mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-30 12:43:34 +08:00
37002871ac
This commit adds dumping of enumerands in this general form: 0x3: (kind 8) enum eleven_els (size 0x4) (aligned at 0x4) ELEVEN_ONE: 10 ELEVEN_TWO: 11 ELEVEN_THREE: -256 ELEVEN_FOUR: -255 ELEVEN_FIVE: -254 ... ELEVEN_SEVEN: -252 ELEVEN_EIGHT: -251 ELEVEN_NINE: -250 ELEVEN_TEN: -249 ELEVEN_ELEVEN: -248 The first and last enumerands in the enumerated type are printed so that you can tell if they've been cut off at one end or the other. (For now, there is no way to control how many enumerands are printed.) The dump output in general is improved, from this sort of thing a few days ago: 4c: char [0x0:0x8] (size 0x1) [0x0] (ID 0x4c) (kind 1) char:8 (aligned at 0x1, format 0x3, offset:bits 0x0:0x8) 4d: char * (size 0x8) -> 4c: char [0x0:0x8] (size 0x1) [0x0] (ID 0x4d) (kind 3) char * (aligned at 0x8) [...] 5a: struct _IO_FILE (size 0xd8) [0x0] (ID 0x5a) (kind 6) struct _IO_FILE (aligned at 0x4) [0x0] (ID 0x3) (kind 1) int _flags:32 (aligned at 0x4, format 0x1, offset:bits 0x0:0x20) [0x40] (ID 0x4d) (kind 3) char * _IO_read_ptr (aligned at 0x8) [0x80] (ID 0x4d) (kind 3) char * _IO_read_end (aligned at 0x8) [0xc0] (ID 0x4d) (kind 3) char * _IO_read_base (aligned at 0x8) 5b: __FILE (size 0xd8) -> 5a: struct _IO_FILE (size 0xd8) [0x0] (ID 0x5b) (kind 10) __FILE (aligned at 0x4) [0x0] (ID 0x3) (kind 1) int _flags:32 (aligned at 0x4, format 0x1, offset:bits 0x0:0x20) [0x40] (ID 0x4d) (kind 3) char * _IO_read_ptr (aligned at 0x8) [0x80] (ID 0x4d) (kind 3) char * _IO_read_end (aligned at 0x8) [0xc0] (ID 0x4d) (kind 3) char * _IO_read_base (aligned at 0x8) [...] 406: struct coff_link_hash_entry (size 0x60) [0x0] (ID 0x406) (kind 6) struct coff_link_hash_entry (aligned at 0x8) [0x0] (ID 0x2b3) (kind 6) struct bfd_link_hash_entry root (aligned at 0x8) [0x0] (ID 0x1d6) (kind 6) struct bfd_hash_entry root (aligned at 0x8) [0x0] (ID 0x1d7) (kind 3) struct bfd_hash_entry * next (aligned at 0x8) [0x40] (ID 0x61) (kind 3) const char * string (aligned at 0x8) [0x80] (ID 0x1) (kind 1) long unsigned int hash:64 (aligned at 0x8, format 0x0, offset:bits 0x0:0x40) [0xc0] (ID 0x397) (kind 8) enum bfd_link_hash_type type:8 (aligned at 0x1, format 0x0, offset:bits 0x0:0x8) [0xc8] (ID 0x1c7) (kind 1) unsigned int non_ir_ref_regular:1 (aligned at 0x1, format 0x0, offset:bits 0x8:0x1) [0xc9] (ID 0x1c8) (kind 1) unsigned int non_ir_ref_dynamic:1 (aligned at 0x1, format 0x0, offset:bits 0x9:0x1) [0xca] (ID 0x1c9) (kind 1) unsigned int linker_def:1 (aligned at 0x1, format 0x0, offset:bits 0xa:0x1) [0xcb] (ID 0x1ca) (kind 1) unsigned int ldscript_def:1 (aligned at 0x1, format 0x0, offset:bits 0xb:0x1) [0xcc] (ID 0x1cb) (kind 1) unsigned int rel_from_abs:1 (aligned at 0x1, format 0x0, offset:bits 0xc:0x1) ... to this: 0x4c: (kind 1) char (format 0x3) (size 0x1) (aligned at 0x1) 0x4d: (kind 3) char * (size 0x8) (aligned at 0x8) -> 0x4c: (kind 1) char (format 0x3) (size 0x1) (aligned at 0x1) 0x5a: (kind 6) struct _IO_FILE (size 0xd8) (aligned at 0x4) [0x0] _flags: ID 0x3: (kind 1) int (format 0x1) (size 0x4) (aligned at 0x4) [0x40] _IO_read_ptr: ID 0x4d: (kind 3) char * (size 0x8) (aligned at 0x8) [0x80] _IO_read_end: ID 0x4d: (kind 3) char * (size 0x8) (aligned at 0x8) [0xc0] _IO_read_base: ID 0x4d: (kind 3) char * (size 0x8) (aligned at 0x8) [0x100] _IO_write_base: ID 0x4d: (kind 3) char * (size 0x8) (aligned at 0x8) 0x5b: (kind 10) __FILE (size 0xd8) (aligned at 0x4) -> 0x5a: (kind 6) struct _IO_FILE (size 0xd8) (aligned at 0x4) [...] 0x406: (kind 6) struct coff_link_hash_entry (size 0x60) (aligned at 0x8) [0x0] root: ID 0x2b3: (kind 6) struct bfd_link_hash_entry (size 0x38) (aligned at 0x8) [0x0] root: ID 0x1d6: (kind 6) struct bfd_hash_entry (size 0x18) (aligned at 0x8) [0x0] next: ID 0x1d7: (kind 3) struct bfd_hash_entry * (size 0x8) (aligned at 0x8) [0x40] string: ID 0x61: (kind 3) const char * (size 0x8) (aligned at 0x8) [0x80] hash: ID 0x1: (kind 1) long unsigned int (format 0x0) (size 0x8) (aligned at 0x8) [0xc0] type: ID 0x397: (kind 8) enum bfd_link_hash_type (format 0x7f2e) (size 0x1) (aligned at 0x1) [0xc8] non_ir_ref_regular: ID 0x1c7: (kind 1) unsigned int:1 [slice 0x8:0x1] (format 0x0) (size 0x1) (aligned at 0x1) [0xc9] non_ir_ref_dynamic: ID 0x1c8: (kind 1) unsigned int:1 [slice 0x9:0x1] (format 0x0) (size 0x1) (aligned at 0x1) [0xca] linker_def: ID 0x1c9: (kind 1) unsigned int:1 [slice 0xa:0x1] (format 0x0) (size 0x1) (aligned at 0x1) [0xcb] ldscript_def: ID 0x1ca: (kind 1) unsigned int:1 [slice 0xb:0x1] (format 0x0) (size 0x1) (aligned at 0x1) [0xcc] rel_from_abs: ID 0x1cb: (kind 1) unsigned int:1 [slice 0xc:0x1] (format 0x0) (size 0x1) (aligned at 0x1) [...] In particular, indented subsections are only present for actual structs and unions, not forwards to them, and the structure itself doesn't add a spurious level of indentation; structure field names are easier to spot (at the cost of not making them look so much like C field declarations any more, but they weren't always shown in valid decl syntax even before this change) the size, type kind, and alignment are shown for all types for which they are meaningful; bitfield info is only shown for actual bitfields within structures and not ordinary integral fields; and type IDs are never omitted. Type printing is in general much more consistent and there is much less duplicated code in the type dumper. There is one user-visible effect outside the dumper: ctf_type_(a)name was erroneously emitting a trailing space on the name of slice types, even though a slice of an int and an int with the corresponding encoding represent the same type and should have the same print form. This trailing space is now gone. ld/ChangeLog 2021-01-05 Nick Alcock <nick.alcock@oracle.com> * testsuite/ld-ctf/array.d: Adjust for dumper changes. * testsuite/ld-ctf/conflicting-cycle-1.B-1.d: Likewise. * testsuite/ld-ctf/conflicting-cycle-1.B-2.d: Likewise. * testsuite/ld-ctf/conflicting-cycle-1.parent.d: Likewise. * testsuite/ld-ctf/conflicting-cycle-2.A-1.d: Likewise. * testsuite/ld-ctf/conflicting-cycle-2.A-2.d: Likewise. * testsuite/ld-ctf/conflicting-cycle-2.parent.d: Likewise. * testsuite/ld-ctf/conflicting-cycle-3.C-1.d: Likewise. * testsuite/ld-ctf/conflicting-cycle-3.C-2.d: Likewise. * testsuite/ld-ctf/conflicting-cycle-3.parent.d: Likewise. * testsuite/ld-ctf/conflicting-enums.d: Likewise. * testsuite/ld-ctf/conflicting-typedefs.d: Likewise. * testsuite/ld-ctf/cross-tu-cyclic-conflicting.d: Likewise. * testsuite/ld-ctf/cross-tu-cyclic-nonconflicting.d: Likewise. * testsuite/ld-ctf/cross-tu-into-cycle.d: Likewise. * testsuite/ld-ctf/cross-tu-noncyclic.d: Likewise. * testsuite/ld-ctf/cycle-1.d: Likewise. * testsuite/ld-ctf/cycle-2.A.d: Likewise. * testsuite/ld-ctf/cycle-2.B.d: Likewise. * testsuite/ld-ctf/cycle-2.C.d: Likewise. * testsuite/ld-ctf/data-func-conflicted.d: Likewise. * testsuite/ld-ctf/diag-cttname-null.d: Likewise. * testsuite/ld-ctf/diag-cuname.d: Likewise. * testsuite/ld-ctf/diag-parlabel.d: Likewise. * testsuite/ld-ctf/diag-wrong-magic-number-mixed.d: Likewise. * testsuite/ld-ctf/forward.d: Likewise. * testsuite/ld-ctf/function.d: Likewise. * testsuite/ld-ctf/slice.d: Likewise. * testsuite/ld-ctf/super-sub-cycles.d: Likewise. * testsuite/ld-ctf/enums.c: New test. * testsuite/ld-ctf/enums.d: New test. libctf/ChangeLog 2021-01-05 Nick Alcock <nick.alcock@oracle.com> * ctf-decl.c (ctf_decl_push): Exclude slices from the decl stack. * ctf-types.c (ctf_type_aname): No longer deal with slices here. * ctf-dump.c (ctf_dump_membstate_t) <cdm_toplevel_indent>: Constify. (CTF_FT_REFS): New. (CTF_FT_BITFIELD): Likewise. (CTF_FT_ID): Likewise. (ctf_dump_member): Do not do indentation here. Migrate the type-printing parts of this into... (ctf_dump_format_type): ... here, to be shared by all type printers. Get the errno value for non-representable types right. Do not print bitfield info for non-bitfields. Improve the format and indentation of other type output. Shuffle spacing around to make all indentation either 'width of column' or 4 chars. (ctf_dump_label): Pass CTF_FT_REFS to ctf_dump_format_type. (ctf_dump_objts): Likewise. Spacing shuffle. (ctf_dump_var): Likewise. (type_hex_digits): Migrate down in the file, to above its new user. (ctf_dump_type): Indent here instead. Pass CTF_FT_REFS to ctf_dump_format_type. Don't trim off excess linefeeds now we no longer generate them. Dump enumerated types.
