binutils-gdb/gdb/gdbarch.sh

1918 lines
58 KiB
Bash
Executable File

#!/usr/local/bin/bash -u
# Architecture commands for GDB, the GNU debugger.
# Copyright 1998-2000 Free Software Foundation, Inc.
#
# This file is part of GDB.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
compare_new ()
{
file=$1
if ! test -r ${file}
then
echo "${file} missing? cp new-${file} ${file}" 1>&2
elif diff -c ${file} new-${file}
then
echo "${file} unchanged" 1>&2
else
echo "${file} has changed? cp new-${file} ${file}" 1>&2
fi
}
# Format of the input table
read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
do_read ()
{
comment=""
class=""
while read line
do
if test "${line}" = ""
then
continue
elif test "${line}" = "#" -a "${comment}" = ""
then
continue
elif expr "${line}" : "#" > /dev/null
then
comment="${comment}
${line}"
else
OFS="${IFS}" ; IFS=":"
eval read ${read} <<EOF
${line}
EOF
IFS="${OFS}"
test "${staticdefault}" || staticdefault=0
# NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
# multi-arch defaults.
# test "${predefault}" || predefault=0
test "${fmt}" || fmt="%ld"
test "${print}" || print="(long) ${macro}"
case "${invalid_p}" in
0 ) valid_p=1 ;;
"" )
if [ "${predefault}" ]
then
#invalid_p="gdbarch->${function} == ${predefault}"
valid_p="gdbarch->${function} != ${predefault}"
else
#invalid_p="gdbarch->${function} == 0"
valid_p="gdbarch->${function} != 0"
fi
;;
* ) valid_p="!(${invalid_p})"
esac
# PREDEFAULT is a valid fallback definition of MEMBER when
# multi-arch is not enabled. This ensures that the
# default value, when multi-arch is the same as the
# default value when not multi-arch. POSTDEFAULT is
# always a valid definition of MEMBER as this again
# ensures consistency.
if [ "${postdefault}" != "" ]
then
fallbackdefault="${postdefault}"
elif [ "${predefault}" != "" ]
then
fallbackdefault="${predefault}"
else
fallbackdefault=""
fi
#NOT YET: See gdbarch.log for basic verification of
# database
break
fi
done
if [ "${class}" ]
then
true
else
false
fi
}
fallback_default_p ()
{
[ "${postdefault}" != "" -a "${invalid_p}" != "0" ] \
|| [ "${predefault}" != "" -a "${invalid_p}" = "0" ]
}
class_is_variable_p ()
{
[ "${class}" = "v" -o "${class}" = "V" ]
}
class_is_function_p ()
{
[ "${class}" = "f" -o "${class}" = "F" ]
}
class_is_predicate_p ()
{
[ "${class}" = "F" -o "${class}" = "V" ]
}
class_is_info_p ()
{
[ "${class}" = "i" ]
}
# dump out/verify the doco
for field in ${read}
do
case ${field} in
class ) : ;;
# # -> line disable
# f -> function
# hiding a function
# F -> function + predicate
# hiding a function + predicate to test function validity
# v -> variable
# hiding a variable
# V -> variable + predicate
# hiding a variable + predicate to test variables validity
# i -> set from info
# hiding something from the ``struct info'' object
level ) : ;;
# See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
# LEVEL is a predicate on checking that a given method is
# initialized (using INVALID_P).
macro ) : ;;
# The name of the MACRO that this method is to be accessed by.
returntype ) : ;;
# For functions, the return type; for variables, the data type
function ) : ;;
# For functions, the member function name; for variables, the
# variable name. Member function names are always prefixed with
# ``gdbarch_'' for name-space purity.
formal ) : ;;
# The formal argument list. It is assumed that the formal
# argument list includes the actual name of each list element.
# A function with no arguments shall have ``void'' as the
# formal argument list.
actual ) : ;;
# The list of actual arguments. The arguments specified shall
# match the FORMAL list given above. Functions with out
# arguments leave this blank.
attrib ) : ;;
# Any GCC attributes that should be attached to the function
# declaration. At present this field is unused.
staticdefault ) : ;;
# To help with the GDB startup a static gdbarch object is
# created. STATICDEFAULT is the value to insert into that
# static gdbarch object. Since this a static object only
# simple expressions can be used.
# If STATICDEFAULT is empty, zero is used.
predefault ) : ;;
# A initial value to assign to MEMBER of the freshly
# malloc()ed gdbarch object. After the gdbarch object has
# been initialized using PREDEFAULT, it is passed to the
# target code for further updates.
# If PREDEFAULT is empty, zero is used.
# When POSTDEFAULT is empty, a non-empty PREDEFAULT and a zero
# INVALID_P will be used as default values when when
# multi-arch is disabled. Specify a zero PREDEFAULT function
# to make that fallback call internal_error().
# Variable declarations can refer to ``gdbarch'' which will
# contain the current architecture. Care should be taken.
postdefault ) : ;;
# A value to assign to MEMBER of the new gdbarch object should
# the target code fail to change the PREDEFAULT value. Also
# use POSTDEFAULT as the fallback value for the non-
# multi-arch case.
# If POSTDEFAULT is empty, no post update is performed.
# If both INVALID_P and POSTDEFAULT are non-empty then
# INVALID_P will be used to determine if MEMBER should be
# changed to POSTDEFAULT.
# You cannot specify both a zero INVALID_P and a POSTDEFAULT.
# Variable declarations can refer to ``gdbarch'' which will
# contain the current architecture. Care should be taken.
invalid_p ) : ;;
