mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-28 04:25:10 +08:00
b811d2c292
gdb/ChangeLog: Update copyright year range in all GDB files.
2188 lines
62 KiB
C
2188 lines
62 KiB
C
/* Target-dependent code for UltraSPARC.
|
||
|
||
Copyright (C) 2003-2020 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "arch-utils.h"
|
||
#include "dwarf2-frame.h"
|
||
#include "frame.h"
|
||
#include "frame-base.h"
|
||
#include "frame-unwind.h"
|
||
#include "gdbcore.h"
|
||
#include "gdbtypes.h"
|
||
#include "inferior.h"
|
||
#include "symtab.h"
|
||
#include "objfiles.h"
|
||
#include "osabi.h"
|
||
#include "regcache.h"
|
||
#include "target-descriptions.h"
|
||
#include "target.h"
|
||
#include "value.h"
|
||
|
||
#include "sparc64-tdep.h"
|
||
|
||
/* This file implements the SPARC 64-bit ABI as defined by the
|
||
section "Low-Level System Information" of the SPARC Compliance
|
||
Definition (SCD) 2.4.1, which is the 64-bit System V psABI for
|
||
SPARC. */
|
||
|
||
/* Please use the sparc32_-prefix for 32-bit specific code, the
|
||
sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
|
||
code can handle both. */
|
||
|
||
/* The M7 processor supports an Application Data Integrity (ADI) feature
|
||
that detects invalid data accesses. When software allocates memory and
|
||
enables ADI on the allocated memory, it chooses a 4-bit version number,
|
||
sets the version in the upper 4 bits of the 64-bit pointer to that data,
|
||
and stores the 4-bit version in every cacheline of the object. Hardware
|
||
saves the latter in spare bits in the cache and memory hierarchy. On each
|
||
load and store, the processor compares the upper 4 VA (virtual address) bits
|
||
to the cacheline's version. If there is a mismatch, the processor generates
|
||
a version mismatch trap which can be either precise or disrupting.
|
||
The trap is an error condition which the kernel delivers to the process
|
||
as a SIGSEGV signal.
|
||
|
||
The upper 4 bits of the VA represent a version and are not part of the
|
||
true address. The processor clears these bits and sign extends bit 59
|
||
to generate the true address.
|
||
|
||
Note that 32-bit applications cannot use ADI. */
|
||
|
||
|
||
#include <algorithm>
|
||
#include "cli/cli-utils.h"
|
||
#include "gdbcmd.h"
|
||
#include "auxv.h"
|
||
|
||
#define MAX_PROC_NAME_SIZE sizeof("/proc/99999/lwp/9999/adi/lstatus")
|
||
|
||
/* ELF Auxiliary vectors */
|
||
#ifndef AT_ADI_BLKSZ
|
||
#define AT_ADI_BLKSZ 34
|
||
#endif
|
||
#ifndef AT_ADI_NBITS
|
||
#define AT_ADI_NBITS 35
|
||
#endif
|
||
#ifndef AT_ADI_UEONADI
|
||
#define AT_ADI_UEONADI 36
|
||
#endif
|
||
|
||
/* ADI command list. */
|
||
static struct cmd_list_element *sparc64adilist = NULL;
|
||
|
||
/* ADI stat settings. */
|
||
typedef struct
|
||
{
|
||
/* The ADI block size. */
|
||
unsigned long blksize;
|
||
|
||
/* Number of bits used for an ADI version tag which can be
|
||
used together with the shift value for an ADI version tag
|
||
to encode or extract the ADI version value in a pointer. */
|
||
unsigned long nbits;
|
||
|
||
/* The maximum ADI version tag value supported. */
|
||
int max_version;
|
||
|
||
/* ADI version tag file. */
|
||
int tag_fd = 0;
|
||
|
||
/* ADI availability check has been done. */
|
||
bool checked_avail = false;
|
||
|
||
/* ADI is available. */
|
||
bool is_avail = false;
|
||
|
||
} adi_stat_t;
|
||
|
||
/* Per-process ADI stat info. */
|
||
|
||
typedef struct sparc64_adi_info
|
||
{
|
||
sparc64_adi_info (pid_t pid_)
|
||
: pid (pid_)
|
||
{}
|
||
|
||
/* The process identifier. */
|
||
pid_t pid;
|
||
|
||
/* The ADI stat. */
|
||
adi_stat_t stat = {};
|
||
|
||
} sparc64_adi_info;
|
||
|
||
static std::forward_list<sparc64_adi_info> adi_proc_list;
|
||
|
||
|
||
/* Get ADI info for process PID, creating one if it doesn't exist. */
|
||
|
||
static sparc64_adi_info *
|
||
get_adi_info_proc (pid_t pid)
|
||
{
|
||
auto found = std::find_if (adi_proc_list.begin (), adi_proc_list.end (),
|
||
[&pid] (const sparc64_adi_info &info)
|
||
{
|
||
return info.pid == pid;
|
||
});
|
||
|
||
if (found == adi_proc_list.end ())
|
||
{
|
||
adi_proc_list.emplace_front (pid);
|
||
return &adi_proc_list.front ();
|
||
}
|
||
else
|
||
{
|
||
return &(*found);
|
||
}
|
||
}
|
||
|
||
static adi_stat_t
|
||
get_adi_info (pid_t pid)
|
||
{
|
||
sparc64_adi_info *proc;
|
||
|
||
proc = get_adi_info_proc (pid);
|
||
return proc->stat;
|
||
}
|
||
|
||
/* Is called when GDB is no longer debugging process PID. It
|
||
deletes data structure that keeps track of the ADI stat. */
|
||
|
||
void
|
||
sparc64_forget_process (pid_t pid)
|
||
{
|
||
int target_errno;
|
||
|
||
for (auto pit = adi_proc_list.before_begin (),
|
||
it = std::next (pit);
|
||
it != adi_proc_list.end ();
|
||
)
|
||
{
|
||
if ((*it).pid == pid)
|
||
{
|
||
if ((*it).stat.tag_fd > 0)
|
||
target_fileio_close ((*it).stat.tag_fd, &target_errno);
|
||
adi_proc_list.erase_after (pit);
|
||
break;
|
||
}
|
||
else
|
||
pit = it++;
|
||
}
|
||
|
||
}
|
||
|
||
static void
|
||
info_adi_command (const char *args, int from_tty)
|
||
{
|
||
printf_unfiltered ("\"adi\" must be followed by \"examine\" "
|
||
"or \"assign\".\n");
|
||
help_list (sparc64adilist, "adi ", all_commands, gdb_stdout);
|
||
}
|
||
|
||
/* Read attributes of a maps entry in /proc/[pid]/adi/maps. */
|
||
|
||
static void
|
||
read_maps_entry (const char *line,
|
||
ULONGEST *addr, ULONGEST *endaddr)
|
||
{
|
||
const char *p = line;
|
||
|
||
*addr = strtoulst (p, &p, 16);
|
||
if (*p == '-')
|
||
p++;
|
||
|
||
*endaddr = strtoulst (p, &p, 16);
|
||
}
|
||
|
||
/* Check if ADI is available. */
|
||
|
||
static bool
|
||
adi_available (void)
|
||
{
|
||
pid_t pid = inferior_ptid.pid ();
|
||
sparc64_adi_info *proc = get_adi_info_proc (pid);
|
||
CORE_ADDR value;
|
||
|
||
if (proc->stat.checked_avail)
|
||
return proc->stat.is_avail;
|
||
|
||
proc->stat.checked_avail = true;
|
||
if (target_auxv_search (current_top_target (), AT_ADI_BLKSZ, &value) <= 0)
|
||
return false;
|
||
proc->stat.blksize = value;
|
||
target_auxv_search (current_top_target (), AT_ADI_NBITS, &value);
|
||
proc->stat.nbits = value;
|
||
proc->stat.max_version = (1 << proc->stat.nbits) - 2;
|
||
proc->stat.is_avail = true;
|
||
|
||
return proc->stat.is_avail;
|
||
}
|
||
|
||
/* Normalize a versioned address - a VA with ADI bits (63-60) set. */
|
||
|
||
static CORE_ADDR
|
||
adi_normalize_address (CORE_ADDR addr)
|
||
{
|
||
adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
|
||
|
||
if (ast.nbits)
|
||
{
|
||
/* Clear upper bits. */
|
||
addr &= ((uint64_t) -1) >> ast.nbits;
|
||
|
||
/* Sign extend. */
|
||
CORE_ADDR signbit = (uint64_t) 1 << (64 - ast.nbits - 1);
|
||
return (addr ^ signbit) - signbit;
|
||
}
|
||
return addr;
|
||
}
|
||
|
||
/* Align a normalized address - a VA with bit 59 sign extended into
|
||
ADI bits. */
|
||
|
||
static CORE_ADDR
|
||
adi_align_address (CORE_ADDR naddr)
|
||
{
|
||
adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
|
||
|
||
return (naddr - (naddr % ast.blksize)) / ast.blksize;
|
||
}
|
||
|
||
/* Convert a byte count to count at a ratio of 1:adi_blksz. */
|
||
|
||
static int
|
||
adi_convert_byte_count (CORE_ADDR naddr, int nbytes, CORE_ADDR locl)
|
||
{
|
||
adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
|
||
|
||
return ((naddr + nbytes + ast.blksize - 1) / ast.blksize) - locl;
|
||
}
|
||
|
||
/* The /proc/[pid]/adi/tags file, which allows gdb to get/set ADI
|
||
version in a target process, maps linearly to the address space
|
||
of the target process at a ratio of 1:adi_blksz.