1792 lines
46 KiB
C
1792 lines
46 KiB
C
/* Type handling functions.
|
|
Copyright (C) 2019-2021 Free Software Foundation, Inc.
|
|
|
|
This file is part of libctf.
|
|
|
|
libctf is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; see the file COPYING. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <ctf-impl.h>
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
|
|
/* Determine whether a type is a parent or a child. */
|
|
|
|
int
|
|
ctf_type_isparent (ctf_dict_t *fp, ctf_id_t id)
|
|
{
|
|
return (LCTF_TYPE_ISPARENT (fp, id));
|
|
}
|
|
|
|
int
|
|
ctf_type_ischild (ctf_dict_t * fp, ctf_id_t id)
|
|
{
|
|
return (LCTF_TYPE_ISCHILD (fp, id));
|
|
}
|
|
|
|
/* Iterate over the members of a STRUCT or UNION. We pass the name, member
|
|
type, and offset of each member to the specified callback function. */
|
|
|
|
int
|
|
ctf_member_iter (ctf_dict_t *fp, ctf_id_t type, ctf_member_f *func, void *arg)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
const ctf_type_t *tp;
|
|
ctf_dtdef_t *dtd;
|
|
ssize_t size, increment;
|
|
uint32_t kind, n;
|
|
int rc;
|
|
|
|
if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
(void) ctf_get_ctt_size (fp, tp, &size, &increment);
|
|
kind = LCTF_INFO_KIND (fp, tp->ctt_info);
|
|
|
|
if (kind != CTF_K_STRUCT && kind != CTF_K_UNION)
|
|
return (ctf_set_errno (ofp, ECTF_NOTSOU));
|
|
|
|
if ((dtd = ctf_dynamic_type (fp, type)) == NULL)
|
|
{
|
|
if (size < CTF_LSTRUCT_THRESH)
|
|
{
|
|
const ctf_member_t *mp = (const ctf_member_t *) ((uintptr_t) tp +
|
|
increment);
|
|
|
|
for (n = LCTF_INFO_VLEN (fp, tp->ctt_info); n != 0; n--, mp++)
|
|
{
|
|
const char *name = ctf_strptr (fp, mp->ctm_name);
|
|
if ((rc = func (name, mp->ctm_type, mp->ctm_offset, arg)) != 0)
|
|
return rc;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const ctf_lmember_t *lmp = (const ctf_lmember_t *) ((uintptr_t) tp +
|
|
increment);
|
|
|
|
for (n = LCTF_INFO_VLEN (fp, tp->ctt_info); n != 0; n--, lmp++)
|
|
{
|
|
const char *name = ctf_strptr (fp, lmp->ctlm_name);
|
|
if ((rc = func (name, lmp->ctlm_type,
|
|
(unsigned long) CTF_LMEM_OFFSET (lmp), arg)) != 0)
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ctf_dmdef_t *dmd;
|
|
|
|
for (dmd = ctf_list_next (&dtd->dtd_u.dtu_members);
|
|
dmd != NULL; dmd = ctf_list_next (dmd))
|
|
{
|
|
if ((rc = func (dmd->dmd_name, dmd->dmd_type,
|
|
dmd->dmd_offset, arg)) != 0)
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Iterate over the members of a STRUCT or UNION, returning each member's
|
|
offset and optionally name and member type in turn. On end-of-iteration,
|
|
returns -1. */
|
|
|
|
ssize_t
|
|
ctf_member_next (ctf_dict_t *fp, ctf_id_t type, ctf_next_t **it,
|
|
const char **name, ctf_id_t *membtype)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
uint32_t kind;
|
|
ssize_t offset;
|
|
ctf_next_t *i = *it;
|
|
|
|
if (!i)
|
|
{
|
|
const ctf_type_t *tp;
|
|
ctf_dtdef_t *dtd;
|
|
|
|
if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((i = ctf_next_create ()) == NULL)
|
|
return ctf_set_errno (ofp, ENOMEM);
|
|
i->cu.ctn_fp = ofp;
|
|
|
|
(void) ctf_get_ctt_size (fp, tp, &i->ctn_size,
|
|
&i->ctn_increment);
|
|
kind = LCTF_INFO_KIND (fp, tp->ctt_info);
|
|
|
|
if (kind != CTF_K_STRUCT && kind != CTF_K_UNION)
|
|
{
|
|
ctf_next_destroy (i);
|
|
return (ctf_set_errno (ofp, ECTF_NOTSOU));
|
|
}
|
|
|
|
dtd = ctf_dynamic_type (fp, type);
|
|
i->ctn_iter_fun = (void (*) (void)) ctf_member_next;
|
|
|
|
/* We depend below on the RDWR state indicating whether the DTD-related
|
|
fields or the DMD-related fields have been initialized. */
|
|
|
|
assert ((dtd && (fp->ctf_flags & LCTF_RDWR))
|
|
|| (!dtd && (!(fp->ctf_flags & LCTF_RDWR))));
|
|
|
|
if (dtd == NULL)
|
|
{
|
|
i->ctn_n = LCTF_INFO_VLEN (fp, tp->ctt_info);
|
|
|
|
if (i->ctn_size < CTF_LSTRUCT_THRESH)
|
|
i->u.ctn_mp = (const ctf_member_t *) ((uintptr_t) tp +
|
|
i->ctn_increment);
|
|
else
|
|
i->u.ctn_lmp = (const ctf_lmember_t *) ((uintptr_t) tp +
|
|
i->ctn_increment);
|
|
}
|
|
else
|
|
i->u.ctn_dmd = ctf_list_next (&dtd->dtd_u.dtu_members);
|
|
|
|
*it = i;
|
|
}
|
|
|
|
if ((void (*) (void)) ctf_member_next != i->ctn_iter_fun)
|
|
return (ctf_set_errno (ofp, ECTF_NEXT_WRONGFUN));
|
|
|
|
if (ofp != i->cu.ctn_fp)
|
|
return (ctf_set_errno (ofp, ECTF_NEXT_WRONGFP));
|
|
|
|
/* Resolve to the native dict of this type. */
|
|
if ((fp = ctf_get_dict (ofp, type)) == NULL)
|
|
return (ctf_set_errno (ofp, ECTF_NOPARENT));
|
|
|
|
if (!(fp->ctf_flags & LCTF_RDWR))
|
|
{
|
|
if (i->ctn_n == 0)
|
|
goto end_iter;
|
|
|
|
if (i->ctn_size < CTF_LSTRUCT_THRESH)
|
|
{
|
|
if (name)
|
|
*name = ctf_strptr (fp, i->u.ctn_mp->ctm_name);
|
|
if (membtype)
|
|
*membtype = i->u.ctn_mp->ctm_type;
|
|
offset = i->u.ctn_mp->ctm_offset;
|
|
i->u.ctn_mp++;
|
|
}
|
|
else
|
|
{
|
|
if (name)
|
|
*name = ctf_strptr (fp, i->u.ctn_lmp->ctlm_name);
|
|
if (membtype)
|
|
*membtype = i->u.ctn_lmp->ctlm_type;
|
|
offset = (unsigned long) CTF_LMEM_OFFSET (i->u.ctn_lmp);
|
|
i->u.ctn_lmp++;
|
|
}
|
|
i->ctn_n--;
|
|
}
|
|
else
|
|
{
|
|
if (i->u.ctn_dmd == NULL)
|
|
goto end_iter;
|
|
if (name)
|
|
*name = i->u.ctn_dmd->dmd_name;
|
|
if (membtype)
|
|
*membtype = i->u.ctn_dmd->dmd_type;
|
|
offset = i->u.ctn_dmd->dmd_offset;
|
|
i->u.ctn_dmd = ctf_list_next (i->u.ctn_dmd);
|
|
}
|
|
|
|
return offset;
|
|
|
|
end_iter:
|
|
ctf_next_destroy (i);
|
|
*it = NULL;
|
|
return ctf_set_errno (ofp, ECTF_NEXT_END);
|
|
}
|
|
|
|
/* Iterate over the members of an ENUM. We pass the string name and associated
|
|
integer value of each enum element to the specified callback function. */
|
|
|
|
int
|
|
ctf_enum_iter (ctf_dict_t *fp, ctf_id_t type, ctf_enum_f *func, void *arg)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
const ctf_type_t *tp;
|
|
const ctf_enum_t *ep;
|
|
ctf_dtdef_t *dtd;
|
|
ssize_t increment;
|
|
uint32_t n;
|
|
int rc;
|
|
|
|
if ((type = ctf_type_resolve_unsliced (fp, type)) == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if (LCTF_INFO_KIND (fp, tp->ctt_info) != CTF_K_ENUM)
|
|
return (ctf_set_errno (ofp, ECTF_NOTENUM));
|
|
|
|
(void) ctf_get_ctt_size (fp, tp, NULL, &increment);
|
|
|
|
if ((dtd = ctf_dynamic_type (ofp, type)) == NULL)
|
|
{
|
|
ep = (const ctf_enum_t *) ((uintptr_t) tp + increment);
