
|
regcache_raw_get_signed (struct regcache *regcache, int regnum)
|
|
{
|
|
LONGEST value;
|
|
enum register_status status;
|
|
|
|
status = regcache_raw_read_signed (regcache, regnum, &value);
|
|
if (status == REG_UNAVAILABLE)
|
|
throw_error (NOT_AVAILABLE_ERROR,
|
|
_("Register %d is not available"), regnum);
|
|
return value;
|
|
}
|
|
|
|
enum register_status
|
|
readable_regcache::cooked_read (int regnum, gdb_byte *buf)
|
|
{
|
|
gdb_assert (regnum >= 0);
|
|
gdb_assert (regnum < m_descr->nr_cooked_registers);
|
|
if (regnum < num_raw_registers ())
|
|
return raw_read (regnum, buf);
|
|
else if (m_has_pseudo
|
|
&& m_register_status[regnum] != REG_UNKNOWN)
|
|
{
|
|
if (m_register_status[regnum] == REG_VALID)
|
|
memcpy (buf, register_buffer (regnum),
|
|
m_descr->sizeof_register[regnum]);
|
|
else
|
|
memset (buf, 0, m_descr->sizeof_register[regnum]);
|
|
|
|
return m_register_status[regnum];
|
|
}
|
|
else if (gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
|
|
{
|
|
struct value *computed;
|
|
enum register_status result = REG_VALID;
|
|
|
|
scoped_value_mark mark;
|
|
|
|
computed = gdbarch_pseudo_register_read_value (m_descr->gdbarch,
|
|
this, regnum);
|
|
if (value_entirely_available (computed))
|
|
memcpy (buf, value_contents_raw (computed).data (),
|
|
m_descr->sizeof_register[regnum]);
|
|
else
|
|
{
|
|
memset (buf, 0, m_descr->sizeof_register[regnum]);
|
|
result = REG_UNAVAILABLE;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
else
|
|
return gdbarch_pseudo_register_read (m_descr->gdbarch, this,
|
|
regnum, buf);
|
|
}
|
|
|
|
struct value *
|
|
readable_regcache::cooked_read_value (int regnum)
|
|
{
|
|
gdb_assert (regnum >= 0);
|
|
gdb_assert (regnum < m_descr->nr_cooked_registers);
|
|
|
|
if (regnum < num_raw_registers ()
|
|
|| (m_has_pseudo && m_register_status[regnum] != REG_UNKNOWN)
|
|
|| !gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
|
|
{
|
|
struct value *result;
|
|
|
|
result = allocate_value (register_type (m_descr->gdbarch, regnum));
|
|
VALUE_LVAL (result) = lval_register;
|
|
VALUE_REGNUM (result) = regnum;
|
|
|
|
/* It is more efficient in general to do this delegation in this
|
|
direction than in the other one, even though the value-based
|
|
API is preferred. */
|
|
if (cooked_read (regnum,
|
|
value_contents_raw (result).data ()) == REG_UNAVAILABLE)
|
|
mark_value_bytes_unavailable (result, 0,
|
|
value_type (result)->length ());
|
|
|
|
return result;
|
|
}
|
|
else
|
|
return gdbarch_pseudo_register_read_value (m_descr->gdbarch,
|
|
this, regnum);
|
|
}
|
|
|
|
enum register_status
|
|
regcache_cooked_read_signed (struct regcache *regcache, int regnum,
|
|
LONGEST *val)
|
|
{
|
|
gdb_assert (regcache != NULL);
|
|
return regcache->cooked_read (regnum, val);
|
|
}
|
|
|
|
template<typename T, typename>
|
|
enum register_status
|
|
readable_regcache::cooked_read (int regnum, T *val)
|
|
{
|
|
gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
|
|
size_t len = m_descr->sizeof_register[regnum];
|
|
gdb_byte *buf = (gdb_byte *) alloca (len);
|
|
register_status status = cooked_read (regnum, buf);
|
|
if (status == REG_VALID)
|
|
*val = extract_integer<T> ({buf, len},
|
|
gdbarch_byte_order (m_descr->gdbarch));
|
|
else
|
|
*val = 0;
|
|
return status;
|
|
}
|
|
|
|
enum register_status
|
|
regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
|
|
ULONGEST *val)
|
|
{
|
|
gdb_assert (regcache != NULL);
|
|
return regcache->cooked_read (regnum, val);
|
|
}
|
|
|
|
void
|
|
regcache_cooked_write_signed (struct regcache *regcache, int regnum,
|
|
LONGEST val)
|
|
{
|
|
gdb_assert (regcache != NULL);
|
|
regcache->cooked_write (regnum, val);
|
|
}
|
|
|
|
template<typename T, typename>
|
|
void
|
|
regcache::cooked_write (int regnum, T val)
|
|
{
|
|
gdb_byte *buf;
|
|
|
|
gdb_assert (regnum >=0 && regnum < m_descr->nr_cooked_registers);
|
|
buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
|
|
store_integer (buf, m_descr->sizeof_register[regnum],
|
|
gdbarch_byte_order (m_descr->gdbarch), val);
|
|
cooked_write (regnum, buf);
|
|
}
|
|
|
|
void
|
|
regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
|
|
ULONGEST val)
|
|
{
|
|
gdb_assert (regcache != NULL);
|
|
regcache->cooked_write (regnum, val);
|
|
}
|
|
|
|
void
|
|
regcache::raw_write (int regnum, const gdb_byte *buf)
|
|
{
|
|
|
|
gdb_assert (buf != NULL);
|
|
assert_regnum (regnum);
|
|
|
|
/* On the sparc, writing %g0 is a no-op, so we don't even want to
|
|
change the registers array if something writes to this register. */
|
|
if (gdbarch_cannot_store_register (arch (), regnum))
|
|
return;
|
|
|
|
/* If we have a valid copy of the register, and new value == old
|
|
value, then don't bother doing the actual store. */
|
|
if (get_register_status (regnum) == REG_VALID
|
|
&& (memcmp (register_buffer (regnum), buf,
|
|
m_descr->sizeof_register[regnum]) == 0))
|
|
return;
|
|
|
|
target_prepare_to_store (this);
|
|
raw_supply (regnum, buf);
|
|
|
|
/* Invalidate the register after it is written, in case of a
