mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-29 13:04:46 +08:00
3117ed2595
* sh-tdep.c (sh_breakpoint_from_pc): Add 'const' to return type.
2431 lines
76 KiB
C
2431 lines
76 KiB
C
/* Target-dependent code for Hitachi Super-H, for GDB.
|
||
Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
/*
|
||
Contributed by Steve Chamberlain
|
||
sac@cygnus.com
|
||
*/
|
||
|
||
#include "defs.h"
|
||
#include "frame.h"
|
||
#include "obstack.h"
|
||
#include "symtab.h"
|
||
#include "symfile.h"
|
||
#include "gdbtypes.h"
|
||
#include "gdbcmd.h"
|
||
#include "gdbcore.h"
|
||
#include "value.h"
|
||
#include "dis-asm.h"
|
||
#include "inferior.h" /* for BEFORE_TEXT_END etc. */
|
||
#include "gdb_string.h"
|
||
#include "arch-utils.h"
|
||
#include "floatformat.h"
|
||
#include "regcache.h"
|
||
#include "doublest.h"
|
||
|
||
#include "elf-bfd.h"
|
||
|
||
#include "solib-svr4.h"
|
||
|
||
void (*sh_show_regs) (void);
|
||
CORE_ADDR (*skip_prologue_hard_way) (CORE_ADDR);
|
||
void (*do_pseudo_register) (int);
|
||
|
||
#define SH_DEFAULT_NUM_REGS 59
|
||
|
||
/* Define other aspects of the stack frame.
|
||
we keep a copy of the worked out return pc lying around, since it
|
||
is a useful bit of info */
|
||
|
||
struct frame_extra_info
|
||
{
|
||
CORE_ADDR return_pc;
|
||
int leaf_function;
|
||
int f_offset;
|
||
};
|
||
|
||
static char *
|
||
sh_generic_register_name (int reg_nr)
|
||
{
|
||
static char *register_names[] =
|
||
{
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
||
"fpul", "fpscr",
|
||
"fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
|
||
"fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
|
||
"ssr", "spc",
|
||
"r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
|
||
"r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
|
||
};
|
||
if (reg_nr < 0)
|
||
return NULL;
|
||
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
||
return NULL;
|
||
return register_names[reg_nr];
|
||
}
|
||
|
||
static char *
|
||
sh_sh_register_name (int reg_nr)
|
||
{
|
||
static char *register_names[] =
|
||
{
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
||
"", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
};
|
||
if (reg_nr < 0)
|
||
return NULL;
|
||
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
||
return NULL;
|
||
return register_names[reg_nr];
|
||
}
|
||
|
||
static char *
|
||
sh_sh3_register_name (int reg_nr)
|
||
{
|
||
static char *register_names[] =
|
||
{
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
||
"", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"ssr", "spc",
|
||
"r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
|
||
"r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
|
||
};
|
||
if (reg_nr < 0)
|
||
return NULL;
|
||
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
||
return NULL;
|
||
return register_names[reg_nr];
|
||
}
|
||
|
||
static char *
|
||
sh_sh3e_register_name (int reg_nr)
|
||
{
|
||
static char *register_names[] =
|
||
{
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
||
"fpul", "fpscr",
|
||
"fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
|
||
"fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
|
||
"ssr", "spc",
|
||
"r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
|
||
"r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
|
||
};
|
||
if (reg_nr < 0)
|
||
return NULL;
|
||
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
||
return NULL;
|
||
return register_names[reg_nr];
|
||
}
|
||
|
||
static char *
|
||
sh_sh_dsp_register_name (int reg_nr)
|
||
{
|
||
static char *register_names[] =
|
||
{
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
||
"", "dsr",
|
||
"a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
|
||
"y0", "y1", "", "", "", "", "", "mod",
|
||
"", "",
|
||
"rs", "re", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
};
|
||
if (reg_nr < 0)
|
||
return NULL;
|
||
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
||
return NULL;
|
||
return register_names[reg_nr];
|
||
}
|
||
|
||
static char *
|
||
sh_sh3_dsp_register_name (int reg_nr)
|
||
{
|
||
static char *register_names[] =
|
||
{
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
||
"", "dsr",
|
||
"a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
|
||
"y0", "y1", "", "", "", "", "", "mod",
|
||
"ssr", "spc",
|
||
"rs", "re", "", "", "", "", "", "",
|
||
"r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b"
|
||
"", "", "", "", "", "", "", "",
|
||
};
|
||
if (reg_nr < 0)
|
||
return NULL;
|
||
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
||
return NULL;
|
||
return register_names[reg_nr];
|
||
}
|
||
|
||
static char *
|
||
sh_sh4_register_name (int reg_nr)
|
||
{
|
||
static char *register_names[] =
|
||
{
|
||
/* general registers 0-15 */
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
/* 16 - 22 */
|
||
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
||
/* 23, 24 */
|
||
"fpul", "fpscr",
|
||
/* floating point registers 25 - 40 */
|
||
"fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
|
||
"fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
|
||
/* 41, 42 */
|
||
"ssr", "spc",
|
||
/* bank 0 43 - 50 */
|
||
"r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
|
||
/* bank 1 51 - 58 */
|
||
"r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
|
||
/* double precision (pseudo) 59 - 66 */
|
||
"dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
|
||
/* vectors (pseudo) 67 - 70 */
|
||
"fv0", "fv4", "fv8", "fv12",
|
||
/* FIXME: missing XF 71 - 86 */
|
||
/* FIXME: missing XD 87 - 94 */
|
||
};
|
||
if (reg_nr < 0)
|
||
return NULL;
|
||
if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
|
||
return NULL;
|
||
return register_names[reg_nr];
|
||
}
|
||
|
||
static const unsigned char *
|
||
sh_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
|
||
{
|
||
/* 0xc3c3 is trapa #c3, and it works in big and little endian modes */
|
||
static unsigned char breakpoint[] = {0xc3, 0xc3};
|
||
|
||
*lenptr = sizeof (breakpoint);
|
||
return breakpoint;
|
||
}
|
||
|
||
/* Prologue looks like
|
||
[mov.l <regs>,@-r15]...
|
||
[sts.l pr,@-r15]
|
||
[mov.l r14,@-r15]
|
||
[mov r15,r14]
|
||
|
||
Actually it can be more complicated than this. For instance, with
|
||
newer gcc's:
|
||
|
||
mov.l r14,@-r15
|
||
add #-12,r15
|
||
mov r15,r14
|
||
mov r4,r1
|
||
mov r5,r2
|
||
mov.l r6,@(4,r14)
|
||
mov.l r7,@(8,r14)
|
||
mov.b r1,@r14
|
||
mov r14,r1
|
||
mov r14,r1
|
||
add #2,r1
|
||
mov.w r2,@r1
|
||
|
||
*/
|
||
|
||
/* STS.L PR,@-r15 0100111100100010
|
||
r15-4-->r15, PR-->(r15) */
|
||
#define IS_STS(x) ((x) == 0x4f22)
|
||
|
||
/* MOV.L Rm,@-r15 00101111mmmm0110
|
||
r15-4-->r15, Rm-->(R15) */
|
||
#define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
|
||
|
||
#define GET_PUSHED_REG(x) (((x) >> 4) & 0xf)
|
||
|
||
/* MOV r15,r14 0110111011110011
|
||
r15-->r14 */
|
||
#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
|
||
|
||
/* ADD #imm,r15 01111111iiiiiiii
|
||
r15+imm-->r15 */
|
||
#define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
|
||
|
||
#define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
|
||
#define IS_SHLL_R3(x) ((x) == 0x4300)
|
||
|
||
/* ADD r3,r15 0011111100111100
|
||
r15+r3-->r15 */
|
||
#define IS_ADD_R3SP(x) ((x) == 0x3f3c)
|
||
|
||
/* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
|
||
FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
|
||
FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
|
||
#define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b)
|
||
|
||
/* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011
|
||
MOV.L Rm,@(disp,Rn) Rm-->(dispx4+Rn) 0001nnnnmmmmdddd
|
||
MOV.L Rm,@Rn Rm-->(Rn) 0010nnnnmmmm0010
|
||
where Rm is one of r4,r5,r6,r7 which are the argument registers. */
|
||
#define IS_ARG_MOV(x) \
|
||
(((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070)) \
|
||
|| ((((x) & 0xf000) == 0x1000) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070)) \
|
||
|| ((((x) & 0xf00f) == 0x2002) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070)))
|
||
|
||
/* MOV.L Rm,@(disp,r14) 00011110mmmmdddd
|
||
Rm-->(dispx4+r14) where Rm is one of r4,r5,r6,r7 */
|
||
#define IS_MOV_TO_R14(x) \
|
||
((((x) & 0xff00) == 0x1e) && (((x) & 0x00f0) >= 0x0040 && ((x) & 0x00f0) <= 0x0070))
|
||
|
||
#define FPSCR_SZ (1 << 20)
|
||
|
||
/* Skip any prologue before the guts of a function */
|
||
|
||
/* Skip the prologue using the debug information. If this fails we'll
|
||
fall back on the 'guess' method below. */
|
||
static CORE_ADDR
|
||
after_prologue (CORE_ADDR pc)
|
||
{
|
||
struct symtab_and_line sal;
|
||
CORE_ADDR func_addr, func_end;
|
||
|
||
/* If we can not find the symbol in the partial symbol table, then
|
||
there is no hope we can determine the function's start address
|
||
with this code. */
|
||
if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
||
return 0;
|
||
|
||
/* Get the line associated with FUNC_ADDR. */
|
||
sal = find_pc_line (func_addr, 0);
|
||
|
||
/* There are only two cases to consider. First, the end of the source line
|
||
is within the function bounds. In that case we return the end of the
|
||
source line. Second is the end of the source line extends beyond the
|
||
bounds of the current function. We need to use the slow code to
|
||
examine instructions in that case. */
|
||
if (sal.end < func_end)
|
||
return sal.end;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* Here we look at each instruction in the function, and try to guess
|
||
where the prologue ends. Unfortunately this is not always
|
||
accurate. */
|
||
static CORE_ADDR
|
||
sh_skip_prologue_hard_way (CORE_ADDR start_pc)
|
||
{
|
||
CORE_ADDR here, end;
|
||
int updated_fp = 0;
|
||
|
||
if (!start_pc)
|
||
return 0;
|
||
|
||
for (here = start_pc, end = start_pc + (2 * 28); here < end;)
|
||
{
|
||
int w = read_memory_integer (here, 2);
|
||
here += 2;
|
||
if (IS_FMOV (w) || IS_PUSH (w) || IS_STS (w) || IS_MOV_R3 (w)
|
||
|| IS_ADD_R3SP (w) || IS_ADD_SP (w) || IS_SHLL_R3 (w)
|
||
|| IS_ARG_MOV (w) || IS_MOV_TO_R14 (w))
|
||
{
|
||
start_pc = here;
|
||
}
|
||
else if (IS_MOV_SP_FP (w))
|
||
{
|
||
start_pc = here;
|
||
updated_fp = 1;
|
||
}
|
||
else
|
||
/* Don't bail out yet, if we are before the copy of sp. */
|
||
if (updated_fp)
|
||
break;
|
||
}
|
||
|
||
return start_pc;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
sh_skip_prologue (CORE_ADDR pc)
|
||
{
|
||
CORE_ADDR post_prologue_pc;
|
||
|
||
/* See if we can determine the end of the prologue via the symbol table.
