mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-15 20:44:07 +08:00
78b459a7e7
remote-adapt.c, remote-e7000.c, remote-eb.c, remote-es.c, remote-hms.c, remote-mips.c, remote-mm.c, remote-mon.c, remote-nindy.c, remote-os9k.c, remote-pa.c, remote-sim.c, remote-st.c, remote-udi.c, remote-vx.c, remote-z8k.c, remote.c, w89k-rom.c, target.c, target.h: Add support for target_stop(). * gdbtk.c (gdb_stop): Switch to target_stop(). * ChangeLog: Fix comment to make shebs happy...
1628 lines
48 KiB
C
1628 lines
48 KiB
C
/* Remote debugging interface for Am290*0 running MiniMON monitor, for GDB.
|
|
Copyright 1990, 1991, 1992 Free Software Foundation, Inc.
|
|
Originally written by Daniel Mann at AMD.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
/* This is like remote.c but ecpects MiniMON to be running on the Am29000
|
|
target hardware.
|
|
- David Wood (wood@lab.ultra.nyu.edu) at New York University adapted this
|
|
file to gdb 3.95. I was unable to get this working on sun3os4
|
|
with termio, only with sgtty. Because we are only attempting to
|
|
use this module to debug our kernel, which is already loaded when
|
|
gdb is started up, I did not code up the file downloading facilities.
|
|
As a result this module has only the stubs to download files.
|
|
You should get tagged at compile time if you need to make any
|
|
changes/additions. */
|
|
|
|
#include "defs.h"
|
|
#include "inferior.h"
|
|
#include "wait.h"
|
|
#include "value.h"
|
|
#include <ctype.h>
|
|
#include <fcntl.h>
|
|
#include <signal.h>
|
|
#include <errno.h>
|
|
#include <string.h>
|
|
#include "terminal.h"
|
|
#include "minimon.h"
|
|
#include "target.h"
|
|
|
|
/* Offset of member MEMBER in a struct of type TYPE. */
|
|
#define offsetof(TYPE, MEMBER) ((int) &((TYPE *)0)->MEMBER)
|
|
|
|
#define DRAIN_INPUT() (msg_recv_serial((union msg_t*)0))
|
|
|
|
extern int stop_soon_quietly; /* for wait_for_inferior */
|
|
|
|
static void mm_resume();
|
|
static void mm_fetch_registers ();
|
|
static int fetch_register ();
|
|
static void mm_store_registers ();
|
|
static int store_register ();
|
|
static int regnum_to_srnum();
|
|
static void mm_close ();
|
|
static char* msg_str();
|
|
static char* error_msg_str();
|
|
static int expect_msg();
|
|
static void init_target_mm();
|
|
static int mm_memory_space();
|
|
|
|
#define FREEZE_MODE (read_register(CPS_REGNUM) && 0x400)
|
|
#define USE_SHADOW_PC ((processor_type == a29k_freeze_mode) && FREEZE_MODE)
|
|
|
|
/* FIXME: Replace with `set remotedebug'. */
|
|
#define LLOG_FILE "minimon.log"
|
|
#if defined (LOG_FILE)
|
|
FILE *log_file;
|
|
#endif
|
|
|
|
/*
|
|
* Size of message buffers. I couldn't get memory reads to work when
|
|
* the byte_count was larger than 512 (it may be a baud rate problem).
|
|
*/
|
|
#define BUFER_SIZE 512
|
|
/*
|
|
* Size of data area in message buffer on the TARGET (remote system).
|
|
*/
|
|
#define MAXDATA_T (target_config.max_msg_size - \
|
|
offsetof(struct write_r_msg_t,data[0]))
|
|
/*
|
|
* Size of data area in message buffer on the HOST (gdb).
|
|
*/
|
|
#define MAXDATA_H (BUFER_SIZE - offsetof(struct write_r_msg_t,data[0]))
|
|
/*
|
|
* Defined as the minimum size of data areas of the two message buffers
|
|
*/
|
|
#define MAXDATA (MAXDATA_H < MAXDATA_T ? MAXDATA_H : MAXDATA_T)
|
|
|
|
static char out_buf[BUFER_SIZE];
|
|
static char in_buf[BUFER_SIZE];
|
|
|
|
int msg_recv_serial();
|
|
int msg_send_serial();
|
|
|
|
#define MAX_RETRIES 5000
|
|
extern struct target_ops mm_ops; /* Forward declaration */
|
|
struct config_msg_t target_config; /* HIF needs this */
|
|
union msg_t *out_msg_buf = (union msg_t*)out_buf;
|
|
union msg_t *in_msg_buf = (union msg_t*)in_buf;
|
|
|
|
static int timeout = 5;
|
|
|
|
/* Descriptor for I/O to remote machine. Initialize it to -1 so that
|
|
mm_open knows that we don't have a file open when the program
|
|
starts. */
|
|
int mm_desc = -1;
|
|
|
|
/* stream which is fdopen'd from mm_desc. Only valid when
|
|
mm_desc != -1. */
|
|
FILE *mm_stream;
|
|
|
|
/* Called when SIGALRM signal sent due to alarm() timeout. */
|
|
#ifndef HAVE_TERMIO
|
|
|
|
#ifndef __STDC__
|
|
# ifndef volatile
|
|
# define volatile /**/
|
|
# endif
|
|
#endif
|
|
volatile int n_alarms;
|
|
|
|
static void
|
|
mm_timer ()
|
|
{
|
|
#if 0
|
|
if (kiodebug)
|
|
printf ("mm_timer called\n");
|
|
#endif
|
|
n_alarms++;
|
|
}
|
|
#endif /* HAVE_TERMIO */
|
|
|
|
/* malloc'd name of the program on the remote system. */
|
|
static char *prog_name = NULL;
|
|
|
|
|
|
/* Number of SIGTRAPs we need to simulate. That is, the next
|
|
NEED_ARTIFICIAL_TRAP calls to mm_wait should just return
|
|
SIGTRAP without actually waiting for anything. */
|
|
|
|
/**************************************************** REMOTE_CREATE_INFERIOR */
|
|
/* This is called not only when we first attach, but also when the
|
|
user types "run" after having attached. */
|
|
static void
|
|
mm_create_inferior (execfile, args, env)
|
|
char *execfile;
|
|
char *args;
|
|
char **env;
|
|
{
|
|
#define MAX_TOKENS 25
|
|
#define BUFFER_SIZE 256
|
|
int token_count;
|
|
int result;
|
|
char *token[MAX_TOKENS];
|
|
char cmd_line[BUFFER_SIZE];
|
|
|
|
if (args && *args)
|
|
error ("Can't pass arguments to remote mm process (yet).");
|
|
|
|
if (execfile == 0 /* || exec_bfd == 0 */ )
|
|
error ("No exec file specified");
|
|
|
|
if (!mm_stream) {
|
|
printf("Minimon not open yet.\n");
|
|
return;
|
|
}
|
|
|
|
/* On ultra3 (NYU) we assume the kernel is already running so there is
|
|
no file to download.