|
|
failure. */
|
|
auto invalidator
|
|
= make_scope_exit ([&] { this->invalidate (regnum); });
|
|
|
|
target_store_registers (this, regnum);
|
|
|
|
/* The target did not throw an error so we can discard invalidating
|
|
the register. */
|
|
invalidator.release ();
|
|
}
|
|
|
|
void
|
|
regcache::cooked_write (int regnum, const gdb_byte *buf)
|
|
{
|
|
gdb_assert (regnum >= 0);
|
|
gdb_assert (regnum < m_descr->nr_cooked_registers);
|
|
if (regnum < num_raw_registers ())
|
|
raw_write (regnum, buf);
|
|
else
|
|
gdbarch_pseudo_register_write (m_descr->gdbarch, this,
|
|
regnum, buf);
|
|
}
|
|
|
|
/* See regcache.h. */
|
|
|
|
enum register_status
|
|
readable_regcache::read_part (int regnum, int offset, int len,
|
|
gdb_byte *out, bool is_raw)
|
|
{
|
|
int reg_size = register_size (arch (), regnum);
|
|
|
|
gdb_assert (out != NULL);
|
|
gdb_assert (offset >= 0 && offset <= reg_size);
|
|
gdb_assert (len >= 0 && offset + len <= reg_size);
|
|
|
|
if (offset == 0 && len == 0)
|
|
{
|
|
/* Nothing to do. */
|
|
return REG_VALID;
|
|
}
|
|
|
|
if (offset == 0 && len == reg_size)
|
|
{
|
|
/* Read the full register. */
|
|
return (is_raw) ? raw_read (regnum, out) : cooked_read (regnum, out);
|
|
}
|
|
|
|
enum register_status status;
|
|
gdb_byte *reg = (gdb_byte *) alloca (reg_size);
|
|
|
|
/* Read full register to buffer. */
|
|
status = (is_raw) ? raw_read (regnum, reg) : cooked_read (regnum, reg);
|
|
if (status != REG_VALID)
|
|
return status;
|
|
|
|
/* Copy out. */
|
|
memcpy (out, reg + offset, len);
|
|
return REG_VALID;
|
|
}
|
|
|
|
/* See regcache.h. */
|
|
|
|
void
|
|
reg_buffer::raw_collect_part (int regnum, int offset, int len,
|
|
gdb_byte *out) const
|
|
{
|
|
int reg_size = register_size (arch (), regnum);
|
|
|
|
gdb_assert (out != nullptr);
|
|
gdb_assert (offset >= 0 && offset <= reg_size);
|
|
gdb_assert (len >= 0 && offset + len <= reg_size);
|
|
|
|
if (offset == 0 && len == 0)
|
|
{
|
|
/* Nothing to do. */
|
|
return;
|
|
}
|
|
|
|
if (offset == 0 && len == reg_size)
|
|
{
|
|
/* Collect the full register. */
|
|
return raw_collect (regnum, out);
|
|
}
|
|
|
|
/* Read to buffer, then write out. */
|
|
gdb_byte *reg = (gdb_byte *) alloca (reg_size);
|
|
raw_collect (regnum, reg);
|
|
memcpy (out, reg + offset, len);
|
|
}
|
|
|
|
/* See regcache.h. */
|
|
|
|
enum register_status
|
|
regcache::write_part (int regnum, int offset, int len,
|
|
const gdb_byte *in, bool is_raw)
|
|
{
|
|
int reg_size = register_size (arch (), regnum);
|
|
|
|
gdb_assert (in != NULL);
|
|
gdb_assert (offset >= 0 && offset <= reg_size);
|
|
gdb_assert (len >= 0 && offset + len <= reg_size);
|
|
|
|
if (offset == 0 && len == 0)
|
|
{
|
|
/* Nothing to do. */
|
|
return REG_VALID;
|
|
}
|
|
|
|
if (offset == 0 && len == reg_size)
|
|
{
|
|
/* Write the full register. */
|
|
(is_raw) ? raw_write (regnum, in) : cooked_write (regnum, in);
|
|
return REG_VALID;
|
|
}
|
|
|
|
enum register_status status;
|
|
gdb_byte *reg = (gdb_byte *) alloca (reg_size);
|
|
|
|
/* Read existing register to buffer. */
|
|
status = (is_raw) ? raw_read (regnum, reg) : cooked_read (regnum, reg);
|
|
if (status != REG_VALID)
|
|
return status;
|
|
|
|
/* Update buffer, then write back to regcache. */
|
|
memcpy (reg + offset, in, len);
|
|
is_raw ? raw_write (regnum, reg) : cooked_write (regnum, reg);
|
|
return REG_VALID;
|
|
}
|
|
|
|
/* See regcache.h. */
|
|
|
|
void
|
|
reg_buffer::raw_supply_part (int regnum, int offset, int len,
|
|
const gdb_byte *in)
|
|
{
|
|
int reg_size = register_size (arch (), regnum);
|
|
|
|
gdb_assert (in != nullptr);
|
|
gdb_assert (offset >= 0 && offset <= reg_size);
|
|
gdb_assert (len >= 0 && offset + len <= reg_size);
|
|
|
|
if (offset == 0 && len == 0)
|
|
{
|
|
/* Nothing to do. */
|
|
return;
|
|
}
|
|
|
|
if (offset == 0 && len == reg_size)
|
|
{
|
|
/* Supply the full register. */
|
|
return raw_supply (regnum, in);
|
|
}
|
|
|
|
gdb_byte *reg = (gdb_byte *) alloca (reg_size);
|
|
|
|
/* Read existing value to buffer. */
|
|
raw_collect (regnum, reg);
|
|
|
|
/* Write to buffer, then write out. */
|
|
memcpy (reg + offset, in, len);
|
|
raw_supply (regnum, reg);
|
|
}
|
|
|
|
enum register_status
|
|
readable_regcache::raw_read_part (int regnum, int offset, int len,
|
|
gdb_byte *buf)
|
|
{
|
|
assert_regnum (regnum);
|
|
return read_part (regnum, offset, len, buf, true);
|
|
}
|
|
|
|
/* See regcache.h. */
|
|
|
|
void
|
|
regcache::raw_write_part (int regnum, int offset, int len,
|
|
const gdb_byte *buf)
|
|
{
|
|
assert_regnum (regnum);
|
|
write_part (regnum, offset, len, buf, true);
|
|
}
|
|
|
|
/* See regcache.h. */
|
|
|
|
enum register_status
|
|
readable_regcache::cooked_read_part (int regnum, int offset, int len,
|
|
gdb_byte *buf)
|
|
{
|
|
gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
|
|
return read_part (regnum, offset, len, buf, false);
|
|
}
|
|
|
|
/* See regcache.h. */
|
|
|
|
void
|
|
regcache::cooked_write_part (int regnum, int offset, int len,
|
|
