mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-25 02:53:48 +08:00
f7b7ed97a2
This patch is an initial C++-ification of pv_area, from prologue-value. It turns pv_area into a class with a constructor and destructor; renames the data members; and changes various functions to be member functions. This allows the removal of make_cleanup_free_pv_area. gdb/ChangeLog 2017-10-12 Tom Tromey <tom@tromey.com> * s390-linux-tdep.c (s390_store, s390_load) (s390_check_for_saved, s390_analyze_prologue): Update. * rx-tdep.c (check_for_saved, rx_analyze_prologue): Update. * rl78-tdep.c (rl78_analyze_prologue, check_for_saved): Update. * prologue-value.h (class pv_area): Move from prologue-value.c. Change names of members. Add constructor, destructor, member functions. (make_pv_area, free_pv_area, make_cleanup_free_pv_area) (pv_area_store, pv_area_fetch, pv_area_store_would_trash) (pv_area_fetch, pv_area_scan): Don't declare. * prologue-value.c (struct pv_area::area_entry): Now member of pv_area. (struct pv_area): Move to prologue-value.h. (pv_area::pv_area): Rename from make_pv_area. (pv_area::~pv_area): Rename from free_pv_area. (do_free_pv_area_cleanup, make_cleanup_free_pv_area): Remove. (clear_entries, find_entry, overlaps, store_would_trash, store) (fetch, find_reg, scan): Now member of pv_area. Remove "area" argument. Update. * msp430-tdep.c (check_for_saved, msp430_analyze_prologue): Update. * mn10300-tdep.c (push_reg, check_for_saved) (mn10300_analyze_prologue): Update. * mep-tdep.c (is_arg_spill, check_for_saved) (mep_analyze_prologue): Update. * m32c-tdep.c (m32c_pv_push, m32c_srcdest_fetch) (m32c_srcdest_store, m32c_pv_enter, m32c_is_arg_spill) (m32c_is_struct_return, m32c_analyze_prologue): Update. * arm-tdep.c (thumb_analyze_prologue, arm_analyze_prologue): Update. * arc-tdep.c (arc_is_in_prologue, arc_analyze_prologue): Update. * aarch64-tdep.c (aarch64_analyze_prologue): Update.
1473 lines
41 KiB
C
1473 lines
41 KiB
C
/* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
|
|
|
|
Copyright (C) 1996-2017 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "arch-utils.h"
|
|
#include "dis-asm.h"
|
|
#include "gdbtypes.h"
|
|
#include "regcache.h"
|
|
#include "gdbcore.h" /* For write_memory_unsigned_integer. */
|
|
#include "value.h"
|
|
#include "frame.h"
|
|
#include "frame-unwind.h"
|
|
#include "frame-base.h"
|
|
#include "symtab.h"
|
|
#include "dwarf2-frame.h"
|
|
#include "osabi.h"
|
|
#include "infcall.h"
|
|
#include "prologue-value.h"
|
|
#include "target.h"
|
|
|
|
#include "mn10300-tdep.h"
|
|
|
|
|
|
/* The am33-2 has 64 registers. */
|
|
#define MN10300_MAX_NUM_REGS 64
|
|
|
|
/* Big enough to hold the size of the largest register in bytes. */
|
|
#define MN10300_MAX_REGISTER_SIZE 64
|
|
|
|
/* This structure holds the results of a prologue analysis. */
|
|
struct mn10300_prologue
|
|
{
|
|
/* The architecture for which we generated this prologue info. */
|
|
struct gdbarch *gdbarch;
|
|
|
|
/* The offset from the frame base to the stack pointer --- always
|
|
zero or negative.
|
|
|
|
Calling this a "size" is a bit misleading, but given that the
|
|
stack grows downwards, using offsets for everything keeps one
|
|
from going completely sign-crazy: you never change anything's
|
|
sign for an ADD instruction; always change the second operand's
|
|
sign for a SUB instruction; and everything takes care of
|
|
itself. */
|
|
int frame_size;
|
|
|
|
/* Non-zero if this function has initialized the frame pointer from
|
|
the stack pointer, zero otherwise. */
|
|
int has_frame_ptr;
|
|
|
|
/* If has_frame_ptr is non-zero, this is the offset from the frame
|
|
base to where the frame pointer points. This is always zero or
|
|
negative. */
|
|
int frame_ptr_offset;
|
|
|
|
/* The address of the first instruction at which the frame has been
|
|
set up and the arguments are where the debug info says they are
|
|
--- as best as we can tell. */
|
|
CORE_ADDR prologue_end;
|
|
|
|
/* reg_offset[R] is the offset from the CFA at which register R is
|
|
saved, or 1 if register R has not been saved. (Real values are
|
|
always zero or negative.) */
|
|
int reg_offset[MN10300_MAX_NUM_REGS];
|
|
};
|
|
|
|
|
|
/* Compute the alignment required by a type. */
|
|
|
|
static int
|
|
mn10300_type_align (struct type *type)
|
|
{
|
|
int i, align = 1;
|
|
|
|
switch (TYPE_CODE (type))
|
|
{
|
|
case TYPE_CODE_INT:
|
|
case TYPE_CODE_ENUM:
|
|
case TYPE_CODE_SET:
|
|
case TYPE_CODE_RANGE:
|
|
case TYPE_CODE_CHAR:
|
|
case TYPE_CODE_BOOL:
|
|
case TYPE_CODE_FLT:
|
|
case TYPE_CODE_PTR:
|
|
case TYPE_CODE_REF:
|
|
case TYPE_CODE_RVALUE_REF:
|
|
return TYPE_LENGTH (type);
|
|
|
|
case TYPE_CODE_COMPLEX:
|
|
return TYPE_LENGTH (type) / 2;
|
|
|
|
case TYPE_CODE_STRUCT:
|
|
case TYPE_CODE_UNION:
|
|
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
|
{
|
|
int falign = mn10300_type_align (TYPE_FIELD_TYPE (type, i));
|
|
while (align < falign)
|
|
align <<= 1;
|
|
}
|
|
return align;
|
|
|
|
case TYPE_CODE_ARRAY:
|
|
/* HACK! Structures containing arrays, even small ones, are not
|
|
elligible for returning in registers. */
|
|
return 256;
|
|
|
|
case TYPE_CODE_TYPEDEF:
|
|
return mn10300_type_align (check_typedef (type));
|
|
|
|
default:
|
|
internal_error (__FILE__, __LINE__, _("bad switch"));
|
|
}
|
|
}
|
|
|
|
/* Should call_function allocate stack space for a struct return? */
|
|
static int
|
|
mn10300_use_struct_convention (struct type *type)
|
|
{
|
|
/* Structures bigger than a pair of words can't be returned in
|
|
registers. */
|
|
if (TYPE_LENGTH (type) > 8)
|
|
return 1;
|
|
|
|
switch (TYPE_CODE (type))
|
|
{
|
|
case TYPE_CODE_STRUCT:
|
|
case TYPE_CODE_UNION:
|
|
/* Structures with a single field are handled as the field
|
|
itself. */
|
|
if (TYPE_NFIELDS (type) == 1)
|
|
return mn10300_use_struct_convention (TYPE_FIELD_TYPE (type, 0));
|
|
|
|
/* Structures with word or double-word size are passed in memory, as
|
|
long as they require at least word alignment. */
|
|
if (mn10300_type_align (type) >= 4)
|
|
return 0;
|
|
|
|
return 1;
|
|
|
|
/* Arrays are addressable, so they're never returned in
|
|
registers. This condition can only hold when the array is
|
|
the only field of a struct or union. */
|
|
case TYPE_CODE_ARRAY:
|
|
return 1;
|
|
|
|
case TYPE_CODE_TYPEDEF:
|
|
return mn10300_use_struct_convention (check_typedef (type));
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
mn10300_store_return_value (struct gdbarch *gdbarch, struct type *type,
|
|
struct regcache *regcache, const gdb_byte *valbuf)
|
|
{
|
|
int len = TYPE_LENGTH (type);
|
|
int reg, regsz;
|
|
|
|
if (TYPE_CODE (type) == TYPE_CODE_PTR)
|
|
reg = 4;
|
|
else
|
|
reg = 0;
|
|
|
|
regsz = register_size (gdbarch, reg);
|
|
|
|
if (len <= regsz)
|
|
regcache_raw_write_part (regcache, reg, 0, len, valbuf);
|
|
else if (len <= 2 * regsz)
|
|
{
|
|
regcache_raw_write (regcache, reg, valbuf);
|
|
gdb_assert (regsz == register_size (gdbarch, reg + 1));
|
|
regcache_raw_write_part (regcache, reg+1, 0,
|
|
len - regsz, valbuf + regsz);
|
|
}
|
|
else
|
|
internal_error (__FILE__, __LINE__,
|
|
_("Cannot store return value %d bytes long."), len);
|
|
}
|
|
|
|
static void
|
|
mn10300_extract_return_value (struct gdbarch *gdbarch, struct type *type,
|
|
struct regcache *regcache, void *valbuf)
|
|
{
|
|
gdb_byte buf[MN10300_MAX_REGISTER_SIZE];
|
|
int len = TYPE_LENGTH (type);
|
|
int reg, regsz;
|
|
|
|
if (TYPE_CODE (type) == TYPE_CODE_PTR)
|
|
reg = 4;
|
|
else
|
|
reg = 0;
|
|
|
|
regsz = register_size (gdbarch, reg);
|
|
gdb_assert (regsz <= MN10300_MAX_REGISTER_SIZE);
|
|
if (len <= regsz)
|
|
{
|
|
regcache_raw_read (regcache, reg, buf);
|
|
memcpy (valbuf, buf, len);
|
|
}
|
|
else if (len <= 2 * regsz)
|
|
{
|
|
regcache_raw_read (regcache, reg, buf);
|
|
memcpy (valbuf, buf, regsz);
|
|
gdb_assert (regsz == register_size (gdbarch, reg + 1));
|
|
regcache_raw_read (regcache, reg + 1, buf);
|
|
memcpy ((char *) valbuf + regsz, buf, len - regsz);
|
|
}
|
|
else
|
|
internal_error (__FILE__, __LINE__,
|
|
_("Cannot extract return value %d bytes long."), len);
|
|
}
|
|
|
|
/* Determine, for architecture GDBARCH, how a return value of TYPE
|
|
should be returned. If it is supposed to be returned in registers,
|
|
and READBUF is non-zero, read the appropriate value from REGCACHE,
|
|
and copy it into READBUF. If WRITEBUF is non-zero, write the value
|
|
from WRITEBUF into REGCACHE. */
|
|
|
|
static enum return_value_convention
|
|
mn10300_return_value (struct gdbarch *gdbarch, struct value *function,
|
|
struct type *type, struct regcache *regcache,
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
|
{
|
|
if (mn10300_use_struct_convention (type))
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
|
|
if (readbuf)
|
|
mn10300_extract_return_value (gdbarch, type, regcache, readbuf);
|
|
if (writebuf)
|
|
mn10300_store_return_value (gdbarch, type, regcache, writebuf);
|
|
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
|
|
static const char *
|
|
register_name (int reg, const char **regs, long sizeof_regs)
|
|
{
|
|
if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
|
|
return NULL;
|
|
else
|
|
return regs[reg];
|
|
}
|
|
|
|
static const char *
|
|
mn10300_generic_register_name (struct gdbarch *gdbarch, int reg)
|
|
{
|
|
static const char *regs[] =
|
|
{ "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
|
|
"sp", "pc", "mdr", "psw", "lir", "lar", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "fp"
|
|
};
|
|
return register_name (reg, regs, sizeof regs);
|
|
}
|
|
|
|
|
|
static const char *
|
|
am33_register_name (struct gdbarch *gdbarch, int reg)
|
|
{
|
|
static const char *regs[] =
|
|
{ "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
|
|
"sp", "pc", "mdr", "psw", "lir", "lar", "",
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
|
|
};
|
|
return register_name (reg, regs, sizeof regs);
|
|
}
|
|
|
|
static const char *
|
|
am33_2_register_name (struct gdbarch *gdbarch, int reg)
|
|
{
|
|
static const char *regs[] =
|
|
{
|
|
"d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
|
|
"sp", "pc", "mdr", "psw", "lir", "lar", "mdrq", "r0",
|
|
"r1", "r2", "r3", "r4", "r5", "r6", "r7", "ssp",
|
|
"msp", "usp", "mcrh", "mcrl", "mcvf", "fpcr", "", "",
|
|
"fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7",
|
|
"fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15",
|
|
"fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23",
|
|
"fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31"
|
|
};
|
|
return register_name (reg, regs, sizeof regs);
|
|
}
|
|
|
|
static struct type *
|
|
mn10300_register_type (struct gdbarch *gdbarch, int reg)
|
|
{
|
|
return builtin_type (gdbarch)->builtin_int;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
mn10300_read_pc (struct regcache *regcache)
|
|
{
|
|
ULONGEST val;
|
|
regcache_cooked_read_unsigned (regcache, E_PC_REGNUM, &val);
|
|
return val;
|
|
}
|
|
|
|
static void
|
|
mn10300_write_pc (struct regcache *regcache, CORE_ADDR val)
|
|
{
|
|
regcache_cooked_write_unsigned (regcache, E_PC_REGNUM, val);
|
|
}
|
|
|
|
/* The breakpoint instruction must be the same size as the smallest
|
|
instruction in the instruction set.
|
|
|
|
The Matsushita mn10x00 processors have single byte instructions
|
|
so we need a single byte breakpoint. Matsushita hasn't defined
|
|
one, so we defined it ourselves. */
|
|
constexpr gdb_byte mn10300_break_insn[] = {0xff};
|
|
|
|
typedef BP_MANIPULATION (mn10300_break_insn) mn10300_breakpoint;
|
|
|
|
/* Model the semantics of pushing a register onto the stack. This
|
|
is a helper function for mn10300_analyze_prologue, below. */
|
|
static void
|
|
push_reg (pv_t *regs, struct pv_area *stack, int regnum)
|
|
{
|
|
regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], -4);
|
|
stack->store (regs[E_SP_REGNUM], 4, regs[regnum]);
|
|
}
|
|
|
|
/* Translate an "r" register number extracted from an instruction encoding
|
|
into a GDB register number. Adapted from a simulator function
|
|
of the same name; see am33.igen. */
|
|
static int
|
|
translate_rreg (int rreg)
|
|
{
|
|
/* The higher register numbers actually correspond to the
|
|
basic machine's address and data registers. */
|
|
if (rreg > 7 && rreg < 12)
|
|
return E_A0_REGNUM + rreg - 8;
|
|
else if (rreg > 11 && rreg < 16)
|
|
return E_D0_REGNUM + rreg - 12;
|
|
else
|
|
return E_E0_REGNUM + rreg;
|
|
}
|
|
|
|
/* Find saved registers in a 'struct pv_area'; we pass this to pv_area::scan.