|
|
|
|
for (n = LCTF_INFO_VLEN (fp, tp->ctt_info); n != 0; n--, ep++)
|
|
{
|
|
const char *name = ctf_strptr (fp, ep->cte_name);
|
|
if ((rc = func (name, ep->cte_value, arg)) != 0)
|
|
return rc;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ctf_dmdef_t *dmd;
|
|
|
|
for (dmd = ctf_list_next (&dtd->dtd_u.dtu_members);
|
|
dmd != NULL; dmd = ctf_list_next (dmd))
|
|
{
|
|
if ((rc = func (dmd->dmd_name, dmd->dmd_value, arg)) != 0)
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Iterate over the members of an enum TYPE, returning each enumerand's NAME or
|
|
NULL at end of iteration or error, and optionally passing back the
|
|
enumerand's integer VALue. */
|
|
|
|
const char *
|
|
ctf_enum_next (ctf_dict_t *fp, ctf_id_t type, ctf_next_t **it,
|
|
int *val)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
uint32_t kind;
|
|
const char *name;
|
|
ctf_next_t *i = *it;
|
|
|
|
if (!i)
|
|
{
|
|
const ctf_type_t *tp;
|
|
ctf_dtdef_t *dtd;
|
|
|
|
if ((type = ctf_type_resolve_unsliced (fp, type)) == CTF_ERR)
|
|
return NULL; /* errno is set for us. */
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return NULL; /* errno is set for us. */
|
|
|
|
if ((i = ctf_next_create ()) == NULL)
|
|
{
|
|
ctf_set_errno (ofp, ENOMEM);
|
|
return NULL;
|
|
}
|
|
i->cu.ctn_fp = ofp;
|
|
|
|
(void) ctf_get_ctt_size (fp, tp, NULL,
|
|
&i->ctn_increment);
|
|
kind = LCTF_INFO_KIND (fp, tp->ctt_info);
|
|
|
|
if (kind != CTF_K_ENUM)
|
|
{
|
|
ctf_next_destroy (i);
|
|
ctf_set_errno (ofp, ECTF_NOTENUM);
|
|
return NULL;
|
|
}
|
|
|
|
dtd = ctf_dynamic_type (fp, type);
|
|
i->ctn_iter_fun = (void (*) (void)) ctf_enum_next;
|
|
|
|
/* We depend below on the RDWR state indicating whether the DTD-related
|
|
fields or the DMD-related fields have been initialized. */
|
|
|
|
assert ((dtd && (fp->ctf_flags & LCTF_RDWR))
|
|
|| (!dtd && (!(fp->ctf_flags & LCTF_RDWR))));
|
|
|
|
if (dtd == NULL)
|
|
{
|
|
i->ctn_n = LCTF_INFO_VLEN (fp, tp->ctt_info);
|
|
|
|
i->u.ctn_en = (const ctf_enum_t *) ((uintptr_t) tp +
|
|
i->ctn_increment);
|
|
}
|
|
else
|
|
i->u.ctn_dmd = ctf_list_next (&dtd->dtd_u.dtu_members);
|
|
|
|
*it = i;
|
|
}
|
|
|
|
if ((void (*) (void)) ctf_enum_next != i->ctn_iter_fun)
|
|
{
|
|
ctf_set_errno (ofp, ECTF_NEXT_WRONGFUN);
|
|
return NULL;
|
|
}
|
|
|
|
if (ofp != i->cu.ctn_fp)
|
|
{
|
|
ctf_set_errno (ofp, ECTF_NEXT_WRONGFP);
|
|
return NULL;
|
|
}
|
|
|
|
/* Resolve to the native dict of this type. */
|
|
if ((fp = ctf_get_dict (ofp, type)) == NULL)
|
|
{
|
|
ctf_set_errno (ofp, ECTF_NOPARENT);
|
|
return NULL;
|
|
}
|
|
|
|
if (!(fp->ctf_flags & LCTF_RDWR))
|
|
{
|
|
if (i->ctn_n == 0)
|
|
goto end_iter;
|
|
|
|
name = ctf_strptr (fp, i->u.ctn_en->cte_name);
|
|
if (val)
|
|
*val = i->u.ctn_en->cte_value;
|
|
i->u.ctn_en++;
|
|
i->ctn_n--;
|
|
}
|
|
else
|
|
{
|
|
if (i->u.ctn_dmd == NULL)
|
|
goto end_iter;
|
|
|
|
name = i->u.ctn_dmd->dmd_name;
|
|
if (val)
|
|
*val = i->u.ctn_dmd->dmd_value;
|
|
i->u.ctn_dmd = ctf_list_next (i->u.ctn_dmd);
|
|
}
|
|
|
|
return name;
|
|
|
|
end_iter:
|
|
ctf_next_destroy (i);
|
|
*it = NULL;
|
|
ctf_set_errno (ofp, ECTF_NEXT_END);
|
|
return NULL;
|
|
}
|
|
|
|
/* Iterate over every root (user-visible) type in the given CTF dict.
|
|
We pass the type ID of each type to the specified callback function.
|
|
|
|
Does not traverse parent types: you have to do that explicitly. This is by
|
|
design, to avoid traversing them more than once if traversing many children
|
|
of a single parent. */
|
|
|
|
int
|
|
ctf_type_iter (ctf_dict_t *fp, ctf_type_f *func, void *arg)
|
|
{
|
|
ctf_id_t id, max = fp->ctf_typemax;
|
|
int rc, child = (fp->ctf_flags & LCTF_CHILD);
|
|
|
|
for (id = 1; id <= max; id++)
|
|
{
|
|
const ctf_type_t *tp = LCTF_INDEX_TO_TYPEPTR (fp, id);
|
|
if (LCTF_INFO_ISROOT (fp, tp->ctt_info)
|
|
&& (rc = func (LCTF_INDEX_TO_TYPE (fp, id, child), arg)) != 0)
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Iterate over every type in the given CTF dict, user-visible or not.
|
|
We pass the type ID of each type to the specified callback function.
|
|
|
|
Does not traverse parent types: you have to do that explicitly. This is by
|
|
design, to avoid traversing them more than once if traversing many children
|
|
of a single parent. */
|
|
|
|
int
|
|
ctf_type_iter_all (ctf_dict_t *fp, ctf_type_all_f *func, void *arg)
|
|
{
|
|
ctf_id_t id, max = fp->ctf_typemax;
|
|
int rc, child = (fp->ctf_flags & LCTF_CHILD);
|
|
|
|
for (id = 1; id <= max; id++)
|
|
{
|
|
const ctf_type_t *tp = LCTF_INDEX_TO_TYPEPTR (fp, id);
|
|
if ((rc = func (LCTF_INDEX_TO_TYPE (fp, id, child),
|
|
LCTF_INFO_ISROOT(fp, tp->ctt_info)
|
|
? CTF_ADD_ROOT : CTF_ADD_NONROOT, arg) != 0))
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Iterate over every type in the given CTF dict, optionally including
|
|
non-user-visible types, returning each type ID and hidden flag in turn.
|
|
Returns CTF_ERR on end of iteration or error.
|
|
|
|
Does not traverse parent types: you have to do that explicitly. This is by
|
|
design, to avoid traversing them more than once if traversing many children
|
|
of a single parent. */
|
|
|
|
ctf_id_t
|
|
ctf_type_next (ctf_dict_t *fp, ctf_next_t **it, int *flag, int want_hidden)
|
|
{
|
|
ctf_next_t *i = *it;
|
|
|
|
if (!i)
|
|
{
|
|
if ((i = ctf_next_create ()) == NULL)
|
|
return ctf_set_errno (fp, ENOMEM);
|
|
|
|
i->cu.ctn_fp = fp;
|
|
i->ctn_type = 1;
|
|
i->ctn_iter_fun = (void (*) (void)) ctf_type_next;
|
|
*it = i;
|
|
}
|
|
|
|
if ((void (*) (void)) ctf_type_next != i->ctn_iter_fun)
|
|
return (ctf_set_errno (fp, ECTF_NEXT_WRONGFUN));
|
|
|
|
if (fp != i->cu.ctn_fp)
|
|
return (ctf_set_errno (fp, ECTF_NEXT_WRONGFP));
|
|
|
|
while (i->ctn_type <= fp->ctf_typemax)
|
|
{
|
|
const ctf_type_t *tp = LCTF_INDEX_TO_TYPEPTR (fp, i->ctn_type);
|
|
|
|
if ((!want_hidden) && (!LCTF_INFO_ISROOT (fp, tp->ctt_info)))
|
|
{
|
|
i->ctn_type++;
|
|
continue;
|
|
}
|
|
|
|
if (flag)
|
|
*flag = LCTF_INFO_ISROOT (fp, tp->ctt_info);
|
|
return LCTF_INDEX_TO_TYPE (fp, i->ctn_type++, fp->ctf_flags & LCTF_CHILD);
|
|
}
|
|
ctf_next_destroy (i);
|
|
*it = NULL;
|
|
return ctf_set_errno (fp, ECTF_NEXT_END);
|
|
}
|
|
|
|
/* Iterate over every variable in the given CTF dict, in arbitrary order.
