mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-24 10:35:12 +08:00
5bbd8269fa
Currently GDB supports a byte or bit stride on arrays, in DWARF this would be DW_AT_bit_stride or DW_AT_byte_stride on DW_TAG_array_type. However, DWARF can also support DW_AT_byte_stride or DW_AT_bit_stride on DW_TAG_subrange_type, the tag used to describe each dimension of an array. Strides on subranges are used by gFortran to represent Fortran arrays, and this commit adds support for this to GDB. I've extended the range_bounds struct to include the stride information. The name is possibly a little inaccurate now, but this still sort of makes sense, the structure represents information about the bounds of the range, and also how to move from the lower to the upper bound (the stride). I've added initial support for bit strides, but I've never actually seen an example of this being generated. Further, I don't really see right now how GDB would currently handle a bit stride that was not a multiple of the byte size as the code in, for example, valarith.c:value_subscripted_rvalue seems geared around byte addressing. As a consequence if we see a bit stride that is not a multiple of 8 then GDB will give an error. gdb/ChangeLog: * dwarf2read.c (read_subrange_type): Read bit and byte stride and create a range with stride where appropriate. * f-valprint.c: Include 'gdbarch.h'. (f77_print_array_1): Take the stride into account when walking the array. Also convert the stride into addressable units. * gdbtypes.c (create_range_type): Initialise the stride to constant zero. (create_range_type_with_stride): New function, initialise the range as normal, and then setup the stride. (has_static_range): Include the stride here. Also change the return type to bool. (create_array_type_with_stride): Consider the range stride if the array isn't given its own stride. (resolve_dynamic_range): Resolve the stride if needed. * gdbtypes.h (struct range_bounds) <stride>: New member variable. (struct range_bounds) <flag_is_byte_stride>: New member variable. (TYPE_BIT_STRIDE): Define. (TYPE_ARRAY_BIT_STRIDE): Define. (create_range_type_with_stride): Declare. * valarith.c (value_subscripted_rvalue): Take range stride into account when walking the array. gdb/testsuite/ChangeLog: * gdb.fortran/derived-type-striding.exp: New file. * gdb.fortran/derived-type-striding.f90: New file. * gdb.fortran/array-slices.exp: New file. * gdb.fortran/array-slices.f90: New file. Change-Id: I9af2bcd1f2d4c56f76f5f3f9f89d8f06bef10d9a
488 lines
14 KiB
C
488 lines
14 KiB
C
/* Support for printing Fortran values for GDB, the GNU debugger.
|
||
|
||
Copyright (C) 1993-2019 Free Software Foundation, Inc.
|
||
|
||
Contributed by Motorola. Adapted from the C definitions by Farooq Butt
|
||
(fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "expression.h"
|
||
#include "value.h"
|
||
#include "valprint.h"
|
||
#include "language.h"
|
||
#include "f-lang.h"
|
||
#include "frame.h"
|
||
#include "gdbcore.h"
|
||
#include "command.h"
|
||
#include "block.h"
|
||
#include "dictionary.h"
|
||
#include "cli/cli-style.h"
|
||
#include "gdbarch.h"
|
||
|
||
static void f77_get_dynamic_length_of_aggregate (struct type *);
|
||
|
||
int f77_array_offset_tbl[MAX_FORTRAN_DIMS + 1][2];
|
||
|
||
/* Array which holds offsets to be applied to get a row's elements
|
||
for a given array. Array also holds the size of each subarray. */
|
||
|
||
LONGEST
|
||
f77_get_lowerbound (struct type *type)
|
||
{
|
||
if (TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
|
||
error (_("Lower bound may not be '*' in F77"));
|
||
|
||
return TYPE_ARRAY_LOWER_BOUND_VALUE (type);
|
||
}
|
||
|
||
LONGEST
|
||
f77_get_upperbound (struct type *type)
|
||
{
|
||
if (TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
|
||
{
|
||
/* We have an assumed size array on our hands. Assume that
|
||
upper_bound == lower_bound so that we show at least 1 element.
