binutils-gdb/gdb/linux-nat.h
Vladimir Prus dc146f7c09 Implement core awareness.
* bcache.c (compare_ints): Remove
	(print_percentage): Use compare_positive_ints.
	* defs.h (compare_positive_ints): Declare.
	* linux-nat.h (struct lin_lwp): New field core.
	(linux_nat_core_of_thread_1): Declare.
	* linux-nat.c (add_lwp): Init the 'core' field.
	(linux_nat_wait_1): Record the core.
	(linux_nat_core_of_thread_1, linux_nat_core_of_thread): New.
	(linux_nat_add_target): Register the above.
	* linux-thread-db.c (update_thread_core): New.
	(thread_db_find_new_threads): Update core information for
	every thread.
	* remote.c (struct private_thread_info): New.
	(free_private_thread_info, demand_private_info): New.
	(PACKET_qXfer_threads, use_osdata_threads): New.
	(struct thread_item, threads_parsing_context
	(start_thread, end_thread, thread_attributes)
	(thread_children, threads_children, threads_elements): New.
	(remote_threads_info): Try qXfer:threads before anything
	else.
	(remote_protocol_packets): Register qXfer:threads.
	(remote_open_1): Init use_osdata_threads.
	(struct stop_reply): New field 'core'.
	(remote_parse_stop_reply): Parse core number.
	(process_stop_reply): Record core number.
	(remote_xfer_partial): Handle qXfer:threads.
	(remote_core_of_thread): New.
	(init_remote_ops): Register remote_core_of_thread.
	(_initialize_remote): Register qXfer:read.
	* target.c (target_core_of_thread): New
	* target.h (enum target_object): New value TARGET_OBJECT_THREADS.
	(struct target_ops): New field to_core_of_threads.
	(target_core_of_thread): Declare.
	* gdbthread.h (struct thread_info): New field private_dtor.
	* thread.c (print_thread_info): Report the core.
	* ui-out.c (MAX_UI_OUT_LEVELS): Increase.
	* utils.c (compare_positive_ints): New.
	* features/threads.dtd: New.
	* mi/mi-interp.c (mi_on_normal_stop): Report the core.
	* mi/mi-main.c (struct collect_cores_data, collect_cores)
	(do_nothing, free_vector_of_osdata_items)
	(splay_tree_int_comparator, free_splay_tree): New.
	(print_one_inferior_data): Implemented printing of selected
	inferiors.  Collect and print cores.
	(output_cores): New.
	(mi_cmd_list_thread_groups): Support --recurse.  Permit specifying
	thread groups together with --available.
2010-01-12 21:40:25 +00:00

172 lines
5.9 KiB
C

/* Native debugging support for GNU/Linux (LWP layer).
Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
2010 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "target.h"
#include <signal.h>
/* Structure describing an LWP. This is public only for the purposes
of ALL_LWPS; target-specific code should generally not access it
directly. */
struct lwp_info
{
/* The process id of the LWP. This is a combination of the LWP id
and overall process id. */
ptid_t ptid;
/* Non-zero if this LWP is cloned. In this context "cloned" means
that the LWP is reporting to its parent using a signal other than
SIGCHLD. */
int cloned;
/* Non-zero if we sent this LWP a SIGSTOP (but the LWP didn't report
it back yet). */
int signalled;
/* Non-zero if this LWP is stopped. */
int stopped;
/* Non-zero if this LWP will be/has been resumed. Note that an LWP
can be marked both as stopped and resumed at the same time. This
happens if we try to resume an LWP that has a wait status
pending. We shouldn't let the LWP run until that wait status has
been processed, but we should not report that wait status if GDB
didn't try to let the LWP run. */
int resumed;
/* If non-zero, a pending wait status. */
int status;
/* Non-zero if we were stepping this LWP. */
int step;
/* Non-zero si_signo if this LWP stopped with a trap. si_addr may
be the address of a hardware watchpoint. */
struct siginfo siginfo;
/* STOPPED_BY_WATCHPOINT is non-zero if this LWP stopped with a data
watchpoint trap. */
int stopped_by_watchpoint;
/* On architectures where it is possible to know the data address of
a triggered watchpoint, STOPPED_DATA_ADDRESS_P is non-zero, and
STOPPED_DATA_ADDRESS contains such data address. Otherwise,
STOPPED_DATA_ADDRESS_P is false, and STOPPED_DATA_ADDRESS is
undefined. Only valid if STOPPED_BY_WATCHPOINT is true. */
int stopped_data_address_p;
CORE_ADDR stopped_data_address;
/* Non-zero if we expect a duplicated SIGINT. */
int ignore_sigint;
/* If WAITSTATUS->KIND != TARGET_WAITKIND_SPURIOUS, the waitstatus
for this LWP's last event. This may correspond to STATUS above,
or to a local variable in lin_lwp_wait. */
struct target_waitstatus waitstatus;
/* Signal wether we are in a SYSCALL_ENTRY or
in a SYSCALL_RETURN event.