# A predicate equation that validates MEMBER. Non-zero is
# returned if the code creating the new architecture failed to
# initialize MEMBER or the initialized the member is invalid.
# If POSTDEFAULT is non-empty then MEMBER will be updated to
# that value. If POSTDEFAULT is empty then internal_error()
# is called.
# If INVALID_P is empty, a check that MEMBER is no longer
# equal to PREDEFAULT is used.
# The expression ``0'' disables the INVALID_P check making
# PREDEFAULT a legitimate value.
# See also PREDEFAULT and POSTDEFAULT.
fmt ) : ;;
# printf style format string that can be used to print out the
# MEMBER. Sometimes "%s" is useful. For functions, this is
# ignored and the function address is printed.
# If FMT is empty, ``%ld'' is used.
print ) : ;;
# An optional equation that casts MEMBER to a value suitable
# for formatting by FMT.
# If PRINT is empty, ``(long)'' is used.
print_p ) : ;;
# An optional indicator for any predicte to wrap around the
# print member code.
# () -> Call a custom function to do the dump.
# exp -> Wrap print up in ``if (${print_p}) ...
# ``'' -> No predicate
# If PRINT_P is empty, ``1'' is always used.
description ) : ;;
# Currently unused.
*) exit 1;;
esac
done
function_list ()
{
# See below (DOCO) for description of each field
cat <<EOF
i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
#
i:2:TARGET_BYTE_ORDER:int:byte_order::::BIG_ENDIAN
#
v:1:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
v:1:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):0
#v:1:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):0
v:1:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):0
v:1:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):0
v:1:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):0
v:1:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):0
v:1:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):0
v:1:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):0
v:1:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):0
v:1:IEEE_FLOAT:int:ieee_float::::0:0::0:::
#
f:1:TARGET_READ_PC:CORE_ADDR:read_pc:int pid:pid::0:0
f:1:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, int pid:val, pid::0:0
f:1:TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:0
f:1:TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:0
f:1:TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:0
f:1:TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:0
#
v:2:NUM_REGS:int:num_regs::::0:-1
# This macro gives the number of pseudo-registers that live in the
# register namespace but do not get fetched or stored on the target.
# These pseudo-registers may be aliases for other registers,
# combinations of other registers, or they may be computed by GDB.
v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
v:2:SP_REGNUM:int:sp_regnum::::0:-1
v:2:FP_REGNUM:int:fp_regnum::::0:-1
v:2:PC_REGNUM:int:pc_regnum::::0:-1
v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
v:2:REGISTER_SIZE:int:register_size::::0:-1
v:2:REGISTER_BYTES:int:register_bytes::::0:-1
f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::0:0
v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::0:0
v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
#
v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
v:2:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1:::0x%08lx
v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
f:2:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
#
v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
#
f:1:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
# This function is called when the value of a pseudo-register needs to
# be updated. Typically it will be defined on a per-architecture
# basis.
f:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:::0::0
# This function is called when the value of a pseudo-register needs to
# be set or stored. Typically it will be defined on a
# per-architecture basis.
f:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:::0::0
#
f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
#
f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
f:1:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr::0:0
f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
f:1:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
f:2:POP_FRAME:void:pop_frame:void:-:::0
#
# I wish that these would just go away....
f:2:D10V_MAKE_DADDR:CORE_ADDR:d10v_make_daddr:CORE_ADDR x:x:::0::0
f:2:D10V_MAKE_IADDR:CORE_ADDR:d10v_make_iaddr:CORE_ADDR x:x:::0::0
f:2:D10V_DADDR_P:int:d10v_daddr_p:CORE_ADDR x:x:::0::0
f:2:D10V_IADDR_P:int:d10v_iaddr_p:CORE_ADDR x:x:::0::0
f:2:D10V_CONVERT_DADDR_TO_RAW:CORE_ADDR:d10v_convert_daddr_to_raw:CORE_ADDR x:x:::0::0
f:2:D10V_CONVERT_IADDR_TO_RAW:CORE_ADDR:d10v_convert_iaddr_to_raw:CORE_ADDR x:x:::0::0
#
f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
f:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::0
#
f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
f:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
#
f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
#
f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
#
v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
#
F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
#
v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::&floatformat_unknown
EOF
}
#
# The .log file
#
exec > new-gdbarch.log
function_list | while do_read
do
cat <<EOF
${class} ${macro}(${actual})
${returntype} ${function} ($formal)${attrib}
level=${level}
staticdefault=${staticdefault}
predefault=${predefault}
postdefault=${postdefault}
fallbackdefault=${fallbackdefault}
invalid_p=${invalid_p}
valid_p=${valid_p}
fmt=${fmt}
print=${print}
print_p=${print_p}
description=${description}
EOF
if class_is_predicate_p && fallback_default_p
then
echo "Error: predicate function can not have a non- multi-arch default" 1>&2
kill $$
exit 1
fi
if [ "${invalid_p}" = "0" -a "${postdefault}" != "" ]
then
echo "Error: postdefault is useless when invalid_p=0" 1>&2
kill $$
exit 1
fi
done
exec 1>&2
compare_new gdbarch.log
copyright ()
{
cat <<EOF
/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
/* Dynamic architecture support for GDB, the GNU debugger.
Copyright 1998-1999, Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* This file was created with the aid of \`\`gdbarch.sh''.
The bourn shell script \`\`gdbarch.sh'' creates the files
\`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
against the existing \`\`gdbarch.[hc]''. Any differences found
being reported.