|
||
If so, then return either PC, or the PC after the prologue, whichever
|
||
is greater. */
|
||
post_prologue_pc = after_prologue (pc);
|
||
|
||
/* If after_prologue returned a useful address, then use it. Else
|
||
fall back on the instruction skipping code. */
|
||
if (post_prologue_pc != 0)
|
||
return max (pc, post_prologue_pc);
|
||
else
|
||
return (skip_prologue_hard_way (pc));
|
||
}
|
||
|
||
/* Immediately after a function call, return the saved pc.
|
||
Can't always go through the frames for this because on some machines
|
||
the new frame is not set up until the new function executes
|
||
some instructions.
|
||
|
||
The return address is the value saved in the PR register + 4 */
|
||
static CORE_ADDR
|
||
sh_saved_pc_after_call (struct frame_info *frame)
|
||
{
|
||
return (ADDR_BITS_REMOVE (read_register (gdbarch_tdep (current_gdbarch)->PR_REGNUM)));
|
||
}
|
||
|
||
/* Should call_function allocate stack space for a struct return? */
|
||
static int
|
||
sh_use_struct_convention (int gcc_p, struct type *type)
|
||
{
|
||
return (TYPE_LENGTH (type) > 1);
|
||
}
|
||
|
||
/* Store the address of the place in which to copy the structure the
|
||
subroutine will return. This is called from call_function.
|
||
|
||
We store structs through a pointer passed in R2 */
|
||
static void
|
||
sh_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
|
||
{
|
||
write_register (STRUCT_RETURN_REGNUM, (addr));
|
||
}
|
||
|
||
/* Disassemble an instruction. */
|
||
static int
|
||
gdb_print_insn_sh (bfd_vma memaddr, disassemble_info *info)
|
||
{
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||
return print_insn_sh (memaddr, info);
|
||
else
|
||
return print_insn_shl (memaddr, info);
|
||
}
|
||
|
||
/* Given a GDB frame, determine the address of the calling function's frame.
|
||
This will be used to create a new GDB frame struct, and then
|
||
INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
|
||
|
||
For us, the frame address is its stack pointer value, so we look up
|
||
the function prologue to determine the caller's sp value, and return it. */
|
||
static CORE_ADDR
|
||
sh_frame_chain (struct frame_info *frame)
|
||
{
|
||
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
|
||
return frame->frame; /* dummy frame same as caller's frame */
|
||
if (frame->pc && !inside_entry_file (frame->pc))
|
||
return read_memory_integer (FRAME_FP (frame) + frame->extra_info->f_offset, 4);
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* Find REGNUM on the stack. Otherwise, it's in an active register. One thing
|
||
we might want to do here is to check REGNUM against the clobber mask, and
|
||
somehow flag it as invalid if it isn't saved on the stack somewhere. This
|
||
would provide a graceful failure mode when trying to get the value of
|
||
caller-saves registers for an inner frame. */
|
||
static CORE_ADDR
|
||
sh_find_callers_reg (struct frame_info *fi, int regnum)
|
||
{
|
||
for (; fi; fi = fi->next)
|
||
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
||
/* When the caller requests PR from the dummy frame, we return PC because
|
||
that's where the previous routine appears to have done a call from. */
|
||
return generic_read_register_dummy (fi->pc, fi->frame, regnum);
|
||
else
|
||
{
|
||
FRAME_INIT_SAVED_REGS (fi);
|
||
if (!fi->pc)
|
||
return 0;
|
||
if (fi->saved_regs[regnum] != 0)
|
||
return read_memory_integer (fi->saved_regs[regnum],
|
||
REGISTER_RAW_SIZE (regnum));
|
||
}
|
||
return read_register (regnum);
|
||
}
|
||
|
||
/* Put here the code to store, into a struct frame_saved_regs, the
|
||
addresses of the saved registers of frame described by FRAME_INFO.
|
||
This includes special registers such as pc and fp saved in special
|
||
ways in the stack frame. sp is even more special: the address we
|
||
return for it IS the sp for the next frame. */
|
||
static void
|
||
sh_nofp_frame_init_saved_regs (struct frame_info *fi)
|
||
{
|
||
int *where = (int *) alloca ((NUM_REGS + NUM_PSEUDO_REGS) * sizeof(int));
|
||
int rn;
|
||
int have_fp = 0;
|
||
int depth;
|
||
int pc;
|
||
int opc;
|
||
int insn;
|
||
int r3_val = 0;
|
||
char *dummy_regs = generic_find_dummy_frame (fi->pc, fi->frame);
|
||
|
||
if (fi->saved_regs == NULL)
|
||
frame_saved_regs_zalloc (fi);
|
||
else
|
||
memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
|
||
|
||
if (dummy_regs)
|
||
{
|
||
/* DANGER! This is ONLY going to work if the char buffer format of
|
||
the saved registers is byte-for-byte identical to the
|
||
CORE_ADDR regs[NUM_REGS] format used by struct frame_saved_regs! */
|
||
memcpy (fi->saved_regs, dummy_regs, sizeof (fi->saved_regs));
|
||
return;
|
||
}
|
||
|
||
fi->extra_info->leaf_function = 1;
|
||
fi->extra_info->f_offset = 0;
|
||
|
||
for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++)
|
||
where[rn] = -1;
|
||
|
||
depth = 0;
|
||
|
||
/* Loop around examining the prologue insns until we find something
|
||
that does not appear to be part of the prologue. But give up
|
||
after 20 of them, since we're getting silly then. */
|
||
|
||
pc = get_pc_function_start (fi->pc);
|
||
if (!pc)
|
||
{
|
||
fi->pc = 0;
|
||
return;
|
||
}
|
||
|
||
for (opc = pc + (2 * 28); pc < opc; pc += 2)
|
||
{
|
||
insn = read_memory_integer (pc, 2);
|
||
/* See where the registers will be saved to */
|
||
if (IS_PUSH (insn))
|
||
{
|
||
rn = GET_PUSHED_REG (insn);
|
||
where[rn] = depth;
|
||
depth += 4;
|
||
}
|
||
else if (IS_STS (insn))
|
||
{
|
||
where[gdbarch_tdep (current_gdbarch)->PR_REGNUM] = depth;
|
||
/* If we're storing the pr then this isn't a leaf */
|
||
fi->extra_info->leaf_function = 0;
|
||
depth += 4;
|
||
}
|
||
else if (IS_MOV_R3 (insn))
|
||
{
|
||
r3_val = ((insn & 0xff) ^ 0x80) - 0x80;
|
||
}
|
||
else if (IS_SHLL_R3 (insn))
|
||
{
|
||
r3_val <<= 1;
|
||
}
|
||
else if (IS_ADD_R3SP (insn))
|
||
{
|
||
depth += -r3_val;
|
||
}
|
||
else if (IS_ADD_SP (insn))
|
||
{
|
||
depth -= ((insn & 0xff) ^ 0x80) - 0x80;
|
||
}
|
||
else if (IS_MOV_SP_FP (insn))
|
||
break;
|
||
#if 0 /* This used to just stop when it found an instruction that
|
||
was not considered part of the prologue. Now, we just
|
||
keep going looking for likely instructions. */
|
||
else
|
||
break;
|
||
#endif
|
||
}
|
||
|
||
/* Now we know how deep things are, we can work out their addresses */
|
||
|
||
for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++)
|
||
{
|
||
if (where[rn] >= 0)
|
||
{
|
||
if (rn == FP_REGNUM)
|
||
have_fp = 1;
|
||
|
||
fi->saved_regs[rn] = fi->frame - where[rn] + depth - 4;
|
||
}
|
||
else
|
||
{
|
||
fi->saved_regs[rn] = 0;
|
||
}
|
||
}
|
||
|
||
if (have_fp)
|
||
{
|
||
fi->saved_regs[SP_REGNUM] = read_memory_integer (fi->saved_regs[FP_REGNUM], 4);
|
||
}
|
||
else
|
||
{
|
||
fi->saved_regs[SP_REGNUM] = fi->frame - 4;
|
||
}
|
||
|
||
fi->extra_info->f_offset = depth - where[FP_REGNUM] - 4;
|
||
/* Work out the return pc - either from the saved pr or the pr
|
||
value */
|
||
}
|
||
|
||
/* For vectors of 4 floating point registers. */
|
||
static int
|
||
fv_reg_base_num (int fv_regnum)
|
||
{
|
||
int fp_regnum;
|
||
|
||
fp_regnum = FP0_REGNUM +
|
||
(fv_regnum - gdbarch_tdep (current_gdbarch)->FV0_REGNUM) * 4;
|
||
return fp_regnum;
|
||
}
|
||
|
||
/* For double precision floating point registers, i.e 2 fp regs.*/
|
||
static int
|
||
dr_reg_base_num (int dr_regnum)
|
||
{
|
||
int fp_regnum;
|
||
|
||
fp_regnum = FP0_REGNUM +
|
||
(dr_regnum - gdbarch_tdep (current_gdbarch)->DR0_REGNUM) * 2;
|
||
return fp_regnum;
|
||
}
|
||
|
||
static void
|
||
sh_fp_frame_init_saved_regs (struct frame_info *fi)
|
||
{
|
||
int *where = (int *) alloca ((NUM_REGS + NUM_PSEUDO_REGS) * sizeof(int));
|
||
int rn;
|
||
int have_fp = 0;
|
||
int depth;
|
||
int pc;
|
||
int opc;
|
||
int insn;
|
||
int r3_val = 0;
|
||
char *dummy_regs = generic_find_dummy_frame (fi->pc, fi->frame);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (fi->saved_regs == NULL)
|
||
frame_saved_regs_zalloc (fi);
|
||
else
|
||
memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
|
||
|
||
if (dummy_regs)
|
||
{
|
||
/* DANGER! This is ONLY going to work if the char buffer format of
|
||
the saved registers is byte-for-byte identical to the
|
||
CORE_ADDR regs[NUM_REGS] format used by struct frame_saved_regs! */
|
||
memcpy (fi->saved_regs, dummy_regs, sizeof (fi->saved_regs));
|
||
return;
|
||
}
|
||
|
||
fi->extra_info->leaf_function = 1;
|
||
fi->extra_info->f_offset = 0;
|
||
|
||
for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++)
|
||
where[rn] = -1;
|
||
|
||
depth = 0;
|
||
|
||
/* Loop around examining the prologue insns until we find something
|
||
that does not appear to be part of the prologue. But give up
|
||
after 20 of them, since we're getting silly then. */
|
||
|
||
pc = get_pc_function_start (fi->pc);
|
||
if (!pc)
|
||
{
|
||
fi->pc = 0;
|
||
return;
|
||
}
|
||
|
||
for (opc = pc + (2 * 28); pc < opc; pc += 2)
|
||
{
|
||
insn = read_memory_integer (pc, 2);
|
||
/* See where the registers will be saved to */
|
||
if (IS_PUSH (insn))
|
||
{
|
||
rn = GET_PUSHED_REG (insn);
|
||
where[rn] = depth;
|