|
|
We pass the name of each variable to the specified callback function. */
|
|
|
|
int
|
|
ctf_variable_iter (ctf_dict_t *fp, ctf_variable_f *func, void *arg)
|
|
{
|
|
int rc;
|
|
|
|
if ((fp->ctf_flags & LCTF_CHILD) && (fp->ctf_parent == NULL))
|
|
return (ctf_set_errno (fp, ECTF_NOPARENT));
|
|
|
|
if (!(fp->ctf_flags & LCTF_RDWR))
|
|
{
|
|
unsigned long i;
|
|
for (i = 0; i < fp->ctf_nvars; i++)
|
|
if ((rc = func (ctf_strptr (fp, fp->ctf_vars[i].ctv_name),
|
|
fp->ctf_vars[i].ctv_type, arg)) != 0)
|
|
return rc;
|
|
}
|
|
else
|
|
{
|
|
ctf_dvdef_t *dvd;
|
|
|
|
for (dvd = ctf_list_next (&fp->ctf_dvdefs); dvd != NULL;
|
|
dvd = ctf_list_next (dvd))
|
|
{
|
|
if ((rc = func (dvd->dvd_name, dvd->dvd_type, arg)) != 0)
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Iterate over every variable in the given CTF dict, in arbitrary order,
|
|
returning the name and type of each variable in turn. The name argument is
|
|
not optional. Returns CTF_ERR on end of iteration or error. */
|
|
|
|
ctf_id_t
|
|
ctf_variable_next (ctf_dict_t *fp, ctf_next_t **it, const char **name)
|
|
{
|
|
ctf_next_t *i = *it;
|
|
|
|
if ((fp->ctf_flags & LCTF_CHILD) && (fp->ctf_parent == NULL))
|
|
return (ctf_set_errno (fp, ECTF_NOPARENT));
|
|
|
|
if (!i)
|
|
{
|
|
if ((i = ctf_next_create ()) == NULL)
|
|
return ctf_set_errno (fp, ENOMEM);
|
|
|
|
i->cu.ctn_fp = fp;
|
|
i->ctn_iter_fun = (void (*) (void)) ctf_variable_next;
|
|
if (fp->ctf_flags & LCTF_RDWR)
|
|
i->u.ctn_dvd = ctf_list_next (&fp->ctf_dvdefs);
|
|
*it = i;
|
|
}
|
|
|
|
if ((void (*) (void)) ctf_variable_next != i->ctn_iter_fun)
|
|
return (ctf_set_errno (fp, ECTF_NEXT_WRONGFUN));
|
|
|
|
if (fp != i->cu.ctn_fp)
|
|
return (ctf_set_errno (fp, ECTF_NEXT_WRONGFP));
|
|
|
|
if (!(fp->ctf_flags & LCTF_RDWR))
|
|
{
|
|
if (i->ctn_n >= fp->ctf_nvars)
|
|
goto end_iter;
|
|
|
|
*name = ctf_strptr (fp, fp->ctf_vars[i->ctn_n].ctv_name);
|
|
return fp->ctf_vars[i->ctn_n++].ctv_type;
|
|
}
|
|
else
|
|
{
|
|
ctf_id_t id;
|
|
|
|
if (i->u.ctn_dvd == NULL)
|
|
goto end_iter;
|
|
|
|
*name = i->u.ctn_dvd->dvd_name;
|
|
id = i->u.ctn_dvd->dvd_type;
|
|
i->u.ctn_dvd = ctf_list_next (i->u.ctn_dvd);
|
|
return id;
|
|
}
|
|
|
|
end_iter:
|
|
ctf_next_destroy (i);
|
|
*it = NULL;
|
|
return ctf_set_errno (fp, ECTF_NEXT_END);
|
|
}
|
|
|
|
/* Follow a given type through the graph for TYPEDEF, VOLATILE, CONST, and
|
|
RESTRICT nodes until we reach a "base" type node. This is useful when
|
|
we want to follow a type ID to a node that has members or a size. To guard
|
|
against infinite loops, we implement simplified cycle detection and check
|
|
each link against itself, the previous node, and the topmost node.
|
|
|
|
Does not drill down through slices to their contained type.
|
|
|
|
Callers of this function must not presume that a type it returns must have a
|
|
valid ctt_size: forwards do not, and must be separately handled. */
|
|
|
|
ctf_id_t
|
|
ctf_type_resolve (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
ctf_id_t prev = type, otype = type;
|
|
ctf_dict_t *ofp = fp;
|
|
const ctf_type_t *tp;
|
|
|
|
if (type == 0)
|
|
return (ctf_set_errno (ofp, ECTF_NONREPRESENTABLE));
|
|
|
|
while ((tp = ctf_lookup_by_id (&fp, type)) != NULL)
|
|
{
|
|
switch (LCTF_INFO_KIND (fp, tp->ctt_info))
|
|
{
|
|
case CTF_K_TYPEDEF:
|
|
case CTF_K_VOLATILE:
|
|
case CTF_K_CONST:
|
|
case CTF_K_RESTRICT:
|
|
if (tp->ctt_type == type || tp->ctt_type == otype
|
|
|| tp->ctt_type == prev)
|
|
{
|
|
ctf_err_warn (ofp, 0, ECTF_CORRUPT, _("type %lx cycle detected"),
|
|
otype);
|
|
return (ctf_set_errno (ofp, ECTF_CORRUPT));
|
|
}
|
|
prev = type;
|
|
type = tp->ctt_type;
|
|
break;
|
|
default:
|
|
return type;
|
|
}
|
|
if (type == 0)
|
|
return (ctf_set_errno (ofp, ECTF_NONREPRESENTABLE));
|
|
}
|
|
|
|
return CTF_ERR; /* errno is set for us. */
|
|
}
|
|
|
|
/* Like ctf_type_resolve(), but traverse down through slices to their contained
|
|
type. */
|
|
|
|
ctf_id_t
|
|
ctf_type_resolve_unsliced (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
const ctf_type_t *tp;
|
|
|
|
if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
|
|
return -1;
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if ((LCTF_INFO_KIND (fp, tp->ctt_info)) == CTF_K_SLICE)
|
|
return ctf_type_reference (fp, type);
|
|
return type;
|
|
}
|
|
|
|
/* Return the native dict of a given type: if called on a child and the
|
|
type is in the parent, return the parent. Needed if you plan to access
|
|
the type directly, without using the API. */
|
|
ctf_dict_t *
|
|
ctf_get_dict (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, type))
|
|
return fp->ctf_parent;
|
|
|
|
return fp;
|
|
}
|
|
|
|
/* Look up a name in the given name table, in the appropriate hash given the
|
|
kind of the identifier. The name is a raw, undecorated identifier. */
|
|
|
|
ctf_id_t ctf_lookup_by_rawname (ctf_dict_t *fp, int kind, const char *name)
|
|
{
|
|
return ctf_lookup_by_rawhash (fp, ctf_name_table (fp, kind), name);
|
|
}
|
|
|
|
/* Look up a name in the given name table, in the appropriate hash given the
|
|
readability state of the dictionary. The name is a raw, undecorated
|
|
identifier. */
|
|
|
|
ctf_id_t ctf_lookup_by_rawhash (ctf_dict_t *fp, ctf_names_t *np, const char *name)
|
|
{
|
|
ctf_id_t id;
|
|
|
|
if (fp->ctf_flags & LCTF_RDWR)
|
|
id = (ctf_id_t) (uintptr_t) ctf_dynhash_lookup (np->ctn_writable, name);
|
|
else
|
|
id = ctf_hash_lookup_type (np->ctn_readonly, fp, name);
|
|
return id;
|
|
}
|
|
|
|
/* Lookup the given type ID and return its name as a new dynamically-allocated
|
|
string. */
|
|
|
|
char *
|
|
ctf_type_aname (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
ctf_decl_t cd;
|
|
ctf_decl_node_t *cdp;
|
|
ctf_decl_prec_t prec, lp, rp;
|
|
int ptr, arr;
|
|
uint32_t k;
|
|
char *buf;
|
|
|
|
if (fp == NULL && type == CTF_ERR)
|
|
return NULL; /* Simplify caller code by permitting CTF_ERR. */
|
|
|
|
ctf_decl_init (&cd);
|
|
ctf_decl_push (&cd, fp, type);
|
|
|
|
if (cd.cd_err != 0)
|
|
{
|
|
ctf_decl_fini (&cd);
|
|
ctf_set_errno (fp, cd.cd_err);
|
|
return NULL;
|
|
}
|
|
|
|
/* If the type graph's order conflicts with lexical precedence order
|
|
for pointers or arrays, then we need to surround the declarations at
|
|
the corresponding lexical precedence with parentheses. This can
|
|
result in either a parenthesized pointer (*) as in int (*)() or