|
|
|
|
If VALUE is a saved register, ADDR says it was saved at a constant
|
|
offset from the frame base, and SIZE indicates that the whole
|
|
register was saved, record its offset in RESULT_UNTYPED. */
|
|
static void
|
|
check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
|
|
{
|
|
struct mn10300_prologue *result = (struct mn10300_prologue *) result_untyped;
|
|
|
|
if (value.kind == pvk_register
|
|
&& value.k == 0
|
|
&& pv_is_register (addr, E_SP_REGNUM)
|
|
&& size == register_size (result->gdbarch, value.reg))
|
|
result->reg_offset[value.reg] = addr.k;
|
|
}
|
|
|
|
/* Analyze the prologue to determine where registers are saved,
|
|
the end of the prologue, etc. The result of this analysis is
|
|
returned in RESULT. See struct mn10300_prologue above for more
|
|
information. */
|
|
static void
|
|
mn10300_analyze_prologue (struct gdbarch *gdbarch,
|
|
CORE_ADDR start_pc, CORE_ADDR limit_pc,
|
|
struct mn10300_prologue *result)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
CORE_ADDR pc;
|
|
int rn;
|
|
pv_t regs[MN10300_MAX_NUM_REGS];
|
|
CORE_ADDR after_last_frame_setup_insn = start_pc;
|
|
int am33_mode = AM33_MODE (gdbarch);
|
|
|
|
memset (result, 0, sizeof (*result));
|
|
result->gdbarch = gdbarch;
|
|
|
|
for (rn = 0; rn < MN10300_MAX_NUM_REGS; rn++)
|
|
{
|
|
regs[rn] = pv_register (rn, 0);
|
|
result->reg_offset[rn] = 1;
|
|
}
|
|
pv_area stack (E_SP_REGNUM, gdbarch_addr_bit (gdbarch));
|
|
|
|
/* The typical call instruction will have saved the return address on the
|
|
stack. Space for the return address has already been preallocated in
|
|
the caller's frame. It's possible, such as when using -mrelax with gcc
|
|
that other registers were saved as well. If this happens, we really
|
|
have no chance of deciphering the frame. DWARF info can save the day
|
|
when this happens. */
|
|
stack.store (regs[E_SP_REGNUM], 4, regs[E_PC_REGNUM]);
|
|
|
|
pc = start_pc;
|
|
while (pc < limit_pc)
|
|
{
|
|
int status;
|
|
gdb_byte instr[2];
|
|
|
|
/* Instructions can be as small as one byte; however, we usually
|
|
need at least two bytes to do the decoding, so fetch that many
|
|
to begin with. */
|
|
status = target_read_memory (pc, instr, 2);
|
|
if (status != 0)
|
|
break;
|
|
|
|
/* movm [regs], sp */
|
|
if (instr[0] == 0xcf)
|
|
{
|
|
gdb_byte save_mask;
|
|
|
|
save_mask = instr[1];
|
|
|
|
if ((save_mask & movm_exreg0_bit) && am33_mode)
|
|
{
|
|
push_reg (regs, &stack, E_E2_REGNUM);
|
|
push_reg (regs, &stack, E_E3_REGNUM);
|
|
}
|
|
if ((save_mask & movm_exreg1_bit) && am33_mode)
|
|
{
|
|
push_reg (regs, &stack, E_E4_REGNUM);
|
|
push_reg (regs, &stack, E_E5_REGNUM);
|
|
push_reg (regs, &stack, E_E6_REGNUM);
|
|
push_reg (regs, &stack, E_E7_REGNUM);
|
|
}
|
|
if ((save_mask & movm_exother_bit) && am33_mode)
|
|
{
|
|
push_reg (regs, &stack, E_E0_REGNUM);
|
|
push_reg (regs, &stack, E_E1_REGNUM);
|
|
push_reg (regs, &stack, E_MDRQ_REGNUM);
|
|
push_reg (regs, &stack, E_MCRH_REGNUM);
|
|
push_reg (regs, &stack, E_MCRL_REGNUM);
|
|
push_reg (regs, &stack, E_MCVF_REGNUM);
|
|
}
|
|
if (save_mask & movm_d2_bit)
|
|
push_reg (regs, &stack, E_D2_REGNUM);
|
|
if (save_mask & movm_d3_bit)
|
|
push_reg (regs, &stack, E_D3_REGNUM);
|
|
if (save_mask & movm_a2_bit)
|
|
push_reg (regs, &stack, E_A2_REGNUM);
|
|
if (save_mask & movm_a3_bit)
|
|
push_reg (regs, &stack, E_A3_REGNUM);
|
|
if (save_mask & movm_other_bit)
|
|
{
|
|
push_reg (regs, &stack, E_D0_REGNUM);
|
|
push_reg (regs, &stack, E_D1_REGNUM);
|
|
push_reg (regs, &stack, E_A0_REGNUM);
|
|
push_reg (regs, &stack, E_A1_REGNUM);
|
|
push_reg (regs, &stack, E_MDR_REGNUM);
|
|
push_reg (regs, &stack, E_LIR_REGNUM);
|
|
push_reg (regs, &stack, E_LAR_REGNUM);
|
|
/* The `other' bit leaves a blank area of four bytes at
|
|
the beginning of its block of saved registers, making
|
|
it 32 bytes long in total. */
|
|
regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], -4);
|
|
}
|
|
|
|
pc += 2;
|
|
after_last_frame_setup_insn = pc;
|
|
}
|
|
/* mov sp, aN */
|
|
else if ((instr[0] & 0xfc) == 0x3c)
|
|
{
|
|
int aN = instr[0] & 0x03;
|
|
|
|
regs[E_A0_REGNUM + aN] = regs[E_SP_REGNUM];
|
|
|
|
pc += 1;
|
|
if (aN == 3)
|
|
after_last_frame_setup_insn = pc;
|
|
}
|
|
/* mov aM, aN */
|
|
else if ((instr[0] & 0xf0) == 0x90
|
|
&& (instr[0] & 0x03) != ((instr[0] & 0x0c) >> 2))
|
|
{
|
|
int aN = instr[0] & 0x03;
|
|
int aM = (instr[0] & 0x0c) >> 2;
|
|
|
|
regs[E_A0_REGNUM + aN] = regs[E_A0_REGNUM + aM];
|
|
|
|
pc += 1;
|
|
}
|
|
/* mov dM, dN */
|
|
else if ((instr[0] & 0xf0) == 0x80
|
|
&& (instr[0] & 0x03) != ((instr[0] & 0x0c) >> 2))
|
|
{
|
|
int dN = instr[0] & 0x03;
|
|
int dM = (instr[0] & 0x0c) >> 2;
|
|
|
|
regs[E_D0_REGNUM + dN] = regs[E_D0_REGNUM + dM];
|
|
|
|
pc += 1;
|
|
}
|
|
/* mov aM, dN */
|
|
else if (instr[0] == 0xf1 && (instr[1] & 0xf0) == 0xd0)
|
|
{
|
|
int dN = instr[1] & 0x03;
|
|
int aM = (instr[1] & 0x0c) >> 2;
|
|
|
|
regs[E_D0_REGNUM + dN] = regs[E_A0_REGNUM + aM];
|
|
|
|
pc += 2;
|
|
}
|
|
/* mov dM, aN */
|
|
else if (instr[0] == 0xf1 && (instr[1] & 0xf0) == 0xe0)
|
|
{
|
|
int aN = instr[1] & 0x03;
|
|
int dM = (instr[1] & 0x0c) >> 2;
|
|
|
|
regs[E_A0_REGNUM + aN] = regs[E_D0_REGNUM + dM];
|
|
|
|
pc += 2;
|
|
}
|
|
/* add imm8, SP */
|
|