If editing this file, please also run gdbarch.sh and merge any
changes into that script. Conversely, when makeing sweeping changes
to this file, modifying gdbarch.sh and using its output may prove
easier. */
EOF
}
#
# The .h file
#
exec > new-gdbarch.h
copyright
cat <<EOF
#ifndef GDBARCH_H
#define GDBARCH_H
struct frame_info;
struct value;
extern struct gdbarch *current_gdbarch;
/* If any of the following are defined, the target wasn't correctly
converted. */
#if GDB_MULTI_ARCH
#if defined (EXTRA_FRAME_INFO)
#error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
#endif
#endif
#if GDB_MULTI_ARCH
#if defined (FRAME_FIND_SAVED_REGS)
#error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
#endif
#endif
EOF
# function typedef's
echo ""
echo ""
echo "/* The following are pre-initialized by GDBARCH. */"
function_list | while do_read
do
if class_is_info_p
then
echo ""
echo "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);"
echo "/* set_gdbarch_${function}() - not applicable - pre-initialized. */"
echo "#if GDB_MULTI_ARCH"
echo "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})"
echo "#define ${macro} (gdbarch_${function} (current_gdbarch))"
echo "#endif"
echo "#endif"
fi
done
# function typedef's
echo ""
echo ""
echo "/* The following are initialized by the target dependant code. */"
function_list | while do_read
do
if [ "${comment}" ]
then
echo "${comment}" | sed \
-e '2 s,#,/*,' \
-e '3,$ s,#, ,' \
-e '$ s,$, */,'
fi
if class_is_predicate_p
then
echo ""
echo "#if defined (${macro})"
echo "/* Legacy for systems yet to multi-arch ${macro} */"
# echo "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})"
echo "#define ${macro}_P() (1)"
echo "#endif"
echo ""
echo "/* Default predicate for non- multi-arch targets. */"
echo "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)"
echo "#define ${macro}_P() (0)"
echo "#endif"
echo ""
echo "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);"
echo "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro}_P)"
echo "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))"
echo "#endif"
fi
if class_is_variable_p
then
if fallback_default_p || class_is_predicate_p
then
echo ""
echo "/* Default (value) for non- multi-arch platforms. */"
echo "#if (!GDB_MULTI_ARCH) && !defined (${macro})"
echo "#define ${macro} (${fallbackdefault})" \
| sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
echo "#endif"
fi
echo ""
echo "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);"
echo "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});"
echo "#if GDB_MULTI_ARCH"
echo "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})"
echo "#define ${macro} (gdbarch_${function} (current_gdbarch))"
echo "#endif"
echo "#endif"
fi
if class_is_function_p
then
if fallback_default_p || class_is_predicate_p
then
echo ""
echo "/* Default (function) for non- multi-arch platforms. */"
echo "#if (!GDB_MULTI_ARCH) && !defined (${macro})"
if [ "${fallbackdefault}" = "0" ]
then
echo "#define ${macro}(${actual}) (internal_error (\"${macro}\"), 0)"
else
# FIXME: Should be passing current_gdbarch through!
echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
| sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
fi
echo "#endif"
fi
echo ""
echo "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});"
if [ "${formal}" = "void" ]
then
echo "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);"
else
echo "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});"
fi
echo "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});"
echo "#if GDB_MULTI_ARCH"
echo "#if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL) || !defined (${macro})"
if [ "${actual}" = "" ]
then
echo "#define ${macro}() (gdbarch_${function} (current_gdbarch))"
elif [ "${actual}" = "-" ]
then
echo "#define ${macro} (gdbarch_${function} (current_gdbarch))"
else
echo "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
fi
echo "#endif"
echo "#endif"
fi
done
# close it off
cat <<EOF
extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
/* Mechanism for co-ordinating the selection of a specific
architecture.
GDB targets (*-tdep.c) can register an interest in a specific
architecture. Other GDB components can register a need to maintain
per-architecture data.
The mechanisms below ensures that there is only a loose connection
between the set-architecture command and the various GDB
components. Each component can independantly register their need
to maintain architecture specific data with gdbarch.
Pragmatics:
Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
didn't scale.
The more traditional mega-struct containing architecture specific
data for all the various GDB components was also considered. Since
GDB is built from a variable number of (fairly independant)
components it was determined that the global aproach was not
applicable. */
/* Register a new architectural family with GDB.
Register support for the specified ARCHITECTURE with GDB. When
gdbarch determines that the specified architecture has been
selected, the corresponding INIT function is called.
--
The INIT function takes two parameters: INFO which contains the
information available to gdbarch about the (possibly new)
architecture; ARCHES which is a list of the previously created
\`\`struct gdbarch'' for this architecture.
The INIT function parameter INFO shall, as far as possible, be
pre-initialized with information obtained from INFO.ABFD or
previously selected architecture (if similar). INIT shall ensure
that the INFO.BYTE_ORDER is non-zero.
The INIT function shall return any of: NULL - indicating that it
doesn't reconize the selected architecture; an existing \`\`struct
gdbarch'' from the ARCHES list - indicating that the new
architecture is just a synonym for an earlier architecture (see
gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
- that describes the selected architecture (see gdbarch_alloc()).
The DUMP_TDEP function shall print out all target specific values.
Care should be taken to ensure that the function works in both the
multi-arch and non- multi-arch cases. */
struct gdbarch_list
{
struct gdbarch *gdbarch;
struct gdbarch_list *next;
};
struct gdbarch_info
{
/* Use default: bfd_arch_unknown (ZERO). */
enum bfd_architecture bfd_architecture;
/* Use default: NULL (ZERO). */
const struct bfd_arch_info *bfd_arch_info;
/* Use default: 0 (ZERO). */
int byte_order;
/* Use default: NULL (ZERO). */
bfd *abfd;
/* Use default: NULL (ZERO). */
struct gdbarch_tdep_info *tdep_info;
};
typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
/* DEPRECATED - use gdbarch_register() */
extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
extern void gdbarch_register (enum bfd_architecture architecture,
gdbarch_init_ftype *,
gdbarch_dump_tdep_ftype *);
/* Return a freshly allocated, NULL terminated, array of the valid
architecture names. Since architectures are registered during the
_initialize phase this function only returns useful information
once initialization has been completed. */
extern const char **gdbarch_printable_names (void);
/* Helper function. Search the list of ARCHES for a GDBARCH that
matches the information provided by INFO. */
extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
basic initialization using values obtained from the INFO andTDEP
parameters. set_gdbarch_*() functions are called to complete the
initialization of the object. */
extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
It is assumed that the caller freeds the \`\`struct
gdbarch_tdep''. */
extern void gdbarch_free (struct gdbarch *);
/* Helper function. Force an update of the current architecture. Used
by legacy targets that have added their own target specific
architecture manipulation commands.
The INFO parameter shall be fully initialized (\`\`memset (&INFO,
sizeof (info), 0)'' set relevant fields) before gdbarch_update() is
called. gdbarch_update() shall initialize any \`\`default'' fields
using information obtained from the previous architecture or
INFO.ABFD (if specified) before calling the corresponding
architectures INIT function. */
extern int gdbarch_update (struct gdbarch_info info);
/* Register per-architecture data-pointer.
Reserve space for a per-architecture data-pointer. An identifier
for the reserved data-pointer is returned. That identifer should
be saved in a local static.