|
||
|
||
A read (or write) at offset K in the file returns (or modifies)
|
||
the ADI version tag stored in the cacheline containing address
|
||
K * adi_blksz, encoded as 1 version tag per byte. The allowed
|
||
version tag values are between 0 and adi_stat.max_version. */
|
||
|
||
static int
|
||
adi_tag_fd (void)
|
||
{
|
||
pid_t pid = inferior_ptid.pid ();
|
||
sparc64_adi_info *proc = get_adi_info_proc (pid);
|
||
|
||
if (proc->stat.tag_fd != 0)
|
||
return proc->stat.tag_fd;
|
||
|
||
char cl_name[MAX_PROC_NAME_SIZE];
|
||
snprintf (cl_name, sizeof(cl_name), "/proc/%ld/adi/tags", (long) pid);
|
||
int target_errno;
|
||
proc->stat.tag_fd = target_fileio_open (NULL, cl_name, O_RDWR|O_EXCL,
|
||
0, &target_errno);
|
||
return proc->stat.tag_fd;
|
||
}
|
||
|
||
/* Check if an address set is ADI enabled, using /proc/[pid]/adi/maps
|
||
which was exported by the kernel and contains the currently ADI
|
||
mapped memory regions and their access permissions. */
|
||
|
||
static bool
|
||
adi_is_addr_mapped (CORE_ADDR vaddr, size_t cnt)
|
||
{
|
||
char filename[MAX_PROC_NAME_SIZE];
|
||
size_t i = 0;
|
||
|
||
pid_t pid = inferior_ptid.pid ();
|
||
snprintf (filename, sizeof filename, "/proc/%ld/adi/maps", (long) pid);
|
||
gdb::unique_xmalloc_ptr<char> data
|
||
= target_fileio_read_stralloc (NULL, filename);
|
||
if (data)
|
||
{
|
||
adi_stat_t adi_stat = get_adi_info (pid);
|
||
char *saveptr;
|
||
for (char *line = strtok_r (data.get (), "\n", &saveptr);
|
||
line;
|
||
line = strtok_r (NULL, "\n", &saveptr))
|
||
{
|
||
ULONGEST addr, endaddr;
|
||
|
||
read_maps_entry (line, &addr, &endaddr);
|
||
|
||
while (((vaddr + i) * adi_stat.blksize) >= addr
|
||
&& ((vaddr + i) * adi_stat.blksize) < endaddr)
|
||
{
|
||
if (++i == cnt)
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
warning (_("unable to open /proc file '%s'"), filename);
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Read ADI version tag value for memory locations starting at "VADDR"
|
||
for "SIZE" number of bytes. */
|
||
|
||
static int
|
||
adi_read_versions (CORE_ADDR vaddr, size_t size, gdb_byte *tags)
|
||
{
|
||
int fd = adi_tag_fd ();
|
||
if (fd == -1)
|
||
return -1;
|
||
|
||
if (!adi_is_addr_mapped (vaddr, size))
|
||
{
|
||
adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
|
||
error(_("Address at %s is not in ADI maps"),
|
||
paddress (target_gdbarch (), vaddr * ast.blksize));
|
||
}
|
||
|
||
int target_errno;
|
||
return target_fileio_pread (fd, tags, size, vaddr, &target_errno);
|
||
}
|
||
|
||
/* Write ADI version tag for memory locations starting at "VADDR" for
|
||
"SIZE" number of bytes to "TAGS". */
|
||
|
||
static int
|
||
adi_write_versions (CORE_ADDR vaddr, size_t size, unsigned char *tags)
|
||
{
|
||
int fd = adi_tag_fd ();
|
||
if (fd == -1)
|
||
return -1;
|
||
|
||
if (!adi_is_addr_mapped (vaddr, size))
|
||
{
|
||
adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
|
||
error(_("Address at %s is not in ADI maps"),
|
||
paddress (target_gdbarch (), vaddr * ast.blksize));
|
||
}
|
||
|
||
int target_errno;
|
||
return target_fileio_pwrite (fd, tags, size, vaddr, &target_errno);
|
||
}
|
||
|
||
/* Print ADI version tag value in "TAGS" for memory locations starting
|
||
at "VADDR" with number of "CNT". */
|
||
|
||
static void
|
||
adi_print_versions (CORE_ADDR vaddr, size_t cnt, gdb_byte *tags)
|
||
{
|
||
int v_idx = 0;
|
||
const int maxelts = 8; /* # of elements per line */
|
||
|
||
adi_stat_t adi_stat = get_adi_info (inferior_ptid.pid ());
|
||
|
||
while (cnt > 0)
|
||
{
|
||
QUIT;
|
||
printf_filtered ("%s:\t",
|
||
paddress (target_gdbarch (), vaddr * adi_stat.blksize));
|
||
for (int i = maxelts; i > 0 && cnt > 0; i--, cnt--)
|
||
{
|
||
if (tags[v_idx] == 0xff) /* no version tag */
|
||
printf_filtered ("-");
|
||
else
|
||
printf_filtered ("%1X", tags[v_idx]);
|
||
if (cnt > 1)
|
||
printf_filtered (" ");
|
||
++v_idx;
|
||
}
|
||
printf_filtered ("\n");
|
||
vaddr += maxelts;
|
||
}
|
||
}
|
||
|
||
static void
|
||
do_examine (CORE_ADDR start, int bcnt)
|
||
{
|
||
CORE_ADDR vaddr = adi_normalize_address (start);
|
||
|
||
CORE_ADDR vstart = adi_align_address (vaddr);
|
||
int cnt = adi_convert_byte_count (vaddr, bcnt, vstart);
|
||
gdb::def_vector<gdb_byte> buf (cnt);
|
||
int read_cnt = adi_read_versions (vstart, cnt, buf.data ());
|
||
if (read_cnt == -1)
|
||
error (_("No ADI information"));
|
||
else if (read_cnt < cnt)
|
||
error(_("No ADI information at %s"), paddress (target_gdbarch (), vaddr));
|
||
|
||
adi_print_versions (vstart, cnt, buf.data ());
|
||
}
|
||
|
||
static void
|
||
do_assign (CORE_ADDR start, size_t bcnt, int version)
|
||
{
|
||
CORE_ADDR vaddr = adi_normalize_address (start);
|
||
|
||
CORE_ADDR vstart = adi_align_address (vaddr);
|
||
int cnt = adi_convert_byte_count (vaddr, bcnt, vstart);
|
||
std::vector<unsigned char> buf (cnt, version);
|
||
int set_cnt = adi_write_versions (vstart, cnt, buf.data ());
|
||
|
||
if (set_cnt == -1)
|
||
error (_("No ADI information"));
|
||
else if (set_cnt < cnt)
|
||
error(_("No ADI information at %s"), paddress (target_gdbarch (), vaddr));
|
||
|
||
}
|
||
|
||
/* ADI examine version tag command.
|
||
|
||
Command syntax:
|
||
|
||
adi (examine|x)[/COUNT] [ADDR] */
|
||
|
||
static void
|
||
adi_examine_command (const char *args, int from_tty)
|
||
{
|
||
/* make sure program is active and adi is available */
|
||
if (!target_has_execution)
|
||
error (_("ADI command requires a live process/thread"));
|
||
|
||
if (!adi_available ())
|
||
error (_("No ADI information"));
|
||
|
||
int cnt = 1;
|
||
const char *p = args;
|
||
if (p && *p == '/')
|
||
{
|
||
p++;
|
||
cnt = get_number (&p);
|
||
}
|
||
|
||
CORE_ADDR next_address = 0;
|
||
if (p != 0 && *p != 0)
|
||
next_address = parse_and_eval_address (p);
|
||
if (!cnt || !next_address)
|
||
error (_("Usage: adi examine|x[/COUNT] [ADDR]"));
|
||
|
||
do_examine (next_address, cnt);
|
||
}
|
||
|
||
/* ADI assign version tag command.
|
||
|
||
Command syntax:
|
||
|
||
adi (assign|a)[/COUNT] ADDR = VERSION */
|
||
|
||
static void
|
||
adi_assign_command (const char *args, int from_tty)
|
||
{
|
||
static const char *adi_usage
|
||
= N_("Usage: adi assign|a[/COUNT] ADDR = VERSION");
|
||
|
||
/* make sure program is active and adi is available */
|
||
if (!target_has_execution)
|
||
error (_("ADI command requires a live process/thread"));
|
||
|
||
if (!adi_available ())
|
||
error (_("No ADI information"));
|
||
|
||
const char *exp = args;
|
||
if (exp == 0)
|
||
error_no_arg (_(adi_usage));
|
||
|
||
char *q = (char *) strchr (exp, '=');
|
||
if (q)
|
||
*q++ = 0;
|
||
else
|
||
error ("%s", _(adi_usage));
|
||
|
||
size_t cnt = 1;
|
||
const char *p = args;
|
||
if (exp && *exp == '/')
|
||
{
|
||
p = exp + 1;
|
||
cnt = get_number (&p);
|
||
}
|
||
|
||
CORE_ADDR next_address = 0;
|
||
if (p != 0 && *p != 0)
|
||
next_address = parse_and_eval_address (p);
|
||
else
|
||
error ("%s", _(adi_usage));
|
||
|
||
int version = 0;
|
||
if (q != NULL) /* parse version tag */
|
||
{
|
||
adi_stat_t ast = get_adi_info (inferior_ptid.pid ());
|
||
version = parse_and_eval_long (q);
|
||
if (version < 0 || version > ast.max_version)
|
||
error (_("Invalid ADI version tag %d"), version);
|
||
}
|
||
|
||
do_assign (next_address, cnt, version);
|
||
}
|
||
|
||
void
|
||
_initialize_sparc64_adi_tdep (void)
|
||
{
|
||
|
||
add_prefix_cmd ("adi", class_support, info_adi_command,
|
||
_("ADI version related commands."),
|
||
&sparc64adilist, "adi ", 0, &cmdlist);
|
||
add_cmd ("examine", class_support, adi_examine_command,
|
||
_("Examine ADI versions."), &sparc64adilist);
|
||
add_alias_cmd ("x", "examine", no_class, 1, &sparc64adilist);
|
||
add_cmd ("assign", class_support, adi_assign_command,
|
||
_("Assign ADI versions."), &sparc64adilist);
|
||
|
||
}
|
||
|
||
|
||
/* The functions on this page are intended to be used to classify
|
||
function arguments. */
|
||
|
||
/* Check whether TYPE is "Integral or Pointer". */
|
||
|
||
static int
|
||
sparc64_integral_or_pointer_p (const struct type *type)
|
||
{
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_BOOL:
|
||
case TYPE_CODE_CHAR:
|
||
case TYPE_CODE_ENUM:
|
||
case TYPE_CODE_RANGE:
|
||
{
|
||
int len = TYPE_LENGTH (type);
|
||
gdb_assert (len == 1 || len == 2 || len == 4 || len == 8);
|
||
}
|
||
return 1;
|
||
case TYPE_CODE_PTR:
|
||
case TYPE_CODE_REF:
|
||
case TYPE_CODE_RVALUE_REF:
|
||
{
|
||
int len = TYPE_LENGTH (type);
|
||
gdb_assert (len == 8);
|
||
}
|
||
return 1;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Check whether TYPE is "Floating". */
|
||
|
||
static int
|
||
sparc64_floating_p (const struct type *type)
|
||
{
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_FLT:
|
||
{
|
||
int len = TYPE_LENGTH (type);
|
||
gdb_assert (len == 4 || len == 8 || len == 16);
|
||
}
|
||
return 1;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Check whether TYPE is "Complex Floating". */
|
||
|
||
static int
|
||
sparc64_complex_floating_p (const struct type *type)
|
||
{
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_COMPLEX:
|
||
{
|
||
int len = TYPE_LENGTH (type);
|
||
gdb_assert (len == 8 || len == 16 || len == 32);
|
||
}
|
||
return 1;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Check whether TYPE is "Structure or Union".