else if (instr[0] == 0xf8 && instr[1] == 0xfe)
|
|
{
|
|
gdb_byte buf[1];
|
|
LONGEST imm8;
|
|
|
|
|
|
status = target_read_memory (pc + 2, buf, 1);
|
|
if (status != 0)
|
|
break;
|
|
|
|
imm8 = extract_signed_integer (buf, 1, byte_order);
|
|
regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm8);
|
|
|
|
pc += 3;
|
|
/* Stack pointer adjustments are frame related. */
|
|
after_last_frame_setup_insn = pc;
|
|
}
|
|
/* add imm16, SP */
|
|
else if (instr[0] == 0xfa && instr[1] == 0xfe)
|
|
{
|
|
gdb_byte buf[2];
|
|
LONGEST imm16;
|
|
|
|
status = target_read_memory (pc + 2, buf, 2);
|
|
if (status != 0)
|
|
break;
|
|
|
|
imm16 = extract_signed_integer (buf, 2, byte_order);
|
|
regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm16);
|
|
|
|
pc += 4;
|
|
/* Stack pointer adjustments are frame related. */
|
|
after_last_frame_setup_insn = pc;
|
|
}
|
|
/* add imm32, SP */
|
|
else if (instr[0] == 0xfc && instr[1] == 0xfe)
|
|
{
|
|
gdb_byte buf[4];
|
|
LONGEST imm32;
|
|
|
|
status = target_read_memory (pc + 2, buf, 4);
|
|
if (status != 0)
|
|
break;
|
|
|
|
|
|
imm32 = extract_signed_integer (buf, 4, byte_order);
|
|
regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm32);
|
|
|
|
pc += 6;
|
|
/* Stack pointer adjustments are frame related. */
|
|
after_last_frame_setup_insn = pc;
|
|
}
|
|
/* add imm8, aN */
|
|
else if ((instr[0] & 0xfc) == 0x20)
|
|
{
|
|
int aN;
|
|
LONGEST imm8;
|
|
|
|
aN = instr[0] & 0x03;
|
|
imm8 = extract_signed_integer (&instr[1], 1, byte_order);
|
|
|
|
regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN],
|
|
imm8);
|
|
|
|
pc += 2;
|
|
}
|
|
/* add imm16, aN */
|
|
else if (instr[0] == 0xfa && (instr[1] & 0xfc) == 0xd0)
|
|
{
|
|
int aN;
|
|
LONGEST imm16;
|
|
gdb_byte buf[2];
|
|
|
|
aN = instr[1] & 0x03;
|
|
|
|
status = target_read_memory (pc + 2, buf, 2);
|
|
if (status != 0)
|
|
break;
|
|
|
|
|
|
imm16 = extract_signed_integer (buf, 2, byte_order);
|
|
|
|
regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN],
|
|
imm16);
|
|
|
|
pc += 4;
|
|
}
|
|
/* add imm32, aN */
|
|
else if (instr[0] == 0xfc && (instr[1] & 0xfc) == 0xd0)
|
|
{
|
|
int aN;
|
|
LONGEST imm32;
|
|
gdb_byte buf[4];
|
|
|
|
aN = instr[1] & 0x03;
|
|
|
|
status = target_read_memory (pc + 2, buf, 4);
|
|
if (status != 0)
|
|
break;
|
|
|
|
imm32 = extract_signed_integer (buf, 2, byte_order);
|
|
|
|
regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN],
|
|
imm32);
|
|
pc += 6;
|
|
}
|
|
/* fmov fsM, (rN) */
|
|
else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x30)
|
|
{
|
|
int fsM, sM, Y, rN;
|
|
gdb_byte buf[1];
|
|
|
|
Y = (instr[1] & 0x02) >> 1;
|
|
|
|
status = target_read_memory (pc + 2, buf, 1);
|
|
if (status != 0)
|
|
break;
|
|
|
|
sM = (buf[0] & 0xf0) >> 4;
|
|
rN = buf[0] & 0x0f;
|
|
fsM = (Y << 4) | sM;
|
|
|
|
stack.store (regs[translate_rreg (rN)], 4,
|
|
regs[E_FS0_REGNUM + fsM]);
|
|
|
|
pc += 3;
|
|
}
|
|
/* fmov fsM, (sp) */
|
|
else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x34)
|
|
{
|
|
int fsM, sM, Y;
|
|
gdb_byte buf[1];
|
|
|
|
Y = (instr[1] & 0x02) >> 1;
|
|
|
|
status = target_read_memory (pc + 2, buf, 1);
|
|
if (status != 0)
|
|
break;
|
|
|
|
sM = (buf[0] & 0xf0) >> 4;
|
|
fsM = (Y << 4) | sM;
|
|
|
|
stack.store (regs[E_SP_REGNUM], 4,
|
|
regs[E_FS0_REGNUM + fsM]);
|
|
|
|
pc += 3;
|
|
}
|
|
/* fmov fsM, (rN, rI) */
|
|
else if (instr[0] == 0xfb && instr[1] == 0x37)
|
|
{
|
|
int fsM, sM, Z, rN, rI;
|
|
gdb_byte buf[2];
|
|
|
|
|
|
status = target_read_memory (pc + 2, buf, 2);
|
|
if (status != 0)
|
|
break;
|
|
|
|
rI = (buf[0] & 0xf0) >> 4;
|
|
rN = buf[0] & 0x0f;
|
|
sM = (buf[1] & 0xf0) >> 4;
|
|
Z = (buf[1] & 0x02) >> 1;
|
|
fsM = (Z << 4) | sM;
|
|
|
|
stack.store (pv_add (regs[translate_rreg (rN)],
|
|
regs[translate_rreg (rI)]),
|
|
4, regs[E_FS0_REGNUM + fsM]);
|
|
|
|
pc += 4;
|
|
}
|
|
/* fmov fsM, (d8, rN) */
|
|
else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x30)
|
|
{
|
|
int fsM, sM, Y, rN;
|
|
LONGEST d8;
|
|
gdb_byte buf[2];
|
|
|
|
Y = (instr[1] & 0x02) >> 1;
|
|
|
|
status = target_read_memory (pc + 2, buf, 2);
|
|
if (status != 0)
|
|
break;
|
|
|
|
sM = (buf[0] & 0xf0) >> 4;
|
|
rN = buf[0] & 0x0f;
|
|
fsM = (Y << 4) | sM;
|
|
d8 = extract_signed_integer (&buf[1], 1, byte_order);
|
|
|
|
stack.store (pv_add_constant (regs[translate_rreg (rN)], d8),
|
|
4, regs[E_FS0_REGNUM + fsM]);
|
|
|
|
pc += 4;
|
|
}
|
|
/* fmov fsM, (d24, rN) */
|
|
else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x30)
|
|
{
|
|
int fsM, sM, Y, rN;
|
|
LONGEST d24;
|
|
gdb_byte buf[4];
|
|
|
|
Y = (instr[1] & 0x02) >> 1;
|
|
|
|
status = target_read_memory (pc + 2, buf, 4);
|
|
if (status != 0)
|
|
break;
|
|
|
|
sM = (buf[0] & 0xf0) >> 4;
|
|
rN = buf[0] & 0x0f;
|
|
fsM = (Y << 4) | sM;
|
|
d24 = extract_signed_integer (&buf[1], 3, byte_order);
|
|
|
|
stack.store (pv_add_constant (regs[translate_rreg (rN)], d24),
|
|
4, regs[E_FS0_REGNUM + fsM]);
|
|
|
|
pc += 6;
|
|
}
|
|
/* fmov fsM, (d32, rN) */
|
|
else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x30)
|
|
{
|
|
int fsM, sM, Y, rN;
|
|
LONGEST d32;
|
|
gdb_byte buf[5];
|
|
|
|
Y = (instr[1] & 0x02) >> 1;
|
|
|
|
status = target_read_memory (pc + 2, buf, 5);
|
|
if (status != 0)
|
|
break;
|
|
|
|
sM = (buf[0] & 0xf0) >> 4;