|
|
FIXME: Fixed required here -> load your program, possibly with mm_load().
|
|
*/
|
|
printf_filtered ("\n\
|
|
Assuming you are at NYU debuging a kernel, i.e., no need to download.\n\n");
|
|
|
|
/* We will get a task spawn event immediately. */
|
|
init_wait_for_inferior ();
|
|
clear_proceed_status ();
|
|
stop_soon_quietly = 1;
|
|
proceed (-1, TARGET_SIGNAL_DEFAULT, 0);
|
|
normal_stop ();
|
|
}
|
|
/**************************************************** REMOTE_MOURN_INFERIOR */
|
|
static void
|
|
mm_mourn()
|
|
{
|
|
pop_target (); /* Pop back to no-child state */
|
|
generic_mourn_inferior ();
|
|
}
|
|
|
|
/********************************************************************** damn_b
|
|
*/
|
|
/* Translate baud rates from integers to damn B_codes. Unix should
|
|
have outgrown this crap years ago, but even POSIX wouldn't buck it. */
|
|
|
|
#ifndef B19200
|
|
#define B19200 EXTA
|
|
#endif
|
|
#ifndef B38400
|
|
#define B38400 EXTB
|
|
#endif
|
|
|
|
static struct {int rate, damn_b;} baudtab[] = {
|
|
{0, B0},
|
|
{50, B50},
|
|
{75, B75},
|
|
{110, B110},
|
|
{134, B134},
|
|
{150, B150},
|
|
{200, B200},
|
|
{300, B300},
|
|
{600, B600},
|
|
{1200, B1200},
|
|
{1800, B1800},
|
|
{2400, B2400},
|
|
{4800, B4800},
|
|
{9600, B9600},
|
|
{19200, B19200},
|
|
{38400, B38400},
|
|
{-1, -1},
|
|
};
|
|
|
|
static int damn_b (rate)
|
|
int rate;
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; baudtab[i].rate != -1; i++)
|
|
if (rate == baudtab[i].rate) return baudtab[i].damn_b;
|
|
return B38400; /* Random */
|
|
}
|
|
|
|
|
|
/***************************************************************** REMOTE_OPEN
|
|
** Open a connection to remote minimon.
|
|
NAME is the filename used for communication, then a space,
|
|
then the baud rate.
|
|
'target adapt /dev/ttya 9600 [prognam]' for example.