|
||
If the user wants to see more elements, let him manually ask for 'em
|
||
and we'll subscript the array and show him. */
|
||
|
||
return f77_get_lowerbound (type);
|
||
}
|
||
|
||
return TYPE_ARRAY_UPPER_BOUND_VALUE (type);
|
||
}
|
||
|
||
/* Obtain F77 adjustable array dimensions. */
|
||
|
||
static void
|
||
f77_get_dynamic_length_of_aggregate (struct type *type)
|
||
{
|
||
int upper_bound = -1;
|
||
int lower_bound = 1;
|
||
|
||
/* Recursively go all the way down into a possibly multi-dimensional
|
||
F77 array and get the bounds. For simple arrays, this is pretty
|
||
easy but when the bounds are dynamic, we must be very careful
|
||
to add up all the lengths correctly. Not doing this right
|
||
will lead to horrendous-looking arrays in parameter lists.
|
||
|
||
This function also works for strings which behave very
|
||
similarly to arrays. */
|
||
|
||
if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY
|
||
|| TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING)
|
||
f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type));
|
||
|
||
/* Recursion ends here, start setting up lengths. */
|
||
lower_bound = f77_get_lowerbound (type);
|
||
upper_bound = f77_get_upperbound (type);
|
||
|
||
/* Patch in a valid length value. */
|
||
|
||
TYPE_LENGTH (type) =
|
||
(upper_bound - lower_bound + 1)
|
||
* TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type)));
|
||
}
|
||
|
||
/* Actual function which prints out F77 arrays, Valaddr == address in
|
||
the superior. Address == the address in the inferior. */
|
||
|
||
static void
|
||
f77_print_array_1 (int nss, int ndimensions, struct type *type,
|
||
const gdb_byte *valaddr,
|
||
int embedded_offset, CORE_ADDR address,
|
||
struct ui_file *stream, int recurse,
|
||
const struct value *val,
|
||
const struct value_print_options *options,
|
||
int *elts)
|
||
{
|
||
struct type *range_type = TYPE_INDEX_TYPE (check_typedef (type));
|
||
CORE_ADDR addr = address + embedded_offset;
|
||
LONGEST lowerbound, upperbound;
|
||
int i;
|
||
|
||
get_discrete_bounds (range_type, &lowerbound, &upperbound);
|
||
|
||
if (nss != ndimensions)
|
||
{
|
||
struct gdbarch *gdbarch = get_type_arch (type);
|
||
size_t dim_size = type_length_units (TYPE_TARGET_TYPE (type));
|
||
int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
|
||
size_t byte_stride = TYPE_ARRAY_BIT_STRIDE (type) / (unit_size * 8);
|
||
if (byte_stride == 0)
|
||
byte_stride = dim_size;
|
||
size_t offs = 0;
|
||
|
||
for (i = lowerbound;
|
||
(i < upperbound + 1 && (*elts) < options->print_max);
|
||
i++)
|
||
{
|
||
struct value *subarray = value_from_contents_and_address
|
||
(TYPE_TARGET_TYPE (type), value_contents_for_printing_const (val)
|
||
+ offs, addr + offs);
|
||
|
||
fprintf_filtered (stream, "( ");
|
||
f77_print_array_1 (nss + 1, ndimensions, value_type (subarray),
|
||
value_contents_for_printing (subarray),
|
||
value_embedded_offset (subarray),
|
||
value_address (subarray),
|
||
stream, recurse, subarray, options, elts);
|
||
offs += byte_stride;
|
||
fprintf_filtered (stream, ") ");
|
||
}
|
||
if (*elts >= options->print_max && i < upperbound)