|
|
rN = buf[0] & 0x0f;
|
|
fsM = (Y << 4) | sM;
|
|
d32 = extract_signed_integer (&buf[1], 4, byte_order);
|
|
|
|
stack.store (pv_add_constant (regs[translate_rreg (rN)], d32),
|
|
4, regs[E_FS0_REGNUM + fsM]);
|
|
|
|
pc += 7;
|
|
}
|
|
/* fmov fsM, (d8, SP) */
|
|
else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x34)
|
|
{
|
|
int fsM, sM, Y;
|
|
LONGEST d8;
|
|
gdb_byte buf[2];
|
|
|
|
Y = (instr[1] & 0x02) >> 1;
|
|
|
|
status = target_read_memory (pc + 2, buf, 2);
|
|
if (status != 0)
|
|
break;
|
|
|
|
sM = (buf[0] & 0xf0) >> 4;
|
|
fsM = (Y << 4) | sM;
|
|
d8 = extract_signed_integer (&buf[1], 1, byte_order);
|
|
|
|
stack.store (pv_add_constant (regs[E_SP_REGNUM], d8),
|
|
4, regs[E_FS0_REGNUM + fsM]);
|
|
|
|
pc += 4;
|
|
}
|
|
/* fmov fsM, (d24, SP) */
|
|
else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x34)
|
|
{
|
|
int fsM, sM, Y;
|
|
LONGEST d24;
|
|
gdb_byte buf[4];
|
|
|
|
Y = (instr[1] & 0x02) >> 1;
|
|
|
|
status = target_read_memory (pc + 2, buf, 4);
|
|
if (status != 0)
|
|
break;
|
|
|
|
sM = (buf[0] & 0xf0) >> 4;
|
|
fsM = (Y << 4) | sM;
|
|
d24 = extract_signed_integer (&buf[1], 3, byte_order);
|
|
|
|
stack.store (pv_add_constant (regs[E_SP_REGNUM], d24),
|
|
4, regs[E_FS0_REGNUM + fsM]);
|
|
|
|
pc += 6;
|
|
}
|
|
/* fmov fsM, (d32, SP) */
|
|
else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x34)
|
|
{
|
|
int fsM, sM, Y;
|
|
LONGEST d32;
|
|
gdb_byte buf[5];
|
|
|
|
Y = (instr[1] & 0x02) >> 1;
|
|
|
|
status = target_read_memory (pc + 2, buf, 5);
|
|
if (status != 0)
|
|
break;
|
|
|
|
sM = (buf[0] & 0xf0) >> 4;
|
|
fsM = (Y << 4) | sM;
|
|
d32 = extract_signed_integer (&buf[1], 4, byte_order);
|
|
|
|
stack.store (pv_add_constant (regs[E_SP_REGNUM], d32),
|
|
4, regs[E_FS0_REGNUM + fsM]);
|
|
|
|
pc += 7;
|
|
}
|
|
/* fmov fsM, (rN+) */
|
|
else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x31)
|
|
{
|
|
int fsM, sM, Y, rN, rN_regnum;
|
|
gdb_byte buf[1];
|
|
|
|
Y = (instr[1] & 0x02) >> 1;
|
|
|
|
status = target_read_memory (pc + 2, buf, 1);
|
|
if (status != 0)
|
|
break;
|
|
|
|
sM = (buf[0] & 0xf0) >> 4;
|
|
rN = buf[0] & 0x0f;
|
|
fsM = (Y << 4) | sM;
|
|
|
|
rN_regnum = translate_rreg (rN);
|
|
|
|
stack.store (regs[rN_regnum], 4,
|
|
regs[E_FS0_REGNUM + fsM]);
|
|
regs[rN_regnum] = pv_add_constant (regs[rN_regnum], 4);
|
|
|
|
pc += 3;
|
|
}
|
|
/* fmov fsM, (rN+, imm8) */
|
|
else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x31)
|
|
{
|
|
int fsM, sM, Y, rN, rN_regnum;
|
|
LONGEST imm8;
|
|
gdb_byte buf[2];
|
|
|
|
Y = (instr[1] & 0x02) >> 1;
|
|
|
|
status = target_read_memory (pc + 2, buf, 2);
|
|
if (status != 0)
|
|
break;
|
|
|
|
sM = (buf[0] & 0xf0) >> 4;
|
|
rN = buf[0] & 0x0f;
|
|
fsM = (Y << 4) | sM;
|
|
imm8 = extract_signed_integer (&buf[1], 1, byte_order);
|
|
|
|
rN_regnum = translate_rreg (rN);
|
|
|
|
stack.store (regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]);
|
|
regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm8);
|
|
|
|
pc += 4;
|
|
}
|
|
/* fmov fsM, (rN+, imm24) */
|
|
else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x31)
|
|
{
|
|
int fsM, sM, Y, rN, rN_regnum;
|
|
LONGEST imm24;
|
|
gdb_byte buf[4];
|
|
|
|
Y = (instr[1] & 0x02) >> 1;
|
|
|
|
status = target_read_memory (pc + 2, buf, 4);
|
|
if (status != 0)
|
|
break;
|
|
|
|
sM = (buf[0] & 0xf0) >> 4;
|
|
rN = buf[0] & 0x0f;
|
|
fsM = (Y << 4) | sM;
|
|
imm24 = extract_signed_integer (&buf[1], 3, byte_order);
|
|
|
|
rN_regnum = translate_rreg (rN);
|
|
|
|
stack.store (regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]);
|
|
regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm24);
|
|
|
|
pc += 6;
|
|
}
|
|
/* fmov fsM, (rN+, imm32) */
|
|
else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x31)
|
|
{
|
|
int fsM, sM, Y, rN, rN_regnum;
|
|
LONGEST imm32;
|
|
gdb_byte buf[5];
|
|
|
|
Y = (instr[1] & 0x02) >> 1;
|
|
|
|
status = target_read_memory (pc + 2, buf, 5);
|
|
if (status != 0)
|
|
break;
|
|
|
|
sM = (buf[0] & 0xf0) >> 4;
|
|
rN = buf[0] & 0x0f;
|
|
fsM = (Y << 4) | sM;
|
|
imm32 = extract_signed_integer (&buf[1], 4, byte_order);
|
|
|
|
rN_regnum = translate_rreg (rN);
|
|
|
|
stack.store (regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]);
|
|
regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm32);
|
|
|
|
pc += 7;
|
|
}
|
|
/* mov imm8, aN */
|
|
else if ((instr[0] & 0xf0) == 0x90)
|
|
{
|
|
int aN = instr[0] & 0x03;
|
|
LONGEST imm8;
|
|
|
|
imm8 = extract_signed_integer (&instr[1], 1, byte_order);
|
|
|
|
regs[E_A0_REGNUM + aN] = pv_constant (imm8);
|
|
pc += 2;
|
|
}
|
|
/* mov imm16, aN */
|
|
else if ((instr[0] & 0xfc) == 0x24)
|
|
{
|
|
int aN = instr[0] & 0x03;
|
|
gdb_byte buf[2];
|
|
LONGEST imm16;
|
|
|
|
status = target_read_memory (pc + 1, buf, 2);
|
|
if (status != 0)
|
|
break;
|
|
|
|
imm16 = extract_signed_integer (buf, 2, byte_order);
|
|
regs[E_A0_REGNUM + aN] = pv_constant (imm16);
|
|
pc += 3;
|
|
}
|
|
/* mov imm32, aN */
|
|
else if (instr[0] == 0xfc && ((instr[1] & 0xfc) == 0xdc))
|
|
{
|
|
int aN = instr[1] & 0x03;
|
|
gdb_byte buf[4];
|
|
LONGEST imm32;
|
|
|
|
status = target_read_memory (pc + 2, buf, 4);
|
|
if (status != 0)
|
|
break;
|
|
|
|
imm32 = extract_signed_integer (buf, 4, byte_order);
|
|