const gdb_byte *buf)
|
|
{
|
|
gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
|
|
write_part (regnum, offset, len, buf, false);
|
|
}
|
|
|
|
/* See gdbsupport/common-regcache.h. */
|
|
|
|
void
|
|
reg_buffer::raw_supply (int regnum, const void *buf)
|
|
{
|
|
void *regbuf;
|
|
size_t size;
|
|
|
|
assert_regnum (regnum);
|
|
|
|
regbuf = register_buffer (regnum);
|
|
size = m_descr->sizeof_register[regnum];
|
|
|
|
if (buf)
|
|
{
|
|
memcpy (regbuf, buf, size);
|
|
m_register_status[regnum] = REG_VALID;
|
|
}
|
|
else
|
|
{
|
|
/* This memset not strictly necessary, but better than garbage
|
|
in case the register value manages to escape somewhere (due
|
|
to a bug, no less). */
|
|
memset (regbuf, 0, size);
|
|
m_register_status[regnum] = REG_UNAVAILABLE;
|
|
}
|
|
}
|
|
|
|
/* See regcache.h. */
|
|
|
|
void
|
|
reg_buffer::raw_supply_integer (int regnum, const gdb_byte *addr,
|
|
int addr_len, bool is_signed)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
|
|
gdb_byte *regbuf;
|
|
size_t regsize;
|
|
|
|
assert_regnum (regnum);
|
|
|
|
regbuf = register_buffer (regnum);
|
|
regsize = m_descr->sizeof_register[regnum];
|
|
|
|
copy_integer_to_size (regbuf, regsize, addr, addr_len, is_signed,
|
|
byte_order);
|
|
m_register_status[regnum] = REG_VALID;
|
|
}
|
|
|
|
/* See regcache.h. */
|
|
|
|
void
|
|
reg_buffer::raw_supply_zeroed (int regnum)
|
|
{
|
|
void *regbuf;
|
|
size_t size;
|
|
|
|
assert_regnum (regnum);
|
|
|
|
regbuf = register_buffer (regnum);
|
|
size = m_descr->sizeof_register[regnum];
|
|
|
|
memset (regbuf, 0, size);
|
|
m_register_status[regnum] = REG_VALID;
|
|
}
|
|
|
|
/* See gdbsupport/common-regcache.h. */
|
|
|
|
void
|
|
reg_buffer::raw_collect (int regnum, void *buf) const
|
|
{
|
|
const void *regbuf;
|
|
size_t size;
|
|
|
|
gdb_assert (buf != NULL);
|
|
assert_regnum (regnum);
|
|
|
|
regbuf = register_buffer (regnum);
|
|
size = m_descr->sizeof_register[regnum];
|
|
memcpy (buf, regbuf, size);
|
|
}
|
|
|
|
/* See regcache.h. */
|
|
|
|
void
|
|
reg_buffer::raw_collect_integer (int regnum, gdb_byte *addr, int addr_len,
|
|
bool is_signed) const
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
|
|
const gdb_byte *regbuf;
|
|
size_t regsize;
|
|
|
|
assert_regnum (regnum);
|
|
|
|
regbuf = register_buffer (regnum);
|
|
regsize = m_descr->sizeof_register[regnum];
|
|
|
|
copy_integer_to_size (addr, addr_len, regbuf, regsize, is_signed,
|
|
byte_order);
|
|
}
|
|
|
|
/* See regcache.h. */
|
|
|
|
void
|
|
regcache::transfer_regset_register (struct regcache *out_regcache, int regnum,
|
|
const gdb_byte *in_buf, gdb_byte *out_buf,
|
|
int slot_size, int offs) const
|
|
{
|
|
struct gdbarch *gdbarch = arch ();
|
|
int reg_size = std::min (register_size (gdbarch, regnum), slot_size);
|
|
|
|
/* Use part versions and reg_size to prevent possible buffer overflows when
|
|
accessing the regcache. */
|
|
|
|
if (out_buf != nullptr)
|
|
{
|
|
raw_collect_part (regnum, 0, reg_size, out_buf + offs);
|
|
|
|
/* Ensure any additional space is cleared. */
|
|
if (slot_size > reg_size)
|
|
memset (out_buf + offs + reg_size, 0, slot_size - reg_size);
|
|
}
|
|
else if (in_buf != nullptr)
|
|
{
|
|
/* Zero-extend the register value if the slot is smaller than the register. */
|
|
if (slot_size < register_size (gdbarch, regnum))
|
|
out_regcache->raw_supply_zeroed (regnum);
|
|
out_regcache->raw_supply_part (regnum, 0, reg_size, in_buf + offs);
|
|
}
|
|
else
|
|
{
|
|
/* Invalidate the register. */
|
|
out_regcache->raw_supply (regnum, nullptr);
|
|
}
|
|
}
|
|
|
|
/* See regcache.h. */
|
|
|
|
void
|
|
regcache::transfer_regset (const struct regset *regset, int regbase,
|
|
struct regcache *out_regcache,
|
|
int regnum, const gdb_byte *in_buf,
|
|
gdb_byte *out_buf, size_t size) const
|
|
{
|
|
const struct regcache_map_entry *map;
|
|
int offs = 0, count;
|
|
|
|
for (map = (const struct regcache_map_entry *) regset->regmap;
|
|
(count = map->count) != 0;
|
|
map++)
|
|
{
|
|
int regno = map->regno;
|
|
int slot_size = map->size;
|
|
|
|
if (regno != REGCACHE_MAP_SKIP)
|
|
regno += regbase;
|
|
|
|
if (slot_size == 0 && regno != REGCACHE_MAP_SKIP)
|
|
slot_size = m_descr->sizeof_register[regno];
|
|
|
|
if (regno == REGCACHE_MAP_SKIP
|
|
|| (regnum != -1
|
|
&& (regnum < regno || regnum >= regno + count)))
|
|
offs += count * slot_size;
|
|
|
|
else if (regnum == -1)
|
|
for (; count--; regno++, offs += slot_size)
|
|
{
|
|
if (offs + slot_size > size)
|
|
break;
|
|
|
|
transfer_regset_register (out_regcache, regno, in_buf, out_buf,
|
|
slot_size, offs);
|
|
}
|
|
else
|
|
{
|
|
/* Transfer a single register and return. */
|
|
offs += (regnum - regno) * slot_size;
|
|
if (offs + slot_size > size)
|
|
return;
|
|
|
|
transfer_regset_register (out_regcache, regnum, in_buf, out_buf,
|
|
slot_size, offs);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Supply register REGNUM from BUF to REGCACHE, using the register map
|
|
in REGSET. If REGNUM is -1, do this for all registers in REGSET.