When a new architecture is selected, INIT() is called. When a
previous architecture is re-selected, the per-architecture
data-pointer for that previous architecture is restored (INIT() is
not called).
INIT() shall return the initial value for the per-architecture
data-pointer for the current architecture.
Multiple registrarants for any architecture are allowed (and
strongly encouraged). */
typedef void *(gdbarch_data_ftype) (void);
extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_ftype *init);
/* Return the value of the per-architecture data-pointer for the
current architecture. */
extern void *gdbarch_data (struct gdbarch_data*);
/* Register per-architecture memory region.
Provide a memory-region swap mechanism. Per-architecture memory
region are created. These memory regions are swapped whenever the
architecture is changed. For a new architecture, the memory region
is initialized with zero (0) and the INIT function is called.
Memory regions are swapped / initialized in the order that they are
registered. NULL DATA and/or INIT values can be specified.
New code should use register_gdbarch_data(). */
typedef void (gdbarch_swap_ftype) (void);
extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
#define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
/* The target-system-dependant byte order is dynamic */
/* TARGET_BYTE_ORDER_SELECTABLE_P determines if the target endianness
is selectable at runtime. The user can use the \`\`set endian''
command to change it. TARGET_BYTE_ORDER_AUTO is nonzero when
target_byte_order should be auto-detected (from the program image
say). */
#if GDB_MULTI_ARCH
/* Multi-arch GDB is always bi-endian. */
#define TARGET_BYTE_ORDER_SELECTABLE_P 1
#endif
#ifndef TARGET_BYTE_ORDER_SELECTABLE_P
/* compat - Catch old targets that define TARGET_BYTE_ORDER_SLECTABLE
when they should have defined TARGET_BYTE_ORDER_SELECTABLE_P 1 */
#ifdef TARGET_BYTE_ORDER_SELECTABLE
#define TARGET_BYTE_ORDER_SELECTABLE_P 1
#else
#define TARGET_BYTE_ORDER_SELECTABLE_P 0
#endif
#endif
extern int target_byte_order;
#ifdef TARGET_BYTE_ORDER_SELECTABLE
/* compat - Catch old targets that define TARGET_BYTE_ORDER_SELECTABLE
and expect defs.h to re-define TARGET_BYTE_ORDER. */
#undef TARGET_BYTE_ORDER
#endif
#ifndef TARGET_BYTE_ORDER
#define TARGET_BYTE_ORDER (target_byte_order + 0)
#endif
extern int target_byte_order_auto;
#ifndef TARGET_BYTE_ORDER_AUTO
#define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
#endif
/* The target-system-dependant BFD architecture is dynamic */
extern int target_architecture_auto;
#ifndef TARGET_ARCHITECTURE_AUTO
#define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
#endif
extern const struct bfd_arch_info *target_architecture;
#ifndef TARGET_ARCHITECTURE
#define TARGET_ARCHITECTURE (target_architecture + 0)
#endif
/* The target-system-dependant disassembler is semi-dynamic */
#include "dis-asm.h" /* Get defs for disassemble_info */
extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
unsigned int len, disassemble_info *info);
extern void dis_asm_memory_error (int status, bfd_vma memaddr,
disassemble_info *info);
extern void dis_asm_print_address (bfd_vma addr,
disassemble_info *info);
extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
extern disassemble_info tm_print_insn_info;
#ifndef TARGET_PRINT_INSN
#define TARGET_PRINT_INSN(vma, info) (*tm_print_insn) (vma, info)
#endif
#ifndef TARGET_PRINT_INSN_INFO
#define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
#endif
/* Explicit test for D10V architecture.
USE of these macro's is *STRONGLY* discouraged. */
#define GDB_TARGET_IS_D10V (TARGET_ARCHITECTURE->arch == bfd_arch_d10v)
/* Fallback definition for EXTRACT_STRUCT_VALUE_ADDRESS */
#ifndef EXTRACT_STRUCT_VALUE_ADDRESS
#define EXTRACT_STRUCT_VALUE_ADDRESS_P (0)
#define EXTRACT_STRUCT_VALUE_ADDRESS(X) (internal_error ("gdbarch: EXTRACT_STRUCT_VALUE_ADDRESS"), 0)
#else
#ifndef EXTRACT_STRUCT_VALUE_ADDRESS_P
#define EXTRACT_STRUCT_VALUE_ADDRESS_P (1)
#endif
#endif
/* Set the dynamic target-system-dependant parameters (architecture,
byte-order, ...) using information found in the BFD */
extern void set_gdbarch_from_file (bfd *);
/* Initialize the current architecture to the "first" one we find on
our list. */
extern void initialize_current_architecture (void);
/* gdbarch trace variable */
extern int gdbarch_debug;
extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
#endif
EOF
exec 1>&2
#../move-if-change new-gdbarch.h gdbarch.h
compare_new gdbarch.h
#
# C file
#
exec > new-gdbarch.c
copyright
cat <<EOF
#include "defs.h"
#include "arch-utils.h"
#if GDB_MULTI_ARCH
#include "gdbcmd.h"
#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
#else
/* Just include everything in sight so that the every old definition
of macro is visible. */
#include "gdb_string.h"
#include <ctype.h>
#include "symtab.h"
#include "frame.h"
#include "inferior.h"
#include "breakpoint.h"
#include "gdb_wait.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "target.h"
#include "gdbthread.h"
#include "annotate.h"
#include "symfile.h" /* for overlay functions */
#endif
#include "symcat.h"
#include "floatformat.h"
/* Static function declarations */
static void verify_gdbarch (struct gdbarch *gdbarch);
static void init_gdbarch_data (struct gdbarch *);
static void init_gdbarch_swap (struct gdbarch *);
static void swapout_gdbarch_swap (struct gdbarch *);
static void swapin_gdbarch_swap (struct gdbarch *);
/* Convenience macro for allocting typesafe memory. */
#ifndef XMALLOC
#define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
#endif
/* Non-zero if we want to trace architecture code. */
#ifndef GDBARCH_DEBUG
#define GDBARCH_DEBUG 0
#endif
int gdbarch_debug = GDBARCH_DEBUG;
EOF
# gdbarch open the gdbarch object
echo ""
echo "/* Maintain the struct gdbarch object */"
echo ""
echo "struct gdbarch"
echo "{"
echo " /* basic architectural information */"
function_list | while do_read
do
if class_is_info_p
then
echo " ${returntype} ${function};"
fi
done
echo ""
echo " /* target specific vector. */"
echo " struct gdbarch_tdep *tdep;"
echo " gdbarch_dump_tdep_ftype *dump_tdep;"
echo ""
echo " /* per-architecture data-pointers */"
echo " int nr_data;"
echo " void **data;"
echo ""
echo " /* per-architecture swap-regions */"
echo " struct gdbarch_swap *swap;"
echo ""
cat <<EOF
/* Multi-arch values.