|
||
|
||
In terms of Ada subprogram calls, arrays are treated the same as
|
||
struct and union types. So this function also returns non-zero
|
||
for array types. */
|
||
|
||
static int
|
||
sparc64_structure_or_union_p (const struct type *type)
|
||
{
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
case TYPE_CODE_ARRAY:
|
||
return 1;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Construct types for ISA-specific registers. */
|
||
|
||
static struct type *
|
||
sparc64_pstate_type (struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (!tdep->sparc64_pstate_type)
|
||
{
|
||
struct type *type;
|
||
|
||
type = arch_flags_type (gdbarch, "builtin_type_sparc64_pstate", 64);
|
||
append_flags_type_flag (type, 0, "AG");
|
||
append_flags_type_flag (type, 1, "IE");
|
||
append_flags_type_flag (type, 2, "PRIV");
|
||
append_flags_type_flag (type, 3, "AM");
|
||
append_flags_type_flag (type, 4, "PEF");
|
||
append_flags_type_flag (type, 5, "RED");
|
||
append_flags_type_flag (type, 8, "TLE");
|
||
append_flags_type_flag (type, 9, "CLE");
|
||
append_flags_type_flag (type, 10, "PID0");
|
||
append_flags_type_flag (type, 11, "PID1");
|
||
|
||
tdep->sparc64_pstate_type = type;
|
||
}
|
||
|
||
return tdep->sparc64_pstate_type;
|
||
}
|
||
|
||
static struct type *
|
||
sparc64_ccr_type (struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (tdep->sparc64_ccr_type == NULL)
|
||
{
|
||
struct type *type;
|
||
|
||
type = arch_flags_type (gdbarch, "builtin_type_sparc64_ccr", 64);
|
||
append_flags_type_flag (type, 0, "icc.c");
|
||
append_flags_type_flag (type, 1, "icc.v");
|
||
append_flags_type_flag (type, 2, "icc.z");
|
||
append_flags_type_flag (type, 3, "icc.n");
|
||
append_flags_type_flag (type, 4, "xcc.c");
|
||
append_flags_type_flag (type, 5, "xcc.v");
|
||
append_flags_type_flag (type, 6, "xcc.z");
|
||
append_flags_type_flag (type, 7, "xcc.n");
|
||
|
||
tdep->sparc64_ccr_type = type;
|
||
}
|
||
|
||
return tdep->sparc64_ccr_type;
|
||
}
|
||
|
||
static struct type *
|
||
sparc64_fsr_type (struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (!tdep->sparc64_fsr_type)
|
||
{
|
||
struct type *type;
|
||
|
||
type = arch_flags_type (gdbarch, "builtin_type_sparc64_fsr", 64);
|
||
append_flags_type_flag (type, 0, "NXC");
|
||
append_flags_type_flag (type, 1, "DZC");
|
||
append_flags_type_flag (type, 2, "UFC");
|
||
append_flags_type_flag (type, 3, "OFC");
|
||
append_flags_type_flag (type, 4, "NVC");
|
||
append_flags_type_flag (type, 5, "NXA");
|
||
append_flags_type_flag (type, 6, "DZA");
|
||
append_flags_type_flag (type, 7, "UFA");
|
||
append_flags_type_flag (type, 8, "OFA");
|
||
append_flags_type_flag (type, 9, "NVA");
|
||
append_flags_type_flag (type, 22, "NS");
|
||
append_flags_type_flag (type, 23, "NXM");
|
||
append_flags_type_flag (type, 24, "DZM");
|
||
append_flags_type_flag (type, 25, "UFM");
|
||
append_flags_type_flag (type, 26, "OFM");
|
||
append_flags_type_flag (type, 27, "NVM");
|
||
|
||
tdep->sparc64_fsr_type = type;
|
||
}
|
||
|
||
return tdep->sparc64_fsr_type;
|
||
}
|
||
|
||
static struct type *
|
||
sparc64_fprs_type (struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (!tdep->sparc64_fprs_type)
|
||
{
|
||
struct type *type;
|
||
|
||
type = arch_flags_type (gdbarch, "builtin_type_sparc64_fprs", 64);
|
||
append_flags_type_flag (type, 0, "DL");
|
||
append_flags_type_flag (type, 1, "DU");
|
||
append_flags_type_flag (type, 2, "FEF");
|
||
|
||
tdep->sparc64_fprs_type = type;
|
||
}
|
||
|
||
return tdep->sparc64_fprs_type;
|
||
}
|
||
|
||
|
||
/* Register information. */
|
||
#define SPARC64_FPU_REGISTERS \
|
||
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
|
||
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
|
||
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
|
||
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
|
||
"f32", "f34", "f36", "f38", "f40", "f42", "f44", "f46", \
|
||
"f48", "f50", "f52", "f54", "f56", "f58", "f60", "f62"
|
||
#define SPARC64_CP0_REGISTERS \
|
||
"pc", "npc", \
|
||
/* FIXME: Give "state" a name until we start using register groups. */ \
|
||
"state", \
|
||
"fsr", \
|
||
"fprs", \
|
||
"y"
|
||
|
||
static const char *sparc64_fpu_register_names[] = { SPARC64_FPU_REGISTERS };
|
||
static const char *sparc64_cp0_register_names[] = { SPARC64_CP0_REGISTERS };
|
||
|
||
static const char *sparc64_register_names[] =
|
||
{
|
||
SPARC_CORE_REGISTERS,
|
||
SPARC64_FPU_REGISTERS,
|
||
SPARC64_CP0_REGISTERS
|
||
};
|
||
|
||
/* Total number of registers. */
|
||
#define SPARC64_NUM_REGS ARRAY_SIZE (sparc64_register_names)
|
||
|
||
/* We provide the aliases %d0..%d62 and %q0..%q60 for the floating
|
||
registers as "psuedo" registers. */
|
||
|
||
static const char *sparc64_pseudo_register_names[] =
|
||
{
|
||
"cwp", "pstate", "asi", "ccr",
|
||
|
||
"d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
|
||
"d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30",
|
||
"d32", "d34", "d36", "d38", "d40", "d42", "d44", "d46",
|
||
"d48", "d50", "d52", "d54", "d56", "d58", "d60", "d62",
|
||
|
||
"q0", "q4", "q8", "q12", "q16", "q20", "q24", "q28",
|
||
"q32", "q36", "q40", "q44", "q48", "q52", "q56", "q60",
|
||
};
|
||
|
||
/* Total number of pseudo registers. */
|
||
#define SPARC64_NUM_PSEUDO_REGS ARRAY_SIZE (sparc64_pseudo_register_names)
|
||
|
||
/* Return the name of pseudo register REGNUM. */
|
||
|
||
static const char *
|
||
sparc64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
|
||
{
|
||
regnum -= gdbarch_num_regs (gdbarch);
|
||
|
||
if (regnum < SPARC64_NUM_PSEUDO_REGS)
|
||
return sparc64_pseudo_register_names[regnum];
|
||
|
||
internal_error (__FILE__, __LINE__,
|
||
_("sparc64_pseudo_register_name: bad register number %d"),
|
||
regnum);
|
||
}
|
||
|
||
/* Return the name of register REGNUM. */
|
||
|
||
static const char *
|
||
sparc64_register_name (struct gdbarch *gdbarch, int regnum)
|
||
{
|
||
if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
|
||
return tdesc_register_name (gdbarch, regnum);
|
||
|
||
if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
|
||
return sparc64_register_names[regnum];
|
||
|
||
return sparc64_pseudo_register_name (gdbarch, regnum);
|
||
}
|
||
|
||
/* Return the GDB type object for the "standard" data type of data in
|
||
pseudo register REGNUM. */
|
||
|
||
static struct type *
|
||
sparc64_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
|
||
{
|
||
regnum -= gdbarch_num_regs (gdbarch);
|
||
|
||
if (regnum == SPARC64_CWP_REGNUM)
|
||
return builtin_type (gdbarch)->builtin_int64;
|
||
if (regnum == SPARC64_PSTATE_REGNUM)
|
||
return sparc64_pstate_type (gdbarch);
|
||
if (regnum == SPARC64_ASI_REGNUM)
|
||
return builtin_type (gdbarch)->builtin_int64;
|
||
if (regnum == SPARC64_CCR_REGNUM)
|
||
return sparc64_ccr_type (gdbarch);
|
||
if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D62_REGNUM)
|
||
return builtin_type (gdbarch)->builtin_double;
|
||
if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q60_REGNUM)
|
||
return builtin_type (gdbarch)->builtin_long_double;
|
||
|
||
internal_error (__FILE__, __LINE__,
|
||
_("sparc64_pseudo_register_type: bad register number %d"),
|
||
regnum);
|
||
}
|
||
|
||
/* Return the GDB type object for the "standard" data type of data in
|
||
register REGNUM. */
|
||
|
||
static struct type *
|
||
sparc64_register_type (struct gdbarch *gdbarch, int regnum)
|
||
{
|
||
if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
|
||
return tdesc_register_type (gdbarch, regnum);
|
||
|
||
/* Raw registers. */
|
||
if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
|
||
return builtin_type (gdbarch)->builtin_data_ptr;
|
||
if (regnum >= SPARC_G0_REGNUM && regnum <= SPARC_I7_REGNUM)
|
||
return builtin_type (gdbarch)->builtin_int64;
|
||
if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
|
||
return builtin_type (gdbarch)->builtin_float;
|
||
if (regnum >= SPARC64_F32_REGNUM && regnum <= SPARC64_F62_REGNUM)
|
||
return builtin_type (gdbarch)->builtin_double;
|
||
if (regnum == SPARC64_PC_REGNUM || regnum == SPARC64_NPC_REGNUM)
|
||
return builtin_type (gdbarch)->builtin_func_ptr;