|
|
If BUF is NULL, set the register(s) to "unavailable" status. */
|
|
|
|
void
|
|
regcache_supply_regset (const struct regset *regset,
|
|
struct regcache *regcache,
|
|
int regnum, const void *buf, size_t size)
|
|
{
|
|
regcache->supply_regset (regset, regnum, (const gdb_byte *) buf, size);
|
|
}
|
|
|
|
/* See regcache.h. */
|
|
|
|
void
|
|
regcache::supply_regset (const struct regset *regset, int regbase,
|
|
int regnum, const void *buf, size_t size)
|
|
{
|
|
transfer_regset (regset, regbase, this, regnum, (const gdb_byte *) buf,
|
|
nullptr, size);
|
|
}
|
|
|
|
/* Collect register REGNUM from REGCACHE to BUF, using the register
|
|
map in REGSET. If REGNUM is -1, do this for all registers in
|
|
REGSET. */
|
|
|
|
void
|
|
regcache_collect_regset (const struct regset *regset,
|
|
const struct regcache *regcache,
|
|
int regnum, void *buf, size_t size)
|
|
{
|
|
regcache->collect_regset (regset, regnum, (gdb_byte *) buf, size);
|
|
}
|
|
|
|
/* See regcache.h */
|
|
|
|
void
|
|
regcache::collect_regset (const struct regset *regset, int regbase,
|
|
int regnum, void *buf, size_t size) const
|
|
{
|
|
transfer_regset (regset, regbase, nullptr, regnum, nullptr, (gdb_byte *) buf,
|
|
size);
|
|
}
|
|
|
|
bool
|
|
regcache_map_supplies (const struct regcache_map_entry *map, int regnum,
|
|
struct gdbarch *gdbarch, size_t size)
|
|
{
|
|
int offs = 0, count;
|
|
|
|
for (; (count = map->count) != 0; map++)
|
|
{
|
|
int regno = map->regno;
|
|
int slot_size = map->size;
|
|
|
|
if (slot_size == 0 && regno != REGCACHE_MAP_SKIP)
|
|
slot_size = register_size (gdbarch, regno);
|
|
|
|
if (regno != REGCACHE_MAP_SKIP && regnum >= regno
|
|
&& regnum < regno + count)
|
|
return offs + (regnum - regno + 1) * slot_size <= size;
|
|
|
|
offs += count * slot_size;
|
|
if (offs >= size)
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* See gdbsupport/common-regcache.h. */
|
|
|
|
bool
|
|
reg_buffer::raw_compare (int regnum, const void *buf, int offset) const
|
|
{
|
|
gdb_assert (buf != NULL);
|
|
assert_regnum (regnum);
|
|
|
|
const char *regbuf = (const char *) register_buffer (regnum);
|
|
size_t size = m_descr->sizeof_register[regnum];
|
|
gdb_assert (size >= offset);
|
|
|
|
return (memcmp (buf, regbuf + offset, size - offset) == 0);
|
|
}
|
|
|
|
/* Special handling for register PC. */
|
|
|
|
CORE_ADDR
|
|
regcache_read_pc (struct regcache *regcache)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
|
|
CORE_ADDR pc_val;
|
|
|
|
if (gdbarch_read_pc_p (gdbarch))
|
|
pc_val = gdbarch_read_pc (gdbarch, regcache);
|
|
/* Else use per-frame method on get_current_frame. */
|
|
else if (gdbarch_pc_regnum (gdbarch) >= 0)
|
|
{
|
|
ULONGEST raw_val;
|
|
|
|
if (regcache_cooked_read_unsigned (regcache,
|
|
gdbarch_pc_regnum (gdbarch),
|
|
&raw_val) == REG_UNAVAILABLE)
|
|
throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available"));
|
|
|
|
pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
|
|
}
|
|
else
|
|
internal_error (_("regcache_read_pc: Unable to find PC"));
|
|
return pc_val;
|
|
}
|
|
|
|
/* See gdbsupport/common-regcache.h. */
|
|
|
|
CORE_ADDR
|
|
regcache_read_pc_protected (regcache *regcache)
|
|
{
|
|
CORE_ADDR pc;
|
|
try
|
|
{
|
|
pc = regcache_read_pc (regcache);
|
|
}
|
|
catch (const gdb_exception_error &ex)
|
|
{
|
|
pc = 0;
|
|
}
|
|
|
|
return pc;
|
|
}
|
|
|
|
void
|
|
regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
|
|
if (gdbarch_write_pc_p (gdbarch))
|
|
gdbarch_write_pc (gdbarch, regcache, pc);
|
|
else if (gdbarch_pc_regnum (gdbarch) >= 0)
|
|
regcache_cooked_write_unsigned (regcache,
|
|
gdbarch_pc_regnum (gdbarch), pc);
|
|
else
|
|
internal_error (_("regcache_write_pc: Unable to update PC"));
|
|
|
|
/* Writing the PC (for instance, from "load") invalidates the
|
|
current frame. */
|
|
reinit_frame_cache ();
|
|
}
|
|
|
|
int
|
|
reg_buffer::num_raw_registers () const
|
|
{
|
|
return gdbarch_num_regs (arch ());
|
|
}
|
|
|
|
void
|
|
regcache::debug_print_register (const char *func, int regno)
|
|
{
|
|
struct gdbarch *gdbarch = arch ();
|
|
|
|
gdb_printf (gdb_stdlog, "%s ", func);
|
|
if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
|
|
&& gdbarch_register_name (gdbarch, regno)[0] != '\0')
|
|
gdb_printf (gdb_stdlog, "(%s)",
|
|
gdbarch_register_name (gdbarch, regno));
|
|
else
|
|
gdb_printf (gdb_stdlog, "(%d)", regno);
|
|
if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int size = register_size (gdbarch, regno);
|
|
gdb_byte *buf = register_buffer (regno);
|
|
|
|
gdb_printf (gdb_stdlog, " = ");
|
|
for (int i = 0; i < size; i++)
|
|
{
|
|
gdb_printf (gdb_stdlog, "%02x", buf[i]);
|
|
}
|
|
if (size <= sizeof (LONGEST))
|
|
{
|
|
ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
|
|
|
|
gdb_printf (gdb_stdlog, " %s %s",
|
|
core_addr_to_string_nz (val), plongest (val));
|
|
}
|
|
}
|
|
gdb_printf (gdb_stdlog, "\n");
|
|
}
|
|
|
|
/* Implement 'maint flush register-cache' command. */
|
|
|
|
static void
|
|
reg_flush_command (const char *command, int from_tty)
|
|
{
|
|
/* Force-flush the register cache. */
|
|
registers_changed ();
|
|
if (from_tty)
|
|
gdb_printf (_("Register cache flushed.\n"));
|
|
}
|
|
|
|
void
|
|
register_dump::dump (ui_file *file)
|
|
{
|
|
auto descr = regcache_descr (m_gdbarch);
|
|
int regnum;
|
|
int footnote_nr = 0;
|
|
int footnote_register_offset = 0;
|
|
int footnote_register_type_name_null = 0;
|
|
long register_offset = 0;
|
|
|
|
gdb_assert (descr->nr_cooked_registers
|
|
== gdbarch_num_cooked_regs (m_gdbarch));
|
|
|
|