|
|
int (*)[], or in a parenthesized pointer and array as in int (*[])(). */
|
|
|
|
ptr = cd.cd_order[CTF_PREC_POINTER] > CTF_PREC_POINTER;
|
|
arr = cd.cd_order[CTF_PREC_ARRAY] > CTF_PREC_ARRAY;
|
|
|
|
rp = arr ? CTF_PREC_ARRAY : ptr ? CTF_PREC_POINTER : -1;
|
|
lp = ptr ? CTF_PREC_POINTER : arr ? CTF_PREC_ARRAY : -1;
|
|
|
|
k = CTF_K_POINTER; /* Avoid leading whitespace (see below). */
|
|
|
|
for (prec = CTF_PREC_BASE; prec < CTF_PREC_MAX; prec++)
|
|
{
|
|
for (cdp = ctf_list_next (&cd.cd_nodes[prec]);
|
|
cdp != NULL; cdp = ctf_list_next (cdp))
|
|
{
|
|
ctf_dict_t *rfp = fp;
|
|
const ctf_type_t *tp = ctf_lookup_by_id (&rfp, cdp->cd_type);
|
|
const char *name = ctf_strptr (rfp, tp->ctt_name);
|
|
|
|
if (k != CTF_K_POINTER && k != CTF_K_ARRAY)
|
|
ctf_decl_sprintf (&cd, " ");
|
|
|
|
if (lp == prec)
|
|
{
|
|
ctf_decl_sprintf (&cd, "(");
|
|
lp = -1;
|
|
}
|
|
|
|
switch (cdp->cd_kind)
|
|
{
|
|
case CTF_K_INTEGER:
|
|
case CTF_K_FLOAT:
|
|
case CTF_K_TYPEDEF:
|
|
/* Integers, floats, and typedefs must always be named types. */
|
|
|
|
if (name[0] == '\0')
|
|
{
|
|
ctf_set_errno (fp, ECTF_CORRUPT);
|
|
ctf_decl_fini (&cd);
|
|
return NULL;
|
|
}
|
|
|
|
ctf_decl_sprintf (&cd, "%s", name);
|
|
break;
|
|
case CTF_K_POINTER:
|
|
ctf_decl_sprintf (&cd, "*");
|
|
break;
|
|
case CTF_K_ARRAY:
|
|
ctf_decl_sprintf (&cd, "[%u]", cdp->cd_n);
|
|
break;
|
|
case CTF_K_FUNCTION:
|
|
{
|
|
size_t i;
|
|
ctf_funcinfo_t fi;
|
|
ctf_id_t *argv = NULL;
|
|
|
|
if (ctf_func_type_info (rfp, cdp->cd_type, &fi) < 0)
|
|
goto err; /* errno is set for us. */
|
|
|
|
if ((argv = calloc (fi.ctc_argc, sizeof (ctf_id_t *))) == NULL)
|
|
{
|
|
ctf_set_errno (rfp, errno);
|
|
goto err;
|
|
}
|
|
|
|
if (ctf_func_type_args (rfp, cdp->cd_type,
|
|
fi.ctc_argc, argv) < 0)
|
|
goto err; /* errno is set for us. */
|
|
|
|
ctf_decl_sprintf (&cd, "(*) (");
|
|
for (i = 0; i < fi.ctc_argc; i++)
|
|
{
|
|
char *arg = ctf_type_aname (rfp, argv[i]);
|
|
|
|
if (arg == NULL)
|
|
goto err; /* errno is set for us. */
|
|
ctf_decl_sprintf (&cd, "%s", arg);
|
|
free (arg);
|
|
|
|
if ((i < fi.ctc_argc - 1)
|
|
|| (fi.ctc_flags & CTF_FUNC_VARARG))
|
|
ctf_decl_sprintf (&cd, ", ");
|
|
}
|
|
|
|
if (fi.ctc_flags & CTF_FUNC_VARARG)
|
|
ctf_decl_sprintf (&cd, "...");
|
|
ctf_decl_sprintf (&cd, ")");
|
|
|
|
free (argv);
|
|
break;
|
|
|
|
err:
|
|
free (argv);
|
|
ctf_decl_fini (&cd);
|
|
return NULL;
|
|
}
|
|
break;
|
|
case CTF_K_STRUCT:
|
|
case CTF_K_FORWARD:
|
|
ctf_decl_sprintf (&cd, "struct %s", name);
|
|
break;
|
|
case CTF_K_UNION:
|
|
ctf_decl_sprintf (&cd, "union %s", name);
|
|
break;
|
|
case CTF_K_ENUM:
|
|
ctf_decl_sprintf (&cd, "enum %s", name);
|
|
break;
|
|
case CTF_K_VOLATILE:
|
|
ctf_decl_sprintf (&cd, "volatile");
|
|
break;
|
|
case CTF_K_CONST:
|
|
ctf_decl_sprintf (&cd, "const");
|
|
break;
|
|
case CTF_K_RESTRICT:
|
|
ctf_decl_sprintf (&cd, "restrict");
|
|
break;
|
|
}
|
|
|
|
k = cdp->cd_kind;
|
|
}
|
|
|
|
if (rp == prec)
|
|
ctf_decl_sprintf (&cd, ")");
|
|
}
|
|
|
|
if (cd.cd_enomem)
|
|
(void) ctf_set_errno (fp, ENOMEM);
|
|
|
|
buf = ctf_decl_buf (&cd);
|
|
|
|
ctf_decl_fini (&cd);
|
|
return buf;
|
|
}
|
|
|
|
/* Lookup the given type ID and print a string name for it into buf. Return
|
|
the actual number of bytes (not including \0) needed to format the name. */
|
|
|
|
ssize_t
|
|
ctf_type_lname (ctf_dict_t *fp, ctf_id_t type, char *buf, size_t len)
|
|
{
|
|
char *str = ctf_type_aname (fp, type);
|
|
size_t slen;
|
|
|
|
if (str == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
slen = strlen (str);
|
|
snprintf (buf, len, "%s", str);
|
|
free (str);
|
|
|
|
if (slen >= len)
|
|
(void) ctf_set_errno (fp, ECTF_NAMELEN);
|
|
|
|
return slen;
|
|
}
|
|
|
|
/* Lookup the given type ID and print a string name for it into buf. If buf
|
|
is too small, return NULL: the ECTF_NAMELEN error is set on 'fp' for us. */
|
|
|
|
char *
|
|
ctf_type_name (ctf_dict_t *fp, ctf_id_t type, char *buf, size_t len)
|
|
{
|
|
ssize_t rv = ctf_type_lname (fp, type, buf, len);
|
|
return (rv >= 0 && (size_t) rv < len ? buf : NULL);
|
|
}
|
|
|
|
/* Lookup the given type ID and return its raw, unadorned, undecorated name.
|
|
The name will live as long as its ctf_dict_t does. */
|
|
|
|
const char *
|
|
ctf_type_name_raw (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
const ctf_type_t *tp;
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return NULL; /* errno is set for us. */
|
|
|
|
return ctf_strraw (fp, tp->ctt_name);
|
|
}
|
|
|
|
/* Lookup the given type ID and return its raw, unadorned, undecorated name as a
|
|
new dynamically-allocated string. */
|
|
|
|
char *
|
|
ctf_type_aname_raw (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
const char *name = ctf_type_name_raw (fp, type);
|
|
|
|
if (name != NULL)
|
|
return strdup (name);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Resolve the type down to a base type node, and then return the size
|
|
of the type storage in bytes. */
|
|
|
|
ssize_t
|
|
ctf_type_size (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
const ctf_type_t *tp;
|
|
ssize_t size;
|
|
ctf_arinfo_t ar;
|
|
|
|
if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
switch (LCTF_INFO_KIND (fp, tp->ctt_info))
|
|
{
|
|
case CTF_K_POINTER:
|
|
return fp->ctf_dmodel->ctd_pointer;
|
|
|
|
case CTF_K_FUNCTION:
|
|
return 0; /* Function size is only known by symtab. */
|
|
|
|
case CTF_K_ENUM:
|
|
return fp->ctf_dmodel->ctd_int;
|
|
|
|
case CTF_K_ARRAY:
|
|
/* ctf_add_array() does not directly encode the element size, but
|
|
requires the user to multiply to determine the element size.
|
|
|
|
If ctf_get_ctt_size() returns nonzero, then use the recorded
|
|
size instead. */
|
|
|
|
if ((size = ctf_get_ctt_size (fp, tp, NULL, NULL)) > 0)
|
|
return size;
|
|
|
|
if (ctf_array_info (ofp, type, &ar) < 0
|
|
|| (size = ctf_type_size (ofp, ar.ctr_contents)) < 0)
|
|
return -1; /* errno is set for us. */
|
|
|
|
return size * ar.ctr_nelems;
|
|
|
|
case CTF_K_FORWARD:
|
|
/* Forwards do not have a meaningful size. */
|
|
return (ctf_set_errno (ofp, ECTF_INCOMPLETE));
|
|
|
|
default: /* including slices of enums, etc */
|
|
return (ctf_get_ctt_size (fp, tp, NULL, NULL));
|
|
}
|
|
}
|
|
|
|
/* Resolve the type down to a base type node, and then return the alignment
|
|
needed for the type storage in bytes.