||
depth += 4;
|
||
}
|
||
else if (IS_STS (insn))
|
||
{
|
||
where[tdep->PR_REGNUM] = depth;
|
||
/* If we're storing the pr then this isn't a leaf */
|
||
fi->extra_info->leaf_function = 0;
|
||
depth += 4;
|
||
}
|
||
else if (IS_MOV_R3 (insn))
|
||
{
|
||
r3_val = ((insn & 0xff) ^ 0x80) - 0x80;
|
||
}
|
||
else if (IS_SHLL_R3 (insn))
|
||
{
|
||
r3_val <<= 1;
|
||
}
|
||
else if (IS_ADD_R3SP (insn))
|
||
{
|
||
depth += -r3_val;
|
||
}
|
||
else if (IS_ADD_SP (insn))
|
||
{
|
||
depth -= ((insn & 0xff) ^ 0x80) - 0x80;
|
||
}
|
||
else if (IS_FMOV (insn))
|
||
{
|
||
if (read_register (tdep->FPSCR_REGNUM) & FPSCR_SZ)
|
||
{
|
||
depth += 8;
|
||
}
|
||
else
|
||
{
|
||
depth += 4;
|
||
}
|
||
}
|
||
else if (IS_MOV_SP_FP (insn))
|
||
break;
|
||
#if 0 /* This used to just stop when it found an instruction that
|
||
was not considered part of the prologue. Now, we just
|
||
keep going looking for likely instructions. */
|
||
else
|
||
break;
|
||
#endif
|
||
}
|
||
|
||
/* Now we know how deep things are, we can work out their addresses */
|
||
|
||
for (rn = 0; rn < NUM_REGS + NUM_PSEUDO_REGS; rn++)
|
||
{
|
||
if (where[rn] >= 0)
|
||
{
|
||
if (rn == FP_REGNUM)
|
||
have_fp = 1;
|
||
|
||
fi->saved_regs[rn] = fi->frame - where[rn] + depth - 4;
|
||
}
|
||
else
|
||
{
|
||
fi->saved_regs[rn] = 0;
|
||
}
|
||
}
|
||
|
||
if (have_fp)
|
||
{
|
||
fi->saved_regs[SP_REGNUM] =
|
||
read_memory_integer (fi->saved_regs[FP_REGNUM], 4);
|
||
}
|
||
else
|
||
{
|
||
fi->saved_regs[SP_REGNUM] = fi->frame - 4;
|
||
}
|
||
|
||
fi->extra_info->f_offset = depth - where[FP_REGNUM] - 4;
|
||
/* Work out the return pc - either from the saved pr or the pr
|
||
value */
|
||
}
|
||
|
||
/* Initialize the extra info saved in a FRAME */
|
||
static void
|
||
sh_init_extra_frame_info (int fromleaf, struct frame_info *fi)
|
||
{
|
||
|
||
fi->extra_info = (struct frame_extra_info *)
|
||
frame_obstack_alloc (sizeof (struct frame_extra_info));
|
||
|
||
if (fi->next)
|
||
fi->pc = FRAME_SAVED_PC (fi->next);
|
||
|
||
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
|
||
{
|
||
/* We need to setup fi->frame here because run_stack_dummy gets it wrong
|
||
by assuming it's always FP. */
|
||
fi->frame = generic_read_register_dummy (fi->pc, fi->frame,
|
||
SP_REGNUM);
|
||
fi->extra_info->return_pc = generic_read_register_dummy (fi->pc,
|
||
fi->frame,
|
||
PC_REGNUM);
|
||
fi->extra_info->f_offset = -(CALL_DUMMY_LENGTH + 4);
|
||
fi->extra_info->leaf_function = 0;
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
FRAME_INIT_SAVED_REGS (fi);
|
||
fi->extra_info->return_pc =
|
||
sh_find_callers_reg (fi, gdbarch_tdep (current_gdbarch)->PR_REGNUM);
|
||
}
|
||
}
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state
|
||
the address in which a function should return its structure value,
|
||
as a CORE_ADDR (or an expression that can be used as one). */
|
||
static CORE_ADDR
|
||
sh_extract_struct_value_address (char *regbuf)
|
||
{
|
||
return (extract_address ((regbuf), REGISTER_RAW_SIZE (0)));
|
||
}
|
||
|
||
static CORE_ADDR
|
||
sh_frame_saved_pc (struct frame_info *frame)
|
||
{
|
||
return ((frame)->extra_info->return_pc);
|
||
}
|
||
|
||
/* Discard from the stack the innermost frame,
|
||
restoring all saved registers. */
|
||
static void
|
||
sh_pop_frame (void)
|
||
{
|
||
register struct frame_info *frame = get_current_frame ();
|
||
register CORE_ADDR fp;
|
||
register int regnum;
|
||
|
||
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
|
||
generic_pop_dummy_frame ();
|
||
else
|
||
{
|
||
fp = FRAME_FP (frame);
|
||
FRAME_INIT_SAVED_REGS (frame);
|
||
|
||
/* Copy regs from where they were saved in the frame */
|
||
for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
|
||
if (frame->saved_regs[regnum])
|
||
write_register (regnum,
|
||
read_memory_integer (frame->saved_regs[regnum], 4));
|
||
|
||
write_register (PC_REGNUM, frame->extra_info->return_pc);
|
||
write_register (SP_REGNUM, fp + 4);
|
||
}
|
||
flush_cached_frames ();
|
||
}
|
||
|
||
/* Function: push_arguments
|
||
Setup the function arguments for calling a function in the inferior.
|
||
|
||
On the Hitachi SH architecture, there are four registers (R4 to R7)
|
||
which are dedicated for passing function arguments. Up to the first
|
||
four arguments (depending on size) may go into these registers.
|
||
The rest go on the stack.
|
||
|
||
Arguments that are smaller than 4 bytes will still take up a whole
|
||
register or a whole 32-bit word on the stack, and will be
|
||
right-justified in the register or the stack word. This includes
|
||
chars, shorts, and small aggregate types.
|
||
|
||
Arguments that are larger than 4 bytes may be split between two or
|
||
more registers. If there are not enough registers free, an argument
|
||
may be passed partly in a register (or registers), and partly on the
|
||
stack. This includes doubles, long longs, and larger aggregates.
|
||
As far as I know, there is no upper limit to the size of aggregates
|
||
that will be passed in this way; in other words, the convention of
|
||
passing a pointer to a large aggregate instead of a copy is not used.
|
||
|
||
An exceptional case exists for struct arguments (and possibly other
|
||
aggregates such as arrays) if the size is larger than 4 bytes but
|
||
not a multiple of 4 bytes. In this case the argument is never split
|
||
between the registers and the stack, but instead is copied in its
|
||
entirety onto the stack, AND also copied into as many registers as
|
||
there is room for. In other words, space in registers permitting,
|
||
two copies of the same argument are passed in. As far as I can tell,
|
||
only the one on the stack is used, although that may be a function
|
||
of the level of compiler optimization. I suspect this is a compiler
|
||
bug. Arguments of these odd sizes are left-justified within the
|
||
word (as opposed to arguments smaller than 4 bytes, which are
|
||
right-justified).
|
||
|
||
If the function is to return an aggregate type such as a struct, it
|
||
is either returned in the normal return value register R0 (if its
|
||
size is no greater than one byte), or else the caller must allocate
|
||
space into which the callee will copy the return value (if the size
|
||
is greater than one byte). In this case, a pointer to the return
|
||
value location is passed into the callee in register R2, which does
|
||
not displace any of the other arguments passed in via registers R4
|
||
to R7. */
|
||
|
||
static CORE_ADDR
|
||
sh_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
|
||
int struct_return, CORE_ADDR struct_addr)
|
||
{
|
||
int stack_offset, stack_alloc;
|
||
int argreg;
|
||
int argnum;
|
||
struct type *type;
|
||
CORE_ADDR regval;
|
||
char *val;
|
||
char valbuf[4];
|
||
int len;
|
||
int odd_sized_struct;
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
/* first force sp to a 4-byte alignment */
|
||
sp = sp & ~3;
|
||
|
||
/* The "struct return pointer" pseudo-argument has its own dedicated
|
||
register */
|
||
if (struct_return)
|
||
write_register (STRUCT_RETURN_REGNUM, struct_addr);
|
||
|
||
/* Now make sure there's space on the stack */
|
||
for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
|
||
stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
|
||
sp -= stack_alloc; /* make room on stack for args */
|
||
|
||
/* Now load as many as possible of the first arguments into
|
||
registers, and push the rest onto the stack. There are 16 bytes
|
||
in four registers available. Loop thru args from first to last. */
|
||
|
||
argreg = tdep->ARG0_REGNUM;
|
||
for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
|
||
{
|
||
type = VALUE_TYPE (args[argnum]);
|
||
len = TYPE_LENGTH (type);
|
||
memset (valbuf, 0, sizeof (valbuf));
|
||
if (len < 4)
|
||
{
|
||
/* value gets right-justified in the register or stack word */
|
||
memcpy (valbuf + (4 - len),
|
||
(char *) VALUE_CONTENTS (args[argnum]), len);
|
||
val = valbuf;
|
||
}
|
||
else
|
||
val = (char *) VALUE_CONTENTS (args[argnum]);
|
||
|
||
if (len > 4 && (len & 3) != 0)
|
||
odd_sized_struct = 1; /* such structs go entirely on stack */
|
||
else
|
||
odd_sized_struct = 0;
|
||
while (len > 0)
|
||
{
|
||
if (argreg > tdep->ARGLAST_REGNUM
|
||
|| odd_sized_struct)
|
||
{
|
||
/* must go on the stack */
|
||
write_memory (sp + stack_offset, val, 4);
|
||
stack_offset += 4;
|
||
}
|
||
/* NOTE WELL!!!!! This is not an "else if" clause!!!
|
||
That's because some *&^%$ things get passed on the stack
|
||
AND in the registers! */
|
||
if (argreg <= tdep->ARGLAST_REGNUM)
|
||
{
|
||
/* there's room in a register */
|
||
regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
|
||
write_register (argreg++, regval);
|
||
}
|
||
/* Store the value 4 bytes at a time. This means that things
|
||
larger than 4 bytes may go partly in registers and partly
|
||
on the stack. */
|
||
len -= REGISTER_RAW_SIZE (argreg);
|
||
val += REGISTER_RAW_SIZE (argreg);
|
||
}
|
||
}
|
||
return sp;
|
||
}
|
||
|
||
/* Function: push_return_address (pc)
|
||
Set up the return address for the inferior function call.