Values:
- TARGET_WAITKIND_SYSCALL_ENTRY
- TARGET_WAITKIND_SYSCALL_RETURN */
int syscall_state;
/* The processor core this LWP was last seen on. */
int core;
/* Next LWP in list. */
struct lwp_info *next;
};
/* The global list of LWPs, for ALL_LWPS. Unlike the threads list,
there is always at least one LWP on the list while the GNU/Linux
native target is active. */
extern struct lwp_info *lwp_list;
/* Iterate over the PTID each active thread (light-weight process). There
must be at least one. */
#define ALL_LWPS(LP, PTID) \
for ((LP) = lwp_list, (PTID) = (LP)->ptid; \
(LP) != NULL; \
(LP) = (LP)->next, (PTID) = (LP) ? (LP)->ptid : (PTID))
#define GET_LWP(ptid) ptid_get_lwp (ptid)
#define GET_PID(ptid) ptid_get_pid (ptid)
#define is_lwp(ptid) (GET_LWP (ptid) != 0)
#define BUILD_LWP(lwp, pid) ptid_build (pid, lwp, 0)
/* Attempt to initialize libthread_db. */
void check_for_thread_db (void);
int thread_db_attach_lwp (ptid_t ptid);
/* Find process PID's pending signal set from /proc/pid/status. */
void linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored);
/* Return the TGID of LWPID from /proc/pid/status. Returns -1 if not
found. */
extern int linux_proc_get_tgid (int lwpid);
/* linux-nat functions for handling fork events. */
extern void linux_enable_event_reporting (ptid_t ptid);
extern int lin_lwp_attach_lwp (ptid_t ptid);
/* Iterator function for lin-lwp's lwp list. */
struct lwp_info *iterate_over_lwps (ptid_t filter,
int (*callback) (struct lwp_info *,
void *),
void *data);
/* Create a prototype generic GNU/Linux target. The client can
override it with local methods. */
struct target_ops * linux_target (void);
/* Create a generic GNU/Linux target using traditional
ptrace register access. */
struct target_ops *
linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int));
/* Register the customized GNU/Linux target. This should be used
instead of calling add_target directly. */
void linux_nat_add_target (struct target_ops *);
/* Register a method to call whenever a new thread is attached. */
void linux_nat_set_new_thread (struct target_ops *, void (*) (ptid_t));
/* Register a method that converts a siginfo object between the layout
that ptrace returns, and the layout in the architecture of the
inferior. */
void linux_nat_set_siginfo_fixup (struct target_ops *,
int (*) (struct siginfo *,
gdb_byte *,
int));
/* Update linux-nat internal state when changing from one fork
to another. */
void linux_nat_switch_fork (ptid_t new_ptid);
/* Return the saved siginfo associated with PTID. */
struct siginfo *linux_nat_get_siginfo (ptid_t ptid);
/* Compute and return the processor core of a given thread. */
int linux_nat_core_of_thread_1 (ptid_t ptid);