When extending this structure you must:
Add the field below.
Declare set/get functions and define the corresponding
macro in gdbarch.h.
gdbarch_alloc(): If zero/NULL is not a suitable default,
initialize the new field.
verify_gdbarch(): Confirm that the target updated the field
correctly.
gdbarch_dump(): Add a fprintf_unfiltered call to so that the new
field is dumped out
\`\`startup_gdbarch()'': Append an initial value to the static
variable (base values on the host's c-type system).
get_gdbarch(): Implement the set/get functions (probably using
the macro's as shortcuts).
*/
EOF
function_list | while do_read
do
if class_is_variable_p
then
echo " ${returntype} ${function};"
elif class_is_function_p
then
echo " gdbarch_${function}_ftype *${function}${attrib};"
fi
done
echo "};"
# A pre-initialized vector
echo ""
echo ""
cat <<EOF
/* The default architecture uses host values (for want of a better
choice). */
EOF
echo ""
echo "extern const struct bfd_arch_info bfd_default_arch_struct;"
echo ""
echo "struct gdbarch startup_gdbarch ="
echo "{"
echo " /* basic architecture information */"
function_list | while do_read
do
if class_is_info_p
then
echo " ${staticdefault},"
fi
done
cat <<EOF
/* target specific vector and its dump routine */
NULL, NULL,
/*per-architecture data-pointers and swap regions */
0, NULL, NULL,
/* Multi-arch values */
EOF
function_list | while do_read
do
if class_is_function_p || class_is_variable_p
then
echo " ${staticdefault},"
fi
done
cat <<EOF
/* startup_gdbarch() */
};
struct gdbarch *current_gdbarch = &startup_gdbarch;
EOF
# Create a new gdbarch struct
echo ""
echo ""
cat <<EOF
/* Create a new \`\`struct gdbarch'' based in information provided by
\`\`struct gdbarch_info''. */
EOF
echo ""
cat <<EOF
struct gdbarch *
gdbarch_alloc (const struct gdbarch_info *info,
struct gdbarch_tdep *tdep)
{
struct gdbarch *gdbarch = XMALLOC (struct gdbarch);
memset (gdbarch, 0, sizeof (*gdbarch));
gdbarch->tdep = tdep;
EOF
echo ""
function_list | while do_read
do
if class_is_info_p
then
echo " gdbarch->${function} = info->${function};"
fi
done
echo ""
echo " /* Force the explicit initialization of these. */"
function_list | while do_read
do
if class_is_function_p || class_is_variable_p
then
if [ "${predefault}" != "" -a "${predefault}" != "0" ]
then
echo " gdbarch->${function} = ${predefault};"
fi
fi
done
cat <<EOF
/* gdbarch_alloc() */
return gdbarch;
}
EOF
# Free a gdbarch struct.
echo ""
echo ""
cat <<EOF
/* Free a gdbarch struct. This should never happen in normal
operation --- once you've created a gdbarch, you keep it around.
However, if an architecture's init function encounters an error
building the structure, it may need to clean up a partially
constructed gdbarch. */
void
gdbarch_free (struct gdbarch *arch)
{
/* At the moment, this is trivial. */
free (arch);
}
EOF
# verify a new architecture
echo ""
echo ""
echo "/* Ensure that all values in a GDBARCH are reasonable. */"
echo ""
cat <<EOF
static void
verify_gdbarch (struct gdbarch *gdbarch)
{
/* Only perform sanity checks on a multi-arch target. */
if (!GDB_MULTI_ARCH)
return;
/* fundamental */
if (gdbarch->byte_order == 0)
internal_error ("verify_gdbarch: byte-order unset");
if (gdbarch->bfd_arch_info == NULL)
internal_error ("verify_gdbarch: bfd_arch_info unset");
/* Check those that need to be defined for the given multi-arch level. */
EOF
function_list | while do_read
do
if class_is_function_p || class_is_variable_p
then
if [ "${invalid_p}" = "0" ]
then
echo " /* Skip verify of ${function}, invalid_p == 0 */"
elif class_is_predicate_p
then
echo " /* Skip verify of ${function}, has predicate */"
# FIXME: See do_read for potential simplification
elif [ "${invalid_p}" -a "${postdefault}" ]
then
echo " if (${invalid_p})"
echo " gdbarch->${function} = ${postdefault};"
elif [ "${predefault}" -a "${postdefault}" ]
then
echo " if (gdbarch->${function} == ${predefault})"
echo " gdbarch->${function} = ${postdefault};"
elif [ "${postdefault}" ]
then
echo " if (gdbarch->${function} == 0)"
echo " gdbarch->${function} = ${postdefault};"
elif [ "${invalid_p}" ]
then
echo " if ((GDB_MULTI_ARCH >= ${level})"
echo " && (${invalid_p}))"
echo " internal_error (\"gdbarch: verify_gdbarch: ${function} invalid\");"
elif [ "${predefault}" ]
then
echo " if ((GDB_MULTI_ARCH >= ${level})"
echo " && (gdbarch->${function} == ${predefault}))"
echo " internal_error (\"gdbarch: verify_gdbarch: ${function} invalid\");"
fi
fi
done
cat <<EOF
}
EOF
# dump the structure
echo ""
echo ""
cat <<EOF
/* Print out the details of the current architecture. */
/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
just happens to match the global variable \`\`current_gdbarch''. That
way macros refering to that variable get the local and not the global
version - ulgh. Once everything is parameterised with gdbarch, this
will go away. */
void
gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
{
fprintf_unfiltered (file,
"gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
GDB_MULTI_ARCH);
EOF
function_list | while do_read
do
if [ "${returntype}" == "void" ]
then
echo "#if defined (${macro}) && GDB_MULTI_ARCH"
echo " /* Macro might contain \`[{}]' when not multi-arch */"