for (regnum = -1; regnum < descr->nr_cooked_registers; regnum++)
|
|
{
|
|
/* Name. */
|
|
if (regnum < 0)
|
|
gdb_printf (file, " %-10s", "Name");
|
|
else
|
|
{
|
|
const char *p = gdbarch_register_name (m_gdbarch, regnum);
|
|
|
|
if (p[0] == '\0')
|
|
p = "''";
|
|
gdb_printf (file, " %-10s", p);
|
|
}
|
|
|
|
/* Number. */
|
|
if (regnum < 0)
|
|
gdb_printf (file, " %4s", "Nr");
|
|
else
|
|
gdb_printf (file, " %4d", regnum);
|
|
|
|
/* Relative number. */
|
|
if (regnum < 0)
|
|
gdb_printf (file, " %4s", "Rel");
|
|
else if (regnum < gdbarch_num_regs (m_gdbarch))
|
|
gdb_printf (file, " %4d", regnum);
|
|
else
|
|
gdb_printf (file, " %4d",
|
|
(regnum - gdbarch_num_regs (m_gdbarch)));
|
|
|
|
/* Offset. */
|
|
if (regnum < 0)
|
|
gdb_printf (file, " %6s ", "Offset");
|
|
else
|
|
{
|
|
gdb_printf (file, " %6ld",
|
|
descr->register_offset[regnum]);
|
|
if (register_offset != descr->register_offset[regnum]
|
|
|| (regnum > 0
|
|
&& (descr->register_offset[regnum]
|
|
!= (descr->register_offset[regnum - 1]
|
|
+ descr->sizeof_register[regnum - 1])))
|
|
)
|
|
{
|
|
if (!footnote_register_offset)
|
|
footnote_register_offset = ++footnote_nr;
|
|
gdb_printf (file, "*%d", footnote_register_offset);
|
|
}
|
|
else
|
|
gdb_printf (file, " ");
|
|
register_offset = (descr->register_offset[regnum]
|
|
+ descr->sizeof_register[regnum]);
|
|
}
|
|
|
|
/* Size. */
|
|
if (regnum < 0)
|
|
gdb_printf (file, " %5s ", "Size");
|
|
else
|
|
gdb_printf (file, " %5ld", descr->sizeof_register[regnum]);
|
|
|
|
/* Type. */
|
|
{
|
|
const char *t;
|
|
std::string name_holder;
|
|
|
|
if (regnum < 0)
|
|
t = "Type";
|
|
else
|
|
{
|
|
static const char blt[] = "builtin_type";
|
|
|
|
t = register_type (m_gdbarch, regnum)->name ();
|
|
if (t == NULL)
|
|
{
|
|
if (!footnote_register_type_name_null)
|
|
footnote_register_type_name_null = ++footnote_nr;
|
|
name_holder = string_printf ("*%d",
|
|
footnote_register_type_name_null);
|
|
t = name_holder.c_str ();
|
|
}
|
|
/* Chop a leading builtin_type. */
|
|
if (startswith (t, blt))
|
|
t += strlen (blt);
|
|
}
|
|
gdb_printf (file, " %-15s", t);
|
|
}
|
|
|
|
/* Leading space always present. */
|
|
gdb_printf (file, " ");
|
|
|
|
dump_reg (file, regnum);
|
|
|
|
gdb_printf (file, "\n");
|
|
}
|
|
|
|
if (footnote_register_offset)
|
|
gdb_printf (file, "*%d: Inconsistent register offsets.\n",
|
|
footnote_register_offset);
|
|
if (footnote_register_type_name_null)
|
|
gdb_printf (file,
|
|
"*%d: Register type's name NULL.\n",
|
|
footnote_register_type_name_null);
|
|
}
|
|
|
|
#if GDB_SELF_TEST
|
|
#include "gdbsupport/selftest.h"
|
|
#include "selftest-arch.h"
|
|
#include "target-float.h"
|
|
|
|
namespace selftests {
|
|
|
|
static size_t
|
|
regcaches_size ()
|
|
{
|
|
size_t size = 0;
|
|
|
|
for (auto pid_ptid_regc_map_it = regcaches.cbegin ();
|
|
pid_ptid_regc_map_it != regcaches.cend ();
|
|
++pid_ptid_regc_map_it)
|
|
{
|
|
const pid_ptid_regcache_map &pid_ptid_regc_map
|
|
= pid_ptid_regc_map_it->second;
|
|
|
|
for (auto ptid_regc_map_it = pid_ptid_regc_map.cbegin ();
|
|
ptid_regc_map_it != pid_ptid_regc_map.cend ();
|
|
++ptid_regc_map_it)
|
|
{
|
|
const ptid_regcache_map &ptid_regc_map
|
|
= ptid_regc_map_it->second;
|
|
|
|
size += ptid_regc_map.size ();
|
|
}
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
/* Return the count of regcaches for (TARGET, PTID) in REGCACHES. */
|
|
|
|
static int
|
|
regcache_count (process_stratum_target *target, ptid_t ptid)
|
|
{
|
|
/* Look up map for target. */
|
|
auto pid_ptid_regc_map_it = regcaches.find (target);
|
|
if (pid_ptid_regc_map_it != regcaches.end ())
|
|
{
|
|
pid_ptid_regcache_map &pid_ptid_regc_map = pid_ptid_regc_map_it->second;
|
|
|
|
/* Look map for pid. */
|
|
auto ptid_regc_map_it = pid_ptid_regc_map.find (ptid.pid ());
|
|
if (ptid_regc_map_it != pid_ptid_regc_map.end ())
|
|
{
|
|
ptid_regcache_map &ptid_regc_map = ptid_regc_map_it->second;
|
|
auto range = ptid_regc_map.equal_range (ptid);
|
|
|
|
return std::distance (range.first, range.second);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
};
|
|
|
|
/* Wrapper around get_thread_arch_aspace_regcache that does some self checks. */
|
|
|
|
static void
|
|
get_thread_arch_aspace_regcache_and_check (process_stratum_target *target,
|
|
ptid_t ptid)
|
|
{
|
|
/* We currently only test with a single gdbarch. Any gdbarch will do, so use
|
|
the current inferior's gdbarch. Also use the current inferior's address
|
|
space. */
|
|
gdbarch *arch = current_inferior ()->gdbarch;
|
|
address_space *aspace = current_inferior ()->aspace;
|
|
regcache *regcache
|
|
= get_thread_arch_aspace_regcache (target, ptid, arch, aspace);
|
|
|
|
SELF_CHECK (regcache != NULL);
|
|
SELF_CHECK (regcache->target () == target);
|
|
SELF_CHECK (regcache->ptid () == ptid);
|
|
SELF_CHECK (regcache->arch () == arch);
|
|
SELF_CHECK (regcache->aspace () == aspace);
|
|
}
|
|
|
|
/* The data that the regcaches selftests must hold onto for the duration of the
|
|
test. */
|
|
|
|
struct regcache_test_data
|
|
{
|
|
regcache_test_data ()
|
|
{
|
|
/* Ensure the regcaches container is empty at the start. */
|
|
registers_changed ();
|
|
}
|
|
|
|
~regcache_test_data ()
|
|
{
|
|
/* Make sure to leave the global regcaches container empty. */
|
|
registers_changed ();
|
|
}
|
|
|
|
test_target_ops test_target1;
|
|
test_target_ops test_target2;
|
|
};
|
|
|
|
using regcache_test_data_up = std::unique_ptr<regcache_test_data>;
|
|
|
|
/* Set up a few regcaches from two different targets, for use in
|
|
regcache-management tests.