|
||
/* This raw register contains the contents of %cwp, %pstate, %asi
|
||
and %ccr as laid out in a %tstate register. */
|
||
if (regnum == SPARC64_STATE_REGNUM)
|
||
return builtin_type (gdbarch)->builtin_int64;
|
||
if (regnum == SPARC64_FSR_REGNUM)
|
||
return sparc64_fsr_type (gdbarch);
|
||
if (regnum == SPARC64_FPRS_REGNUM)
|
||
return sparc64_fprs_type (gdbarch);
|
||
/* "Although Y is a 64-bit register, its high-order 32 bits are
|
||
reserved and always read as 0." */
|
||
if (regnum == SPARC64_Y_REGNUM)
|
||
return builtin_type (gdbarch)->builtin_int64;
|
||
|
||
/* Pseudo registers. */
|
||
if (regnum >= gdbarch_num_regs (gdbarch))
|
||
return sparc64_pseudo_register_type (gdbarch, regnum);
|
||
|
||
internal_error (__FILE__, __LINE__, _("invalid regnum"));
|
||
}
|
||
|
||
static enum register_status
|
||
sparc64_pseudo_register_read (struct gdbarch *gdbarch,
|
||
readable_regcache *regcache,
|
||
int regnum, gdb_byte *buf)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
enum register_status status;
|
||
|
||
regnum -= gdbarch_num_regs (gdbarch);
|
||
|
||
if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D30_REGNUM)
|
||
{
|
||
regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC64_D0_REGNUM);
|
||
status = regcache->raw_read (regnum, buf);
|
||
if (status == REG_VALID)
|
||
status = regcache->raw_read (regnum + 1, buf + 4);
|
||
return status;
|
||
}
|
||
else if (regnum >= SPARC64_D32_REGNUM && regnum <= SPARC64_D62_REGNUM)
|
||
{
|
||
regnum = SPARC64_F32_REGNUM + (regnum - SPARC64_D32_REGNUM);
|
||
return regcache->raw_read (regnum, buf);
|
||
}
|
||
else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q28_REGNUM)
|
||
{
|
||
regnum = SPARC_F0_REGNUM + 4 * (regnum - SPARC64_Q0_REGNUM);
|
||
|
||
status = regcache->raw_read (regnum, buf);
|
||
if (status == REG_VALID)
|
||
status = regcache->raw_read (regnum + 1, buf + 4);
|
||
if (status == REG_VALID)
|
||
status = regcache->raw_read (regnum + 2, buf + 8);
|
||
if (status == REG_VALID)
|
||
status = regcache->raw_read (regnum + 3, buf + 12);
|
||
|
||
return status;
|
||
}
|
||
else if (regnum >= SPARC64_Q32_REGNUM && regnum <= SPARC64_Q60_REGNUM)
|
||
{
|
||
regnum = SPARC64_F32_REGNUM + 2 * (regnum - SPARC64_Q32_REGNUM);
|
||
|
||
status = regcache->raw_read (regnum, buf);
|
||
if (status == REG_VALID)
|
||
status = regcache->raw_read (regnum + 1, buf + 8);
|
||
|
||
return status;
|
||
}
|
||
else if (regnum == SPARC64_CWP_REGNUM
|
||
|| regnum == SPARC64_PSTATE_REGNUM
|
||
|| regnum == SPARC64_ASI_REGNUM
|
||
|| regnum == SPARC64_CCR_REGNUM)
|
||
{
|
||
ULONGEST state;
|
||
|
||
status = regcache->raw_read (SPARC64_STATE_REGNUM, &state);
|
||
if (status != REG_VALID)
|
||
return status;
|
||
|
||
switch (regnum)
|
||
{
|
||
case SPARC64_CWP_REGNUM:
|
||
state = (state >> 0) & ((1 << 5) - 1);
|
||
break;
|
||
case SPARC64_PSTATE_REGNUM:
|
||
state = (state >> 8) & ((1 << 12) - 1);
|
||
break;
|
||
case SPARC64_ASI_REGNUM:
|
||
state = (state >> 24) & ((1 << 8) - 1);
|
||
break;
|
||
case SPARC64_CCR_REGNUM:
|
||
state = (state >> 32) & ((1 << 8) - 1);
|
||
break;
|
||
}
|
||
store_unsigned_integer (buf, 8, byte_order, state);
|
||
}
|
||
|
||
return REG_VALID;
|
||
}
|
||
|
||
static void
|
||
sparc64_pseudo_register_write (struct gdbarch *gdbarch,
|
||
struct regcache *regcache,
|
||
int regnum, const gdb_byte *buf)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
|
||
regnum -= gdbarch_num_regs (gdbarch);
|
||
|
||
if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D30_REGNUM)
|
||
{
|
||
regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC64_D0_REGNUM);
|
||
regcache->raw_write (regnum, buf);
|
||
regcache->raw_write (regnum + 1, buf + 4);
|
||
}
|
||
else if (regnum >= SPARC64_D32_REGNUM && regnum <= SPARC64_D62_REGNUM)
|
||
{
|
||
regnum = SPARC64_F32_REGNUM + (regnum - SPARC64_D32_REGNUM);
|
||
regcache->raw_write (regnum, buf);
|
||
}
|
||
else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q28_REGNUM)
|
||
{
|
||
regnum = SPARC_F0_REGNUM + 4 * (regnum - SPARC64_Q0_REGNUM);
|
||
regcache->raw_write (regnum, buf);
|
||
regcache->raw_write (regnum + 1, buf + 4);
|
||
regcache->raw_write (regnum + 2, buf + 8);
|
||
regcache->raw_write (regnum + 3, buf + 12);
|
||
}
|
||
else if (regnum >= SPARC64_Q32_REGNUM && regnum <= SPARC64_Q60_REGNUM)
|
||
{
|
||
regnum = SPARC64_F32_REGNUM + 2 * (regnum - SPARC64_Q32_REGNUM);
|
||
regcache->raw_write (regnum, buf);
|
||
regcache->raw_write (regnum + 1, buf + 8);
|
||
}
|
||
else if (regnum == SPARC64_CWP_REGNUM
|
||
|| regnum == SPARC64_PSTATE_REGNUM
|
||
|| regnum == SPARC64_ASI_REGNUM
|
||
|| regnum == SPARC64_CCR_REGNUM)
|
||
{
|
||
ULONGEST state, bits;
|
||
|
||
regcache_raw_read_unsigned (regcache, SPARC64_STATE_REGNUM, &state);
|
||
bits = extract_unsigned_integer (buf, 8, byte_order);
|
||
switch (regnum)
|
||
{
|
||
case SPARC64_CWP_REGNUM:
|
||
state |= ((bits & ((1 << 5) - 1)) << 0);
|
||
break;
|
||
case SPARC64_PSTATE_REGNUM:
|
||
state |= ((bits & ((1 << 12) - 1)) << 8);
|
||
break;
|
||
case SPARC64_ASI_REGNUM:
|
||
state |= ((bits & ((1 << 8) - 1)) << 24);
|
||
break;
|
||
case SPARC64_CCR_REGNUM:
|
||
state |= ((bits & ((1 << 8) - 1)) << 32);
|
||
break;
|
||
}
|
||
regcache_raw_write_unsigned (regcache, SPARC64_STATE_REGNUM, state);
|
||
}
|
||
}
|
||
|
||
|
||
/* Return PC of first real instruction of the function starting at
|
||
START_PC. */
|
||
|
||
static CORE_ADDR
|
||
sparc64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
|
||
{
|
||
struct symtab_and_line sal;
|
||
CORE_ADDR func_start, func_end;
|
||
struct sparc_frame_cache cache;
|
||
|
||
/* This is the preferred method, find the end of the prologue by
|
||
using the debugging information. */
|
||
if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
|
||
{
|
||
sal = find_pc_line (func_start, 0);
|
||
|
||
if (sal.end < func_end
|
||
&& start_pc <= sal.end)
|
||
return sal.end;
|
||
}
|
||
|
||
return sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffULL,
|
||
&cache);
|
||
}
|
||
|
||
/* Normal frames. */
|
||
|
||
static struct sparc_frame_cache *
|
||
sparc64_frame_cache (struct frame_info *this_frame, void **this_cache)
|
||
{
|
||
return sparc_frame_cache (this_frame, this_cache);
|
||
}
|
||
|
||
static void
|
||
sparc64_frame_this_id (struct frame_info *this_frame, void **this_cache,
|
||
struct frame_id *this_id)
|
||
{
|
||
struct sparc_frame_cache *cache =
|
||
sparc64_frame_cache (this_frame, this_cache);
|
||
|
||
/* This marks the outermost frame. */
|
||
if (cache->base == 0)
|
||
return;
|
||
|
||
(*this_id) = frame_id_build (cache->base, cache->pc);
|
||
}
|
||
|
||
static struct value *
|
||
sparc64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
|
||
int regnum)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
struct sparc_frame_cache *cache =
|
||
sparc64_frame_cache (this_frame, this_cache);
|
||
|
||
if (regnum == SPARC64_PC_REGNUM || regnum == SPARC64_NPC_REGNUM)
|
||
{
|
||
CORE_ADDR pc = (regnum == SPARC64_NPC_REGNUM) ? 4 : 0;
|
||
|
||
regnum =
|
||
(cache->copied_regs_mask & 0x80) ? SPARC_I7_REGNUM : SPARC_O7_REGNUM;
|
||
pc += get_frame_register_unsigned (this_frame, regnum) + 8;
|
||
return frame_unwind_got_constant (this_frame, regnum, pc);
|
||
}
|
||
|
||
/* Handle StackGhost. */
|
||
{
|
||
ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
|
||
|
||
if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
|
||
{
|
||
CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 8;
|
||
ULONGEST i7;
|
||
|
||
/* Read the value in from memory. */
|
||
i7 = get_frame_memory_unsigned (this_frame, addr, 8);
|
||
return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
|
||
}
|
||
}
|
||
|
||
/* The previous frame's `local' and `in' registers may have been saved
|
||
in the register save area. */
|
||
if (regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM
|
||
&& (cache->saved_regs_mask & (1 << (regnum - SPARC_L0_REGNUM))))
|
||
{
|
||
CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 8;
|
||
|
||
return frame_unwind_got_memory (this_frame, regnum, addr);
|
||
}
|
||
|
||