|
|
*/
|
|
|
|
static char *dev_name;
|
|
int baudrate = 9600;
|
|
static void
|
|
mm_open (name, from_tty)
|
|
char *name;
|
|
int from_tty;
|
|
{
|
|
TERMINAL sg;
|
|
unsigned int prl;
|
|
char *p;
|
|
|
|
/* Find the first whitespace character, it separates dev_name from
|
|
prog_name. */
|
|
for (p = name;
|
|
p && *p && !isspace (*p); p++)
|
|
;
|
|
if (p == 0 || *p == '\0')
|
|
erroid:
|
|
error ("Usage : <command> <serial-device> <baud-rate> [progname]");
|
|
dev_name = (char*)malloc (p - name + 1);
|
|
strncpy (dev_name, name, p - name);
|
|
dev_name[p - name] = '\0';
|
|
|
|
/* Skip over the whitespace after dev_name */
|
|
for (; isspace (*p); p++)
|
|
/*EMPTY*/;
|
|
|
|
if (1 != sscanf (p, "%d ", &baudrate))
|
|
goto erroid;
|
|
|
|
/* Skip the number and then the spaces */
|
|
for (; isdigit (*p); p++)
|
|
/*EMPTY*/;
|
|
for (; isspace (*p); p++)
|
|
/*EMPTY*/;
|
|
|
|
if (prog_name != NULL)
|
|
free (prog_name);
|
|
prog_name = savestring (p, strlen (p));
|
|
|
|
|
|
if (mm_desc >= 0)
|
|
close (mm_desc);
|
|
|
|
mm_desc = open (dev_name, O_RDWR);
|
|
if (mm_desc < 0)
|
|
perror_with_name (dev_name);
|
|
ioctl (mm_desc, TIOCGETP, &sg);
|
|
#ifdef HAVE_TERMIO
|
|
sg.c_cc[VMIN] = 0; /* read with timeout. */
|
|
sg.c_cc[VTIME] = timeout * 10;
|
|
sg.c_lflag &= ~(ICANON | ECHO);
|
|
sg.c_cflag = (sg.c_cflag & ~CBAUD) | damn_b (baudrate);
|
|
#else
|
|
sg.sg_ispeed = damn_b (baudrate);
|
|
sg.sg_ospeed = damn_b (baudrate);
|
|
sg.sg_flags |= RAW;
|
|
sg.sg_flags |= ANYP;
|
|
sg.sg_flags &= ~ECHO;
|
|
#endif
|
|
|
|
|
|
ioctl (mm_desc, TIOCSETP, &sg);
|
|
mm_stream = fdopen (mm_desc, "r+");
|
|
|
|
push_target (&mm_ops);
|
|
|
|
#ifndef HAVE_TERMIO
|
|
#ifndef NO_SIGINTERRUPT
|
|
/* Cause SIGALRM's to make reads fail with EINTR instead of resuming
|
|
the read. */
|
|
if (siginterrupt (SIGALRM, 1) != 0)
|
|
perror ("mm_open: error in siginterrupt");
|
|
#endif
|
|
|
|
/* Set up read timeout timer. */
|
|
if ((void (*)) signal (SIGALRM, mm_timer) == (void (*)) -1)
|
|
perror ("mm_open: error in signal");
|
|
#endif
|
|
|
|
#if defined (LOG_FILE)
|
|
log_file = fopen (LOG_FILE, "w");
|
|
if (log_file == NULL)
|
|
perror_with_name (LOG_FILE);
|
|
#endif
|
|
/*
|
|
** Initialize target configuration structure (global)
|
|
*/
|
|
DRAIN_INPUT();
|
|
out_msg_buf->config_req_msg.code = CONFIG_REQ;
|
|
out_msg_buf->config_req_msg.length = 4*0;
|
|
msg_send_serial(out_msg_buf); /* send config request message */
|
|
|
|
expect_msg(CONFIG,in_msg_buf,1);
|
|
|
|
a29k_get_processor_type ();
|
|
|
|
/* Print out some stuff, letting the user now what's going on */
|
|
printf_filtered("Connected to MiniMon via %s.\n", dev_name);
|
|
/* FIXME: can this restriction be removed? */
|
|
printf_filtered("Remote debugging using virtual addresses works only\n");
|
|
printf_filtered("\twhen virtual addresses map 1:1 to physical addresses.\n")
|
|
;
|
|
if (processor_type != a29k_freeze_mode) {
|
|
fprintf_filtered(stderr,
|
|
"Freeze-mode debugging not available, and can only be done on an A29050.\n");
|
|
}
|
|
|
|
target_config.code = CONFIG;
|
|
target_config.length = 0;
|
|
target_config.processor_id = in_msg_buf->config_msg.processor_id;
|
|
target_config.version = in_msg_buf->config_msg.version;
|
|
target_config.I_mem_start = in_msg_buf->config_msg.I_mem_start;
|
|
target_config.I_mem_size = in_msg_buf->config_msg.I_mem_size;
|
|
target_config.D_mem_start = in_msg_buf->config_msg.D_mem_start;
|
|
target_config.D_mem_size = in_msg_buf->config_msg.D_mem_size;
|
|
target_config.ROM_start = in_msg_buf->config_msg.ROM_start;
|
|
target_config.ROM_size = in_msg_buf->config_msg.ROM_size;
|
|
target_config.max_msg_size = in_msg_buf->config_msg.max_msg_size;
|
|
target_config.max_bkpts = in_msg_buf->config_msg.max_bkpts;
|
|
target_config.coprocessor = in_msg_buf->config_msg.coprocessor;
|
|
target_config.reserved = in_msg_buf->config_msg.reserved;
|
|
if (from_tty) {
|
|
printf("Connected to MiniMON :\n");
|
|
printf(" Debugcore version %d.%d\n",
|
|
0x0f & (target_config.version >> 4),
|
|
0x0f & (target_config.version ) );
|
|
printf(" Configuration version %d.%d\n",
|
|
0x0f & (target_config.version >> 12),
|
|
0x0f & (target_config.version >> 8) );
|
|
printf(" Message system version %d.%d\n",
|
|
0x0f & (target_config.version >> 20),
|
|
0x0f & (target_config.version >> 16) );
|
|
printf(" Communication driver version %d.%d\n",
|
|
0x0f & (target_config.version >> 28),
|
|
0x0f & (target_config.version >> 24) );
|
|
}
|
|
|
|
/* Leave the target running...
|
|
* The above message stopped the target in the dbg core (MiniMon),
|
|
* so restart the target out of MiniMon,
|
|
*/
|
|
out_msg_buf->go_msg.code = GO;
|
|
out_msg_buf->go_msg.length = 0;
|
|
msg_send_serial(out_msg_buf);
|
|
/* No message to expect after a GO */
|
|
}
|
|
|
|
/**************************************************************** REMOTE_CLOSE
|
|
** Close the open connection to the minimon debugger.
|
|
Use this when you want to detach and do something else
|
|
with your gdb. */
|
|
static void
|
|
mm_close (quitting) /*FIXME: how is quitting used */
|
|
int quitting;
|
|
{
|
|
if (mm_desc < 0)
|
|
error ("Can't close remote connection: not debugging remotely.");
|
|
|
|
/* We should never get here if there isn't something valid in
|
|
mm_desc and mm_stream.