|
|
|
|
Return a pointer, because the `regcache_test_data` type is not moveable. */
|
|
|
|
static regcache_test_data_up
|
|
populate_regcaches_for_test ()
|
|
{
|
|
regcache_test_data_up data (new regcache_test_data);
|
|
size_t expected_regcache_size = 0;
|
|
|
|
SELF_CHECK (regcaches_size () == 0);
|
|
|
|
/* Populate the regcache container with a few regcaches for the two test
|
|
targets. */
|
|
for (int pid : { 1, 2 })
|
|
{
|
|
for (long lwp : { 1, 2, 3 })
|
|
{
|
|
get_thread_arch_aspace_regcache_and_check
|
|
(&data->test_target1, ptid_t (pid, lwp));
|
|
expected_regcache_size++;
|
|
SELF_CHECK (regcaches_size () == expected_regcache_size);
|
|
|
|
get_thread_arch_aspace_regcache_and_check
|
|
(&data->test_target2, ptid_t (pid, lwp));
|
|
expected_regcache_size++;
|
|
SELF_CHECK (regcaches_size () == expected_regcache_size);
|
|
}
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
static void
|
|
get_thread_arch_aspace_regcache_test ()
|
|
{
|
|
/* populate_regcaches_for_test already tests most of the
|
|
get_thread_arch_aspace_regcache functionality. */
|
|
regcache_test_data_up data = populate_regcaches_for_test ();
|
|
size_t regcaches_size_before = regcaches_size ();
|
|
|
|
/* Test that getting an existing regcache doesn't create a new one. */
|
|
get_thread_arch_aspace_regcache_and_check (&data->test_target1, ptid_t (2, 2));
|
|
SELF_CHECK (regcaches_size () == regcaches_size_before);
|
|
}
|
|
|
|
/* Test marking all regcaches of all targets as changed. */
|
|
|
|
static void
|
|
registers_changed_ptid_all_test ()
|
|
{
|
|
regcache_test_data_up data = populate_regcaches_for_test ();
|
|
|
|
registers_changed_ptid (nullptr, minus_one_ptid);
|
|
SELF_CHECK (regcaches_size () == 0);
|
|
}
|
|
|
|
/* Test marking regcaches of a specific target as changed. */
|
|
|
|
static void
|
|
registers_changed_ptid_target_test ()
|
|
{
|
|
regcache_test_data_up data = populate_regcaches_for_test ();
|
|
|
|
registers_changed_ptid (&data->test_target1, minus_one_ptid);
|
|
SELF_CHECK (regcaches_size () == 6);
|
|
|
|
/* Check that we deleted the regcache for the right target. */
|
|
SELF_CHECK (regcache_count (&data->test_target1, ptid_t (2, 2)) == 0);
|
|
SELF_CHECK (regcache_count (&data->test_target2, ptid_t (2, 2)) == 1);
|
|
}
|
|
|
|
/* Test marking regcaches of a specific (target, pid) as changed. */
|
|
|
|
static void
|
|
registers_changed_ptid_target_pid_test ()
|
|
{
|
|
regcache_test_data_up data = populate_regcaches_for_test ();
|
|
|
|
registers_changed_ptid (&data->test_target1, ptid_t (2));
|
|
SELF_CHECK (regcaches_size () == 9);
|
|
|
|
/* Regcaches from target1 should not exist, while regcaches from target2
|
|
should exist. */
|
|
SELF_CHECK (regcache_count (&data->test_target1, ptid_t (2, 2)) == 0);
|
|
SELF_CHECK (regcache_count (&data->test_target2, ptid_t (2, 2)) == 1);
|
|
}
|
|
|
|
/* Test marking regcaches of a specific (target, ptid) as changed. */
|
|
|
|
static void
|
|
registers_changed_ptid_target_ptid_test ()
|
|
{
|
|
regcache_test_data_up data = populate_regcaches_for_test ();
|
|
|
|
registers_changed_ptid (&data->test_target1, ptid_t (2, 2));
|
|
SELF_CHECK (regcaches_size () == 11);
|
|
|
|
/* Check that we deleted the regcache for the right target. */
|
|
SELF_CHECK (regcache_count (&data->test_target1, ptid_t (2, 2)) == 0);
|
|
SELF_CHECK (regcache_count (&data->test_target2, ptid_t (2, 2)) == 1);
|
|
}
|
|
|
|
class target_ops_no_register : public test_target_ops
|
|
{
|
|
public:
|
|
target_ops_no_register ()
|
|
: test_target_ops {}
|
|
{}
|
|
|
|
void reset ()
|
|
{
|
|
fetch_registers_called = 0;
|
|
store_registers_called = 0;
|
|
xfer_partial_called = 0;
|
|
}
|
|
|
|
void fetch_registers (regcache *regs, int regno) override;
|
|
void store_registers (regcache *regs, int regno) override;
|
|
|
|
enum target_xfer_status xfer_partial (enum target_object object,
|
|
const char *annex, gdb_byte *readbuf,
|
|
const gdb_byte *writebuf,
|
|
ULONGEST offset, ULONGEST len,
|
|
ULONGEST *xfered_len) override;
|
|
|
|
unsigned int fetch_registers_called = 0;
|
|
unsigned int store_registers_called = 0;
|
|
unsigned int xfer_partial_called = 0;
|
|
};
|
|
|
|
void
|
|
target_ops_no_register::fetch_registers (regcache *regs, int regno)
|
|
{
|
|
/* Mark register available. */
|
|
regs->raw_supply_zeroed (regno);
|
|
this->fetch_registers_called++;
|
|
}
|
|
|
|
void
|
|
target_ops_no_register::store_registers (regcache *regs, int regno)
|
|
{
|
|
this->store_registers_called++;
|
|
}
|
|
|
|
enum target_xfer_status
|
|
target_ops_no_register::xfer_partial (enum target_object object,
|
|
const char *annex, gdb_byte *readbuf,
|
|
const gdb_byte *writebuf,
|
|
ULONGEST offset, ULONGEST len,
|
|
ULONGEST *xfered_len)
|
|
{
|
|
this->xfer_partial_called++;
|
|
|
|
*xfered_len = len;
|
|
return TARGET_XFER_OK;
|
|
}
|
|
|
|
class readwrite_regcache : public regcache
|
|
{
|
|
public:
|
|
readwrite_regcache (process_stratum_target *target,
|
|
struct gdbarch *gdbarch)
|
|
: regcache (target, gdbarch, nullptr)
|
|
{}
|
|
};
|
|
|
|
/* Return true if regcache::cooked_{read,write}_test should be skipped for
|
|
GDBARCH. */
|
|
|
|
static bool
|
|
selftest_skiparch (struct gdbarch *gdbarch)
|
|
{
|
|
const char *name = gdbarch_bfd_arch_info (gdbarch)->printable_name;
|
|
|
|
/* Avoid warning:
|
|
Running selftest regcache::cooked_{read,write}_test::m68hc11.
|
|
warning: No frame soft register found in the symbol table.
|
|
Stack backtrace will not work.