regs[E_A0_REGNUM + aN] = pv_constant (imm32);
|
|
pc += 6;
|
|
}
|
|
/* mov imm8, dN */
|
|
else if ((instr[0] & 0xf0) == 0x80)
|
|
{
|
|
int dN = instr[0] & 0x03;
|
|
LONGEST imm8;
|
|
|
|
imm8 = extract_signed_integer (&instr[1], 1, byte_order);
|
|
|
|
regs[E_D0_REGNUM + dN] = pv_constant (imm8);
|
|
pc += 2;
|
|
}
|
|
/* mov imm16, dN */
|
|
else if ((instr[0] & 0xfc) == 0x2c)
|
|
{
|
|
int dN = instr[0] & 0x03;
|
|
gdb_byte buf[2];
|
|
LONGEST imm16;
|
|
|
|
status = target_read_memory (pc + 1, buf, 2);
|
|
if (status != 0)
|
|
break;
|
|
|
|
imm16 = extract_signed_integer (buf, 2, byte_order);
|
|
regs[E_D0_REGNUM + dN] = pv_constant (imm16);
|
|
pc += 3;
|
|
}
|
|
/* mov imm32, dN */
|
|
else if (instr[0] == 0xfc && ((instr[1] & 0xfc) == 0xcc))
|
|
{
|
|
int dN = instr[1] & 0x03;
|
|
gdb_byte buf[4];
|
|
LONGEST imm32;
|
|
|
|
status = target_read_memory (pc + 2, buf, 4);
|
|
if (status != 0)
|
|
break;
|
|
|
|
imm32 = extract_signed_integer (buf, 4, byte_order);
|
|
regs[E_D0_REGNUM + dN] = pv_constant (imm32);
|
|
pc += 6;
|
|
}
|
|
else
|
|
{
|
|
/* We've hit some instruction that we don't recognize. Hopefully,
|
|
we have enough to do prologue analysis. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Is the frame size (offset, really) a known constant? */
|
|
if (pv_is_register (regs[E_SP_REGNUM], E_SP_REGNUM))
|
|
result->frame_size = regs[E_SP_REGNUM].k;
|
|
|
|
/* Was the frame pointer initialized? */
|
|
if (pv_is_register (regs[E_A3_REGNUM], E_SP_REGNUM))
|
|
{
|
|
result->has_frame_ptr = 1;
|
|
result->frame_ptr_offset = regs[E_A3_REGNUM].k;
|
|
}
|
|
|
|
/* Record where all the registers were saved. */
|
|
stack.scan (check_for_saved, (void *) result);
|
|
|
|
result->prologue_end = after_last_frame_setup_insn;
|
|
}
|
|
|
|
/* Function: skip_prologue
|
|
Return the address of the first inst past the prologue of the function. */
|
|
|
|
static CORE_ADDR
|
|
mn10300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
const char *name;
|
|
CORE_ADDR func_addr, func_end;
|
|
struct mn10300_prologue p;
|
|
|
|
/* Try to find the extent of the function that contains PC. */
|
|
if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
|
|
return pc;
|
|
|
|
mn10300_analyze_prologue (gdbarch, pc, func_end, &p);
|
|
return p.prologue_end;
|
|
}
|
|
|
|
/* Wrapper for mn10300_analyze_prologue: find the function start;
|
|
use the current frame PC as the limit, then
|
|
invoke mn10300_analyze_prologue and return its result. */
|
|
static struct mn10300_prologue *
|
|
mn10300_analyze_frame_prologue (struct frame_info *this_frame,
|
|
void **this_prologue_cache)
|
|
{
|
|
if (!*this_prologue_cache)
|
|
{
|
|
CORE_ADDR func_start, stop_addr;
|
|
|
|
*this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct mn10300_prologue);
|
|
|
|
func_start = get_frame_func (this_frame);
|
|
stop_addr = get_frame_pc (this_frame);
|
|
|
|
/* If we couldn't find any function containing the PC, then
|
|
just initialize the prologue cache, but don't do anything. */
|
|
if (!func_start)
|
|
stop_addr = func_start;
|
|
|
|
mn10300_analyze_prologue (get_frame_arch (this_frame),
|
|
func_start, stop_addr,
|
|
((struct mn10300_prologue *)
|
|
*this_prologue_cache));
|
|
}
|
|
|
|
return (struct mn10300_prologue *) *this_prologue_cache;
|
|
}
|
|
|
|
/* Given the next frame and a prologue cache, return this frame's
|
|
base. */
|
|
static CORE_ADDR
|
|
mn10300_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
|
|
{
|
|
struct mn10300_prologue *p
|
|
= mn10300_analyze_frame_prologue (this_frame, this_prologue_cache);
|
|
|
|
/* In functions that use alloca, the distance between the stack
|
|
pointer and the frame base varies dynamically, so we can't use
|
|
the SP plus static information like prologue analysis to find the
|
|
frame base. However, such functions must have a frame pointer,
|
|
to be able to restore the SP on exit. So whenever we do have a
|
|
frame pointer, use that to find the base. */
|
|
if (p->has_frame_ptr)
|
|
{
|
|
CORE_ADDR fp = get_frame_register_unsigned (this_frame, E_A3_REGNUM);
|
|
return fp - p->frame_ptr_offset;
|
|
}
|
|
else
|
|
{
|
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
|
|
return sp - p->frame_size;
|
|
}
|
|
}
|
|
|
|
/* Here is a dummy implementation. */
|
|
static struct frame_id
|
|
mn10300_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
|
{
|
|
CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
|
|
CORE_ADDR pc = get_frame_register_unsigned (this_frame, E_PC_REGNUM);
|
|
return frame_id_build (sp, pc);
|
|
}
|
|
|
|
static void
|
|
mn10300_frame_this_id (struct frame_info *this_frame,
|
|
void **this_prologue_cache,
|
|
struct frame_id *this_id)
|
|
{
|
|
*this_id = frame_id_build (mn10300_frame_base (this_frame,
|
|
this_prologue_cache),
|
|
get_frame_func (this_frame));
|
|
|
|
}
|
|
|
|
static struct value *
|
|
mn10300_frame_prev_register (struct frame_info *this_frame,
|
|
void **this_prologue_cache, int regnum)
|
|
{
|
|
struct mn10300_prologue *p
|
|
= mn10300_analyze_frame_prologue (this_frame, this_prologue_cache);
|
|
CORE_ADDR frame_base = mn10300_frame_base (this_frame, this_prologue_cache);
|
|
|
|
if (regnum == E_SP_REGNUM)
|
|
return frame_unwind_got_constant (this_frame, regnum, frame_base);
|
|