/* The previous frame's `out' registers may be accessible as the current
|
||
frame's `in' registers. */
|
||
if (regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM
|
||
&& (cache->copied_regs_mask & (1 << (regnum - SPARC_O0_REGNUM))))
|
||
regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
|
||
|
||
return frame_unwind_got_register (this_frame, regnum, regnum);
|
||
}
|
||
|
||
static const struct frame_unwind sparc64_frame_unwind =
|
||
{
|
||
NORMAL_FRAME,
|
||
default_frame_unwind_stop_reason,
|
||
sparc64_frame_this_id,
|
||
sparc64_frame_prev_register,
|
||
NULL,
|
||
default_frame_sniffer
|
||
};
|
||
|
||
|
||
static CORE_ADDR
|
||
sparc64_frame_base_address (struct frame_info *this_frame, void **this_cache)
|
||
{
|
||
struct sparc_frame_cache *cache =
|
||
sparc64_frame_cache (this_frame, this_cache);
|
||
|
||
return cache->base;
|
||
}
|
||
|
||
static const struct frame_base sparc64_frame_base =
|
||
{
|
||
&sparc64_frame_unwind,
|
||
sparc64_frame_base_address,
|
||
sparc64_frame_base_address,
|
||
sparc64_frame_base_address
|
||
};
|
||
|
||
/* Check whether TYPE must be 16-byte aligned. */
|
||
|
||
static int
|
||
sparc64_16_byte_align_p (struct type *type)
|
||
{
|
||
if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
||
{
|
||
struct type *t = check_typedef (TYPE_TARGET_TYPE (type));
|
||
|
||
if (sparc64_floating_p (t))
|
||
return 1;
|
||
}
|
||
if (sparc64_floating_p (type) && TYPE_LENGTH (type) == 16)
|
||
return 1;
|
||
|
||
if (sparc64_structure_or_union_p (type))
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
||
{
|
||
struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
|
||
|
||
if (sparc64_16_byte_align_p (subtype))
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Store floating fields of element ELEMENT of an "parameter array"
|
||
that has type TYPE and is stored at BITPOS in VALBUF in the
|
||
appropriate registers of REGCACHE. This function can be called
|
||
recursively and therefore handles floating types in addition to
|
||
structures. */
|
||
|
||
static void
|
||
sparc64_store_floating_fields (struct regcache *regcache, struct type *type,
|
||
const gdb_byte *valbuf, int element, int bitpos)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
int len = TYPE_LENGTH (type);
|
||
|
||
gdb_assert (element < 16);
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
||
{
|
||
gdb_byte buf[8];
|
||
int regnum = SPARC_F0_REGNUM + element * 2 + bitpos / 32;
|
||
|
||
valbuf += bitpos / 8;
|
||
if (len < 8)
|
||
{
|
||
memset (buf, 0, 8 - len);
|
||
memcpy (buf + 8 - len, valbuf, len);
|
||
valbuf = buf;
|
||
len = 8;
|
||
}
|
||
for (int n = 0; n < (len + 3) / 4; n++)
|
||
regcache->cooked_write (regnum + n, valbuf + n * 4);
|
||
}
|
||
else if (sparc64_floating_p (type)
|
||
|| (sparc64_complex_floating_p (type) && len <= 16))
|
||
{
|
||
int regnum;
|
||
|
||
if (len == 16)
|
||
{
|
||
gdb_assert (bitpos == 0);
|
||
gdb_assert ((element % 2) == 0);
|
||
|
||
regnum = gdbarch_num_regs (gdbarch) + SPARC64_Q0_REGNUM + element / 2;
|
||
regcache->cooked_write (regnum, valbuf);
|
||
}
|
||
else if (len == 8)
|
||
{
|
||
gdb_assert (bitpos == 0 || bitpos == 64);
|
||
|
||
regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM
|
||
+ element + bitpos / 64;
|
||
regcache->cooked_write (regnum, valbuf + (bitpos / 8));
|
||
}
|
||
else
|
||
{
|
||
gdb_assert (len == 4);
|
||
gdb_assert (bitpos % 32 == 0 && bitpos >= 0 && bitpos < 128);
|
||
|
||
regnum = SPARC_F0_REGNUM + element * 2 + bitpos / 32;
|
||
regcache->cooked_write (regnum, valbuf + (bitpos / 8));
|
||
}
|
||
}
|
||
else if (sparc64_structure_or_union_p (type))
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
||
{
|
||
struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
|
||
int subpos = bitpos + TYPE_FIELD_BITPOS (type, i);
|
||
|
||
sparc64_store_floating_fields (regcache, subtype, valbuf,
|
||
element, subpos);
|
||
}
|
||
|
||
/* GCC has an interesting bug. If TYPE is a structure that has
|
||
a single `float' member, GCC doesn't treat it as a structure
|
||
at all, but rather as an ordinary `float' argument. This
|
||
argument will be stored in %f1, as required by the psABI.
|
||
However, as a member of a structure the psABI requires it to
|
||
be stored in %f0. This bug is present in GCC 3.3.2, but
|
||
probably in older releases to. To appease GCC, if a
|
||
structure has only a single `float' member, we store its
|
||
value in %f1 too (we already have stored in %f0). */
|
||
if (TYPE_NFIELDS (type) == 1)
|
||
{
|
||
struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, 0));
|
||
|
||
if (sparc64_floating_p (subtype) && TYPE_LENGTH (subtype) == 4)
|
||
regcache->cooked_write (SPARC_F1_REGNUM, valbuf);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Fetch floating fields from a variable of type TYPE from the
|
||
appropriate registers for BITPOS in REGCACHE and store it at BITPOS
|
||
in VALBUF. This function can be called recursively and therefore
|
||
handles floating types in addition to structures. */
|
||
|
||
static void
|
||
sparc64_extract_floating_fields (struct regcache *regcache, struct type *type,
|
||
gdb_byte *valbuf, int bitpos)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
||
{
|
||
int len = TYPE_LENGTH (type);
|
||
int regnum = SPARC_F0_REGNUM + bitpos / 32;
|
||
|
||
valbuf += bitpos / 8;
|
||
if (len < 4)
|
||
{
|
||
gdb_byte buf[4];
|
||
regcache->cooked_read (regnum, buf);
|
||
memcpy (valbuf, buf + 4 - len, len);
|
||
}
|
||
else
|
||
for (int i = 0; i < (len + 3) / 4; i++)
|
||
regcache->cooked_read (regnum + i, valbuf + i * 4);
|
||
}
|
||
else if (sparc64_floating_p (type))
|
||
{
|
||
int len = TYPE_LENGTH (type);
|
||
int regnum;
|
||
|
||
if (len == 16)
|
||
{
|
||
gdb_assert (bitpos == 0 || bitpos == 128);
|
||
|
||
regnum = gdbarch_num_regs (gdbarch) + SPARC64_Q0_REGNUM
|
||
+ bitpos / 128;
|
||
regcache->cooked_read (regnum, valbuf + (bitpos / 8));
|
||
}
|
||
else if (len == 8)
|
||
{
|
||
gdb_assert (bitpos % 64 == 0 && bitpos >= 0 && bitpos < 256);
|
||
|
||
regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM + bitpos / 64;
|
||
regcache->cooked_read (regnum, valbuf + (bitpos / 8));
|
||
}
|
||
else
|
||
{
|
||
gdb_assert (len == 4);
|
||
gdb_assert (bitpos % 32 == 0 && bitpos >= 0 && bitpos < 256);
|
||
|
||
regnum = SPARC_F0_REGNUM + bitpos / 32;
|
||
regcache->cooked_read (regnum, valbuf + (bitpos / 8));
|
||
}
|
||
}
|
||
else if (sparc64_structure_or_union_p (type))
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
||
{
|
||
struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
|
||
int subpos = bitpos + TYPE_FIELD_BITPOS (type, i);
|
||
|
||
sparc64_extract_floating_fields (regcache, subtype, valbuf, subpos);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Store the NARGS arguments ARGS and STRUCT_ADDR (if STRUCT_RETURN is
|
||
non-zero) in REGCACHE and on the stack (starting from address SP). */
|
||
|
||
static CORE_ADDR
|
||
sparc64_store_arguments (struct regcache *regcache, int nargs,
|
||
struct value **args, CORE_ADDR sp,
|
||
function_call_return_method return_method,
|
||
CORE_ADDR struct_addr)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
/* Number of extended words in the "parameter array". */
|
||
int num_elements = 0;
|
||
int element = 0;
|
||
int i;
|
||
|
||
/* Take BIAS into account. */
|
||
sp += BIAS;
|
||
|
||
/* First we calculate the number of extended words in the "parameter
|
||
array". While doing so we also convert some of the arguments. */
|
||
|
||
if (return_method == return_method_struct)
|
||
num_elements++;
|
||
|
||
for (i = 0; i < nargs; i++)
|
||
{
|
||
struct type *type = value_type (args[i]);
|
||
int len = TYPE_LENGTH (type);
|
||
|
||
if (sparc64_structure_or_union_p (type)
|
||
|| (sparc64_complex_floating_p (type) && len == 32))
|
||
{
|
||
/* Structure or Union arguments. */
|
||
if (len <= 16)
|
||
{
|
||
if (num_elements % 2 && sparc64_16_byte_align_p (type))
|
||
num_elements++;
|
||
num_elements += ((len + 7) / 8);
|
||
}
|
||
else
|
||
{
|
||
/* The psABI says that "Structures or unions larger than
|
||
sixteen bytes are copied by the caller and passed