|
||
fprintf_filtered (stream, "...");
|
||
}
|
||
else
|
||
{
|
||
for (i = lowerbound; i < upperbound + 1 && (*elts) < options->print_max;
|
||
i++, (*elts)++)
|
||
{
|
||
struct value *elt = value_subscript ((struct value *)val, i);
|
||
|
||
val_print (value_type (elt),
|
||
value_embedded_offset (elt),
|
||
value_address (elt), stream, recurse,
|
||
elt, options, current_language);
|
||
|
||
if (i != upperbound)
|
||
fprintf_filtered (stream, ", ");
|
||
|
||
if ((*elts == options->print_max - 1)
|
||
&& (i != upperbound))
|
||
fprintf_filtered (stream, "...");
|
||
}
|
||
}
|
||
}
|
||
|
||
/* This function gets called to print an F77 array, we set up some
|
||
stuff and then immediately call f77_print_array_1(). */
|
||
|
||
static void
|
||
f77_print_array (struct type *type, const gdb_byte *valaddr,
|
||
int embedded_offset,
|
||
CORE_ADDR address, struct ui_file *stream,
|
||
int recurse,
|
||
const struct value *val,
|
||
const struct value_print_options *options)
|
||
{
|
||
int ndimensions;
|
||
int elts = 0;
|
||
|
||
ndimensions = calc_f77_array_dims (type);
|
||
|
||
if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0)
|
||
error (_("\
|
||
Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)"),
|
||
ndimensions, MAX_FORTRAN_DIMS);
|
||
|
||
f77_print_array_1 (1, ndimensions, type, valaddr, embedded_offset,
|
||
address, stream, recurse, val, options, &elts);
|
||
}
|
||
|
||
|
||
/* Decorations for Fortran. */
|
||
|
||
static const struct generic_val_print_decorations f_decorations =
|
||
{
|
||
"(",
|
||
",",
|
||
")",
|
||
".TRUE.",
|
||
".FALSE.",
|
||
"void",
|
||
"{",
|
||
"}"
|
||
};
|
||
|
||
/* See val_print for a description of the various parameters of this
|
||
function; they are identical. */
|
||
|
||
void
|
||
f_val_print (struct type *type, int embedded_offset,
|
||
CORE_ADDR address, struct ui_file *stream, int recurse,
|
||
struct value *original_value,
|
||
const struct value_print_options *options)
|
||
{
|
||
struct gdbarch *gdbarch = get_type_arch (type);
|
||
int printed_field = 0; /* Number of fields printed. */
|
||
struct type *elttype;
|
||
CORE_ADDR addr;
|
||
int index;
|
||
const gdb_byte *valaddr =value_contents_for_printing (original_value);
|
||
|
||
type = check_typedef (type);
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_STRING:
|
||
f77_get_dynamic_length_of_aggregate (type);
|
||
LA_PRINT_STRING (stream, builtin_type (gdbarch)->builtin_char,
|
||
valaddr + embedded_offset,
|
||
TYPE_LENGTH (type), NULL, 0, options);
|
||
break;
|
||
|
||
case TYPE_CODE_ARRAY:
|
||
if (TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_CHAR)
|
||
{
|
||
fprintf_filtered (stream, "(");
|
||
f77_print_array (type, valaddr, embedded_offset,
|
||
address, stream, recurse, original_value, options);
|
||
fprintf_filtered (stream, ")");
|
||
}
|
||
else
|
||
{
|
||
struct type *ch_type = TYPE_TARGET_TYPE (type);
|
||
|
||
f77_get_dynamic_length_of_aggregate (type);
|
||
LA_PRINT_STRING (stream, ch_type,
|
||
valaddr + embedded_offset,
|
||
TYPE_LENGTH (type) / TYPE_LENGTH (ch_type),
|
||
NULL, 0, options);
|
||
}
|
||
break;
|
||
|
||
case TYPE_CODE_PTR:
|
||
if (options->format && options->format != 's')
|
||
{
|
||
val_print_scalar_formatted (type, embedded_offset,
|
||
original_value, options, 0, stream);
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
int want_space = 0;
|
||
|
||
addr = unpack_pointer (type, valaddr + embedded_offset);
|
||
elttype = check_typedef (TYPE_TARGET_TYPE (type));
|
||
|
||
if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
|
||
{
|
||
/* Try to print what function it points to. */
|
||
print_function_pointer_address (options, gdbarch, addr, stream);
|
||
return;
|
||
}
|
||
|
||
if (options->symbol_print)
|
||
want_space = print_address_demangle (options, gdbarch, addr,
|
||
stream, demangle);
|
||
else if (options->addressprint && options->format != 's')
|
||
{
|
||
fputs_filtered (paddress (gdbarch, addr), stream);
|
||
want_space = 1;
|
||
}
|
||
|
||
/* For a pointer to char or unsigned char, also print the string
|
||
pointed to, unless pointer is null. */
|
||
if (TYPE_LENGTH (elttype) == 1
|
||
&& TYPE_CODE (elttype) == TYPE_CODE_INT
|
||
&& (options->format == 0 || options->format == 's')
|
||
&& addr != 0)
|
||
{
|
||
if (want_space)
|
||
fputs_filtered (" ", stream);
|
||
val_print_string (TYPE_TARGET_TYPE (type), NULL, addr, -1,
|
||
stream, options);
|
||
}
|
||
return;
|
||
}
|
||
break;
|
||
|
||
case TYPE_CODE_INT:
|
||
if (options->format || options->output_format)
|
||
{
|
||
struct value_print_options opts = *options;
|
||
|
||
opts.format = (options->format ? options->format
|
||
: options->output_format);
|
||
val_print_scalar_formatted (type, embedded_offset,
|
||
original_value, &opts, 0, stream);
|
||
}
|
||
else
|
||
val_print_scalar_formatted (type, embedded_offset,
|
||
original_value, options, 0, stream);
|
||
break;
|
||
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
/* Starting from the Fortran 90 standard, Fortran supports derived
|
||
types. */
|
||
fprintf_filtered (stream, "( ");
|
||
for (index = 0; index < TYPE_NFIELDS (type); index++)
|
||
{
|
||
struct value *field = value_field
|
||
((struct value *)original_value, index);
|
||
|
||
struct type *field_type = check_typedef (TYPE_FIELD_TYPE (type, index));
|
||
|
||
|
||
if (TYPE_CODE (field_type) != TYPE_CODE_FUNC)
|
||
{
|
||
const char *field_name;
|
||
|
||
if (printed_field > 0)
|
||
fputs_filtered (", ", stream);
|
||
|
||
field_name = TYPE_FIELD_NAME (type, index);
|
||
if (field_name != NULL)
|
||
{
|
||
fputs_filtered (field_name, stream);
|
||
fputs_filtered (" = ", stream);
|
||
}
|
||
|
||
val_print (value_type (field),
|
||
value_embedded_offset (field),
|
||
value_address (field), stream, recurse + 1,
|
||
field, options, current_language);
|
||
|
||
++printed_field;
|
||
}
|
||
}
|
||
fprintf_filtered (stream, " )");
|
||
break;
|
||
|
||
case TYPE_CODE_REF:
|
||
case TYPE_CODE_FUNC:
|
||
case TYPE_CODE_FLAGS:
|
||
case TYPE_CODE_FLT:
|
||
case TYPE_CODE_VOID:
|
||
case TYPE_CODE_ERROR:
|
||
case TYPE_CODE_RANGE:
|
||
case TYPE_CODE_UNDEF:
|
||
case TYPE_CODE_COMPLEX:
|
||
case TYPE_CODE_BOOL:
|
||
case TYPE_CODE_CHAR:
|
||
default:
|
||
generic_val_print (type, embedded_offset, address,
|
||