|
|
/* If prologue analysis says we saved this register somewhere,
|
|
return a description of the stack slot holding it. */
|
|
if (p->reg_offset[regnum] != 1)
|
|
return frame_unwind_got_memory (this_frame, regnum,
|
|
frame_base + p->reg_offset[regnum]);
|
|
|
|
/* Otherwise, presume we haven't changed the value of this
|
|
register, and get it from the next frame. */
|
|
return frame_unwind_got_register (this_frame, regnum, regnum);
|
|
}
|
|
|
|
static const struct frame_unwind mn10300_frame_unwind = {
|
|
NORMAL_FRAME,
|
|
default_frame_unwind_stop_reason,
|
|
mn10300_frame_this_id,
|
|
mn10300_frame_prev_register,
|
|
NULL,
|
|
default_frame_sniffer
|
|
};
|
|
|
|
static CORE_ADDR
|
|
mn10300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
|
{
|
|
ULONGEST pc;
|
|
|
|
pc = frame_unwind_register_unsigned (this_frame, E_PC_REGNUM);
|
|
return pc;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
mn10300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
|
{
|
|
ULONGEST sp;
|
|
|
|
sp = frame_unwind_register_unsigned (this_frame, E_SP_REGNUM);
|
|
return sp;
|
|
}
|
|
|
|
static void
|
|
mn10300_frame_unwind_init (struct gdbarch *gdbarch)
|
|
{
|
|
dwarf2_append_unwinders (gdbarch);
|
|
frame_unwind_append_unwinder (gdbarch, &mn10300_frame_unwind);
|
|
set_gdbarch_dummy_id (gdbarch, mn10300_dummy_id);
|
|
set_gdbarch_unwind_pc (gdbarch, mn10300_unwind_pc);
|
|
set_gdbarch_unwind_sp (gdbarch, mn10300_unwind_sp);
|
|
}
|
|
|
|
/* Function: push_dummy_call
|
|
*
|
|
* Set up machine state for a target call, including
|
|
* function arguments, stack, return address, etc.
|
|
*
|
|
*/
|
|
|
|
static CORE_ADDR
|
|
mn10300_push_dummy_call (struct gdbarch *gdbarch,
|
|
struct value *target_func,
|
|
struct regcache *regcache,
|
|
CORE_ADDR bp_addr,
|
|
int nargs, struct value **args,
|
|
CORE_ADDR sp,
|
|
int struct_return,
|
|
CORE_ADDR struct_addr)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
const int push_size = register_size (gdbarch, E_PC_REGNUM);
|
|
int regs_used;
|
|
int len, arg_len;
|
|
int stack_offset = 0;
|
|
int argnum;
|
|
const gdb_byte *val;
|
|
gdb_byte valbuf[MN10300_MAX_REGISTER_SIZE];
|
|
|
|
/* This should be a nop, but align the stack just in case something
|
|
went wrong. Stacks are four byte aligned on the mn10300. */
|
|
sp &= ~3;
|
|
|
|
/* Now make space on the stack for the args.
|
|
|
|
XXX This doesn't appear to handle pass-by-invisible reference
|
|
arguments. */
|
|
regs_used = struct_return ? 1 : 0;
|
|
for (len = 0, argnum = 0; argnum < nargs; argnum++)
|
|
{
|
|
arg_len = (TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3;
|
|
while (regs_used < 2 && arg_len > 0)
|
|
{
|
|
regs_used++;
|
|
arg_len -= push_size;
|
|
}
|
|
len += arg_len;
|
|
}
|
|
|
|
/* Allocate stack space. */
|
|
sp -= len;
|
|
|
|
if (struct_return)
|
|
{
|
|
regs_used = 1;
|
|
regcache_cooked_write_unsigned (regcache, E_D0_REGNUM, struct_addr);
|
|
}
|
|
else
|
|
regs_used = 0;
|
|
|
|
/* Push all arguments onto the stack. */
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
|
{
|
|
/* FIXME what about structs? Unions? */
|
|
if (TYPE_CODE (value_type (*args)) == TYPE_CODE_STRUCT
|
|
&& TYPE_LENGTH (value_type (*args)) > 8)
|
|
{
|
|
/* Change to pointer-to-type. */
|
|
arg_len = push_size;
|
|
gdb_assert (push_size <= MN10300_MAX_REGISTER_SIZE);
|
|
store_unsigned_integer (valbuf, push_size, byte_order,
|
|
value_address (*args));
|
|
val = &valbuf[0];
|
|
}
|
|
else
|
|
{
|
|
arg_len = TYPE_LENGTH (value_type (*args));
|
|
val = value_contents (*args);
|
|
}
|
|
|
|
while (regs_used < 2 && arg_len > 0)
|
|
{
|
|
regcache_cooked_write_unsigned (regcache, regs_used,
|
|
extract_unsigned_integer (val, push_size, byte_order));
|
|
val += push_size;
|
|
arg_len -= push_size;
|
|
regs_used++;
|
|
}
|
|
|
|
while (arg_len > 0)
|
|
{
|
|
write_memory (sp + stack_offset, val, push_size);
|
|
arg_len -= push_size;
|
|
val += push_size;
|
|
stack_offset += push_size;
|
|
}
|
|
|
|
args++;
|
|
}
|
|
|
|
/* Make space for the flushback area. */
|
|
sp -= 8;
|
|
|
|
/* Push the return address that contains the magic breakpoint. */
|
|
sp -= 4;
|
|
write_memory_unsigned_integer (sp, push_size, byte_order, bp_addr);
|
|
|
|
/* The CPU also writes the return address always into the
|
|
MDR register on "call". */
|
|
regcache_cooked_write_unsigned (regcache, E_MDR_REGNUM, bp_addr);
|
|
|
|
/* Update $sp. */
|
|
regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
|
|
|
|
/* On the mn10300, it's possible to move some of the stack adjustment
|
|
and saving of the caller-save registers out of the prologue and
|
|
into the call sites. (When using gcc, this optimization can
|
|
occur when using the -mrelax switch.) If this occurs, the dwarf2
|
|
info will reflect this fact. We can test to see if this is the
|
|
case by creating a new frame using the current stack pointer and
|
|
the address of the function that we're about to call. We then
|
|
unwind SP and see if it's different than the SP of our newly
|
|
created frame. If the SP values are the same, the caller is not
|
|
expected to allocate any additional stack. On the other hand, if
|
|
the SP values are different, the difference determines the
|
|
additional stack that must be allocated.