else
echo "#ifdef ${macro}"
fi
if class_is_function_p
then
echo " fprintf_unfiltered (file,"
echo " \"gdbarch_dump: %s # %s\\n\","
echo " \"${macro}(${actual})\","
echo " XSTRING (${macro} (${actual})));"
else
echo " fprintf_unfiltered (file,"
echo " \"gdbarch_dump: ${macro} # %s\\n\","
echo " XSTRING (${macro}));"
fi
echo "#endif"
done
function_list | while do_read
do
echo "#ifdef ${macro}"
if [ "${print_p}" = "()" ]
then
echo " gdbarch_dump_${function} (current_gdbarch);"
elif [ "${print_p}" = "0" ]
then
echo " /* skip print of ${macro}, print_p == 0. */"
elif [ "${print_p}" ]
then
echo " if (${print_p})"
echo " fprintf_unfiltered (file,"
echo " \"gdbarch_dump: ${macro} = ${fmt}\\n\","
echo " ${print});"
elif class_is_function_p
then
echo " if (GDB_MULTI_ARCH)"
echo " fprintf_unfiltered (file,"
echo " \"gdbarch_dump: ${macro} = 0x%08lx\\n\","
echo " (long) current_gdbarch->${function}"
echo " /*${macro} ()*/);"
else
echo " fprintf_unfiltered (file,"
echo " \"gdbarch_dump: ${macro} = ${fmt}\\n\","
echo " ${print});"
fi
echo "#endif"
done
cat <<EOF
if (current_gdbarch->dump_tdep != NULL)
current_gdbarch->dump_tdep (current_gdbarch, file);
}
EOF
# GET/SET
echo ""
cat <<EOF
struct gdbarch_tdep *
gdbarch_tdep (struct gdbarch *gdbarch)
{
if (gdbarch_debug >= 2)
fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\n");
return gdbarch->tdep;
}
EOF
echo ""
function_list | while do_read
do
if class_is_predicate_p
then
echo ""
echo "int"
echo "gdbarch_${function}_p (struct gdbarch *gdbarch)"
echo "{"
if [ "${valid_p}" ]
then
echo " return ${valid_p};"
else
echo "#error \"gdbarch_${function}_p: not defined\""
fi
echo "}"
fi
if class_is_function_p
then
echo ""
echo "${returntype}"
if [ "${formal}" = "void" ]
then
echo "gdbarch_${function} (struct gdbarch *gdbarch)"
else
echo "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})"
fi
echo "{"
echo " if (gdbarch->${function} == 0)"
echo " internal_error (\"gdbarch: gdbarch_${function} invalid\");"
echo " if (gdbarch_debug >= 2)"
echo " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\n\");"
test "${actual}" = "-" && actual=""
if [ "${returntype}" = "void" ]
then
echo " gdbarch->${function} (${actual});"
else
echo " return gdbarch->${function} (${actual});"
fi
echo "}"
echo ""
echo "void"
echo "set_gdbarch_${function} (struct gdbarch *gdbarch,"
echo " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})"
echo "{"
echo " gdbarch->${function} = ${function};"
echo "}"
elif class_is_variable_p
then
echo ""
echo "${returntype}"
echo "gdbarch_${function} (struct gdbarch *gdbarch)"
echo "{"
if [ "${invalid_p}" = "0" ]
then
echo " /* Skip verify of ${function}, invalid_p == 0 */"
elif [ "${invalid_p}" ]
then
echo " if (${invalid_p})"
echo " internal_error (\"gdbarch: gdbarch_${function} invalid\");"
elif [ "${predefault}" ]
then
echo " if (gdbarch->${function} == ${predefault})"
echo " internal_error (\"gdbarch: gdbarch_${function} invalid\");"
fi
echo " if (gdbarch_debug >= 2)"
echo " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\n\");"
echo " return gdbarch->${function};"
echo "}"
echo ""
echo "void"
echo "set_gdbarch_${function} (struct gdbarch *gdbarch,"
echo " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})"
echo "{"
echo " gdbarch->${function} = ${function};"
echo "}"
elif class_is_info_p
then
echo ""
echo "${returntype}"
echo "gdbarch_${function} (struct gdbarch *gdbarch)"
echo "{"
echo " if (gdbarch_debug >= 2)"
echo " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\n\");"
echo " return gdbarch->${function};"
echo "}"
fi
done
# All the trailing guff
cat <<EOF
/* Keep a registrary of per-architecture data-pointers required by GDB
modules. */
struct gdbarch_data
{
int index;
};
struct gdbarch_data_registration
{
gdbarch_data_ftype *init;
struct gdbarch_data *data;
struct gdbarch_data_registration *next;
};
struct gdbarch_data_registrary
{
int nr;
struct gdbarch_data_registration *registrations;
};
struct gdbarch_data_registrary gdbarch_data_registrary =
{
0, NULL,
};
struct gdbarch_data *
register_gdbarch_data (gdbarch_data_ftype *init)
{
struct gdbarch_data_registration **curr;
for (curr = &gdbarch_data_registrary.registrations;
(*curr) != NULL;
curr = &(*curr)->next);
(*curr) = XMALLOC (struct gdbarch_data_registration);
(*curr)->next = NULL;
(*curr)->init = init;
(*curr)->data = XMALLOC (struct gdbarch_data);
(*curr)->data->index = gdbarch_data_registrary.nr++;
return (*curr)->data;
}
/* Walk through all the registered users initializing each in turn. */
static void
init_gdbarch_data (struct gdbarch *gdbarch)
{
struct gdbarch_data_registration *rego;
gdbarch->nr_data = gdbarch_data_registrary.nr + 1;
gdbarch->data = xmalloc (sizeof (void*) * gdbarch->nr_data);
for (rego = gdbarch_data_registrary.registrations;
rego != NULL;
rego = rego->next)
{
if (rego->data->index < gdbarch->nr_data)
gdbarch->data[rego->data->index] = rego->init ();
}
}
/* Return the current value of the specified per-architecture
data-pointer. */
void *
gdbarch_data (struct gdbarch_data *data)
{
if (data->index >= current_gdbarch->nr_data)
internal_error ("gdbarch_data: request for non-existant data.");
return current_gdbarch->data[data->index];