|
|
|
|
Due to a bug in Unix, fclose closes not only the stdio stream,
|
|
but also the file descriptor. So we don't actually close
|
|
mm_desc. */
|
|
DRAIN_INPUT();
|
|
fclose (mm_stream);
|
|
/* close (mm_desc); */
|
|
|
|
/* Do not try to close mm_desc again, later in the program. */
|
|
mm_stream = NULL;
|
|
mm_desc = -1;
|
|
|
|
#if defined (LOG_FILE)
|
|
if (ferror (log_file))
|
|
printf ("Error writing log file.\n");
|
|
if (fclose (log_file) != 0)
|
|
printf ("Error closing log file.\n");
|
|
#endif
|
|
|
|
printf ("Ending remote debugging\n");
|
|
}
|
|
|
|
/************************************************************* REMOTE_ATACH */
|
|
/* Attach to a program that is already loaded and running
|
|
* Upon exiting the process's execution is stopped.
|
|
*/
|
|
static void
|
|
mm_attach (args, from_tty)
|
|
char *args;
|
|
int from_tty;
|
|
{
|
|
|
|
if (!mm_stream)
|
|
error ("MiniMon not opened yet, use the 'target minimon' command.\n");
|
|
|
|
if (from_tty)
|
|
printf ("Attaching to remote program %s...\n", prog_name);
|
|
|
|
/* Make sure the target is currently running, it is supposed to be. */
|
|
/* FIXME: is it ok to send MiniMon a BREAK if it is already stopped in
|
|
* the dbg core. If so, we don't need to send this GO.
|
|
*/
|
|
out_msg_buf->go_msg.code = GO;
|
|
out_msg_buf->go_msg.length = 0;
|
|
msg_send_serial(out_msg_buf);
|
|
sleep(2); /* At the worst it will stop, receive a message, continue */
|
|
|
|
/* Send the mm a break. */
|
|
out_msg_buf->break_msg.code = BREAK;
|
|
out_msg_buf->break_msg.length = 0;
|
|
msg_send_serial(out_msg_buf);
|
|
}
|
|
/********************************************************** REMOTE_DETACH */
|
|
/* Terminate the open connection to the remote debugger.
|
|
Use this when you want to detach and do something else
|
|
with your gdb. Leave remote process running (with no breakpoints set). */
|
|
static void
|
|
mm_detach (args,from_tty)
|
|
char *args;
|
|
int from_tty;
|
|
{
|
|
remove_breakpoints(); /* Just in case there were any left in */
|
|
out_msg_buf->go_msg.code = GO;
|
|
out_msg_buf->go_msg.length = 0;
|
|
msg_send_serial(out_msg_buf);
|
|
pop_target(); /* calls mm_close to do the real work */
|
|
}
|
|
|
|
|
|
/*************************************************************** REMOTE_RESUME
|
|
** Tell the remote machine to resume. */
|
|
|
|
static void
|
|
mm_resume (pid, step, sig)
|
|
int pid, step;
|
|
enum target_signal sig;
|
|
{
|
|
if (sig != TARGET_SIGNAL_0)
|
|
warning ("Can't send signals to a remote MiniMon system.");
|
|
|
|
if (step) {
|
|
out_msg_buf->step_msg.code= STEP;
|
|
out_msg_buf->step_msg.length = 1*4;
|
|
out_msg_buf->step_msg.count = 1; /* step 1 instruction */
|
|
msg_send_serial(out_msg_buf);
|
|
} else {
|
|
out_msg_buf->go_msg.code= GO;
|
|
out_msg_buf->go_msg.length = 0;
|
|
msg_send_serial(out_msg_buf);
|
|
}
|
|
}
|
|
|
|
/***************************************************************** REMOTE_WAIT
|
|
** Wait until the remote machine stops, then return,
|
|
storing status in STATUS just as `wait' would. */
|
|
|
|
static int
|
|
mm_wait (status)
|
|
struct target_waitstatus *status;
|
|
{
|
|
int i, result;
|
|
int old_timeout = timeout;
|
|
int old_immediate_quit = immediate_quit;
|
|
|
|
status->kind = TARGET_WAITKIND_EXITED;
|
|
status->value.integer = 0;
|
|
|
|
/* wait for message to arrive. It should be:
|
|
- A HIF service request.
|
|
- A HIF exit service request.
|
|
- A CHANNEL0_ACK.
|
|
- A CHANNEL1 request.
|
|
- a debugcore HALT message.
|
|
HIF services must be responded too, and while-looping continued.
|
|
If the target stops executing, mm_wait() should return.