|
||
Needed for targets where we don't actually execute a JSR/BSR instruction */
|
||
|
||
static CORE_ADDR
|
||
sh_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
|
||
{
|
||
write_register (gdbarch_tdep (current_gdbarch)->PR_REGNUM, CALL_DUMMY_ADDRESS ());
|
||
return sp;
|
||
}
|
||
|
||
/* Function: fix_call_dummy
|
||
Poke the callee function's address into the destination part of
|
||
the CALL_DUMMY. The address is actually stored in a data word
|
||
following the actualy CALL_DUMMY instructions, which will load
|
||
it into a register using PC-relative addressing. This function
|
||
expects the CALL_DUMMY to look like this:
|
||
|
||
mov.w @(2,PC), R8
|
||
jsr @R8
|
||
nop
|
||
trap
|
||
<destination>
|
||
*/
|
||
|
||
#if 0
|
||
void
|
||
sh_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
|
||
struct value **args, struct type *type, int gcc_p)
|
||
{
|
||
*(unsigned long *) (dummy + 8) = fun;
|
||
}
|
||
#endif
|
||
|
||
static int
|
||
sh_coerce_float_to_double (struct type *formal, struct type *actual)
|
||
{
|
||
return 1;
|
||
}
|
||
|
||
/* Find a function's return value in the appropriate registers (in
|
||
regbuf), and copy it into valbuf. Extract from an array REGBUF
|
||
containing the (raw) register state a function return value of type
|
||
TYPE, and copy that, in virtual format, into VALBUF. */
|
||
static void
|
||
sh_extract_return_value (struct type *type, char *regbuf, char *valbuf)
|
||
{
|
||
int len = TYPE_LENGTH (type);
|
||
int return_register = R0_REGNUM;
|
||
int offset;
|
||
|
||
if (len <= 4)
|
||
{
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||
offset = REGISTER_BYTE (return_register) + 4 - len;
|
||
else
|
||
offset = REGISTER_BYTE (return_register);
|
||
memcpy (valbuf, regbuf + offset, len);
|
||
}
|
||
else if (len <= 8)
|
||
{
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||
offset = REGISTER_BYTE (return_register) + 8 - len;
|
||
else
|
||
offset = REGISTER_BYTE (return_register);
|
||
memcpy (valbuf, regbuf + offset, len);
|
||
}
|
||
else
|
||
error ("bad size for return value");
|
||
}
|
||
|
||
static void
|
||
sh3e_sh4_extract_return_value (struct type *type, char *regbuf, char *valbuf)
|
||
{
|
||
int return_register;
|
||
int offset;
|
||
int len = TYPE_LENGTH (type);
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
||
return_register = FP0_REGNUM;
|
||
else
|
||
return_register = R0_REGNUM;
|
||
|
||
if (len == 8 && TYPE_CODE (type) == TYPE_CODE_FLT)
|
||
{
|
||
DOUBLEST val;
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
|
||
floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
|
||
(char *) regbuf + REGISTER_BYTE (return_register),
|
||
&val);
|
||
else
|
||
floatformat_to_doublest (&floatformat_ieee_double_big,
|
||
(char *) regbuf + REGISTER_BYTE (return_register),
|
||
&val);
|
||
store_floating (valbuf, len, val);
|
||
}
|
||
else if (len <= 4)
|
||
{
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||
offset = REGISTER_BYTE (return_register) + 4 - len;
|
||
else
|
||
offset = REGISTER_BYTE (return_register);
|
||
memcpy (valbuf, regbuf + offset, len);
|
||
}
|
||
else if (len <= 8)
|
||
{
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||
offset = REGISTER_BYTE (return_register) + 8 - len;
|
||
else
|
||
offset = REGISTER_BYTE (return_register);
|
||
memcpy (valbuf, regbuf + offset, len);
|
||
}
|
||
else
|
||
error ("bad size for return value");
|
||
}
|
||
|
||
/* Write into appropriate registers a function return value
|
||
of type TYPE, given in virtual format.
|
||
If the architecture is sh4 or sh3e, store a function's return value
|
||
in the R0 general register or in the FP0 floating point register,
|
||
depending on the type of the return value. In all the other cases
|
||
the result is stored in r0, left-justified. */
|
||
static void
|
||
sh_default_store_return_value (struct type *type, char *valbuf)
|
||
{
|
||
char buf[32]; /* more than enough... */
|
||
|
||
if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (R0_REGNUM))
|
||
{
|
||
/* Add leading zeros to the value. */
|
||
memset (buf, 0, REGISTER_RAW_SIZE (R0_REGNUM));
|
||
memcpy (buf + REGISTER_RAW_SIZE (R0_REGNUM) - TYPE_LENGTH (type),
|
||
valbuf, TYPE_LENGTH (type));
|
||
write_register_bytes (REGISTER_BYTE (R0_REGNUM), buf,
|
||
REGISTER_RAW_SIZE (R0_REGNUM));
|
||
}
|
||
else
|
||
write_register_bytes (REGISTER_BYTE (R0_REGNUM), valbuf,
|
||
TYPE_LENGTH (type));
|
||
}
|
||
|
||
static void
|
||
sh3e_sh4_store_return_value (struct type *type, char *valbuf)
|
||
{
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
||
write_register_bytes (REGISTER_BYTE (FP0_REGNUM),
|
||
valbuf, TYPE_LENGTH (type));
|
||
else
|
||
sh_default_store_return_value (type, valbuf);
|
||
}
|
||
|
||
/* Print the registers in a form similar to the E7000 */
|
||
|
||
static void
|
||
sh_generic_show_regs (void)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
|
||
paddr (read_register (PC_REGNUM)),
|
||
(long) read_register (tdep->SR_REGNUM),
|
||
(long) read_register (tdep->PR_REGNUM),
|
||
(long) read_register (MACH_REGNUM),
|
||
(long) read_register (MACL_REGNUM));
|
||
|
||
printf_filtered ("GBR=%08lx VBR=%08lx",
|
||
(long) read_register (GBR_REGNUM),
|
||
(long) read_register (VBR_REGNUM));
|
||
|
||
printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
||
(long) read_register (0),
|
||
(long) read_register (1),
|
||
(long) read_register (2),
|
||
(long) read_register (3),
|
||
(long) read_register (4),
|
||
(long) read_register (5),
|
||
(long) read_register (6),
|
||
(long) read_register (7));
|
||
printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
||
(long) read_register (8),
|
||
(long) read_register (9),
|
||
(long) read_register (10),
|
||
(long) read_register (11),
|
||
(long) read_register (12),
|
||
(long) read_register (13),
|
||
(long) read_register (14),
|
||
(long) read_register (15));
|
||
}
|
||
|
||
static void
|
||
sh3_show_regs (void)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
|
||
paddr (read_register (PC_REGNUM)),
|
||
(long) read_register (tdep->SR_REGNUM),
|
||
(long) read_register (tdep->PR_REGNUM),
|
||
(long) read_register (MACH_REGNUM),
|
||
(long) read_register (MACL_REGNUM));
|
||
|
||
printf_filtered ("GBR=%08lx VBR=%08lx",
|
||
(long) read_register (GBR_REGNUM),
|
||
(long) read_register (VBR_REGNUM));
|
||
printf_filtered (" SSR=%08lx SPC=%08lx",
|
||
(long) read_register (tdep->SSR_REGNUM),
|
||
(long) read_register (tdep->SPC_REGNUM));
|
||
|
||
printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
||
(long) read_register (0),
|
||
(long) read_register (1),
|
||
(long) read_register (2),
|
||
(long) read_register (3),
|
||
(long) read_register (4),
|
||
(long) read_register (5),
|
||
(long) read_register (6),
|
||
(long) read_register (7));
|
||
printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
||
(long) read_register (8),
|
||
(long) read_register (9),
|
||
(long) read_register (10),
|
||
(long) read_register (11),
|
||
(long) read_register (12),
|
||
(long) read_register (13),
|
||
(long) read_register (14),
|
||
(long) read_register (15));
|
||
}
|
||
|
||
|
||
static void
|
||
sh3e_show_regs (void)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
|
||
paddr (read_register (PC_REGNUM)),
|
||
(long) read_register (tdep->SR_REGNUM),
|
||
(long) read_register (tdep->PR_REGNUM),
|
||
(long) read_register (MACH_REGNUM),
|
||
(long) read_register (MACL_REGNUM));
|
||
|
||
printf_filtered ("GBR=%08lx VBR=%08lx",
|
||
(long) read_register (GBR_REGNUM),
|
||
(long) read_register (VBR_REGNUM));
|
||
printf_filtered (" SSR=%08lx SPC=%08lx",
|
||
(long) read_register (tdep->SSR_REGNUM),
|
||
(long) read_register (tdep->SPC_REGNUM));
|
||
printf_filtered (" FPUL=%08lx FPSCR=%08lx",
|
||
(long) read_register (tdep->FPUL_REGNUM),
|
||
(long) read_register (tdep->FPSCR_REGNUM));
|
||
|
||
printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
||
(long) read_register (0),
|
||
(long) read_register (1),
|
||
(long) read_register (2),
|
||
(long) read_register (3),
|
||
(long) read_register (4),
|
||
(long) read_register (5),
|
||
(long) read_register (6),
|
||
(long) read_register (7));
|
||
printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
||
(long) read_register (8),
|
||
(long) read_register (9),
|
||
(long) read_register (10),
|
||
(long) read_register (11),
|
||
(long) read_register (12),
|
||
(long) read_register (13),
|
||
(long) read_register (14),
|
||
(long) read_register (15));
|
||
|
||
printf_filtered (("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
|
||
(long) read_register (FP0_REGNUM + 0),
|
||
(long) read_register (FP0_REGNUM + 1),
|
||
(long) read_register (FP0_REGNUM + 2),
|
||
(long) read_register (FP0_REGNUM + 3),
|
||
(long) read_register (FP0_REGNUM + 4),
|
||
(long) read_register (FP0_REGNUM + 5),
|
||
(long) read_register (FP0_REGNUM + 6),
|
||
(long) read_register (FP0_REGNUM + 7));
|
||
printf_filtered (("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
|
||
(long) read_register (FP0_REGNUM + 8),
|
||
(long) read_register (FP0_REGNUM + 9),
|
||
(long) read_register (FP0_REGNUM + 10),
|
||
(long) read_register (FP0_REGNUM + 11),
|
||
(long) read_register (FP0_REGNUM + 12),
|
||
(long) read_register (FP0_REGNUM + 13),
|
||
(long) read_register (FP0_REGNUM + 14),
|
||
(long) read_register (FP0_REGNUM + 15));
|
||
}
|
||
|
||
static void
|
||
sh3_dsp_show_regs (void)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
|
||
paddr (read_register (PC_REGNUM)),
|
||
(long) read_register (tdep->SR_REGNUM),
|
||
(long) read_register (tdep->PR_REGNUM),
|
||
(long) read_register (MACH_REGNUM),
|
||
(long) read_register (MACL_REGNUM));
|
||
|
||
printf_filtered ("GBR=%08lx VBR=%08lx",
|
||
(long) read_register (GBR_REGNUM),
|
||