|
|
|
|
XXX may need arch-dependent attention. */
|
|
|
|
ssize_t
|
|
ctf_type_align (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
const ctf_type_t *tp;
|
|
ctf_dict_t *ofp = fp;
|
|
int kind;
|
|
|
|
if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
kind = LCTF_INFO_KIND (fp, tp->ctt_info);
|
|
switch (kind)
|
|
{
|
|
case CTF_K_POINTER:
|
|
case CTF_K_FUNCTION:
|
|
return fp->ctf_dmodel->ctd_pointer;
|
|
|
|
case CTF_K_ARRAY:
|
|
{
|
|
ctf_arinfo_t r;
|
|
if (ctf_array_info (ofp, type, &r) < 0)
|
|
return -1; /* errno is set for us. */
|
|
return (ctf_type_align (ofp, r.ctr_contents));
|
|
}
|
|
|
|
case CTF_K_STRUCT:
|
|
case CTF_K_UNION:
|
|
{
|
|
size_t align = 0;
|
|
ctf_dtdef_t *dtd;
|
|
|
|
if ((dtd = ctf_dynamic_type (ofp, type)) == NULL)
|
|
{
|
|
uint32_t n = LCTF_INFO_VLEN (fp, tp->ctt_info);
|
|
ssize_t size, increment;
|
|
const void *vmp;
|
|
|
|
(void) ctf_get_ctt_size (fp, tp, &size, &increment);
|
|
vmp = (unsigned char *) tp + increment;
|
|
|
|
if (kind == CTF_K_STRUCT)
|
|
n = MIN (n, 1); /* Only use first member for structs. */
|
|
|
|
if (size < CTF_LSTRUCT_THRESH)
|
|
{
|
|
const ctf_member_t *mp = vmp;
|
|
for (; n != 0; n--, mp++)
|
|
{
|
|
ssize_t am = ctf_type_align (ofp, mp->ctm_type);
|
|
align = MAX (align, (size_t) am);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const ctf_lmember_t *lmp = vmp;
|
|
for (; n != 0; n--, lmp++)
|
|
{
|
|
ssize_t am = ctf_type_align (ofp, lmp->ctlm_type);
|
|
align = MAX (align, (size_t) am);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ctf_dmdef_t *dmd;
|
|
|
|
for (dmd = ctf_list_next (&dtd->dtd_u.dtu_members);
|
|
dmd != NULL; dmd = ctf_list_next (dmd))
|
|
{
|
|
ssize_t am = ctf_type_align (ofp, dmd->dmd_type);
|
|
align = MAX (align, (size_t) am);
|
|
if (kind == CTF_K_STRUCT)
|
|
break;
|
|
}
|
|
}
|
|
|
|
return align;
|
|
}
|
|
|
|
case CTF_K_ENUM:
|
|
return fp->ctf_dmodel->ctd_int;
|
|
|
|
case CTF_K_FORWARD:
|
|
/* Forwards do not have a meaningful alignment. */
|
|
return (ctf_set_errno (ofp, ECTF_INCOMPLETE));
|
|
|
|
default: /* including slices of enums, etc */
|
|
return (ctf_get_ctt_size (fp, tp, NULL, NULL));
|
|
}
|
|
}
|
|
|
|
/* Return the kind (CTF_K_* constant) for the specified type ID. */
|
|
|
|
int
|
|
ctf_type_kind_unsliced (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
const ctf_type_t *tp;
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
return (LCTF_INFO_KIND (fp, tp->ctt_info));
|
|
}
|
|
|
|
/* Return the kind (CTF_K_* constant) for the specified type ID.
|
|
Slices are considered to be of the same kind as the type sliced. */
|
|
|
|
int
|
|
ctf_type_kind (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
int kind;
|
|
|
|
if ((kind = ctf_type_kind_unsliced (fp, type)) < 0)
|
|
return -1;
|
|
|
|
if (kind == CTF_K_SLICE)
|
|
{
|
|
if ((type = ctf_type_reference (fp, type)) == CTF_ERR)
|
|
return -1;
|
|
kind = ctf_type_kind_unsliced (fp, type);
|
|
}
|
|
|
|
return kind;
|
|
}
|
|
|
|
/* Return the kind of this type, except, for forwards, return the kind of thing
|
|
this is a forward to. */
|
|
int
|
|
ctf_type_kind_forwarded (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
int kind;
|
|
const ctf_type_t *tp;
|
|
|
|
if ((kind = ctf_type_kind (fp, type)) < 0)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if (kind != CTF_K_FORWARD)
|
|
return kind;
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
return tp->ctt_type;
|
|
}
|
|
|
|
/* If the type is one that directly references another type (such as POINTER),
|
|
then return the ID of the type to which it refers. */
|
|
|
|
ctf_id_t
|
|
ctf_type_reference (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
const ctf_type_t *tp;
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
switch (LCTF_INFO_KIND (fp, tp->ctt_info))
|
|
{
|
|
case CTF_K_POINTER:
|
|
case CTF_K_TYPEDEF:
|
|
case CTF_K_VOLATILE:
|
|
case CTF_K_CONST:
|
|
case CTF_K_RESTRICT:
|
|
return tp->ctt_type;
|
|
/* Slices store their type in an unusual place. */
|
|
case CTF_K_SLICE:
|
|
{
|
|
ctf_dtdef_t *dtd;
|
|
const ctf_slice_t *sp;
|
|
|
|
if ((dtd = ctf_dynamic_type (ofp, type)) == NULL)
|
|
{
|
|
ssize_t increment;
|
|
|
|
(void) ctf_get_ctt_size (fp, tp, NULL, &increment);
|
|
sp = (const ctf_slice_t *) ((uintptr_t) tp + increment);
|
|
}
|
|
else
|
|
sp = &dtd->dtd_u.dtu_slice;
|
|
|
|
return sp->cts_type;
|
|
}
|
|
default:
|
|
return (ctf_set_errno (ofp, ECTF_NOTREF));
|
|
}
|
|
}
|
|
|
|
/* Find a pointer to type by looking in fp->ctf_ptrtab. If we can't find a
|
|
pointer to the given type, see if we can compute a pointer to the type
|
|
resulting from resolving the type down to its base type and use that
|
|
instead. This helps with cases where the CTF data includes "struct foo *"
|
|
but not "foo_t *" and the user accesses "foo_t *" in the debugger.
|
|
|
|
XXX what about parent dicts? */
|
|
|
|
ctf_id_t
|
|
ctf_type_pointer (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
ctf_id_t ntype;
|
|
|
|
if (ctf_lookup_by_id (&fp, type) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if ((ntype = fp->ctf_ptrtab[LCTF_TYPE_TO_INDEX (fp, type)]) != 0)
|
|
return (LCTF_INDEX_TO_TYPE (fp, ntype, (fp->ctf_flags & LCTF_CHILD)));
|
|
|
|
if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
|
|
return (ctf_set_errno (ofp, ECTF_NOTYPE));
|
|
|
|
if (ctf_lookup_by_id (&fp, type) == NULL)
|
|
return (ctf_set_errno (ofp, ECTF_NOTYPE));
|
|
|
|
if ((ntype = fp->ctf_ptrtab[LCTF_TYPE_TO_INDEX (fp, type)]) != 0)
|
|
return (LCTF_INDEX_TO_TYPE (fp, ntype, (fp->ctf_flags & LCTF_CHILD)));
|
|
|
|
return (ctf_set_errno (ofp, ECTF_NOTYPE));
|
|
}
|
|
|
|
/* Return the encoding for the specified INTEGER or FLOAT. */
|
|
|
|
int
|
|
ctf_type_encoding (ctf_dict_t *fp, ctf_id_t type, ctf_encoding_t *ep)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
ctf_dtdef_t *dtd;
|
|
const ctf_type_t *tp;
|
|
ssize_t increment;
|
|
uint32_t data;
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((dtd = ctf_dynamic_type (ofp, type)) != NULL)
|
|
{
|
|
switch (LCTF_INFO_KIND (fp, tp->ctt_info))
|
|
{
|
|
case CTF_K_INTEGER:
|
|
case CTF_K_FLOAT:
|
|
*ep = dtd->dtd_u.dtu_enc;
|
|
break;
|
|
case CTF_K_SLICE:
|
|
{
|
|
const ctf_slice_t *slice;
|
|
ctf_encoding_t underlying_en;
|
|
ctf_id_t underlying;
|
|
|
|
slice = &dtd->dtd_u.dtu_slice;
|
|
underlying = ctf_type_resolve (fp, slice->cts_type);
|
|
data = ctf_type_encoding (fp, underlying, &underlying_en);
|
|
|
|
ep->cte_format = underlying_en.cte_format;
|
|
ep->cte_offset = slice->cts_offset;
|
|
ep->cte_bits = slice->cts_bits;
|
|
break;
|
|
}
|
|
default:
|
|
return (ctf_set_errno (ofp, ECTF_NOTINTFP));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
(void) ctf_get_ctt_size (fp, tp, NULL, &increment);
|
|
|
|
switch (LCTF_INFO_KIND (fp, tp->ctt_info))
|
|
{
|
|
case CTF_K_INTEGER:
|
|
data = *(const uint32_t *) ((uintptr_t) tp + increment);
|
|
ep->cte_format = CTF_INT_ENCODING (data);
|
|
ep->cte_offset = CTF_INT_OFFSET (data);
|
|
ep->cte_bits = CTF_INT_BITS (data);
|
|
break;
|
|
case CTF_K_FLOAT:
|
|
data = *(const uint32_t *) ((uintptr_t) tp + increment);