|
||
indirectly; the caller will pass the address of a
|
||
correctly aligned structure value. This sixty-four
|
||
bit address will occupy one word in the parameter
|
||
array, and may be promoted to an %o register like any
|
||
other pointer value." Allocate memory for these
|
||
values on the stack. */
|
||
sp -= len;
|
||
|
||
/* Use 16-byte alignment for these values. That's
|
||
always correct, and wasting a few bytes shouldn't be
|
||
a problem. */
|
||
sp &= ~0xf;
|
||
|
||
write_memory (sp, value_contents (args[i]), len);
|
||
args[i] = value_from_pointer (lookup_pointer_type (type), sp);
|
||
num_elements++;
|
||
}
|
||
}
|
||
else if (sparc64_floating_p (type) || sparc64_complex_floating_p (type))
|
||
{
|
||
/* Floating arguments. */
|
||
if (len == 16)
|
||
{
|
||
/* The psABI says that "Each quad-precision parameter
|
||
value will be assigned to two extended words in the
|
||
parameter array. */
|
||
num_elements += 2;
|
||
|
||
/* The psABI says that "Long doubles must be
|
||
quad-aligned, and thus a hole might be introduced
|
||
into the parameter array to force alignment." Skip
|
||
an element if necessary. */
|
||
if ((num_elements % 2) && sparc64_16_byte_align_p (type))
|
||
num_elements++;
|
||
}
|
||
else
|
||
num_elements++;
|
||
}
|
||
else
|
||
{
|
||
/* Integral and pointer arguments. */
|
||
gdb_assert (sparc64_integral_or_pointer_p (type));
|
||
|
||
/* The psABI says that "Each argument value of integral type
|
||
smaller than an extended word will be widened by the
|
||
caller to an extended word according to the signed-ness
|
||
of the argument type." */
|
||
if (len < 8)
|
||
args[i] = value_cast (builtin_type (gdbarch)->builtin_int64,
|
||
args[i]);
|
||
num_elements++;
|
||
}
|
||
}
|
||
|
||
/* Allocate the "parameter array". */
|
||
sp -= num_elements * 8;
|
||
|
||
/* The psABI says that "Every stack frame must be 16-byte aligned." */
|
||
sp &= ~0xf;
|
||
|
||
/* Now we store the arguments in to the "parameter array". Some
|
||
Integer or Pointer arguments and Structure or Union arguments
|
||
will be passed in %o registers. Some Floating arguments and
|
||
floating members of structures are passed in floating-point
|
||
registers. However, for functions with variable arguments,
|
||
floating arguments are stored in an %0 register, and for
|
||
functions without a prototype floating arguments are stored in
|
||
both a floating-point and an %o registers, or a floating-point
|
||
register and memory. To simplify the logic here we always pass
|
||
arguments in memory, an %o register, and a floating-point
|
||
register if appropriate. This should be no problem since the
|
||
contents of any unused memory or registers in the "parameter
|
||
array" are undefined. */
|
||
|
||
if (return_method == return_method_struct)
|
||
{
|
||
regcache_cooked_write_unsigned (regcache, SPARC_O0_REGNUM, struct_addr);
|
||
element++;
|
||
}
|
||
|
||
for (i = 0; i < nargs; i++)
|
||
{
|
||
const gdb_byte *valbuf = value_contents (args[i]);
|
||
struct type *type = value_type (args[i]);
|
||
int len = TYPE_LENGTH (type);
|
||
int regnum = -1;
|
||
gdb_byte buf[16];
|
||
|
||
if (sparc64_structure_or_union_p (type)
|
||
|| (sparc64_complex_floating_p (type) && len == 32))
|
||
{
|
||
/* Structure, Union or long double Complex arguments. */
|
||
gdb_assert (len <= 16);
|
||
memset (buf, 0, sizeof (buf));
|
||
memcpy (buf, valbuf, len);
|
||
valbuf = buf;
|
||
|
||
if (element % 2 && sparc64_16_byte_align_p (type))
|
||
element++;
|
||
|
||
if (element < 6)
|
||
{
|
||
regnum = SPARC_O0_REGNUM + element;
|
||
if (len > 8 && element < 5)
|
||
regcache->cooked_write (regnum + 1, valbuf + 8);
|
||
}
|
||
|
||
if (element < 16)
|
||
sparc64_store_floating_fields (regcache, type, valbuf, element, 0);
|
||
}
|
||
else if (sparc64_complex_floating_p (type))
|
||
{
|
||
/* Float Complex or double Complex arguments. */
|
||
if (element < 16)
|
||
{
|
||
regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM + element;
|
||
|
||
if (len == 16)
|
||
{
|
||
if (regnum < gdbarch_num_regs (gdbarch) + SPARC64_D30_REGNUM)
|
||
regcache->cooked_write (regnum + 1, valbuf + 8);
|
||
if (regnum < gdbarch_num_regs (gdbarch) + SPARC64_D10_REGNUM)
|
||
regcache->cooked_write (SPARC_O0_REGNUM + element + 1,
|
||
valbuf + 8);
|
||
}
|
||
}
|
||
}
|
||
else if (sparc64_floating_p (type))
|
||
{
|
||
/* Floating arguments. */
|
||
if (len == 16)
|
||
{
|
||
if (element % 2)
|
||
element++;
|
||
if (element < 16)
|
||
regnum = gdbarch_num_regs (gdbarch) + SPARC64_Q0_REGNUM
|
||
+ element / 2;
|
||
}
|
||
else if (len == 8)
|
||
{
|
||
if (element < 16)
|
||
regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM
|
||
+ element;
|
||
}
|
||
else if (len == 4)
|
||
{
|
||
/* The psABI says "Each single-precision parameter value
|
||
will be assigned to one extended word in the
|
||
parameter array, and right-justified within that
|
||
word; the left half (even float register) is
|
||
undefined." Even though the psABI says that "the
|
||
left half is undefined", set it to zero here. */
|
||
memset (buf, 0, 4);
|
||
memcpy (buf + 4, valbuf, 4);
|
||
valbuf = buf;
|
||
len = 8;
|
||
if (element < 16)
|
||
regnum = gdbarch_num_regs (gdbarch) + SPARC64_D0_REGNUM
|
||
+ element;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Integral and pointer arguments. */
|
||
gdb_assert (len == 8);
|
||
if (element < 6)
|
||
regnum = SPARC_O0_REGNUM + element;
|
||
}
|
||
|
||
if (regnum != -1)
|
||
{
|
||
regcache->cooked_write (regnum, valbuf);
|
||
|
||
/* If we're storing the value in a floating-point register,
|
||
also store it in the corresponding %0 register(s). */
|
||
if (regnum >= gdbarch_num_regs (gdbarch))
|
||
{
|
||
regnum -= gdbarch_num_regs (gdbarch);
|
||
|
||
if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D10_REGNUM)
|
||
{
|
||
gdb_assert (element < 6);
|
||
regnum = SPARC_O0_REGNUM + element;
|
||
regcache->cooked_write (regnum, valbuf);
|
||
}
|
||
else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q8_REGNUM)
|
||
{
|
||
gdb_assert (element < 5);
|
||
regnum = SPARC_O0_REGNUM + element;
|
||
regcache->cooked_write (regnum, valbuf);
|
||
regcache->cooked_write (regnum + 1, valbuf + 8);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Always store the argument in memory. */
|
||
write_memory (sp + element * 8, valbuf, len);
|
||
element += ((len + 7) / 8);
|
||
}
|
||
|
||
gdb_assert (element == num_elements);
|
||
|
||
/* Take BIAS into account. */
|
||
sp -= BIAS;
|
||
return sp;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
sparc64_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
|
||
{
|
||
/* The ABI requires 16-byte alignment. */
|
||
return address & ~0xf;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
sparc64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
||
struct regcache *regcache, CORE_ADDR bp_addr,
|
||
int nargs, struct value **args, CORE_ADDR sp,
|
||
function_call_return_method return_method,
|
||
CORE_ADDR struct_addr)
|
||
{
|
||
/* Set return address. */
|
||
regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, bp_addr - 8);
|
||
|
||
/* Set up function arguments. */
|
||
sp = sparc64_store_arguments (regcache, nargs, args, sp, return_method,
|
||
struct_addr);
|
||
|
||
/* Allocate the register save area. */
|
||
sp -= 16 * 8;
|
||
|
||
/* Stack should be 16-byte aligned at this point. */
|
||
gdb_assert ((sp + BIAS) % 16 == 0);
|
||
|
||
/* Finally, update the stack pointer. */
|
||
regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
|
||
|
||
return sp + BIAS;
|
||
}
|
||
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state, a
|
||
function return value of TYPE, and copy that into VALBUF. */
|
||
|
||
static void
|
||
sparc64_extract_return_value (struct type *type, struct regcache *regcache,
|
||
gdb_byte *valbuf)
|
||
{
|
||
int len = TYPE_LENGTH (type);
|
||
gdb_byte buf[32];
|
||
int i;
|
||
|
||
if (sparc64_structure_or_union_p (type))
|
||
{
|
||
/* Structure or Union return values. */
|
||
gdb_assert (len <= 32);
|
||
|
||
for (i = 0; i < ((len + 7) / 8); i++)
|
||
regcache->cooked_read (SPARC_O0_REGNUM + i, buf + i * 8);