|
|
*/
|
|
timeout = 0; /* Wait indefinetly for a message */
|
|
immediate_quit = 1; /* Helps ability to QUIT */
|
|
while(1)
|
|
{
|
|
while(msg_recv_serial(in_msg_buf)) {
|
|
QUIT; /* Let user quit if they want */
|
|
}
|
|
switch (in_msg_buf->halt_msg.code)
|
|
{
|
|
case HIF_CALL:
|
|
i = in_msg_buf->hif_call_rtn_msg.service_number;
|
|
result=service_HIF(in_msg_buf);
|
|
if(i == 1) /* EXIT */
|
|
goto exit;
|
|
if(result)
|
|
printf("Warning: failure during HIF service %d\n", i);
|
|
break;
|
|
case CHANNEL0_ACK:
|
|
service_HIF(in_msg_buf);
|
|
break;
|
|
case CHANNEL1:
|
|
i=in_msg_buf->channel1_msg.length;
|
|
in_msg_buf->channel1_msg.data[i] = '\0';
|
|
printf("%s", in_msg_buf->channel1_msg.data);
|
|
gdb_flush(stdout);
|
|
/* Send CHANNEL1_ACK message */
|
|
out_msg_buf->channel1_ack_msg.code = CHANNEL1_ACK;
|
|
out_msg_buf->channel1_ack_msg.length = 0;
|
|
result = msg_send_serial(out_msg_buf);
|
|
break;
|
|
case HALT:
|
|
goto halted;
|
|
default:
|
|
goto halted;
|
|
}
|
|
}
|
|
halted:
|
|
/* FIXME, these printfs should not be here. This is a source level
|
|
debugger, guys! */
|
|
if (in_msg_buf->halt_msg.trap_number== 0)
|
|
{ printf("Am290*0 received vector number %d (break point)\n",
|
|
in_msg_buf->halt_msg.trap_number);
|
|
status->kind = TARGET_WAITKIND_STOPPED;
|
|
status->value.sig = TARGET_SIGNAL_TRAP;
|
|
}
|
|
else if (in_msg_buf->halt_msg.trap_number== 1)
|
|
{
|
|
printf("Am290*0 received vector number %d\n",
|
|
in_msg_buf->halt_msg.trap_number);
|
|
status->kind = TARGET_WAITKIND_STOPPED;
|
|
status->value.sig = TARGET_SIGNAL_BUS;
|
|
}
|
|
else if (in_msg_buf->halt_msg.trap_number== 3
|
|
|| in_msg_buf->halt_msg.trap_number== 4)
|
|
{ printf("Am290*0 received vector number %d\n",
|
|
in_msg_buf->halt_msg.trap_number);
|
|
status->kind = TARGET_WAITKIND_STOPPED;
|
|
status->value.sig = TARGET_SIGNAL_FPE;
|
|
}
|
|
else if (in_msg_buf->halt_msg.trap_number== 5)
|
|
{ printf("Am290*0 received vector number %d\n",
|
|
in_msg_buf->halt_msg.trap_number);
|
|
status->kind = TARGET_WAITKIND_STOPPED;
|
|
status->value.sig = TARGET_SIGNAL_ILL;
|
|
}
|
|
else if (in_msg_buf->halt_msg.trap_number >= 6
|
|
&& in_msg_buf->halt_msg.trap_number <= 11)
|
|
{ printf("Am290*0 received vector number %d\n",
|
|
in_msg_buf->halt_msg.trap_number);
|
|
status->kind = TARGET_WAITKIND_STOPPED;
|
|
status->value.sig = TARGET_SIGNAL_SEGV;
|
|
}
|
|
else if (in_msg_buf->halt_msg.trap_number== 12
|
|
|| in_msg_buf->halt_msg.trap_number== 13)
|
|
{ printf("Am290*0 received vector number %d\n",
|
|
in_msg_buf->halt_msg.trap_number);
|
|
status->kind = TARGET_WAITKIND_STOPPED;
|
|
status->value.sig = TARGET_SIGNAL_ILL;
|
|
}
|
|
else if (in_msg_buf->halt_msg.trap_number== 14)
|
|
{ printf("Am290*0 received vector number %d\n",
|
|
in_msg_buf->halt_msg.trap_number);
|
|
status->kind = TARGET_WAITKIND_STOPPED;
|
|
status->value.sig = TARGET_SIGNAL_ALRM;
|
|
}
|
|
else if (in_msg_buf->halt_msg.trap_number== 15)
|
|
{
|
|
status->kind = TARGET_WAITKIND_STOPPED;
|
|
status->value.sig = TARGET_SIGNAL_TRAP;
|
|
}
|
|
else if (in_msg_buf->halt_msg.trap_number >= 16
|
|
&& in_msg_buf->halt_msg.trap_number <= 21)
|
|
{ printf("Am290*0 received vector number %d\n",
|
|
in_msg_buf->halt_msg.trap_number);
|
|
status->kind = TARGET_WAITKIND_STOPPED;
|
|
status->value.sig = TARGET_SIGNAL_INT;
|
|
}
|
|
else if (in_msg_buf->halt_msg.trap_number== 22)
|
|
{ printf("Am290*0 received vector number %d\n",
|
|
in_msg_buf->halt_msg.trap_number);
|
|
status->kind = TARGET_WAITKIND_STOPPED;
|
|
status->value.sig = TARGET_SIGNAL_ILL;
|
|
} /* BREAK message was sent */
|
|
else if (in_msg_buf->halt_msg.trap_number== 75)
|
|
{
|
|
status->kind = TARGET_WAITKIND_STOPPED;
|
|
status->value.sig = TARGET_SIGNAL_TRAP;
|
|
}
|
|
else
|
|
exit:
|
|
{
|
|
status->kind = TARGET_WAITKIND_EXITED;
|
|
status->value.integer = 0;
|
|
}
|
|
|
|
timeout = old_timeout; /* Restore original timeout value */
|
|
immediate_quit = old_immediate_quit;
|
|
return 0;
|
|
}
|
|
|
|
/******************************************************* REMOTE_FETCH_REGISTERS
|
|
* Read a remote register 'regno'.
|
|
* If regno==-1 then read all the registers.