|
|
ep->cte_format = CTF_FP_ENCODING (data);
|
|
ep->cte_offset = CTF_FP_OFFSET (data);
|
|
ep->cte_bits = CTF_FP_BITS (data);
|
|
break;
|
|
case CTF_K_SLICE:
|
|
{
|
|
const ctf_slice_t *slice;
|
|
ctf_encoding_t underlying_en;
|
|
ctf_id_t underlying;
|
|
|
|
slice = (ctf_slice_t *) ((uintptr_t) tp + increment);
|
|
underlying = ctf_type_resolve (fp, slice->cts_type);
|
|
data = ctf_type_encoding (fp, underlying, &underlying_en);
|
|
|
|
ep->cte_format = underlying_en.cte_format;
|
|
ep->cte_offset = slice->cts_offset;
|
|
ep->cte_bits = slice->cts_bits;
|
|
break;
|
|
}
|
|
default:
|
|
return (ctf_set_errno (ofp, ECTF_NOTINTFP));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ctf_type_cmp (ctf_dict_t *lfp, ctf_id_t ltype, ctf_dict_t *rfp,
|
|
ctf_id_t rtype)
|
|
{
|
|
int rval;
|
|
|
|
if (ltype < rtype)
|
|
rval = -1;
|
|
else if (ltype > rtype)
|
|
rval = 1;
|
|
else
|
|
rval = 0;
|
|
|
|
if (lfp == rfp)
|
|
return rval;
|
|
|
|
if (LCTF_TYPE_ISPARENT (lfp, ltype) && lfp->ctf_parent != NULL)
|
|
lfp = lfp->ctf_parent;
|
|
|
|
if (LCTF_TYPE_ISPARENT (rfp, rtype) && rfp->ctf_parent != NULL)
|
|
rfp = rfp->ctf_parent;
|
|
|
|
if (lfp < rfp)
|
|
return -1;
|
|
|
|
if (lfp > rfp)
|
|
return 1;
|
|
|
|
return rval;
|
|
}
|
|
|
|
/* Return a boolean value indicating if two types are compatible. This function
|
|
returns true if the two types are the same, or if they (or their ultimate
|
|
base type) have the same encoding properties, or (for structs / unions /
|
|
enums / forward declarations) if they have the same name and (for structs /
|
|
unions) member count. */
|
|
|
|
int
|
|
ctf_type_compat (ctf_dict_t *lfp, ctf_id_t ltype,
|
|
ctf_dict_t *rfp, ctf_id_t rtype)
|
|
{
|
|
const ctf_type_t *ltp, *rtp;
|
|
ctf_encoding_t le, re;
|
|
ctf_arinfo_t la, ra;
|
|
uint32_t lkind, rkind;
|
|
int same_names = 0;
|
|
|
|
if (ctf_type_cmp (lfp, ltype, rfp, rtype) == 0)
|
|
return 1;
|
|
|
|
ltype = ctf_type_resolve (lfp, ltype);
|
|
lkind = ctf_type_kind (lfp, ltype);
|
|
|
|
rtype = ctf_type_resolve (rfp, rtype);
|
|
rkind = ctf_type_kind (rfp, rtype);
|
|
|
|
ltp = ctf_lookup_by_id (&lfp, ltype);
|
|
rtp = ctf_lookup_by_id (&rfp, rtype);
|
|
|
|
if (ltp != NULL && rtp != NULL)
|
|
same_names = (strcmp (ctf_strptr (lfp, ltp->ctt_name),
|
|
ctf_strptr (rfp, rtp->ctt_name)) == 0);
|
|
|
|
if (((lkind == CTF_K_ENUM) && (rkind == CTF_K_INTEGER)) ||
|
|
((rkind == CTF_K_ENUM) && (lkind == CTF_K_INTEGER)))
|
|
return 1;
|
|
|
|
if (lkind != rkind)
|
|
return 0;
|
|
|
|
switch (lkind)
|
|
{
|
|
case CTF_K_INTEGER:
|
|
case CTF_K_FLOAT:
|
|
memset (&le, 0, sizeof (le));
|
|
memset (&re, 0, sizeof (re));
|
|
return (ctf_type_encoding (lfp, ltype, &le) == 0
|
|
&& ctf_type_encoding (rfp, rtype, &re) == 0
|
|
&& memcmp (&le, &re, sizeof (ctf_encoding_t)) == 0);
|
|
case CTF_K_POINTER:
|
|
return (ctf_type_compat (lfp, ctf_type_reference (lfp, ltype),
|
|
rfp, ctf_type_reference (rfp, rtype)));
|
|
case CTF_K_ARRAY:
|
|
return (ctf_array_info (lfp, ltype, &la) == 0
|
|
&& ctf_array_info (rfp, rtype, &ra) == 0
|
|
&& la.ctr_nelems == ra.ctr_nelems
|
|
&& ctf_type_compat (lfp, la.ctr_contents, rfp, ra.ctr_contents)
|
|
&& ctf_type_compat (lfp, la.ctr_index, rfp, ra.ctr_index));
|
|
case CTF_K_STRUCT:
|
|
case CTF_K_UNION:
|
|
return (same_names && (ctf_type_size (lfp, ltype)
|
|
== ctf_type_size (rfp, rtype)));
|
|
case CTF_K_ENUM:
|
|
{
|
|
int lencoded, rencoded;
|
|
lencoded = ctf_type_encoding (lfp, ltype, &le);
|
|
rencoded = ctf_type_encoding (rfp, rtype, &re);
|
|
|
|
if ((lencoded != rencoded) ||
|
|
((lencoded == 0) && memcmp (&le, &re, sizeof (ctf_encoding_t)) != 0))
|
|
return 0;
|
|
}
|
|
/* FALLTHRU */
|
|
case CTF_K_FORWARD:
|
|
return same_names; /* No other checks required for these type kinds. */
|
|
default:
|
|
return 0; /* Should not get here since we did a resolve. */
|
|
}
|
|
}
|
|
|
|
/* Return the number of members in a STRUCT or UNION, or the number of
|
|
enumerators in an ENUM. */
|
|
|
|
int
|
|
ctf_member_count (ctf_dict_t *fp, ctf_id_t type)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
const ctf_type_t *tp;
|
|
uint32_t kind;
|
|
|
|
if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
kind = LCTF_INFO_KIND (fp, tp->ctt_info);
|
|
|
|
if (kind != CTF_K_STRUCT && kind != CTF_K_UNION && kind != CTF_K_ENUM)
|
|
return (ctf_set_errno (ofp, ECTF_NOTSUE));
|
|
|
|
return LCTF_INFO_VLEN (fp, tp->ctt_info);
|
|
}
|
|
|
|
/* Return the type and offset for a given member of a STRUCT or UNION. */
|
|
|
|
int
|
|
ctf_member_info (ctf_dict_t *fp, ctf_id_t type, const char *name,
|
|
ctf_membinfo_t *mip)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
const ctf_type_t *tp;
|
|
ctf_dtdef_t *dtd;
|
|
ssize_t size, increment;
|
|
uint32_t kind, n;
|
|
|
|
if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
(void) ctf_get_ctt_size (fp, tp, &size, &increment);
|
|
kind = LCTF_INFO_KIND (fp, tp->ctt_info);
|
|
|
|
if (kind != CTF_K_STRUCT && kind != CTF_K_UNION)
|
|
return (ctf_set_errno (ofp, ECTF_NOTSOU));
|
|
|
|
if ((dtd = ctf_dynamic_type (fp, type)) == NULL)
|
|
{
|
|
if (size < CTF_LSTRUCT_THRESH)
|
|
{
|
|
const ctf_member_t *mp = (const ctf_member_t *) ((uintptr_t) tp +
|
|
increment);
|
|
|
|
for (n = LCTF_INFO_VLEN (fp, tp->ctt_info); n != 0; n--, mp++)
|
|
{
|
|
if (strcmp (ctf_strptr (fp, mp->ctm_name), name) == 0)
|
|
{
|
|
mip->ctm_type = mp->ctm_type;
|
|
mip->ctm_offset = mp->ctm_offset;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const ctf_lmember_t *lmp = (const ctf_lmember_t *) ((uintptr_t) tp +
|
|
increment);
|
|
|
|
for (n = LCTF_INFO_VLEN (fp, tp->ctt_info); n != 0; n--, lmp++)
|
|
{
|
|
if (strcmp (ctf_strptr (fp, lmp->ctlm_name), name) == 0)
|
|
{
|
|
mip->ctm_type = lmp->ctlm_type;
|
|
mip->ctm_offset = (unsigned long) CTF_LMEM_OFFSET (lmp);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ctf_dmdef_t *dmd;
|
|
|
|
for (dmd = ctf_list_next (&dtd->dtd_u.dtu_members);
|
|
dmd != NULL; dmd = ctf_list_next (dmd))
|
|
{
|
|
if (strcmp (dmd->dmd_name, name) == 0)
|
|
{
|
|
mip->ctm_type = dmd->dmd_type;
|
|
mip->ctm_offset = dmd->dmd_offset;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return (ctf_set_errno (ofp, ECTF_NOMEMBNAM));
|
|
}
|
|
|
|
/* Return the array type, index, and size information for the specified ARRAY. */
|
|
|
|
int
|
|
ctf_array_info (ctf_dict_t *fp, ctf_id_t type, ctf_arinfo_t *arp)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
const ctf_type_t *tp;
|
|
const ctf_array_t *ap;
|
|
const ctf_dtdef_t *dtd;
|
|
ssize_t increment;
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if (LCTF_INFO_KIND (fp, tp->ctt_info) != CTF_K_ARRAY)
|
|
return (ctf_set_errno (ofp, ECTF_NOTARRAY));
|
|
|
|
if ((dtd = ctf_dynamic_type (ofp, type)) != NULL)
|
|
{
|
|
*arp = dtd->dtd_u.dtu_arr;
|
|
return 0;
|
|
}
|
|
|
|
(void) ctf_get_ctt_size (fp, tp, NULL, &increment);
|
|
|
|
ap = (const ctf_array_t *) ((uintptr_t) tp + increment);
|
|
arp->ctr_contents = ap->cta_contents;
|
|
arp->ctr_index = ap->cta_index;
|
|
arp->ctr_nelems = ap->cta_nelems;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Convert the specified value to the corresponding enum tag name, if a