(long) read_register (VBR_REGNUM));
|
||
|
||
printf_filtered (" SSR=%08lx SPC=%08lx",
|
||
(long) read_register (tdep->SSR_REGNUM),
|
||
(long) read_register (tdep->SPC_REGNUM));
|
||
|
||
printf_filtered (" DSR=%08lx",
|
||
(long) read_register (tdep->DSR_REGNUM));
|
||
|
||
printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
||
(long) read_register (0),
|
||
(long) read_register (1),
|
||
(long) read_register (2),
|
||
(long) read_register (3),
|
||
(long) read_register (4),
|
||
(long) read_register (5),
|
||
(long) read_register (6),
|
||
(long) read_register (7));
|
||
printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
||
(long) read_register (8),
|
||
(long) read_register (9),
|
||
(long) read_register (10),
|
||
(long) read_register (11),
|
||
(long) read_register (12),
|
||
(long) read_register (13),
|
||
(long) read_register (14),
|
||
(long) read_register (15));
|
||
|
||
printf_filtered ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
|
||
(long) read_register (tdep->A0G_REGNUM) & 0xff,
|
||
(long) read_register (tdep->A0_REGNUM),
|
||
(long) read_register (tdep->M0_REGNUM),
|
||
(long) read_register (tdep->X0_REGNUM),
|
||
(long) read_register (tdep->Y0_REGNUM),
|
||
(long) read_register (tdep->RS_REGNUM),
|
||
(long) read_register (tdep->MOD_REGNUM));
|
||
printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
|
||
(long) read_register (tdep->A1G_REGNUM) & 0xff,
|
||
(long) read_register (tdep->A1_REGNUM),
|
||
(long) read_register (tdep->M1_REGNUM),
|
||
(long) read_register (tdep->X1_REGNUM),
|
||
(long) read_register (tdep->Y1_REGNUM),
|
||
(long) read_register (tdep->RE_REGNUM));
|
||
}
|
||
|
||
static void
|
||
sh4_show_regs (void)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
int pr = read_register (tdep->FPSCR_REGNUM) & 0x80000;
|
||
printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
|
||
paddr (read_register (PC_REGNUM)),
|
||
(long) read_register (tdep->SR_REGNUM),
|
||
(long) read_register (tdep->PR_REGNUM),
|
||
(long) read_register (MACH_REGNUM),
|
||
(long) read_register (MACL_REGNUM));
|
||
|
||
printf_filtered ("GBR=%08lx VBR=%08lx",
|
||
(long) read_register (GBR_REGNUM),
|
||
(long) read_register (VBR_REGNUM));
|
||
printf_filtered (" SSR=%08lx SPC=%08lx",
|
||
(long) read_register (tdep->SSR_REGNUM),
|
||
(long) read_register (tdep->SPC_REGNUM));
|
||
printf_filtered (" FPUL=%08lx FPSCR=%08lx",
|
||
(long) read_register (tdep->FPUL_REGNUM),
|
||
(long) read_register (tdep->FPSCR_REGNUM));
|
||
|
||
printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
||
(long) read_register (0),
|
||
(long) read_register (1),
|
||
(long) read_register (2),
|
||
(long) read_register (3),
|
||
(long) read_register (4),
|
||
(long) read_register (5),
|
||
(long) read_register (6),
|
||
(long) read_register (7));
|
||
printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
||
(long) read_register (8),
|
||
(long) read_register (9),
|
||
(long) read_register (10),
|
||
(long) read_register (11),
|
||
(long) read_register (12),
|
||
(long) read_register (13),
|
||
(long) read_register (14),
|
||
(long) read_register (15));
|
||
|
||
printf_filtered ((pr
|
||
? "DR0-DR6 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
|
||
: "FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
|
||
(long) read_register (FP0_REGNUM + 0),
|
||
(long) read_register (FP0_REGNUM + 1),
|
||
(long) read_register (FP0_REGNUM + 2),
|
||
(long) read_register (FP0_REGNUM + 3),
|
||
(long) read_register (FP0_REGNUM + 4),
|
||
(long) read_register (FP0_REGNUM + 5),
|
||
(long) read_register (FP0_REGNUM + 6),
|
||
(long) read_register (FP0_REGNUM + 7));
|
||
printf_filtered ((pr
|
||
? "DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
|
||
: "FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
|
||
(long) read_register (FP0_REGNUM + 8),
|
||
(long) read_register (FP0_REGNUM + 9),
|
||
(long) read_register (FP0_REGNUM + 10),
|
||
(long) read_register (FP0_REGNUM + 11),
|
||
(long) read_register (FP0_REGNUM + 12),
|
||
(long) read_register (FP0_REGNUM + 13),
|
||
(long) read_register (FP0_REGNUM + 14),
|
||
(long) read_register (FP0_REGNUM + 15));
|
||
}
|
||
|
||
static void
|
||
sh_dsp_show_regs (void)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
|
||
paddr (read_register (PC_REGNUM)),
|
||
(long) read_register (tdep->SR_REGNUM),
|
||
(long) read_register (tdep->PR_REGNUM),
|
||
(long) read_register (MACH_REGNUM),
|
||
(long) read_register (MACL_REGNUM));
|
||
|
||
printf_filtered ("GBR=%08lx VBR=%08lx",
|
||
(long) read_register (GBR_REGNUM),
|
||
(long) read_register (VBR_REGNUM));
|
||
|
||
printf_filtered (" DSR=%08lx",
|
||
(long) read_register (tdep->DSR_REGNUM));
|
||
|
||
printf_filtered ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
||
(long) read_register (0),
|
||
(long) read_register (1),
|
||
(long) read_register (2),
|
||
(long) read_register (3),
|
||
(long) read_register (4),
|
||
(long) read_register (5),
|
||
(long) read_register (6),
|
||
(long) read_register (7));
|
||
printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
||
(long) read_register (8),
|
||
(long) read_register (9),
|
||
(long) read_register (10),
|
||
(long) read_register (11),
|
||
(long) read_register (12),
|
||
(long) read_register (13),
|
||
(long) read_register (14),
|
||
(long) read_register (15));
|
||
|
||
printf_filtered ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
|
||
(long) read_register (tdep->A0G_REGNUM) & 0xff,
|
||
(long) read_register (tdep->A0_REGNUM),
|
||
(long) read_register (tdep->M0_REGNUM),
|
||
(long) read_register (tdep->X0_REGNUM),
|
||
(long) read_register (tdep->Y0_REGNUM),
|
||
(long) read_register (tdep->RS_REGNUM),
|
||
(long) read_register (tdep->MOD_REGNUM));
|
||
printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
|
||
(long) read_register (tdep->A1G_REGNUM) & 0xff,
|
||
(long) read_register (tdep->A1_REGNUM),
|
||
(long) read_register (tdep->M1_REGNUM),
|
||
(long) read_register (tdep->X1_REGNUM),
|
||
(long) read_register (tdep->Y1_REGNUM),
|
||
(long) read_register (tdep->RE_REGNUM));
|
||
}
|
||
|
||
void sh_show_regs_command (char *args, int from_tty)
|
||
{
|
||
if (sh_show_regs)
|
||
(*sh_show_regs)();
|
||
}
|
||
|
||
/* Index within `registers' of the first byte of the space for
|
||
register N. */
|
||
static int
|
||
sh_default_register_byte (int reg_nr)
|
||
{
|
||
return (reg_nr * 4);
|
||
}
|
||
|
||
static int
|
||
sh_sh4_register_byte (int reg_nr)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (reg_nr >= tdep->DR0_REGNUM
|
||
&& reg_nr <= tdep->DR_LAST_REGNUM)
|
||
return (dr_reg_base_num (reg_nr) * 4);
|
||
else if (reg_nr >= tdep->FV0_REGNUM
|
||
&& reg_nr <= tdep->FV_LAST_REGNUM)
|
||
return (fv_reg_base_num (reg_nr) * 4);
|
||
else
|
||
return (reg_nr * 4);
|
||
}
|
||
|
||
/* Number of bytes of storage in the actual machine representation for
|
||
register REG_NR. */
|
||
static int
|
||
sh_default_register_raw_size (int reg_nr)
|
||
{
|
||
return 4;
|
||
}
|
||
|
||
static int
|
||
sh_sh4_register_raw_size (int reg_nr)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (reg_nr >= tdep->DR0_REGNUM
|
||
&& reg_nr <= tdep->DR_LAST_REGNUM)
|
||
return 8;
|
||
else if (reg_nr >= tdep->FV0_REGNUM
|
||
&& reg_nr <= tdep->FV_LAST_REGNUM)
|
||
return 16;
|
||
else
|
||
return 4;
|
||
}
|
||
|
||
/* Number of bytes of storage in the program's representation
|
||
for register N. */
|
||
static int
|
||
sh_register_virtual_size (int reg_nr)
|
||
{
|
||
return 4;
|
||
}
|
||
|
||
/* Return the GDB type object for the "standard" data type
|
||
of data in register N. */
|
||
static struct type *
|
||
sh_sh3e_register_virtual_type (int reg_nr)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if ((reg_nr >= FP0_REGNUM
|
||
&& (reg_nr <= tdep->FP_LAST_REGNUM))
|
||
|| (reg_nr == tdep->FPUL_REGNUM))
|
||
return builtin_type_float;
|
||
else
|
||
return builtin_type_int;
|
||
}
|
||
|
||
static struct type *
|
||
sh_sh4_build_float_register_type (int high)
|
||
{
|
||
struct type *temp;
|
||
|
||
temp = create_range_type (NULL, builtin_type_int, 0, high);
|
||
return create_array_type (NULL, builtin_type_float, temp);
|
||
}
|
||
|
||
static struct type *
|
||
sh_sh4_register_virtual_type (int reg_nr)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if ((reg_nr >= FP0_REGNUM
|
||
&& (reg_nr <= tdep->FP_LAST_REGNUM))
|
||
|| (reg_nr == tdep->FPUL_REGNUM))
|
||
return builtin_type_float;
|
||
else if (reg_nr >= tdep->DR0_REGNUM
|
||
&& reg_nr <= tdep->DR_LAST_REGNUM)
|
||
return builtin_type_double;
|
||
else if (reg_nr >= tdep->FV0_REGNUM
|
||
&& reg_nr <= tdep->FV_LAST_REGNUM)
|
||
return sh_sh4_build_float_register_type (3);
|
||
else
|
||
return builtin_type_int;
|
||
}
|
||
|
||
static struct type *
|
||
sh_default_register_virtual_type (int reg_nr)
|
||
{
|
||
return builtin_type_int;
|
||
}
|
||
|
||
/* On the sh4, the DRi pseudo registers are problematic if the target
|
||
is little endian. When the user writes one of those registers, for
|
||
instance with 'ser var $dr0=1', we want the double to be stored
|
||
like this:
|
||
fr0 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
|
||
fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
|
||
|
||
This corresponds to little endian byte order & big endian word
|
||
order. However if we let gdb write the register w/o conversion, it
|
||
will write fr0 and fr1 this way:
|
||
fr0 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
|
||
fr1 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
|
||
because it will consider fr0 and fr1 as a single LE stretch of memory.
|
||
|
||
To achieve what we want we must force gdb to store things in
|
||
floatformat_ieee_double_littlebyte_bigword (which is defined in
|
||
include/floatformat.h and libiberty/floatformat.c.