|
||
if (TYPE_CODE (type) != TYPE_CODE_UNION)
|
||
sparc64_extract_floating_fields (regcache, type, buf, 0);
|
||
memcpy (valbuf, buf, len);
|
||
}
|
||
else if (sparc64_floating_p (type) || sparc64_complex_floating_p (type))
|
||
{
|
||
/* Floating return values. */
|
||
for (i = 0; i < len / 4; i++)
|
||
regcache->cooked_read (SPARC_F0_REGNUM + i, buf + i * 4);
|
||
memcpy (valbuf, buf, len);
|
||
}
|
||
else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
||
{
|
||
/* Small arrays are returned the same way as small structures. */
|
||
gdb_assert (len <= 32);
|
||
|
||
for (i = 0; i < ((len + 7) / 8); i++)
|
||
regcache->cooked_read (SPARC_O0_REGNUM + i, buf + i * 8);
|
||
memcpy (valbuf, buf, len);
|
||
}
|
||
else
|
||
{
|
||
/* Integral and pointer return values. */
|
||
gdb_assert (sparc64_integral_or_pointer_p (type));
|
||
|
||
/* Just stripping off any unused bytes should preserve the
|
||
signed-ness just fine. */
|
||
regcache->cooked_read (SPARC_O0_REGNUM, buf);
|
||
memcpy (valbuf, buf + 8 - len, len);
|
||
}
|
||
}
|
||
|
||
/* Write into the appropriate registers a function return value stored
|
||
in VALBUF of type TYPE. */
|
||
|
||
static void
|
||
sparc64_store_return_value (struct type *type, struct regcache *regcache,
|
||
const gdb_byte *valbuf)
|
||
{
|
||
int len = TYPE_LENGTH (type);
|
||
gdb_byte buf[16];
|
||
int i;
|
||
|
||
if (sparc64_structure_or_union_p (type))
|
||
{
|
||
/* Structure or Union return values. */
|
||
gdb_assert (len <= 32);
|
||
|
||
/* Simplify matters by storing the complete value (including
|
||
floating members) into %o0 and %o1. Floating members are
|
||
also store in the appropriate floating-point registers. */
|
||
memset (buf, 0, sizeof (buf));
|
||
memcpy (buf, valbuf, len);
|
||
for (i = 0; i < ((len + 7) / 8); i++)
|
||
regcache->cooked_write (SPARC_O0_REGNUM + i, buf + i * 8);
|
||
if (TYPE_CODE (type) != TYPE_CODE_UNION)
|
||
sparc64_store_floating_fields (regcache, type, buf, 0, 0);
|
||
}
|
||
else if (sparc64_floating_p (type) || sparc64_complex_floating_p (type))
|
||
{
|
||
/* Floating return values. */
|
||
memcpy (buf, valbuf, len);
|
||
for (i = 0; i < len / 4; i++)
|
||
regcache->cooked_write (SPARC_F0_REGNUM + i, buf + i * 4);
|
||
}
|
||
else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
||
{
|
||
/* Small arrays are returned the same way as small structures. */
|
||
gdb_assert (len <= 32);
|
||
|
||
memset (buf, 0, sizeof (buf));
|
||
memcpy (buf, valbuf, len);
|
||
for (i = 0; i < ((len + 7) / 8); i++)
|
||
regcache->cooked_write (SPARC_O0_REGNUM + i, buf + i * 8);
|
||
}
|
||
else
|
||
{
|
||
/* Integral and pointer return values. */
|
||
gdb_assert (sparc64_integral_or_pointer_p (type));
|
||
|
||
/* ??? Do we need to do any sign-extension here? */
|
||
memset (buf, 0, 8);
|
||
memcpy (buf + 8 - len, valbuf, len);
|
||
regcache->cooked_write (SPARC_O0_REGNUM, buf);
|
||
}
|
||
}
|
||
|
||
static enum return_value_convention
|
||
sparc64_return_value (struct gdbarch *gdbarch, struct value *function,
|
||
struct type *type, struct regcache *regcache,
|
||
gdb_byte *readbuf, const gdb_byte *writebuf)
|
||
{
|
||
if (TYPE_LENGTH (type) > 32)
|
||
return RETURN_VALUE_STRUCT_CONVENTION;
|
||
|
||
if (readbuf)
|
||
sparc64_extract_return_value (type, regcache, readbuf);
|
||
if (writebuf)
|
||
sparc64_store_return_value (type, regcache, writebuf);
|
||
|
||
return RETURN_VALUE_REGISTER_CONVENTION;
|
||
}
|
||
|
||
|
||
static void
|
||
sparc64_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
|
||
struct dwarf2_frame_state_reg *reg,
|
||
struct frame_info *this_frame)
|
||
{
|
||
switch (regnum)
|
||
{
|
||
case SPARC_G0_REGNUM:
|
||
/* Since %g0 is always zero, there is no point in saving it, and
|
||
people will be inclined omit it from the CFI. Make sure we
|
||
don't warn about that. */
|
||
reg->how = DWARF2_FRAME_REG_SAME_VALUE;
|
||
break;
|
||
case SPARC_SP_REGNUM:
|
||
reg->how = DWARF2_FRAME_REG_CFA;
|
||
break;
|
||
case SPARC64_PC_REGNUM:
|
||
reg->how = DWARF2_FRAME_REG_RA_OFFSET;
|
||
reg->loc.offset = 8;
|
||
break;
|
||
case SPARC64_NPC_REGNUM:
|
||
reg->how = DWARF2_FRAME_REG_RA_OFFSET;
|
||
reg->loc.offset = 12;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* sparc64_addr_bits_remove - remove useless address bits */
|
||
|
||
static CORE_ADDR
|
||
sparc64_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
|
||
{
|
||
return adi_normalize_address (addr);
|
||
}
|
||
|
||
void
|
||
sparc64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
tdep->pc_regnum = SPARC64_PC_REGNUM;
|
||
tdep->npc_regnum = SPARC64_NPC_REGNUM;
|
||
tdep->fpu_register_names = sparc64_fpu_register_names;
|
||
tdep->fpu_registers_num = ARRAY_SIZE (sparc64_fpu_register_names);
|
||
tdep->cp0_register_names = sparc64_cp0_register_names;
|
||
tdep->cp0_registers_num = ARRAY_SIZE (sparc64_cp0_register_names);
|
||
|
||
/* This is what all the fuss is about. */
|
||
set_gdbarch_long_bit (gdbarch, 64);
|
||
set_gdbarch_long_long_bit (gdbarch, 64);
|
||
set_gdbarch_ptr_bit (gdbarch, 64);
|
||
|
||
set_gdbarch_wchar_bit (gdbarch, 16);
|
||
set_gdbarch_wchar_signed (gdbarch, 0);
|
||
|
||
set_gdbarch_num_regs (gdbarch, SPARC64_NUM_REGS);
|
||
set_gdbarch_register_name (gdbarch, sparc64_register_name);
|
||
set_gdbarch_register_type (gdbarch, sparc64_register_type);
|
||
set_gdbarch_num_pseudo_regs (gdbarch, SPARC64_NUM_PSEUDO_REGS);
|
||
set_tdesc_pseudo_register_name (gdbarch, sparc64_pseudo_register_name);
|
||
set_tdesc_pseudo_register_type (gdbarch, sparc64_pseudo_register_type);
|
||
set_gdbarch_pseudo_register_read (gdbarch, sparc64_pseudo_register_read);
|
||
set_gdbarch_pseudo_register_write (gdbarch, sparc64_pseudo_register_write);
|
||
|
||
/* Register numbers of various important registers. */
|
||
set_gdbarch_pc_regnum (gdbarch, SPARC64_PC_REGNUM); /* %pc */
|
||
|
||
/* Call dummy code. */
|
||
set_gdbarch_frame_align (gdbarch, sparc64_frame_align);
|
||
set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
|
||
set_gdbarch_push_dummy_code (gdbarch, NULL);
|
||
set_gdbarch_push_dummy_call (gdbarch, sparc64_push_dummy_call);
|
||
|
||
set_gdbarch_return_value (gdbarch, sparc64_return_value);
|
||
set_gdbarch_stabs_argument_has_addr
|
||
(gdbarch, default_stabs_argument_has_addr);
|
||
|
||
set_gdbarch_skip_prologue (gdbarch, sparc64_skip_prologue);
|
||
set_gdbarch_stack_frame_destroyed_p (gdbarch, sparc_stack_frame_destroyed_p);
|
||
|
||
/* Hook in the DWARF CFI frame unwinder. */
|
||
dwarf2_frame_set_init_reg (gdbarch, sparc64_dwarf2_frame_init_reg);
|
||
/* FIXME: kettenis/20050423: Don't enable the unwinder until the
|
||
StackGhost issues have been resolved. */
|
||
|
||
frame_unwind_append_unwinder (gdbarch, &sparc64_frame_unwind);
|
||
frame_base_set_default (gdbarch, &sparc64_frame_base);
|
||
|
||
set_gdbarch_addr_bits_remove (gdbarch, sparc64_addr_bits_remove);
|
||
}
|
||
|
||
|
||
/* Helper functions for dealing with register sets. */
|
||
|
||
#define TSTATE_CWP 0x000000000000001fULL
|
||
#define TSTATE_ICC 0x0000000f00000000ULL
|
||
#define TSTATE_XCC 0x000000f000000000ULL
|
||
|
||
#define PSR_S 0x00000080
|
||
#ifndef PSR_ICC
|
||
#define PSR_ICC 0x00f00000
|
||
#endif
|
||
#define PSR_VERS 0x0f000000
|
||
#ifndef PSR_IMPL
|
||
#define PSR_IMPL 0xf0000000
|
||
#endif
|
||
#define PSR_V8PLUS 0xff000000
|
||
#define PSR_XCC 0x000f0000
|
||
|
||
void
|
||
sparc64_supply_gregset (const struct sparc_gregmap *gregmap,
|
||
struct regcache *regcache,
|
||
int regnum, const void *gregs)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
int sparc32 = (gdbarch_ptr_bit (gdbarch) == 32);
|
||
const gdb_byte *regs = (const gdb_byte *) gregs;
|
||
gdb_byte zero[8] = { 0 };
|
||
int i;
|
||
|
||
if (sparc32)
|
||
{
|
||
if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
|
||
{
|
||
int offset = gregmap->r_tstate_offset;
|
||
ULONGEST tstate, psr;
|
||
gdb_byte buf[4];
|
||
|
||
tstate = extract_unsigned_integer (regs + offset, 8, byte_order);
|
||
psr = ((tstate & TSTATE_CWP) | PSR_S | ((tstate & TSTATE_ICC) >> 12)
|
||
| ((tstate & TSTATE_XCC) >> 20) | PSR_V8PLUS);
|
||