|
|
We could instead capture the output and then filter out the warning, but
|
|
that seems more trouble than it's worth. */
|
|
return (strcmp (name, "m68hc11") == 0
|
|
|| strcmp (name, "m68hc12") == 0
|
|
|| strcmp (name, "m68hc12:HCS12") == 0);
|
|
}
|
|
|
|
/* Test regcache::cooked_read gets registers from raw registers and
|
|
memory instead of target to_{fetch,store}_registers. */
|
|
|
|
static void
|
|
cooked_read_test (struct gdbarch *gdbarch)
|
|
{
|
|
if (selftest_skiparch (gdbarch))
|
|
return;
|
|
|
|
scoped_mock_context<target_ops_no_register> mockctx (gdbarch);
|
|
|
|
/* Test that read one raw register from regcache_no_target will go
|
|
to the target layer. */
|
|
|
|
/* Find a raw register which size isn't zero. */
|
|
int nonzero_regnum;
|
|
for (nonzero_regnum = 0;
|
|
nonzero_regnum < gdbarch_num_regs (gdbarch);
|
|
nonzero_regnum++)
|
|
{
|
|
if (register_size (gdbarch, nonzero_regnum) != 0)
|
|
break;
|
|
}
|
|
|
|
readwrite_regcache readwrite (&mockctx.mock_target, gdbarch);
|
|
gdb::def_vector<gdb_byte> buf (register_size (gdbarch, nonzero_regnum));
|
|
|
|
readwrite.raw_read (nonzero_regnum, buf.data ());
|
|
|
|
/* raw_read calls target_fetch_registers. */
|
|
SELF_CHECK (mockctx.mock_target.fetch_registers_called > 0);
|
|
mockctx.mock_target.reset ();
|
|
|
|
/* Mark all raw registers valid, so the following raw registers
|
|
accesses won't go to target. */
|
|
for (auto i = 0; i < gdbarch_num_regs (gdbarch); i++)
|
|
readwrite.raw_update (i);
|
|
|
|
mockctx.mock_target.reset ();
|
|
/* Then, read all raw and pseudo registers, and don't expect calling
|
|
to_{fetch,store}_registers. */
|
|
for (int regnum = 0; regnum < gdbarch_num_cooked_regs (gdbarch); regnum++)
|
|
{
|
|
if (register_size (gdbarch, regnum) == 0)
|
|
continue;
|
|
|
|
gdb::def_vector<gdb_byte> inner_buf (register_size (gdbarch, regnum));
|
|
|
|
SELF_CHECK (REG_VALID == readwrite.cooked_read (regnum,
|
|
inner_buf.data ()));
|
|
|
|
SELF_CHECK (mockctx.mock_target.fetch_registers_called == 0);
|
|
SELF_CHECK (mockctx.mock_target.store_registers_called == 0);
|
|
SELF_CHECK (mockctx.mock_target.xfer_partial_called == 0);
|
|
|
|
mockctx.mock_target.reset ();
|
|
}
|
|
|
|
readonly_detached_regcache readonly (readwrite);
|
|
|
|
/* GDB may go to target layer to fetch all registers and memory for
|
|
readonly regcache. */
|
|
mockctx.mock_target.reset ();
|
|
|
|
for (int regnum = 0; regnum < gdbarch_num_cooked_regs (gdbarch); regnum++)
|
|
{
|
|
if (register_size (gdbarch, regnum) == 0)
|
|
continue;
|
|
|
|
gdb::def_vector<gdb_byte> inner_buf (register_size (gdbarch, regnum));
|
|
enum register_status status = readonly.cooked_read (regnum,
|
|
inner_buf.data ());
|
|
|
|
if (regnum < gdbarch_num_regs (gdbarch))
|
|
{
|
|
auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
|
|
|
|
if (bfd_arch == bfd_arch_frv || bfd_arch == bfd_arch_h8300
|
|
|| bfd_arch == bfd_arch_m32c || bfd_arch == bfd_arch_sh
|
|
|| bfd_arch == bfd_arch_alpha || bfd_arch == bfd_arch_v850
|
|
|| bfd_arch == bfd_arch_msp430 || bfd_arch == bfd_arch_mep
|
|
|| bfd_arch == bfd_arch_mips || bfd_arch == bfd_arch_v850_rh850
|
|
|| bfd_arch == bfd_arch_tic6x || bfd_arch == bfd_arch_mn10300
|
|
|| bfd_arch == bfd_arch_rl78 || bfd_arch == bfd_arch_score
|
|
|| bfd_arch == bfd_arch_riscv || bfd_arch == bfd_arch_csky)
|
|
{
|
|
/* Raw registers. If raw registers are not in save_reggroup,
|
|
their status are unknown. */
|
|
if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
|
|
SELF_CHECK (status == REG_VALID);
|
|
else
|
|
SELF_CHECK (status == REG_UNKNOWN);
|
|
}
|
|
else
|
|
SELF_CHECK (status == REG_VALID);
|
|
}
|
|
else
|
|
{
|
|
if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
|
|
SELF_CHECK (status == REG_VALID);
|
|
else
|
|
{
|
|
/* If pseudo registers are not in save_reggroup, some of
|
|
them can be computed from saved raw registers, but some
|
|
of them are unknown. */
|
|
auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
|
|
|
|
if (bfd_arch == bfd_arch_frv
|
|
|| bfd_arch == bfd_arch_m32c
|
|
|| bfd_arch == bfd_arch_mep
|
|
|| bfd_arch == bfd_arch_sh)
|
|
SELF_CHECK (status == REG_VALID || status == REG_UNKNOWN);
|
|
else if (bfd_arch == bfd_arch_mips
|
|
|| bfd_arch == bfd_arch_h8300)
|
|
SELF_CHECK (status == REG_UNKNOWN);
|
|
else
|
|
SELF_CHECK (status == REG_VALID);
|
|
}
|
|
}
|
|
|
|
SELF_CHECK (mockctx.mock_target.fetch_registers_called == 0);
|
|
SELF_CHECK (mockctx.mock_target.store_registers_called == 0);
|
|
SELF_CHECK (mockctx.mock_target.xfer_partial_called == 0);
|
|
|
|
mockctx.mock_target.reset ();
|
|
}
|
|
}
|
|
|
|
/* Test regcache::cooked_write by writing some expected contents to
|
|
registers, and checking that contents read from registers and the
|
|
expected contents are the same. */
|
|
|
|
static void
|
|
cooked_write_test (struct gdbarch *gdbarch)
|
|
{
|
|
if (selftest_skiparch (gdbarch))
|
|
return;
|
|
|
|
/* Create a mock environment. A process_stratum target pushed. */
|
|
scoped_mock_context<target_ops_no_register> ctx (gdbarch);
|
|
readwrite_regcache readwrite (&ctx.mock_target, gdbarch);
|
|
const int num_regs = gdbarch_num_cooked_regs (gdbarch);
|
|
|
|
for (auto regnum = 0; regnum < num_regs; regnum++)
|
|
{
|
|
if (register_size (gdbarch, regnum) == 0
|
|
|| gdbarch_cannot_store_register (gdbarch, regnum))
|
|
continue;
|
|
|
|
auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
|
|
|
|
if (bfd_arch == bfd_arch_sparc
|
|
/* SPARC64_CWP_REGNUM, SPARC64_PSTATE_REGNUM,
|
|
SPARC64_ASI_REGNUM and SPARC64_CCR_REGNUM are hard to test. */
|
|
&& gdbarch_ptr_bit (gdbarch) == 64
|
|
&& (regnum >= gdbarch_num_regs (gdbarch)
|
|
&& regnum <= gdbarch_num_regs (gdbarch) + 4))
|
|
continue;
|
|
|
|
std::vector<gdb_byte> expected (register_size (gdbarch, regnum), 0);