|
||
|
||
In case the target is big endian, there is no problem, the
|
||
raw bytes will look like:
|
||
fr0 = 0x3f 0xf0 0x00 0x00 0x00 0x00 0x00
|
||
fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
|
||
|
||
The other pseudo registers (the FVs) also don't pose a problem
|
||
because they are stored as 4 individual FP elements. */
|
||
|
||
static void
|
||
sh_sh4_register_convert_to_virtual (int regnum, struct type *type,
|
||
char *from, char *to)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (regnum >= tdep->DR0_REGNUM
|
||
&& regnum <= tdep->DR_LAST_REGNUM)
|
||
{
|
||
DOUBLEST val;
|
||
floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword, from, &val);
|
||
store_floating (to, TYPE_LENGTH (type), val);
|
||
}
|
||
else
|
||
error ("sh_register_convert_to_virtual called with non DR register number");
|
||
}
|
||
|
||
static void
|
||
sh_sh4_register_convert_to_raw (struct type *type, int regnum,
|
||
char *from, char *to)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (regnum >= tdep->DR0_REGNUM
|
||
&& regnum <= tdep->DR_LAST_REGNUM)
|
||
{
|
||
DOUBLEST val = extract_floating (from, TYPE_LENGTH(type));
|
||
floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword, &val, to);
|
||
}
|
||
else
|
||
error("sh_register_convert_to_raw called with non DR register number");
|
||
}
|
||
|
||
void
|
||
sh_pseudo_register_read (int reg_nr, char *buffer)
|
||
{
|
||
int base_regnum, portion;
|
||
char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (reg_nr >= tdep->DR0_REGNUM
|
||
&& reg_nr <= tdep->DR_LAST_REGNUM)
|
||
{
|
||
base_regnum = dr_reg_base_num (reg_nr);
|
||
|
||
/* Build the value in the provided buffer. */
|
||
/* Read the real regs for which this one is an alias. */
|
||
for (portion = 0; portion < 2; portion++)
|
||
regcache_read (base_regnum + portion,
|
||
temp_buffer
|
||
+ REGISTER_RAW_SIZE (base_regnum) * portion);
|
||
/* We must pay attention to the endiannes. */
|
||
sh_sh4_register_convert_to_virtual (reg_nr,
|
||
REGISTER_VIRTUAL_TYPE (reg_nr),
|
||
temp_buffer, buffer);
|
||
}
|
||
else if (reg_nr >= tdep->FV0_REGNUM
|
||
&& reg_nr <= tdep->FV_LAST_REGNUM)
|
||
{
|
||
base_regnum = fv_reg_base_num (reg_nr);
|
||
|
||
/* Read the real regs for which this one is an alias. */
|
||
for (portion = 0; portion < 4; portion++)
|
||
regcache_read (base_regnum + portion,
|
||
buffer + REGISTER_RAW_SIZE (base_regnum) * portion);
|
||
}
|
||
}
|
||
|
||
static void
|
||
sh4_register_read (struct gdbarch *gdbarch, int reg_nr, char *buffer)
|
||
{
|
||
if (reg_nr >= 0 && reg_nr < gdbarch_tdep (current_gdbarch)->DR0_REGNUM)
|
||
/* It is a regular register. */
|
||
regcache_read (reg_nr, buffer);
|
||
else
|
||
/* It is a pseudo register and we need to construct its value */
|
||
sh_pseudo_register_read (reg_nr, buffer);
|
||
}
|
||
|
||
void
|
||
sh_pseudo_register_write (int reg_nr, char *buffer)
|
||
{
|
||
int base_regnum, portion;
|
||
char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (reg_nr >= tdep->DR0_REGNUM
|
||
&& reg_nr <= tdep->DR_LAST_REGNUM)
|
||
{
|
||
base_regnum = dr_reg_base_num (reg_nr);
|
||
|
||
/* We must pay attention to the endiannes. */
|
||
sh_sh4_register_convert_to_raw (REGISTER_VIRTUAL_TYPE (reg_nr), reg_nr,
|
||
buffer, temp_buffer);
|
||
|
||
/* Write the real regs for which this one is an alias. */
|
||
for (portion = 0; portion < 2; portion++)
|
||
regcache_write (base_regnum + portion,
|
||
temp_buffer + REGISTER_RAW_SIZE (base_regnum) * portion);
|
||
}
|
||
else if (reg_nr >= tdep->FV0_REGNUM
|
||
&& reg_nr <= tdep->FV_LAST_REGNUM)
|
||
{
|
||
base_regnum = fv_reg_base_num (reg_nr);
|
||
|
||
/* Write the real regs for which this one is an alias. */
|
||
for (portion = 0; portion < 4; portion++)
|
||
regcache_write (base_regnum + portion,
|
||
buffer + REGISTER_RAW_SIZE (base_regnum) * portion);
|
||
}
|
||
}
|
||
|
||
static void
|
||
sh4_register_write (struct gdbarch *gdbarch, int reg_nr, char *buffer)
|
||
{
|
||
if (reg_nr >= 0 && reg_nr < gdbarch_tdep (current_gdbarch)->DR0_REGNUM)
|
||
/* It is a regular register. */
|
||
regcache_write (reg_nr, buffer);
|
||
else
|
||
/* It is a pseudo register and we need to construct its value */
|
||
sh_pseudo_register_write (reg_nr, buffer);
|
||
}
|
||
|
||
/* Floating point vector of 4 float registers. */
|
||
static void
|
||
do_fv_register_info (int fv_regnum)
|
||
{
|
||
int first_fp_reg_num = fv_reg_base_num (fv_regnum);
|
||
printf_filtered ("fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
|
||
fv_regnum - gdbarch_tdep (current_gdbarch)->FV0_REGNUM,
|
||
(int) read_register (first_fp_reg_num),
|
||
(int) read_register (first_fp_reg_num + 1),
|
||
(int) read_register (first_fp_reg_num + 2),
|
||
(int) read_register (first_fp_reg_num + 3));
|
||
}
|
||
|
||
/* Double precision registers. */
|
||
static void
|
||
do_dr_register_info (int dr_regnum)
|
||
{
|
||
int first_fp_reg_num = dr_reg_base_num (dr_regnum);
|
||
|
||
printf_filtered ("dr%d\t0x%08x%08x\n",
|
||
dr_regnum - gdbarch_tdep (current_gdbarch)->DR0_REGNUM,
|
||
(int) read_register (first_fp_reg_num),
|
||
(int) read_register (first_fp_reg_num + 1));
|
||
}
|
||
|
||
static void
|
||
sh_do_pseudo_register (int regnum)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (regnum < NUM_REGS || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
|
||
internal_error (__FILE__, __LINE__,
|
||
"Invalid pseudo register number %d\n", regnum);
|
||
else if (regnum >= tdep->DR0_REGNUM
|
||
&& regnum < tdep->DR_LAST_REGNUM)
|
||
do_dr_register_info (regnum);
|
||
else if (regnum >= tdep->FV0_REGNUM
|
||
&& regnum <= tdep->FV_LAST_REGNUM)
|
||
do_fv_register_info (regnum);
|
||
}
|
||
|
||
static void
|
||
sh_do_fp_register (int regnum)
|
||
{ /* do values for FP (float) regs */
|
||
char *raw_buffer;
|
||
double flt; /* double extracted from raw hex data */
|
||
int inv;
|
||
int j;
|
||
|
||
/* Allocate space for the float. */
|
||
raw_buffer = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
|
||
|
||
/* Get the data in raw format. */
|
||
if (!frame_register_read (selected_frame, regnum, raw_buffer))
|
||
error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
|
||
|
||
/* Get the register as a number */
|
||
flt = unpack_double (builtin_type_float, raw_buffer, &inv);
|
||
|
||
/* Print the name and some spaces. */
|
||
fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
|
||
print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), gdb_stdout);
|
||
|
||
/* Print the value. */
|
||
if (inv)
|
||
printf_filtered ("<invalid float>");
|
||
else
|
||
printf_filtered ("%-10.9g", flt);
|
||
|
||
/* Print the fp register as hex. */
|
||
printf_filtered ("\t(raw 0x");
|
||
for (j = 0; j < REGISTER_RAW_SIZE (regnum); j++)
|
||
{
|
||
register int idx = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? j
|
||
: REGISTER_RAW_SIZE (regnum) - 1 - j;
|
||
printf_filtered ("%02x", (unsigned char) raw_buffer[idx]);
|
||
}
|
||
printf_filtered (")");
|
||
printf_filtered ("\n");
|
||
}
|
||
|
||
static void
|
||
sh_do_register (int regnum)
|
||
{
|
||
char raw_buffer[MAX_REGISTER_RAW_SIZE];
|
||
|
||
fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
|
||
print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), gdb_stdout);
|
||
|
||
/* Get the data in raw format. */
|
||
if (!frame_register_read (selected_frame, regnum, raw_buffer))
|
||
printf_filtered ("*value not available*\n");
|
||
|
||
val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
|
||
gdb_stdout, 'x', 1, 0, Val_pretty_default);
|
||
printf_filtered ("\t");
|
||
val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
|
||
gdb_stdout, 0, 1, 0, Val_pretty_default);
|
||
printf_filtered ("\n");
|
||
}
|
||
|
||
static void
|
||
sh_print_register (int regnum)
|
||
{
|
||
if (regnum < 0 || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
|
||
internal_error (__FILE__, __LINE__,
|
||
"Invalid register number %d\n", regnum);
|
||
|
||
else if (regnum >= 0 && regnum < NUM_REGS)
|
||
{
|
||
if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
|
||
sh_do_fp_register (regnum); /* FP regs */
|
||
else
|
||
sh_do_register (regnum); /* All other regs */
|
||
}
|
||
|
||
else if (regnum < NUM_REGS + NUM_PSEUDO_REGS)
|
||
do_pseudo_register (regnum);
|
||
}
|
||
|
||
void
|
||
sh_do_registers_info (int regnum, int fpregs)
|
||
{
|
||
if (regnum != -1) /* do one specified register */
|
||
{
|
||
if (*(REGISTER_NAME (regnum)) == '\0')
|
||
error ("Not a valid register for the current processor type");
|
||
|
||
sh_print_register (regnum);
|
||
}
|
||
else
|
||
/* do all (or most) registers */
|
||
{
|
||
regnum = 0;
|
||
while (regnum < NUM_REGS)
|
||
{
|
||
/* If the register name is empty, it is undefined for this
|
||
processor, so don't display anything. */
|
||
if (REGISTER_NAME (regnum) == NULL
|
||
|| *(REGISTER_NAME (regnum)) == '\0')
|
||
{
|
||
regnum++;
|
||
continue;
|
||
}
|
||
|
||
if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
|
||
{
|
||
if (fpregs)
|
||
{
|
||
/* true for "INFO ALL-REGISTERS" command */
|
||
sh_do_fp_register (regnum); /* FP regs */
|
||
regnum ++;
|
||
}
|
||
else
|
||
regnum += (gdbarch_tdep (current_gdbarch)->FP_LAST_REGNUM - FP0_REGNUM); /* skip FP regs */
|
||
}
|
||
else
|
||
{
|
||
sh_do_register (regnum); /* All other regs */
|
||
regnum++;
|
||
}
|
||
}
|
||
|
||
if (fpregs)
|
||
while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
|
||
{
|
||
do_pseudo_register (regnum);
|
||
regnum++;
|
||
}
|
||
}
|
||
}
|
||
|
||
#ifdef SVR4_SHARED_LIBS
|
||
|
||
/* Fetch (and possibly build) an appropriate link_map_offsets structure
|
||
for native i386 linux targets using the struct offsets defined in
|
||
link.h (but without actual reference to that file).
|
||
|
||
This makes it possible to access i386-linux shared libraries from
|
||
a gdb that was not built on an i386-linux host (for cross debugging).