store_unsigned_integer (buf, 4, byte_order, psr);
|
||
regcache->raw_supply (SPARC32_PSR_REGNUM, buf);
|
||
}
|
||
|
||
if (regnum == SPARC32_PC_REGNUM || regnum == -1)
|
||
regcache->raw_supply (SPARC32_PC_REGNUM,
|
||
regs + gregmap->r_pc_offset + 4);
|
||
|
||
if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
|
||
regcache->raw_supply (SPARC32_NPC_REGNUM,
|
||
regs + gregmap->r_npc_offset + 4);
|
||
|
||
if (regnum == SPARC32_Y_REGNUM || regnum == -1)
|
||
{
|
||
int offset = gregmap->r_y_offset + 8 - gregmap->r_y_size;
|
||
regcache->raw_supply (SPARC32_Y_REGNUM, regs + offset);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (regnum == SPARC64_STATE_REGNUM || regnum == -1)
|
||
regcache->raw_supply (SPARC64_STATE_REGNUM,
|
||
regs + gregmap->r_tstate_offset);
|
||
|
||
if (regnum == SPARC64_PC_REGNUM || regnum == -1)
|
||
regcache->raw_supply (SPARC64_PC_REGNUM,
|
||
regs + gregmap->r_pc_offset);
|
||
|
||
if (regnum == SPARC64_NPC_REGNUM || regnum == -1)
|
||
regcache->raw_supply (SPARC64_NPC_REGNUM,
|
||
regs + gregmap->r_npc_offset);
|
||
|
||
if (regnum == SPARC64_Y_REGNUM || regnum == -1)
|
||
{
|
||
gdb_byte buf[8];
|
||
|
||
memset (buf, 0, 8);
|
||
memcpy (buf + 8 - gregmap->r_y_size,
|
||
regs + gregmap->r_y_offset, gregmap->r_y_size);
|
||
regcache->raw_supply (SPARC64_Y_REGNUM, buf);
|
||
}
|
||
|
||
if ((regnum == SPARC64_FPRS_REGNUM || regnum == -1)
|
||
&& gregmap->r_fprs_offset != -1)
|
||
regcache->raw_supply (SPARC64_FPRS_REGNUM,
|
||
regs + gregmap->r_fprs_offset);
|
||
}
|
||
|
||
if (regnum == SPARC_G0_REGNUM || regnum == -1)
|
||
regcache->raw_supply (SPARC_G0_REGNUM, &zero);
|
||
|
||
if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
|
||
{
|
||
int offset = gregmap->r_g1_offset;
|
||
|
||
if (sparc32)
|
||
offset += 4;
|
||
|
||
for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
|
||
{
|
||
if (regnum == i || regnum == -1)
|
||
regcache->raw_supply (i, regs + offset);
|
||
offset += 8;
|
||
}
|
||
}
|
||
|
||
if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
|
||
{
|
||
/* Not all of the register set variants include Locals and
|
||
Inputs. For those that don't, we read them off the stack. */
|
||
if (gregmap->r_l0_offset == -1)
|
||
{
|
||
ULONGEST sp;
|
||
|
||
regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
|
||
sparc_supply_rwindow (regcache, sp, regnum);
|
||
}
|
||
else
|
||
{
|
||
int offset = gregmap->r_l0_offset;
|
||
|
||
if (sparc32)
|
||
offset += 4;
|
||
|
||
for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
|
||
{
|
||
if (regnum == i || regnum == -1)
|
||
regcache->raw_supply (i, regs + offset);
|
||
offset += 8;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
sparc64_collect_gregset (const struct sparc_gregmap *gregmap,
|
||
const struct regcache *regcache,
|
||
int regnum, void *gregs)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
int sparc32 = (gdbarch_ptr_bit (gdbarch) == 32);
|
||
gdb_byte *regs = (gdb_byte *) gregs;
|
||
int i;
|
||
|
||
if (sparc32)
|
||
{
|
||
if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
|
||
{
|
||
int offset = gregmap->r_tstate_offset;
|
||
ULONGEST tstate, psr;
|
||
gdb_byte buf[8];
|
||
|
||
tstate = extract_unsigned_integer (regs + offset, 8, byte_order);
|
||
regcache->raw_collect (SPARC32_PSR_REGNUM, buf);
|
||
psr = extract_unsigned_integer (buf, 4, byte_order);
|
||
tstate |= (psr & PSR_ICC) << 12;
|
||
if ((psr & (PSR_VERS | PSR_IMPL)) == PSR_V8PLUS)
|
||
tstate |= (psr & PSR_XCC) << 20;
|
||
store_unsigned_integer (buf, 8, byte_order, tstate);
|
||
memcpy (regs + offset, buf, 8);
|
||
}
|
||
|
||
if (regnum == SPARC32_PC_REGNUM || regnum == -1)
|
||
regcache->raw_collect (SPARC32_PC_REGNUM,
|
||
regs + gregmap->r_pc_offset + 4);
|
||
|
||
if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
|
||
regcache->raw_collect (SPARC32_NPC_REGNUM,
|
||
regs + gregmap->r_npc_offset + 4);
|
||
|
||
if (regnum == SPARC32_Y_REGNUM || regnum == -1)
|
||
{
|
||
int offset = gregmap->r_y_offset + 8 - gregmap->r_y_size;
|
||
regcache->raw_collect (SPARC32_Y_REGNUM, regs + offset);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (regnum == SPARC64_STATE_REGNUM || regnum == -1)
|
||
regcache->raw_collect (SPARC64_STATE_REGNUM,
|
||
regs + gregmap->r_tstate_offset);
|
||
|
||
if (regnum == SPARC64_PC_REGNUM || regnum == -1)
|
||
regcache->raw_collect (SPARC64_PC_REGNUM,
|
||
regs + gregmap->r_pc_offset);
|
||
|
||
if (regnum == SPARC64_NPC_REGNUM || regnum == -1)
|
||
regcache->raw_collect (SPARC64_NPC_REGNUM,
|
||
regs + gregmap->r_npc_offset);
|
||
|
||
if (regnum == SPARC64_Y_REGNUM || regnum == -1)
|
||
{
|
||
gdb_byte buf[8];
|
||
|
||
regcache->raw_collect (SPARC64_Y_REGNUM, buf);
|
||
memcpy (regs + gregmap->r_y_offset,
|
||
buf + 8 - gregmap->r_y_size, gregmap->r_y_size);
|
||
}
|
||
|
||
if ((regnum == SPARC64_FPRS_REGNUM || regnum == -1)
|
||
&& gregmap->r_fprs_offset != -1)
|
||
regcache->raw_collect (SPARC64_FPRS_REGNUM,
|
||
regs + gregmap->r_fprs_offset);
|
||
|
||
}
|
||
|
||
if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
|
||
{
|
||
int offset = gregmap->r_g1_offset;
|
||
|
||
if (sparc32)
|
||
offset += 4;
|
||
|
||
/* %g0 is always zero. */
|
||
for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
|
||
{
|
||
if (regnum == i || regnum == -1)
|
||
regcache->raw_collect (i, regs + offset);
|
||
offset += 8;
|
||
}
|
||
}
|
||
|
||
if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
|
||
{
|
||
/* Not all of the register set variants include Locals and
|
||
Inputs. For those that don't, we read them off the stack. */
|
||
if (gregmap->r_l0_offset != -1)
|
||
{
|
||
int offset = gregmap->r_l0_offset;
|
||
|
||
if (sparc32)
|
||
offset += 4;
|
||
|
||
for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
|
||
{
|
||
if (regnum == i || regnum == -1)
|
||
regcache->raw_collect (i, regs + offset);
|
||
offset += 8;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
sparc64_supply_fpregset (const struct sparc_fpregmap *fpregmap,
|
||
struct regcache *regcache,
|
||
int regnum, const void *fpregs)
|
||
{
|
||
int sparc32 = (gdbarch_ptr_bit (regcache->arch ()) == 32);
|
||
const gdb_byte *regs = (const gdb_byte *) fpregs;
|
||
int i;
|
||
|
||
for (i = 0; i < 32; i++)
|
||
{
|
||
if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
|
||
regcache->raw_supply (SPARC_F0_REGNUM + i,
|
||
regs + fpregmap->r_f0_offset + (i * 4));
|
||
}
|
||
|
||
if (sparc32)
|
||
{
|
||
if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
|
||
regcache->raw_supply (SPARC32_FSR_REGNUM,
|
||
regs + fpregmap->r_fsr_offset);
|
||
}
|
||
else
|
||
{
|
||
for (i = 0; i < 16; i++)
|
||
{
|
||
if (regnum == (SPARC64_F32_REGNUM + i) || regnum == -1)
|
||
regcache->raw_supply
|
||
(SPARC64_F32_REGNUM + i,
|
||
regs + fpregmap->r_f0_offset + (32 * 4) + (i * 8));
|
||
}
|
||
|
||
if (regnum == SPARC64_FSR_REGNUM || regnum == -1)
|
||
regcache->raw_supply (SPARC64_FSR_REGNUM,
|
||
regs + fpregmap->r_fsr_offset);
|
||
}
|
||
}
|
||
|
||
void
|
||
sparc64_collect_fpregset (const struct sparc_fpregmap *fpregmap,
|
||
const struct regcache *regcache,
|
||
int regnum, void *fpregs)
|
||
{
|
||
int sparc32 = (gdbarch_ptr_bit (regcache->arch ()) == 32);
|
||
gdb_byte *regs = (gdb_byte *) fpregs;
|
||
int i;
|
||
|
||
for (i = 0; i < 32; i++)
|
||
{
|
||
if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
|
||
regcache->raw_collect (SPARC_F0_REGNUM + i,
|
||
regs + fpregmap->r_f0_offset + (i * 4));
|
||
}
|
||
|
||
if (sparc32)
|
||
{
|
||
if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
|
||
regcache->raw_collect (SPARC32_FSR_REGNUM,
|
||
regs + fpregmap->r_fsr_offset);
|
||
}
|
||
else
|
||
{
|
||
for (i = 0; i < 16; i++)
|
||
{
|
||
if (regnum == (SPARC64_F32_REGNUM + i) || regnum == -1)
|
||
regcache->raw_collect (SPARC64_F32_REGNUM + i,
|
||
(regs + fpregmap->r_f0_offset
|
||
+ (32 * 4) + (i * 8)));
|
||
}
|
||
|
||
if (regnum == SPARC64_FSR_REGNUM || regnum == -1)
|
||
regcache->raw_collect (SPARC64_FSR_REGNUM,
|
||
regs + fpregmap->r_fsr_offset);
|
||
}
|
||
}
|
||
|
||
const struct sparc_fpregmap sparc64_bsd_fpregmap =
|
||
{
|
||
0 * 8, /* %f0 */
|
||
32 * 8, /* %fsr */
|
||
};
|