|
|
*/
|
|
static void
|
|
mm_fetch_registers (regno)
|
|
int regno;
|
|
{
|
|
INT32 *data_p;
|
|
|
|
if (regno >= 0) {
|
|
fetch_register(regno);
|
|
return;
|
|
}
|
|
|
|
/* Gr1/rsp */
|
|
out_msg_buf->read_req_msg.byte_count = 4*1;
|
|
out_msg_buf->read_req_msg.memory_space = GLOBAL_REG;
|
|
out_msg_buf->read_req_msg.address = 1;
|
|
msg_send_serial(out_msg_buf);
|
|
expect_msg(READ_ACK,in_msg_buf,1);
|
|
data_p = &(in_msg_buf->read_r_ack_msg.data[0]);
|
|
supply_register (GR1_REGNUM , data_p);
|
|
|
|
#if defined(GR64_REGNUM) /* Read gr64-127 */
|
|
/* Global Registers gr64-gr95 */
|
|
out_msg_buf->read_req_msg.code= READ_REQ;
|
|
out_msg_buf->read_req_msg.length = 4*3;
|
|
out_msg_buf->read_req_msg.byte_count = 4*32;
|
|
out_msg_buf->read_req_msg.memory_space = GLOBAL_REG;
|
|
out_msg_buf->read_req_msg.address = 64;
|
|
msg_send_serial(out_msg_buf);
|
|
expect_msg(READ_ACK,in_msg_buf,1);
|
|
data_p = &(in_msg_buf->read_r_ack_msg.data[0]);
|
|
|
|
for (regno=GR64_REGNUM; regno<GR64_REGNUM+32; regno++) {
|
|
supply_register (regno, data_p++);
|
|
}
|
|
#endif /* GR64_REGNUM */
|
|
|
|
/* Global Registers gr96-gr127 */
|
|
out_msg_buf->read_req_msg.code= READ_REQ;
|
|
out_msg_buf->read_req_msg.length = 4*3;
|
|
out_msg_buf->read_req_msg.byte_count = 4 * 32;
|
|
out_msg_buf->read_req_msg.memory_space = GLOBAL_REG;
|
|
out_msg_buf->read_req_msg.address = 96;
|
|
msg_send_serial(out_msg_buf);
|
|
expect_msg(READ_ACK,in_msg_buf,1);
|
|
data_p = &(in_msg_buf->read_r_ack_msg.data[0]);
|
|
|
|
for (regno=GR96_REGNUM; regno<GR96_REGNUM+32; regno++) {
|
|
supply_register (regno, data_p++);
|
|
}
|
|
|
|
/* Local Registers */
|
|
out_msg_buf->read_req_msg.byte_count = 4 * (128);
|
|
out_msg_buf->read_req_msg.memory_space = LOCAL_REG;
|
|
out_msg_buf->read_req_msg.address = 0;
|
|
msg_send_serial(out_msg_buf);
|
|
expect_msg(READ_ACK,in_msg_buf,1);
|
|
data_p = &(in_msg_buf->read_r_ack_msg.data[0]);
|
|
|
|
for (regno=LR0_REGNUM; regno<LR0_REGNUM+128; regno++) {
|
|
supply_register (regno, data_p++);
|
|
}
|
|
|
|
/* Protected Special Registers */
|
|
out_msg_buf->read_req_msg.byte_count = 4*15;
|
|
out_msg_buf->read_req_msg.memory_space = SPECIAL_REG;
|
|
out_msg_buf->read_req_msg.address = 0;
|
|
msg_send_serial( out_msg_buf);
|
|
expect_msg(READ_ACK,in_msg_buf,1);
|
|
data_p = &(in_msg_buf->read_r_ack_msg.data[0]);
|
|
|
|
for (regno=0; regno<=14; regno++) {
|
|
supply_register (SR_REGNUM(regno), data_p++);
|
|
}
|
|
if (USE_SHADOW_PC) { /* Let regno_to_srnum() handle the register number */
|
|
fetch_register(NPC_REGNUM);
|
|
fetch_register(PC_REGNUM);
|
|
fetch_register(PC2_REGNUM);
|
|
}
|
|
|
|
/* Unprotected Special Registers */
|
|
out_msg_buf->read_req_msg.byte_count = 4*8;
|
|
out_msg_buf->read_req_msg.memory_space = SPECIAL_REG;
|
|
out_msg_buf->read_req_msg.address = 128;
|
|
msg_send_serial( out_msg_buf);
|
|
expect_msg(READ_ACK,in_msg_buf,1);
|
|
data_p = &(in_msg_buf->read_r_ack_msg.data[0]);
|
|
|
|
for (regno=128; regno<=135; regno++) {
|
|
supply_register (SR_REGNUM(regno), data_p++);
|
|
}
|
|
|
|
/* There doesn't seem to be any way to get these. */
|
|
{
|
|
int val = -1;
|
|
supply_register (FPE_REGNUM, &val);
|
|
supply_register (INTE_REGNUM, &val);
|
|
supply_register (FPS_REGNUM, &val);
|
|
supply_register (EXO_REGNUM, &val);
|
|
}
|
|
}
|
|
|
|
|
|
/****************************************************** REMOTE_STORE_REGISTERS
|
|
* Store register regno into the target.
|
|
* If regno==-1 then store all the registers.
|
|
* Result is 0 for success, -1 for failure.