|
|
matching name can be found. Otherwise NULL is returned. */
|
|
|
|
const char *
|
|
ctf_enum_name (ctf_dict_t *fp, ctf_id_t type, int value)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
const ctf_type_t *tp;
|
|
const ctf_enum_t *ep;
|
|
const ctf_dtdef_t *dtd;
|
|
ssize_t increment;
|
|
uint32_t n;
|
|
|
|
if ((type = ctf_type_resolve_unsliced (fp, type)) == CTF_ERR)
|
|
return NULL; /* errno is set for us. */
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return NULL; /* errno is set for us. */
|
|
|
|
if (LCTF_INFO_KIND (fp, tp->ctt_info) != CTF_K_ENUM)
|
|
{
|
|
(void) ctf_set_errno (ofp, ECTF_NOTENUM);
|
|
return NULL;
|
|
}
|
|
|
|
(void) ctf_get_ctt_size (fp, tp, NULL, &increment);
|
|
|
|
if ((dtd = ctf_dynamic_type (ofp, type)) == NULL)
|
|
{
|
|
ep = (const ctf_enum_t *) ((uintptr_t) tp + increment);
|
|
|
|
for (n = LCTF_INFO_VLEN (fp, tp->ctt_info); n != 0; n--, ep++)
|
|
{
|
|
if (ep->cte_value == value)
|
|
return (ctf_strptr (fp, ep->cte_name));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ctf_dmdef_t *dmd;
|
|
|
|
for (dmd = ctf_list_next (&dtd->dtd_u.dtu_members);
|
|
dmd != NULL; dmd = ctf_list_next (dmd))
|
|
{
|
|
if (dmd->dmd_value == value)
|
|
return dmd->dmd_name;
|
|
}
|
|
}
|
|
|
|
(void) ctf_set_errno (ofp, ECTF_NOENUMNAM);
|
|
return NULL;
|
|
}
|
|
|
|
/* Convert the specified enum tag name to the corresponding value, if a
|
|
matching name can be found. Otherwise CTF_ERR is returned. */
|
|
|
|
int
|
|
ctf_enum_value (ctf_dict_t * fp, ctf_id_t type, const char *name, int *valp)
|
|
{
|
|
ctf_dict_t *ofp = fp;
|
|
const ctf_type_t *tp;
|
|
const ctf_enum_t *ep;
|
|
const ctf_dtdef_t *dtd;
|
|
ssize_t increment;
|
|
uint32_t n;
|
|
|
|
if ((type = ctf_type_resolve_unsliced (fp, type)) == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if (LCTF_INFO_KIND (fp, tp->ctt_info) != CTF_K_ENUM)
|
|
{
|
|
(void) ctf_set_errno (ofp, ECTF_NOTENUM);
|
|
return -1;
|
|
}
|
|
|
|
(void) ctf_get_ctt_size (fp, tp, NULL, &increment);
|
|
|
|
ep = (const ctf_enum_t *) ((uintptr_t) tp + increment);
|
|
|
|
if ((dtd = ctf_dynamic_type (ofp, type)) == NULL)
|
|
{
|
|
for (n = LCTF_INFO_VLEN (fp, tp->ctt_info); n != 0; n--, ep++)
|
|
{
|
|
if (strcmp (ctf_strptr (fp, ep->cte_name), name) == 0)
|
|
{
|
|
if (valp != NULL)
|
|
*valp = ep->cte_value;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ctf_dmdef_t *dmd;
|
|
|
|
for (dmd = ctf_list_next (&dtd->dtd_u.dtu_members);
|
|
dmd != NULL; dmd = ctf_list_next (dmd))
|
|
{
|
|
if (strcmp (dmd->dmd_name, name) == 0)
|
|
{
|
|
if (valp != NULL)
|
|
*valp = dmd->dmd_value;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
(void) ctf_set_errno (ofp, ECTF_NOENUMNAM);
|
|
return -1;
|
|
}
|
|
|
|
/* Given a type ID relating to a function type, return info on return types and
|
|
arg counts for that function. */
|
|
|
|
int
|
|
ctf_func_type_info (ctf_dict_t *fp, ctf_id_t type, ctf_funcinfo_t *fip)
|
|
{
|
|
const ctf_type_t *tp;
|
|
uint32_t kind;
|
|
const uint32_t *args;
|
|
const ctf_dtdef_t *dtd;
|
|
ssize_t size, increment;
|
|
|
|
if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
(void) ctf_get_ctt_size (fp, tp, &size, &increment);
|
|
kind = LCTF_INFO_KIND (fp, tp->ctt_info);
|
|
|
|
if (kind != CTF_K_FUNCTION)
|
|
return (ctf_set_errno (fp, ECTF_NOTFUNC));
|
|
|
|
fip->ctc_return = tp->ctt_type;
|
|
fip->ctc_flags = 0;
|
|
fip->ctc_argc = LCTF_INFO_VLEN (fp, tp->ctt_info);
|
|
|
|
if ((dtd = ctf_dynamic_type (fp, type)) == NULL)
|
|
args = (uint32_t *) ((uintptr_t) tp + increment);
|
|
else
|
|
args = dtd->dtd_u.dtu_argv;
|
|
|
|
if (fip->ctc_argc != 0 && args[fip->ctc_argc - 1] == 0)
|
|
{
|
|
fip->ctc_flags |= CTF_FUNC_VARARG;
|
|
fip->ctc_argc--;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Given a type ID relating to a function type, return the arguments for the
|
|
function. */
|
|
|
|
int
|
|
ctf_func_type_args (ctf_dict_t *fp, ctf_id_t type, uint32_t argc, ctf_id_t *argv)
|
|
{
|
|
const ctf_type_t *tp;
|
|
const uint32_t *args;
|
|
const ctf_dtdef_t *dtd;
|
|
ssize_t size, increment;
|
|
ctf_funcinfo_t f;
|
|
|
|
if (ctf_func_type_info (fp, type, &f) < 0)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
(void) ctf_get_ctt_size (fp, tp, &size, &increment);
|
|
|
|
if ((dtd = ctf_dynamic_type (fp, type)) == NULL)
|
|
args = (uint32_t *) ((uintptr_t) tp + increment);
|
|
else
|
|
args = dtd->dtd_u.dtu_argv;
|
|
|
|
for (argc = MIN (argc, f.ctc_argc); argc != 0; argc--)
|
|
*argv++ = *args++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Recursively visit the members of any type. This function is used as the
|
|
engine for ctf_type_visit, below. We resolve the input type, recursively
|
|
invoke ourself for each type member if the type is a struct or union, and
|
|
then invoke the callback function on the current type. If any callback
|
|
returns non-zero, we abort and percolate the error code back up to the top. */
|
|
|
|
static int
|
|
ctf_type_rvisit (ctf_dict_t *fp, ctf_id_t type, ctf_visit_f *func,
|
|
void *arg, const char *name, unsigned long offset, int depth)
|
|
{
|
|
ctf_id_t otype = type;
|
|
const ctf_type_t *tp;
|
|
const ctf_dtdef_t *dtd;
|
|
ssize_t size, increment;
|
|
uint32_t kind, n;
|
|
int rc;
|
|
|
|
if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if ((rc = func (name, otype, offset, depth, arg)) != 0)
|
|
return rc;
|
|
|
|
kind = LCTF_INFO_KIND (fp, tp->ctt_info);
|
|
|
|
if (kind != CTF_K_STRUCT && kind != CTF_K_UNION)
|
|
return 0;
|
|
|
|
(void) ctf_get_ctt_size (fp, tp, &size, &increment);
|
|
|
|
if ((dtd = ctf_dynamic_type (fp, type)) == NULL)
|
|
{
|
|
if (size < CTF_LSTRUCT_THRESH)
|
|
{
|
|
const ctf_member_t *mp = (const ctf_member_t *) ((uintptr_t) tp +
|
|
increment);
|
|
|
|
for (n = LCTF_INFO_VLEN (fp, tp->ctt_info); n != 0; n--, mp++)
|
|
{
|
|
if ((rc = ctf_type_rvisit (fp, mp->ctm_type,
|
|
func, arg, ctf_strptr (fp,
|
|
mp->ctm_name),
|
|
offset + mp->ctm_offset,
|
|
depth + 1)) != 0)
|
|
return rc;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const ctf_lmember_t *lmp = (const ctf_lmember_t *) ((uintptr_t) tp +
|
|
increment);
|
|
|
|
for (n = LCTF_INFO_VLEN (fp, tp->ctt_info); n != 0; n--, lmp++)
|
|
{
|
|
if ((rc = ctf_type_rvisit (fp, lmp->ctlm_type,
|
|
func, arg, ctf_strptr (fp,
|
|
lmp->ctlm_name),
|
|
offset + (unsigned long) CTF_LMEM_OFFSET (lmp),
|
|
depth + 1)) != 0)
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ctf_dmdef_t *dmd;
|
|
|
|
for (dmd = ctf_list_next (&dtd->dtd_u.dtu_members);
|
|
dmd != NULL; dmd = ctf_list_next (dmd))
|
|
{
|
|
if ((rc = ctf_type_rvisit (fp, dmd->dmd_type, func, arg,
|
|
dmd->dmd_name, dmd->dmd_offset,
|
|
depth + 1)) != 0)
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Recursively visit the members of any type. We pass the name, member
|
|
type, and offset of each member to the specified callback function. */
|
|
int
|
|
ctf_type_visit (ctf_dict_t *fp, ctf_id_t type, ctf_visit_f *func, void *arg)
|
|
{
|
|
return (ctf_type_rvisit (fp, type, func, arg, "", 0, 0));
|
|
}
|