}
/* Keep a registrary of swaped data required by GDB modules. */
struct gdbarch_swap
{
void *swap;
struct gdbarch_swap_registration *source;
struct gdbarch_swap *next;
};
struct gdbarch_swap_registration
{
void *data;
unsigned long sizeof_data;
gdbarch_swap_ftype *init;
struct gdbarch_swap_registration *next;
};
struct gdbarch_swap_registrary
{
int nr;
struct gdbarch_swap_registration *registrations;
};
struct gdbarch_swap_registrary gdbarch_swap_registrary =
{
0, NULL,
};
void
register_gdbarch_swap (void *data,
unsigned long sizeof_data,
gdbarch_swap_ftype *init)
{
struct gdbarch_swap_registration **rego;
for (rego = &gdbarch_swap_registrary.registrations;
(*rego) != NULL;
rego = &(*rego)->next);
(*rego) = XMALLOC (struct gdbarch_swap_registration);
(*rego)->next = NULL;
(*rego)->init = init;
(*rego)->data = data;
(*rego)->sizeof_data = sizeof_data;
}
static void
init_gdbarch_swap (struct gdbarch *gdbarch)
{
struct gdbarch_swap_registration *rego;
struct gdbarch_swap **curr = &gdbarch->swap;
for (rego = gdbarch_swap_registrary.registrations;
rego != NULL;
rego = rego->next)
{
if (rego->data != NULL)
{
(*curr) = XMALLOC (struct gdbarch_swap);
(*curr)->source = rego;
(*curr)->swap = xmalloc (rego->sizeof_data);
(*curr)->next = NULL;
memset (rego->data, 0, rego->sizeof_data);
curr = &(*curr)->next;
}
if (rego->init != NULL)
rego->init ();
}
}
static void
swapout_gdbarch_swap (struct gdbarch *gdbarch)
{
struct gdbarch_swap *curr;
for (curr = gdbarch->swap;
curr != NULL;
curr = curr->next)
memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
}
static void
swapin_gdbarch_swap (struct gdbarch *gdbarch)
{
struct gdbarch_swap *curr;
for (curr = gdbarch->swap;
curr != NULL;
curr = curr->next)
memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
}
/* Keep a registrary of the architectures known by GDB. */
struct gdbarch_registration
{
enum bfd_architecture bfd_architecture;
gdbarch_init_ftype *init;
gdbarch_dump_tdep_ftype *dump_tdep;
struct gdbarch_list *arches;
struct gdbarch_registration *next;
};
static struct gdbarch_registration *gdbarch_registrary = NULL;
static void
append_name (const char ***buf, int *nr, const char *name)
{
*buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
(*buf)[*nr] = name;
*nr += 1;
}
const char **
gdbarch_printable_names (void)
{
if (GDB_MULTI_ARCH)
{
/* Accumulate a list of names based on the registed list of
architectures. */
enum bfd_architecture a;
int nr_arches = 0;
const char **arches = NULL;
struct gdbarch_registration *rego;
for (rego = gdbarch_registrary;
rego != NULL;
rego = rego->next)
{
const struct bfd_arch_info *ap;
ap = bfd_lookup_arch (rego->bfd_architecture, 0);
if (ap == NULL)
internal_error ("gdbarch_architecture_names: multi-arch unknown");
do
{
append_name (&arches, &nr_arches, ap->printable_name);
ap = ap->next;
}
while (ap != NULL);
}
append_name (&arches, &nr_arches, NULL);
return arches;
}
else
/* Just return all the architectures that BFD knows. Assume that
the legacy architecture framework supports them. */
return bfd_arch_list ();
}
void
gdbarch_register (enum bfd_architecture bfd_architecture,
gdbarch_init_ftype *init,
gdbarch_dump_tdep_ftype *dump_tdep)
{
struct gdbarch_registration **curr;
const struct bfd_arch_info *bfd_arch_info;
/* Check that BFD reconizes this architecture */
bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
if (bfd_arch_info == NULL)
{
internal_error ("gdbarch: Attempt to register unknown architecture (%d)", bfd_architecture);
}
/* Check that we haven't seen this architecture before */
for (curr = &gdbarch_registrary;
(*curr) != NULL;
curr = &(*curr)->next)
{
if (bfd_architecture == (*curr)->bfd_architecture)
internal_error ("gdbarch: Duplicate registraration of architecture (%s)",
bfd_arch_info->printable_name);
}
/* log it */
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
bfd_arch_info->printable_name,
(long) init);
/* Append it */
(*curr) = XMALLOC (struct gdbarch_registration);
(*curr)->bfd_architecture = bfd_architecture;
(*curr)->init = init;
(*curr)->dump_tdep = dump_tdep;
(*curr)->arches = NULL;
(*curr)->next = NULL;
/* When non- multi-arch, install what ever target dump routine we've
been provided - hopefully that routine has been writen correct
and works regardless of multi-arch. */
if (!GDB_MULTI_ARCH && dump_tdep != NULL
&& startup_gdbarch.dump_tdep == NULL)
startup_gdbarch.dump_tdep = dump_tdep;
}
void
register_gdbarch_init (enum bfd_architecture bfd_architecture,
gdbarch_init_ftype *init)
{
gdbarch_register (bfd_architecture, init, NULL);
}
/* Look for an architecture using gdbarch_info. Base search on only
BFD_ARCH_INFO and BYTE_ORDER. */
struct gdbarch_list *
gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
const struct gdbarch_info *info)
{
for (; arches != NULL; arches = arches->next)
{
if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
continue;
if (info->byte_order != arches->gdbarch->byte_order)
continue;
return arches;
}
return NULL;
}
/* Update the current architecture. Return ZERO if the update request
failed. */
int
gdbarch_update (struct gdbarch_info info)
{
struct gdbarch *new_gdbarch;
struct gdbarch_list **list;