|
|
*/
|
|
|
|
static void
|
|
mm_store_registers (regno)
|
|
int regno;
|
|
{
|
|
int result;
|
|
|
|
if (regno >= 0) {
|
|
store_register(regno);
|
|
return;
|
|
}
|
|
|
|
result = 0;
|
|
|
|
out_msg_buf->write_r_msg.code= WRITE_REQ;
|
|
|
|
/* Gr1/rsp */
|
|
out_msg_buf->write_r_msg.byte_count = 4*1;
|
|
out_msg_buf->write_r_msg.length = 3*4 + out_msg_buf->write_r_msg.byte_count;
|
|
out_msg_buf->write_r_msg.memory_space = GLOBAL_REG;
|
|
out_msg_buf->write_r_msg.address = 1;
|
|
out_msg_buf->write_r_msg.data[0] = read_register (GR1_REGNUM);
|
|
|
|
msg_send_serial( out_msg_buf);
|
|
if (!expect_msg(WRITE_ACK,in_msg_buf,1)) {
|
|
result = -1;
|
|
}
|
|
|
|
#if defined(GR64_REGNUM)
|
|
/* Global registers gr64-gr95 */
|
|
out_msg_buf->write_r_msg.byte_count = 4* (32);
|
|
out_msg_buf->write_r_msg.length = 3*4 + out_msg_buf->write_r_msg.byte_count;
|
|
out_msg_buf->write_r_msg.address = 64;
|
|
|
|
for (regno=GR64_REGNUM ; regno<GR64_REGNUM+32 ; regno++)
|
|
{
|
|
out_msg_buf->write_r_msg.data[regno-GR64_REGNUM] = read_register (regno);
|
|
}
|
|
msg_send_serial(out_msg_buf);
|
|
if (!expect_msg(WRITE_ACK,in_msg_buf,1)) {
|
|
result = -1;
|
|
}
|
|
#endif /* GR64_REGNUM */
|
|
|
|
/* Global registers gr96-gr127 */
|
|
out_msg_buf->write_r_msg.byte_count = 4* (32);
|
|
out_msg_buf->write_r_msg.length = 3*4 + out_msg_buf->write_r_msg.byte_count;
|
|
out_msg_buf->write_r_msg.address = 96;
|
|
for (regno=GR96_REGNUM ; regno<GR96_REGNUM+32 ; regno++)
|
|
{
|
|
out_msg_buf->write_r_msg.data[regno-GR96_REGNUM] = read_register (regno);
|
|
}
|
|
msg_send_serial( out_msg_buf);
|
|
if (!expect_msg(WRITE_ACK,in_msg_buf,1)) {
|
|
result = -1;
|
|
}
|
|
|
|
/* Local Registers */
|
|
out_msg_buf->write_r_msg.memory_space = LOCAL_REG;
|
|
out_msg_buf->write_r_msg.byte_count = 4*128;
|
|
out_msg_buf->write_r_msg.length = 3*4 + out_msg_buf->write_r_msg.byte_count;
|
|
out_msg_buf->write_r_msg.address = 0;
|
|
|
|
for (regno = LR0_REGNUM ; regno < LR0_REGNUM+128 ; regno++)
|
|
{
|
|
out_msg_buf->write_r_msg.data[regno-LR0_REGNUM] = read_register (regno);
|
|
}
|
|
msg_send_serial( out_msg_buf);
|
|
if (!expect_msg(WRITE_ACK,in_msg_buf,1)) {
|
|
result = -1;
|
|
}
|
|
|
|
/* Protected Special Registers */
|
|
/* VAB through TMR */
|
|
out_msg_buf->write_r_msg.memory_space = SPECIAL_REG;
|
|
out_msg_buf->write_r_msg.byte_count = 4* 10;
|
|
out_msg_buf->write_r_msg.length = 3*4 + out_msg_buf->write_r_msg.byte_count;
|
|
out_msg_buf->write_r_msg.address = 0;
|
|
for (regno = 0 ; regno<=9 ; regno++) /* VAB through TMR */
|
|
out_msg_buf->write_r_msg.data[regno] = read_register (SR_REGNUM(regno));
|
|
msg_send_serial( out_msg_buf);
|
|
if (!expect_msg(WRITE_ACK,in_msg_buf,1)) {
|
|
result = -1;
|
|
}
|
|
|
|
/* PC0, PC1, PC2 possibly as shadow registers */
|
|
out_msg_buf->write_r_msg.byte_count = 4* 3;
|
|
out_msg_buf->write_r_msg.length = 3*4 + out_msg_buf->write_r_msg.byte_count;
|
|
for (regno=10 ; regno<=12 ; regno++) /* LRU and MMU */
|
|
out_msg_buf->write_r_msg.data[regno-10] = read_register (SR_REGNUM(regno));
|
|
if (USE_SHADOW_PC)
|
|
out_msg_buf->write_r_msg.address = 20; /* SPC0 */
|
|
else
|
|
out_msg_buf->write_r_msg.address = 10; /* PC0 */
|
|
msg_send_serial( out_msg_buf);
|
|
if (!expect_msg(WRITE_ACK,in_msg_buf,1)) {
|
|
result = -1;
|
|
}
|
|
|
|
/* LRU and MMU */
|
|
out_msg_buf->write_r_msg.byte_count = 4* 2;
|
|
out_msg_buf->write_r_msg.length = 3*4 + out_msg_buf->write_r_msg.byte_count;
|
|
out_msg_buf->write_r_msg.address = 13;
|
|
for (regno=13 ; regno<=14 ; regno++) /* LRU and MMU */
|
|
out_msg_buf->write_r_msg.data[regno-13] = read_register (SR_REGNUM(regno));
|
|
msg_send_serial( out_msg_buf);
|
|
if (!expect_msg(WRITE_ACK,in_msg_buf,1)) {
|
|
result = -1;
|
|
}
|
|
|
|
/* Unprotected Special Registers */
|
|
out_msg_buf->write_r_msg.byte_count = 4*8;
|
|