|
||
*/
|
||
|
||
struct link_map_offsets *
|
||
sh_linux_svr4_fetch_link_map_offsets (void)
|
||
{
|
||
static struct link_map_offsets lmo;
|
||
static struct link_map_offsets *lmp = 0;
|
||
|
||
if (lmp == 0)
|
||
{
|
||
lmp = &lmo;
|
||
|
||
lmo.r_debug_size = 8; /* 20 not actual size but all we need */
|
||
|
||
lmo.r_map_offset = 4;
|
||
lmo.r_map_size = 4;
|
||
|
||
lmo.link_map_size = 20; /* 552 not actual size but all we need */
|
||
|
||
lmo.l_addr_offset = 0;
|
||
lmo.l_addr_size = 4;
|
||
|
||
lmo.l_name_offset = 4;
|
||
lmo.l_name_size = 4;
|
||
|
||
lmo.l_next_offset = 12;
|
||
lmo.l_next_size = 4;
|
||
|
||
lmo.l_prev_offset = 16;
|
||
lmo.l_prev_size = 4;
|
||
}
|
||
|
||
return lmp;
|
||
}
|
||
#endif /* SVR4_SHARED_LIBS */
|
||
|
||
|
||
/* This table matches the indices assigned to enum sh_osabi. Keep
|
||
them in sync. */
|
||
static const char * const sh_osabi_names[] =
|
||
{
|
||
"<unknown>",
|
||
"GNU/Linux",
|
||
"NetBSD ELF",
|
||
NULL
|
||
};
|
||
|
||
static void
|
||
process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
|
||
{
|
||
enum sh_osabi *os_ident_ptr = obj;
|
||
const char *name;
|
||
unsigned int sectsize;
|
||
|
||
name = bfd_get_section_name (abfd, sect);
|
||
sectsize = bfd_section_size (abfd, sect);
|
||
|
||
if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
|
||
{
|
||
unsigned int name_length, data_length, note_type;
|
||
char *note;
|
||
|
||
/* If the section is larger than this, it's probably not what we are
|
||
looking for. */
|
||
if (sectsize > 128)
|
||
sectsize = 128;
|
||
|
||
note = alloca (sectsize);
|
||
|
||
bfd_get_section_contents (abfd, sect, note,
|
||
(file_ptr) 0, (bfd_size_type) sectsize);
|
||
|
||
name_length = bfd_h_get_32 (abfd, note);
|
||
data_length = bfd_h_get_32 (abfd, note + 4);
|
||
note_type = bfd_h_get_32 (abfd, note + 8);
|
||
|
||
if (name_length == 4 && data_length == 16 && note_type == NT_GNU_ABI_TAG
|
||
&& strcmp (note + 12, "GNU") == 0)
|
||
{
|
||
int os_number = bfd_h_get_32 (abfd, note + 16);
|
||
|
||
/* The case numbers are from abi-tags in glibc. */
|
||
switch (os_number)
|
||
{
|
||
case GNU_ABI_TAG_LINUX:
|
||
*os_ident_ptr = SH_OSABI_LINUX;
|
||
break;
|
||
|
||
case GNU_ABI_TAG_HURD:
|
||
internal_error
|
||
(__FILE__, __LINE__,
|
||
"process_note_abi_sections: Hurd objects not supported");
|
||
break;
|
||
|
||
case GNU_ABI_TAG_SOLARIS:
|
||
internal_error
|
||
(__FILE__, __LINE__,
|
||
"process_note_abi_sections: Solaris objects not supported");
|
||
break;
|
||
|
||
default:
|
||
internal_error
|
||
(__FILE__, __LINE__,
|
||
"process_note_abi_sections: unknown OS number %d",
|
||
os_number);
|
||
}
|
||
}
|
||
}
|
||
/* NetBSD uses a similar trick. */
|
||
else if (strcmp (name, ".note.netbsd.ident") == 0 && sectsize > 0)
|
||
{
|
||
unsigned int name_length, desc_length, note_type;
|
||
char *note;
|
||
|
||
/* If the section is larger than this, it's probably not what we are
|
||
looking for. */
|
||
if (sectsize > 128)
|
||
sectsize = 128;
|
||
|
||
note = alloca (sectsize);
|
||
|
||
bfd_get_section_contents (abfd, sect, note,
|
||
(file_ptr) 0, (bfd_size_type) sectsize);
|
||
|
||
name_length = bfd_h_get_32 (abfd, note);
|
||
desc_length = bfd_h_get_32 (abfd, note + 4);
|
||
note_type = bfd_h_get_32 (abfd, note + 8);
|
||
|
||
if (name_length == 7 && desc_length == 4 && note_type == NT_NETBSD_IDENT
|
||
&& strcmp (note + 12, "NetBSD") == 0)
|
||
/* XXX Should we check the version here?
|
||
Probably not necessary yet. */
|
||
*os_ident_ptr = SH_OSABI_NETBSD_ELF;
|
||
}
|
||
}
|
||
|
||
static int
|
||
get_elfosabi (bfd *abfd)
|
||
{
|
||
int elfosabi;
|
||
enum sh_osabi sh_osabi = SH_OSABI_UNKNOWN;
|
||
|
||
elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
|
||
|
||
switch (elfosabi)
|
||
{
|
||
case ELFOSABI_NONE:
|
||
/* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate
|
||
that we're on a SYSV system. However, some systems use note sections
|
||
to record OS/ABI info, but leave e_ident[EI_OSABI] zero. So we
|
||
have to check the note sections too. */
|
||
bfd_map_over_sections (abfd,
|
||
process_note_abi_tag_sections,
|
||
&sh_osabi);
|
||
break;
|
||
|
||
case ELFOSABI_NETBSD:
|
||
sh_osabi = SH_OSABI_NETBSD_ELF;
|
||
break;
|
||
|
||
case ELFOSABI_LINUX:
|
||
sh_osabi = SH_OSABI_LINUX;
|
||
break;
|
||
}
|
||
|
||
return (sh_osabi);
|
||
}
|
||
|
||
struct sh_osabi_handler
|
||
{
|
||
struct sh_osabi_handler *next;
|
||
enum sh_osabi abi;
|
||
void (*init_osabi)(struct gdbarch_info, struct gdbarch *);
|
||
};
|
||
|
||
struct sh_osabi_handler *sh_osabi_handler_list = NULL;
|
||
|
||
void
|
||
sh_gdbarch_register_os_abi (enum sh_osabi abi,
|
||
void (*init_osabi)(struct gdbarch_info,
|
||
struct gdbarch *))
|
||
{
|
||
struct sh_osabi_handler **handler_p;
|
||
|
||
for (handler_p = &sh_osabi_handler_list; *handler_p != NULL;
|
||
handler_p = &(*handler_p)->next)
|
||
{
|
||
if ((*handler_p)->abi == abi)
|
||
{
|
||
internal_error
|
||
(__FILE__, __LINE__,
|
||
"sh_gdbarch_register_os_abi: A handler for this ABI variant "
|
||
"(%d) has already been registered", (int) abi);
|
||
/* If user wants to continue, override previous definition. */
|
||
(*handler_p)->init_osabi = init_osabi;
|
||
return;
|
||
}
|
||
}
|
||
|
||
(*handler_p)
|
||
= (struct sh_osabi_handler *) xmalloc (sizeof (struct sh_osabi_handler));
|
||
(*handler_p)->next = NULL;
|
||
(*handler_p)->abi = abi;
|
||
(*handler_p)->init_osabi = init_osabi;
|
||
}
|
||
|
||
static gdbarch_init_ftype sh_gdbarch_init;
|
||
|
||
static struct gdbarch *
|
||
sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
||
{
|
||
static LONGEST sh_call_dummy_words[] = {0};
|
||
struct gdbarch *gdbarch;
|
||
struct gdbarch_tdep *tdep;
|
||
gdbarch_register_name_ftype *sh_register_name;
|
||
gdbarch_store_return_value_ftype *sh_store_return_value;
|
||
gdbarch_register_virtual_type_ftype *sh_register_virtual_type;
|
||
enum sh_osabi sh_osabi = SH_OSABI_UNKNOWN;
|
||
struct sh_osabi_handler *osabi_handler;
|
||
|
||
/* Try to determine the ABI of the object we are loading. */
|
||
|
||
if (info.abfd != NULL)
|
||
{
|
||
switch (bfd_get_flavour (info.abfd))
|
||
{
|
||
case bfd_target_elf_flavour:
|
||
sh_osabi = get_elfosabi (info.abfd);
|
||
break;
|
||
|
||
default:
|
||
/* Just leave it as "unkown". */
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Find a candidate among the list of pre-declared architectures. */
|
||
for (arches = gdbarch_list_lookup_by_info (arches, &info);
|
||
arches != NULL;
|
||
arches = gdbarch_list_lookup_by_info (arches->next, &info))
|
||
{
|
||
/* Make sure the ABI selection matches. */
|
||
tdep = gdbarch_tdep (arches->gdbarch);
|
||
if (tdep && tdep->sh_osabi == sh_osabi)
|
||
return arches->gdbarch;
|
||
}
|
||
|
||
/* None found, create a new architecture from the information
|
||
provided. */
|
||
tdep = XMALLOC (struct gdbarch_tdep);
|
||
gdbarch = gdbarch_alloc (&info, tdep);
|
||
|
||
tdep->sh_osabi = sh_osabi;
|
||
if (sh_osabi < SH_OSABI_INVALID)
|
||
tdep->osabi_name = sh_osabi_names[sh_osabi];
|
||
else
|
||
{
|
||
internal_error (__FILE__, __LINE__, "Invalid setting of sh_osabi %d",
|
||
(int) sh_osabi);
|
||
tdep->osabi_name = "<invalid>";
|
||
}
|
||
|
||
/* Initialize the register numbers that are not common to all the
|
||
variants to -1, if necessary thse will be overwritten in the case
|
||
statement below. */
|
||
tdep->FPUL_REGNUM = -1;
|
||
tdep->FPSCR_REGNUM = -1;
|
||
tdep->PR_REGNUM = 17;
|
||
tdep->SR_REGNUM = 22;
|
||
tdep->DSR_REGNUM = -1;
|
||
tdep->FP_LAST_REGNUM = -1;
|
||
tdep->A0G_REGNUM = -1;
|
||
tdep->A0_REGNUM = -1;
|
||
tdep->A1G_REGNUM = -1;
|
||
tdep->A1_REGNUM = -1;
|
||
tdep->M0_REGNUM = -1;
|
||
tdep->M1_REGNUM = -1;
|
||
tdep->X0_REGNUM = -1;
|
||
tdep->X1_REGNUM = -1;
|
||
tdep->Y0_REGNUM = -1;
|
||
tdep->Y1_REGNUM = -1;
|
||
tdep->MOD_REGNUM = -1;
|
||
tdep->RS_REGNUM = -1;
|
||
tdep->RE_REGNUM = -1;
|
||
tdep->SSR_REGNUM = -1;
|
||
tdep->SPC_REGNUM = -1;
|
||
tdep->DR0_REGNUM = -1;
|
||
tdep->DR_LAST_REGNUM = -1;
|
||
tdep->FV0_REGNUM = -1;
|
||
tdep->FV_LAST_REGNUM = -1;
|
||
tdep->ARG0_REGNUM = 4;
|
||
tdep->ARGLAST_REGNUM = 7;
|
||
tdep->RETURN_REGNUM = 0;
|
||
tdep->FLOAT_ARGLAST_REGNUM = -1;
|
||
|
||
set_gdbarch_fp0_regnum (gdbarch, -1);
|
||
set_gdbarch_num_pseudo_regs (gdbarch, 0);
|
||
set_gdbarch_max_register_raw_size (gdbarch, 4);
|
||
set_gdbarch_max_register_virtual_size (gdbarch, 4);
|
||
set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_num_regs (gdbarch, SH_DEFAULT_NUM_REGS);
|
||
set_gdbarch_sp_regnum (gdbarch, 15);
|
||
set_gdbarch_fp_regnum (gdbarch, 14);
|
||
set_gdbarch_pc_regnum (gdbarch, 16);
|
||
set_gdbarch_register_size (gdbarch, 4);
|
||
set_gdbarch_register_bytes (gdbarch, SH_DEFAULT_NUM_REGS * 4);
|
||
set_gdbarch_do_registers_info (gdbarch, sh_do_registers_info);
|
||
set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc);
|
||
set_gdbarch_frame_chain (gdbarch, sh_frame_chain);
|
||
set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
|
||
set_gdbarch_init_extra_frame_info (gdbarch, sh_init_extra_frame_info);
|
||
set_gdbarch_extract_return_value (gdbarch, sh_extract_return_value);
|
||
set_gdbarch_push_arguments (gdbarch, sh_push_arguments);
|
||
set_gdbarch_store_struct_return (gdbarch, sh_store_struct_return);
|
||
set_gdbarch_use_struct_convention (gdbarch, sh_use_struct_convention);
|
||
set_gdbarch_extract_struct_value_address (gdbarch, sh_extract_struct_value_address);
|
||
set_gdbarch_pop_frame (gdbarch, sh_pop_frame);
|
||