|
|
std::vector<gdb_byte> buf (register_size (gdbarch, regnum), 0);
|
|
const auto type = register_type (gdbarch, regnum);
|
|
|
|
if (type->code () == TYPE_CODE_FLT
|
|
|| type->code () == TYPE_CODE_DECFLOAT)
|
|
{
|
|
/* Generate valid float format. */
|
|
target_float_from_string (expected.data (), type, "1.25");
|
|
}
|
|
else if (type->code () == TYPE_CODE_INT
|
|
|| type->code () == TYPE_CODE_ARRAY
|
|
|| type->code () == TYPE_CODE_PTR
|
|
|| type->code () == TYPE_CODE_UNION
|
|
|| type->code () == TYPE_CODE_STRUCT)
|
|
{
|
|
if (bfd_arch == bfd_arch_ia64
|
|
|| (regnum >= gdbarch_num_regs (gdbarch)
|
|
&& (bfd_arch == bfd_arch_xtensa
|
|
|| bfd_arch == bfd_arch_bfin
|
|
|| bfd_arch == bfd_arch_m32c
|
|
/* m68hc11 pseudo registers are in memory. */
|
|
|| bfd_arch == bfd_arch_m68hc11
|
|
|| bfd_arch == bfd_arch_m68hc12
|
|
|| bfd_arch == bfd_arch_s390))
|
|
|| (bfd_arch == bfd_arch_frv
|
|
/* FRV pseudo registers except iacc0. */
|
|
&& regnum > gdbarch_num_regs (gdbarch)))
|
|
{
|
|
/* Skip setting the expected values for some architecture
|
|
registers. */
|
|
}
|
|
else if (bfd_arch == bfd_arch_rl78 && regnum == 40)
|
|
{
|
|
/* RL78_PC_REGNUM */
|
|
for (auto j = 0; j < register_size (gdbarch, regnum) - 1; j++)
|
|
expected[j] = j;
|
|
}
|
|
else
|
|
{
|
|
for (auto j = 0; j < register_size (gdbarch, regnum); j++)
|
|
expected[j] = j;
|
|
}
|
|
}
|
|
else if (type->code () == TYPE_CODE_FLAGS)
|
|
{
|
|
/* No idea how to test flags. */
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
/* If we don't know how to create the expected value for the
|
|
this type, make it fail. */
|
|
SELF_CHECK (0);
|
|
}
|
|
|
|
readwrite.cooked_write (regnum, expected.data ());
|
|
|
|
SELF_CHECK (readwrite.cooked_read (regnum, buf.data ()) == REG_VALID);
|
|
SELF_CHECK (expected == buf);
|
|
}
|
|
}
|
|
|
|
/* Verify that when two threads with the same ptid exist (from two different
|
|
targets) and one of them changes ptid, we only update the appropriate
|
|
regcaches. */
|
|
|
|
static void
|
|
regcache_thread_ptid_changed ()
|
|
{
|
|
/* This test relies on the global regcache list to initially be empty. */
|
|
registers_changed ();
|
|
|
|
/* Any arch will do. */
|
|
gdbarch *arch = current_inferior ()->gdbarch;
|
|
|
|
/* Prepare two targets with one thread each, with the same ptid. */
|
|
scoped_mock_context<test_target_ops> target1 (arch);
|
|
scoped_mock_context<test_target_ops> target2 (arch);
|
|
|
|
ptid_t old_ptid (111, 222);
|
|
ptid_t new_ptid (111, 333);
|
|
|
|
target1.mock_inferior.pid = old_ptid.pid ();
|
|
target1.mock_thread.ptid = old_ptid;
|
|
target1.mock_inferior.ptid_thread_map.clear ();
|
|
target1.mock_inferior.ptid_thread_map[old_ptid] = &target1.mock_thread;
|
|
|
|
target2.mock_inferior.pid = old_ptid.pid ();
|
|
target2.mock_thread.ptid = old_ptid;
|
|
target2.mock_inferior.ptid_thread_map.clear ();
|
|
target2.mock_inferior.ptid_thread_map[old_ptid] = &target2.mock_thread;
|
|
|
|
gdb_assert (regcaches.empty ());
|
|
|
|
/* Populate the regcaches container. */
|
|
get_thread_arch_aspace_regcache (&target1.mock_target, old_ptid, arch,
|
|
nullptr);
|
|
get_thread_arch_aspace_regcache (&target2.mock_target, old_ptid, arch,
|
|
nullptr);
|
|
|
|
gdb_assert (regcaches.size () == 2);
|
|
gdb_assert (regcache_count (&target1.mock_target, old_ptid) == 1);
|
|
gdb_assert (regcache_count (&target1.mock_target, new_ptid) == 0);
|
|
gdb_assert (regcache_count (&target2.mock_target, old_ptid) == 1);
|
|
gdb_assert (regcache_count (&target2.mock_target, new_ptid) == 0);
|
|
|
|
thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
|
|
|
|
gdb_assert (regcaches.size () == 2);
|
|
gdb_assert (regcache_count (&target1.mock_target, old_ptid) == 0);
|
|
gdb_assert (regcache_count (&target1.mock_target, new_ptid) == 1);
|
|
gdb_assert (regcache_count (&target2.mock_target, old_ptid) == 1);
|
|
gdb_assert (regcache_count (&target2.mock_target, new_ptid) == 0);
|
|
|
|
/* Leave the regcache list empty. */
|
|
registers_changed ();
|
|
gdb_assert (regcaches.empty ());
|
|
}
|
|
|
|
} // namespace selftests
|
|
#endif /* GDB_SELF_TEST */
|
|
|
|
void _initialize_regcache ();
|
|
void
|
|
_initialize_regcache ()
|
|
{
|
|
struct cmd_list_element *c;
|
|
|
|
gdb::observers::target_changed.attach (regcache_observer_target_changed,
|
|
"regcache");
|
|
gdb::observers::thread_ptid_changed.attach (regcache_thread_ptid_changed,
|
|
"regcache");
|
|
|
|
cmd_list_element *maintenance_flush_register_cache_cmd
|
|
= add_cmd ("register-cache", class_maintenance, reg_flush_command,
|
|
_("Force gdb to flush its register and frame cache."),
|
|
&maintenanceflushlist);
|
|
c = add_com_alias ("flushregs", maintenance_flush_register_cache_cmd,
|
|
class_maintenance, 0);
|
|
deprecate_cmd (c, "maintenance flush register-cache");
|
|
|
|
#if GDB_SELF_TEST
|
|
selftests::register_test ("get_thread_arch_aspace_regcache",
|
|
selftests::get_thread_arch_aspace_regcache_test);
|
|
selftests::register_test ("registers_changed_ptid_all",
|
|
selftests::registers_changed_ptid_all_test);
|
|
selftests::register_test ("registers_changed_ptid_target",
|
|
selftests::registers_changed_ptid_target_test);
|
|
selftests::register_test ("registers_changed_ptid_target_pid",
|
|
selftests::registers_changed_ptid_target_pid_test);
|
|
selftests::register_test ("registers_changed_ptid_target_ptid",
|
|
selftests::registers_changed_ptid_target_ptid_test);
|
|
|
|
selftests::register_test_foreach_arch ("regcache::cooked_read_test",
|
|
selftests::cooked_read_test);
|
|
selftests::register_test_foreach_arch ("regcache::cooked_write_test",
|
|
selftests::cooked_write_test);
|
|
selftests::register_test ("regcache_thread_ptid_changed",
|
|
selftests::regcache_thread_ptid_changed);
|
|
#endif
|
|
}
|