|
|
|
|
Note that we don't update the return value though because that's
|
|
the value of the stack just after pushing the arguments, but prior
|
|
to performing the call. This value is needed in order to
|
|
construct the frame ID of the dummy call. */
|
|
{
|
|
CORE_ADDR func_addr = find_function_addr (target_func, NULL);
|
|
CORE_ADDR unwound_sp
|
|
= mn10300_unwind_sp (gdbarch, create_new_frame (sp, func_addr));
|
|
if (sp != unwound_sp)
|
|
regcache_cooked_write_unsigned (regcache, E_SP_REGNUM,
|
|
sp - (unwound_sp - sp));
|
|
}
|
|
|
|
return sp;
|
|
}
|
|
|
|
/* If DWARF2 is a register number appearing in Dwarf2 debug info, then
|
|
mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB
|
|
register number. Why don't Dwarf2 and GDB use the same numbering?
|
|
Who knows? But since people have object files lying around with
|
|
the existing Dwarf2 numbering, and other people have written stubs
|
|
to work with the existing GDB, neither of them can change. So we
|
|
just have to cope. */
|
|
static int
|
|
mn10300_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int dwarf2)
|
|
{
|
|
/* This table is supposed to be shaped like the gdbarch_register_name
|
|
initializer in gcc/config/mn10300/mn10300.h. Registers which
|
|
appear in GCC's numbering, but have no counterpart in GDB's
|
|
world, are marked with a -1. */
|
|
static int dwarf2_to_gdb[] = {
|
|
E_D0_REGNUM, E_D1_REGNUM, E_D2_REGNUM, E_D3_REGNUM,
|
|
E_A0_REGNUM, E_A1_REGNUM, E_A2_REGNUM, E_A3_REGNUM,
|
|
-1, E_SP_REGNUM,
|
|
|
|
E_E0_REGNUM, E_E1_REGNUM, E_E2_REGNUM, E_E3_REGNUM,
|
|
E_E4_REGNUM, E_E5_REGNUM, E_E6_REGNUM, E_E7_REGNUM,
|
|
|
|
E_FS0_REGNUM + 0, E_FS0_REGNUM + 1, E_FS0_REGNUM + 2, E_FS0_REGNUM + 3,
|
|
E_FS0_REGNUM + 4, E_FS0_REGNUM + 5, E_FS0_REGNUM + 6, E_FS0_REGNUM + 7,
|
|
|
|
E_FS0_REGNUM + 8, E_FS0_REGNUM + 9, E_FS0_REGNUM + 10, E_FS0_REGNUM + 11,
|
|
E_FS0_REGNUM + 12, E_FS0_REGNUM + 13, E_FS0_REGNUM + 14, E_FS0_REGNUM + 15,
|
|
|
|
E_FS0_REGNUM + 16, E_FS0_REGNUM + 17, E_FS0_REGNUM + 18, E_FS0_REGNUM + 19,
|
|
E_FS0_REGNUM + 20, E_FS0_REGNUM + 21, E_FS0_REGNUM + 22, E_FS0_REGNUM + 23,
|
|
|
|
E_FS0_REGNUM + 24, E_FS0_REGNUM + 25, E_FS0_REGNUM + 26, E_FS0_REGNUM + 27,
|
|
E_FS0_REGNUM + 28, E_FS0_REGNUM + 29, E_FS0_REGNUM + 30, E_FS0_REGNUM + 31,
|
|
|
|
E_MDR_REGNUM, E_PSW_REGNUM, E_PC_REGNUM
|
|
};
|
|
|
|
if (dwarf2 < 0
|
|
|| dwarf2 >= ARRAY_SIZE (dwarf2_to_gdb))
|
|
return -1;
|
|
|
|
return dwarf2_to_gdb[dwarf2];
|
|
}
|
|
|
|
static struct gdbarch *
|
|
mn10300_gdbarch_init (struct gdbarch_info info,
|
|
struct gdbarch_list *arches)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
struct gdbarch_tdep *tdep;
|
|
int num_regs;
|
|
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
|
if (arches != NULL)
|
|
return arches->gdbarch;
|
|
|
|
tdep = XCNEW (struct gdbarch_tdep);
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
|
|
|
switch (info.bfd_arch_info->mach)
|
|
{
|
|
case 0:
|
|
case bfd_mach_mn10300:
|
|
set_gdbarch_register_name (gdbarch, mn10300_generic_register_name);
|
|
tdep->am33_mode = 0;
|
|
num_regs = 32;
|
|
break;
|
|
case bfd_mach_am33:
|
|
set_gdbarch_register_name (gdbarch, am33_register_name);
|
|
tdep->am33_mode = 1;
|
|
num_regs = 32;
|
|
break;
|
|
case bfd_mach_am33_2:
|
|
set_gdbarch_register_name (gdbarch, am33_2_register_name);
|
|
tdep->am33_mode = 2;
|
|
num_regs = 64;
|
|
set_gdbarch_fp0_regnum (gdbarch, 32);
|
|
break;
|
|
default:
|
|
internal_error (__FILE__, __LINE__,
|
|
_("mn10300_gdbarch_init: Unknown mn10300 variant"));
|
|
break;
|
|
}
|
|
|
|
/* By default, chars are unsigned. */
|
|
set_gdbarch_char_signed (gdbarch, 0);
|
|
|
|
/* Registers. */
|
|
set_gdbarch_num_regs (gdbarch, num_regs);
|
|
set_gdbarch_register_type (gdbarch, mn10300_register_type);
|
|
set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue);
|
|
set_gdbarch_read_pc (gdbarch, mn10300_read_pc);
|
|
set_gdbarch_write_pc (gdbarch, mn10300_write_pc);
|
|
set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
|
|
set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
|
|
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum);
|
|
|
|
/* Stack unwinding. */
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
/* Breakpoints. */
|
|
set_gdbarch_breakpoint_kind_from_pc (gdbarch,
|
|
mn10300_breakpoint::kind_from_pc);
|
|
set_gdbarch_sw_breakpoint_from_kind (gdbarch,
|
|
mn10300_breakpoint::bp_from_kind);
|
|
/* decr_pc_after_break? */
|
|
|
|
/* Stage 2 */
|
|
set_gdbarch_return_value (gdbarch, mn10300_return_value);
|
|
|
|
/* Stage 3 -- get target calls working. */
|
|
set_gdbarch_push_dummy_call (gdbarch, mn10300_push_dummy_call);
|
|
/* set_gdbarch_return_value (store, extract) */
|
|
|
|
|
|
mn10300_frame_unwind_init (gdbarch);
|
|
|
|
/* Hook in ABI-specific overrides, if they have been registered. */
|
|
gdbarch_init_osabi (info, gdbarch);
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
/* Dump out the mn10300 specific architecture information. */
|
|
|
|
static void
|
|
mn10300_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
|
|
tdep->am33_mode);
|
|
}
|
|
|
|
void
|
|
_initialize_mn10300_tdep (void)
|
|
{
|
|
gdbarch_register (bfd_arch_mn10300, mn10300_gdbarch_init, mn10300_dump_tdep);
|
|
}
|
|
|