stream, recurse, original_value, options,
|
||
&f_decorations);
|
||
break;
|
||
}
|
||
}
|
||
|
||
static void
|
||
info_common_command_for_block (const struct block *block, const char *comname,
|
||
int *any_printed)
|
||
{
|
||
struct block_iterator iter;
|
||
struct symbol *sym;
|
||
struct value_print_options opts;
|
||
|
||
get_user_print_options (&opts);
|
||
|
||
ALL_BLOCK_SYMBOLS (block, iter, sym)
|
||
if (SYMBOL_DOMAIN (sym) == COMMON_BLOCK_DOMAIN)
|
||
{
|
||
const struct common_block *common = SYMBOL_VALUE_COMMON_BLOCK (sym);
|
||
size_t index;
|
||
|
||
gdb_assert (SYMBOL_CLASS (sym) == LOC_COMMON_BLOCK);
|
||
|
||
if (comname && (!sym->linkage_name ()
|
||
|| strcmp (comname, sym->linkage_name ()) != 0))
|
||
continue;
|
||
|
||
if (*any_printed)
|
||
putchar_filtered ('\n');
|
||
else
|
||
*any_printed = 1;
|
||
if (sym->print_name ())
|
||
printf_filtered (_("Contents of F77 COMMON block '%s':\n"),
|
||
sym->print_name ());
|
||
else
|
||
printf_filtered (_("Contents of blank COMMON block:\n"));
|
||
|
||
for (index = 0; index < common->n_entries; index++)
|
||
{
|
||
struct value *val = NULL;
|
||
|
||
printf_filtered ("%s = ",
|
||
common->contents[index]->print_name ());
|
||
|
||
try
|
||
{
|
||
val = value_of_variable (common->contents[index], block);
|
||
value_print (val, gdb_stdout, &opts);
|
||
}
|
||
|
||
catch (const gdb_exception_error &except)
|
||
{
|
||
fprintf_styled (gdb_stdout, metadata_style.style (),
|
||
"<error reading variable: %s>",
|
||
except.what ());
|
||
}
|
||
|
||
putchar_filtered ('\n');
|
||
}
|
||
}
|
||
}
|
||
|
||
/* This function is used to print out the values in a given COMMON
|
||
block. It will always use the most local common block of the
|
||
given name. */
|
||
|
||
static void
|
||
info_common_command (const char *comname, int from_tty)
|
||
{
|
||
struct frame_info *fi;
|
||
const struct block *block;
|
||
int values_printed = 0;
|
||
|
||
/* We have been told to display the contents of F77 COMMON
|
||
block supposedly visible in this function. Let us
|
||
first make sure that it is visible and if so, let
|
||
us display its contents. */
|
||
|
||
fi = get_selected_frame (_("No frame selected"));
|
||
|
||
/* The following is generally ripped off from stack.c's routine
|
||
print_frame_info(). */
|
||
|
||
block = get_frame_block (fi, 0);
|
||
if (block == NULL)
|
||
{
|
||
printf_filtered (_("No symbol table info available.\n"));
|
||
return;
|
||
}
|
||
|
||
while (block)
|
||
{
|
||
info_common_command_for_block (block, comname, &values_printed);
|
||
/* After handling the function's top-level block, stop. Don't
|
||
continue to its superblock, the block of per-file symbols. */
|
||
if (BLOCK_FUNCTION (block))
|
||
break;
|
||
block = BLOCK_SUPERBLOCK (block);
|
||
}
|
||
|
||
if (!values_printed)
|
||
{
|
||
if (comname)
|
||
printf_filtered (_("No common block '%s'.\n"), comname);
|
||
else
|
||
printf_filtered (_("No common blocks.\n"));
|
||
}
|
||
}
|
||
|
||
void
|
||
_initialize_f_valprint (void)
|
||
{
|
||
add_info ("common", info_common_command,
|
||
_("Print out the values contained in a Fortran COMMON block."));
|
||
}
|