struct gdbarch_registration *rego;
/* Fill in any missing bits. Most important is the bfd_architecture
which is used to select the target architecture. */
if (info.bfd_architecture == bfd_arch_unknown)
{
if (info.bfd_arch_info != NULL)
info.bfd_architecture = info.bfd_arch_info->arch;
else if (info.abfd != NULL)
info.bfd_architecture = bfd_get_arch (info.abfd);
/* FIXME - should query BFD for its default architecture. */
else
info.bfd_architecture = current_gdbarch->bfd_arch_info->arch;
}
if (info.bfd_arch_info == NULL)
{
if (target_architecture_auto && info.abfd != NULL)
info.bfd_arch_info = bfd_get_arch_info (info.abfd);
else
info.bfd_arch_info = current_gdbarch->bfd_arch_info;
}
if (info.byte_order == 0)
{
if (target_byte_order_auto && info.abfd != NULL)
info.byte_order = (bfd_big_endian (info.abfd) ? BIG_ENDIAN
: bfd_little_endian (info.abfd) ? LITTLE_ENDIAN
: 0);
else
info.byte_order = current_gdbarch->byte_order;
/* FIXME - should query BFD for its default byte-order. */
}
/* A default for abfd? */
/* Find the target that knows about this architecture. */
for (rego = gdbarch_registrary;
rego != NULL;
rego = rego->next)
if (rego->bfd_architecture == info.bfd_architecture)
break;
if (rego == NULL)
{
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\n");
return 0;
}
if (gdbarch_debug)
{
fprintf_unfiltered (gdb_stdlog,
"gdbarch_update: info.bfd_architecture %d (%s)\n",
info.bfd_architecture,
bfd_lookup_arch (info.bfd_architecture, 0)->printable_name);
fprintf_unfiltered (gdb_stdlog,
"gdbarch_update: info.bfd_arch_info %s\n",
(info.bfd_arch_info != NULL
? info.bfd_arch_info->printable_name
: "(null)"));
fprintf_unfiltered (gdb_stdlog,
"gdbarch_update: info.byte_order %d (%s)\n",
info.byte_order,
(info.byte_order == BIG_ENDIAN ? "big"
: info.byte_order == LITTLE_ENDIAN ? "little"
: "default"));
fprintf_unfiltered (gdb_stdlog,
"gdbarch_update: info.abfd 0x%lx\n",
(long) info.abfd);
fprintf_unfiltered (gdb_stdlog,
"gdbarch_update: info.tdep_info 0x%lx\n",
(long) info.tdep_info);
}
/* Ask the target for a replacement architecture. */
new_gdbarch = rego->init (info, rego->arches);
/* Did the target like it? No. Reject the change. */
if (new_gdbarch == NULL)
{
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\n");
return 0;
}
/* Did the architecture change? No. Do nothing. */
if (current_gdbarch == new_gdbarch)
{
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\n",
(long) new_gdbarch,
new_gdbarch->bfd_arch_info->printable_name);
return 1;
}
/* Swap all data belonging to the old target out */
swapout_gdbarch_swap (current_gdbarch);
/* Is this a pre-existing architecture? Yes. Swap it in. */
for (list = &rego->arches;
(*list) != NULL;
list = &(*list)->next)
{
if ((*list)->gdbarch == new_gdbarch)
{
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog,
"gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
(long) new_gdbarch,
new_gdbarch->bfd_arch_info->printable_name);
current_gdbarch = new_gdbarch;
swapin_gdbarch_swap (new_gdbarch);
return 1;
}
}
/* Append this new architecture to this targets list. */
(*list) = XMALLOC (struct gdbarch_list);
(*list)->next = NULL;
(*list)->gdbarch = new_gdbarch;
/* Switch to this new architecture. Dump it out. */
current_gdbarch = new_gdbarch;
if (gdbarch_debug)
{
fprintf_unfiltered (gdb_stdlog,
"gdbarch_update: New architecture 0x%08lx (%s) selected\n",
(long) new_gdbarch,
new_gdbarch->bfd_arch_info->printable_name);
}
/* Check that the newly installed architecture is valid. Plug in
any post init values. */
new_gdbarch->dump_tdep = rego->dump_tdep;
verify_gdbarch (new_gdbarch);
/* Initialize the per-architecture memory (swap) areas.
CURRENT_GDBARCH must be update before these modules are
called. */
init_gdbarch_swap (new_gdbarch);
/* Initialize the per-architecture data-pointer of all parties that
registered an interest in this architecture. CURRENT_GDBARCH
must be updated before these modules are called. */
init_gdbarch_data (new_gdbarch);
if (gdbarch_debug)
gdbarch_dump (current_gdbarch, gdb_stdlog);
return 1;
}
/* Disassembler */
/* Pointer to the target-dependent disassembly function. */
int (*tm_print_insn) (bfd_vma, disassemble_info *);
disassemble_info tm_print_insn_info;
extern void _initialize_gdbarch (void);
void
_initialize_gdbarch (void)
{
struct cmd_list_element *c;
INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
tm_print_insn_info.flavour = bfd_target_unknown_flavour;
tm_print_insn_info.read_memory_func = dis_asm_read_memory;
tm_print_insn_info.memory_error_func = dis_asm_memory_error;
tm_print_insn_info.print_address_func = dis_asm_print_address;
add_show_from_set (add_set_cmd ("arch",
class_maintenance,
var_zinteger,
(char *)&gdbarch_debug,
"Set architecture debugging.\n\\
When non-zero, architecture debugging is enabled.", &setdebuglist),
&showdebuglist);
c = add_set_cmd ("archdebug",
class_maintenance,
var_zinteger,
(char *)&gdbarch_debug,
"Set architecture debugging.\n\\
When non-zero, architecture debugging is enabled.", &setlist);
deprecate_cmd (c, "set debug arch");
deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
}
EOF
# close things off
exec 1>&2
#../move-if-change new-gdbarch.c gdbarch.c
compare_new gdbarch.c