set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh);
|
||
skip_prologue_hard_way = sh_skip_prologue_hard_way;
|
||
do_pseudo_register = sh_do_pseudo_register;
|
||
|
||
switch (info.bfd_arch_info->mach)
|
||
{
|
||
case bfd_mach_sh:
|
||
sh_register_name = sh_sh_register_name;
|
||
sh_show_regs = sh_generic_show_regs;
|
||
sh_store_return_value = sh_default_store_return_value;
|
||
sh_register_virtual_type = sh_default_register_virtual_type;
|
||
set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
|
||
set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
|
||
break;
|
||
case bfd_mach_sh2:
|
||
sh_register_name = sh_sh_register_name;
|
||
sh_show_regs = sh_generic_show_regs;
|
||
sh_store_return_value = sh_default_store_return_value;
|
||
sh_register_virtual_type = sh_default_register_virtual_type;
|
||
set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
|
||
set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
|
||
break;
|
||
case bfd_mach_sh_dsp:
|
||
sh_register_name = sh_sh_dsp_register_name;
|
||
sh_show_regs = sh_dsp_show_regs;
|
||
sh_store_return_value = sh_default_store_return_value;
|
||
sh_register_virtual_type = sh_default_register_virtual_type;
|
||
set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
|
||
set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
|
||
tdep->DSR_REGNUM = 24;
|
||
tdep->A0G_REGNUM = 25;
|
||
tdep->A0_REGNUM = 26;
|
||
tdep->A1G_REGNUM = 27;
|
||
tdep->A1_REGNUM = 28;
|
||
tdep->M0_REGNUM = 29;
|
||
tdep->M1_REGNUM = 30;
|
||
tdep->X0_REGNUM = 31;
|
||
tdep->X1_REGNUM = 32;
|
||
tdep->Y0_REGNUM = 33;
|
||
tdep->Y1_REGNUM = 34;
|
||
tdep->MOD_REGNUM = 40;
|
||
tdep->RS_REGNUM = 43;
|
||
tdep->RE_REGNUM = 44;
|
||
break;
|
||
case bfd_mach_sh3:
|
||
sh_register_name = sh_sh3_register_name;
|
||
sh_show_regs = sh3_show_regs;
|
||
sh_store_return_value = sh_default_store_return_value;
|
||
sh_register_virtual_type = sh_default_register_virtual_type;
|
||
set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
|
||
set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
|
||
tdep->SSR_REGNUM = 41;
|
||
tdep->SPC_REGNUM = 42;
|
||
break;
|
||
case bfd_mach_sh3e:
|
||
sh_register_name = sh_sh3e_register_name;
|
||
sh_show_regs = sh3e_show_regs;
|
||
sh_store_return_value = sh3e_sh4_store_return_value;
|
||
sh_register_virtual_type = sh_sh3e_register_virtual_type;
|
||
set_gdbarch_frame_init_saved_regs (gdbarch, sh_fp_frame_init_saved_regs);
|
||
set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
|
||
set_gdbarch_extract_return_value (gdbarch, sh3e_sh4_extract_return_value);
|
||
set_gdbarch_fp0_regnum (gdbarch, 25);
|
||
tdep->FPUL_REGNUM = 23;
|
||
tdep->FPSCR_REGNUM = 24;
|
||
tdep->FP_LAST_REGNUM = 40;
|
||
tdep->SSR_REGNUM = 41;
|
||
tdep->SPC_REGNUM = 42;
|
||
break;
|
||
case bfd_mach_sh3_dsp:
|
||
sh_register_name = sh_sh3_dsp_register_name;
|
||
sh_show_regs = sh3_dsp_show_regs;
|
||
sh_store_return_value = sh_default_store_return_value;
|
||
sh_register_virtual_type = sh_default_register_virtual_type;
|
||
set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
|
||
set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
|
||
tdep->DSR_REGNUM = 24;
|
||
tdep->A0G_REGNUM = 25;
|
||
tdep->A0_REGNUM = 26;
|
||
tdep->A1G_REGNUM = 27;
|
||
tdep->A1_REGNUM = 28;
|
||
tdep->M0_REGNUM = 29;
|
||
tdep->M1_REGNUM = 30;
|
||
tdep->X0_REGNUM = 31;
|
||
tdep->X1_REGNUM = 32;
|
||
tdep->Y0_REGNUM = 33;
|
||
tdep->Y1_REGNUM = 34;
|
||
tdep->MOD_REGNUM = 40;
|
||
tdep->RS_REGNUM = 43;
|
||
tdep->RE_REGNUM = 44;
|
||
tdep->SSR_REGNUM = 41;
|
||
tdep->SPC_REGNUM = 42;
|
||
break;
|
||
case bfd_mach_sh4:
|
||
sh_register_name = sh_sh4_register_name;
|
||
sh_show_regs = sh4_show_regs;
|
||
sh_store_return_value = sh3e_sh4_store_return_value;
|
||
sh_register_virtual_type = sh_sh4_register_virtual_type;
|
||
set_gdbarch_frame_init_saved_regs (gdbarch, sh_fp_frame_init_saved_regs);
|
||
set_gdbarch_extract_return_value (gdbarch, sh3e_sh4_extract_return_value);
|
||
set_gdbarch_fp0_regnum (gdbarch, 25);
|
||
set_gdbarch_register_raw_size (gdbarch, sh_sh4_register_raw_size);
|
||
set_gdbarch_register_virtual_size (gdbarch, sh_sh4_register_raw_size);
|
||
set_gdbarch_register_byte (gdbarch, sh_sh4_register_byte);
|
||
set_gdbarch_num_pseudo_regs (gdbarch, 12);
|
||
set_gdbarch_max_register_raw_size (gdbarch, 4 * 4);
|
||
set_gdbarch_max_register_virtual_size (gdbarch, 4 * 4);
|
||
set_gdbarch_register_read (gdbarch, sh4_register_read);
|
||
set_gdbarch_register_write (gdbarch, sh4_register_write);
|
||
tdep->FPUL_REGNUM = 23;
|
||
tdep->FPSCR_REGNUM = 24;
|
||
tdep->FP_LAST_REGNUM = 40;
|
||
tdep->SSR_REGNUM = 41;
|
||
tdep->SPC_REGNUM = 42;
|
||
tdep->DR0_REGNUM = 59;
|
||
tdep->DR_LAST_REGNUM = 66;
|
||
tdep->FV0_REGNUM = 67;
|
||
tdep->FV_LAST_REGNUM = 70;
|
||
break;
|
||
default:
|
||
sh_register_name = sh_generic_register_name;
|
||
sh_show_regs = sh_generic_show_regs;
|
||
sh_store_return_value = sh_default_store_return_value;
|
||
sh_register_virtual_type = sh_default_register_virtual_type;
|
||
set_gdbarch_frame_init_saved_regs (gdbarch, sh_nofp_frame_init_saved_regs);
|
||
set_gdbarch_register_raw_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_virtual_size (gdbarch, sh_default_register_raw_size);
|
||
set_gdbarch_register_byte (gdbarch, sh_default_register_byte);
|
||
break;
|
||
}
|
||
|
||
set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
|
||
set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
|
||
set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
|
||
set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
|
||
set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
|
||
|
||
set_gdbarch_register_name (gdbarch, sh_register_name);
|
||
set_gdbarch_register_virtual_type (gdbarch, sh_register_virtual_type);
|
||
|
||
set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
||
set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||
set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);/*??should be 8?*/
|
||
|
||
set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
|
||
set_gdbarch_call_dummy_length (gdbarch, 0);
|
||
set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
|
||
set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
|
||
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); /*???*/
|
||
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
|
||
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
|
||
set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
|
||
set_gdbarch_call_dummy_words (gdbarch, sh_call_dummy_words);
|
||
set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (sh_call_dummy_words));
|
||
set_gdbarch_call_dummy_p (gdbarch, 1);
|
||
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
|
||
set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
|
||
set_gdbarch_coerce_float_to_double (gdbarch,
|
||
sh_coerce_float_to_double);
|
||
|
||
set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
|
||
set_gdbarch_push_return_address (gdbarch, sh_push_return_address);
|
||
|
||
set_gdbarch_store_return_value (gdbarch, sh_store_return_value);
|
||
set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
|
||
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
||
set_gdbarch_decr_pc_after_break (gdbarch, 0);
|
||
set_gdbarch_function_start_offset (gdbarch, 0);
|
||
|
||
set_gdbarch_frame_args_skip (gdbarch, 0);
|
||
set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
|
||
set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
|
||
set_gdbarch_frame_saved_pc (gdbarch, sh_frame_saved_pc);
|
||
set_gdbarch_frame_args_address (gdbarch, default_frame_address);
|
||
set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
|
||
set_gdbarch_saved_pc_after_call (gdbarch, sh_saved_pc_after_call);
|
||
set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
|
||
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
|
||
|
||
/* Hook in ABI-specific overrides, if they have been registered. If
|
||
the ABI is unknown, this is probably an embedded target, so we
|
||
should not warn about this situation. */
|
||
if (sh_osabi != SH_OSABI_UNKNOWN)
|
||
{
|
||
for (osabi_handler = sh_osabi_handler_list; osabi_handler != NULL;
|
||
osabi_handler = osabi_handler->next)
|
||
if (osabi_handler->abi == sh_osabi)
|
||
break;
|
||
|
||
if (osabi_handler)
|
||
osabi_handler->init_osabi (info, gdbarch);
|
||
else
|
||
{
|
||
/* We assume that if GDB_MULTI_ARCH is less than
|
||
GDB_MULTI_ARCH_TM that an ABI variant can be supported by
|
||
overriding definitions in this file. */
|
||
if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)
|
||
fprintf_filtered
|
||
(gdb_stderr,
|
||
"A handler for the ABI variant \"%s\" is not built into this "
|
||
"configuration of GDB. "
|
||
"Attempting to continue with the default SuperH settings",
|
||
sh_osabi_names[sh_osabi]);
|
||
}
|
||
}
|
||
|
||
return gdbarch;
|
||
}
|
||
|
||
static void
|
||
sh_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (tdep == NULL)
|
||
return;
|
||
|
||
if (tdep->osabi_name != NULL)
|
||
fprintf_unfiltered (file, "sh_dump_tdep: OS ABI = %s\n", tdep->osabi_name);
|
||
else
|
||
internal_error (__FILE__, __LINE__,
|
||
"sh_dump_tdep: illegal setting of tdep->sh_osabi (%d)",
|
||
(int) tdep->sh_osabi);
|
||
}
|
||
|
||
void
|
||
_initialize_sh_tdep (void)
|
||
{
|
||
struct cmd_list_element *c;
|
||
|
||
gdbarch_register (bfd_arch_sh, sh_gdbarch_init, sh_dump_tdep);
|
||
|
||
add_com ("regs", class_vars, sh_show_regs_command, "Print all registers");
|
||
}
|