out_msg_buf->write_r_msg.length = 3*4 + out_msg_buf->write_r_msg.byte_count;
|
|
out_msg_buf->write_r_msg.address = 128;
|
|
for (regno = 128 ; regno<=135 ; regno++)
|
|
out_msg_buf->write_r_msg.data[regno-128] = read_register(SR_REGNUM(regno));
|
|
msg_send_serial( out_msg_buf);
|
|
if (!expect_msg(WRITE_ACK,in_msg_buf,1)) {
|
|
result = -1;
|
|
}
|
|
|
|
registers_changed ();
|
|
}
|
|
|
|
/*************************************************** REMOTE_PREPARE_TO_STORE */
|
|
/* Get ready to modify the registers array. On machines which store
|
|
individual registers, this doesn't need to do anything. On machines
|
|
which store all the registers in one fell swoop, this makes sure
|
|
that registers contains all the registers from the program being
|
|
debugged. */
|
|
|
|
static void
|
|
mm_prepare_to_store ()
|
|
{
|
|
/* Do nothing, since we can store individual regs */
|
|
}
|
|
|
|
/******************************************************* REMOTE_XFER_MEMORY */
|
|
static CORE_ADDR
|
|
translate_addr(addr)
|
|
CORE_ADDR addr;
|
|
{
|
|
#if defined(KERNEL_DEBUGGING)
|
|
/* Check for a virtual address in the kernel */
|
|
/* Assume physical address of ublock is in paddr_u register */
|
|
/* FIXME: doesn't work for user virtual addresses */
|
|
if (addr >= UVADDR) {
|
|
/* PADDR_U register holds the physical address of the ublock */
|
|
CORE_ADDR i = (CORE_ADDR)read_register(PADDR_U_REGNUM);
|
|
return(i + addr - (CORE_ADDR)UVADDR);
|
|
} else {
|
|
return(addr);
|
|
}
|
|
#else
|
|
return(addr);
|
|
#endif
|
|
}
|
|
|
|
/******************************************************* REMOTE_FILES_INFO */
|
|
static void
|
|
mm_files_info ()
|
|
{
|
|
printf ("\tAttached to %s at %d baud and running program %s.\n",
|
|
dev_name, baudrate, prog_name);
|
|
}
|
|
|
|
/************************************************* REMOTE_INSERT_BREAKPOINT */
|
|
static int
|
|
mm_insert_breakpoint (addr, contents_cache)
|
|
CORE_ADDR addr;
|
|
char *contents_cache;
|
|
{
|
|
out_msg_buf->bkpt_set_msg.code = BKPT_SET;
|
|
out_msg_buf->bkpt_set_msg.length = 4*4;
|
|
out_msg_buf->bkpt_set_msg.memory_space = I_MEM;
|
|
out_msg_buf->bkpt_set_msg.bkpt_addr = (ADDR32) addr;
|
|
out_msg_buf->bkpt_set_msg.pass_count = 1;
|
|
out_msg_buf->bkpt_set_msg.bkpt_type = -1; /* use illop for 29000 */
|
|
msg_send_serial( out_msg_buf);
|
|
if (expect_msg(BKPT_SET_ACK,in_msg_buf,1)) {
|
|
return 0; /* Success */
|
|
} else {
|
|
return 1; /* Failure */
|
|
}
|
|
}
|
|
|
|
/************************************************* REMOTE_DELETE_BREAKPOINT */
|
|
static int
|
|
mm_remove_breakpoint (addr, contents_cache)
|
|
CORE_ADDR addr;
|
|
char *contents_cache;
|
|
{
|
|
out_msg_buf->bkpt_rm_msg.code = BKPT_RM;
|
|
out_msg_buf->bkpt_rm_msg.length = 4*3;
|
|
out_msg_buf->bkpt_rm_msg.memory_space = I_MEM;
|
|
out_msg_buf->bkpt_rm_msg.bkpt_addr = (ADDR32) addr;
|
|
msg_send_serial( out_msg_buf);
|
|
if (expect_msg(BKPT_RM_ACK,in_msg_buf,1)) {
|
|
return 0; /* Success */
|
|
} else {
|
|
return 1; /* Failure */
|
|
}
|
|
}
|
|
|
|
|
|
/******************************************************* REMOTE_KILL */
|
|
static void
|
|
mm_kill(arg,from_tty)
|
|
char *arg;
|
|
int from_tty;
|
|
{
|
|
char buf[4];
|
|
|
|
#if defined(KERNEL_DEBUGGING)
|
|
/* We don't ever kill the kernel */
|
|
if (from_tty) {
|
|
printf("Kernel not killed, but left in current state.\n");
|
|
printf("Use detach to leave kernel running.\n");
|
|
}
|
|
#else
|
|
out_msg_buf->break_msg.code = BREAK;
|
|
out_msg_buf->bkpt_set_msg.length = 4*0;
|
|
expect_msg(HALT,in_msg_buf,from_tty);
|
|
if (from_tty) {
|
|
printf("Target has been stopped.");
|
|
printf("Would you like to do a hardware reset (y/n) [n] ");
|
|
fgets(buf,3,stdin);
|
|
if (buf[0] == 'y') {
|
|
out_msg_buf->reset_msg.code = RESET;
|
|
out_msg_buf->bkpt_set_msg.length = 4*0;
|
|
expect_msg(RESET_ACK,in_msg_buf,from_tty);
|
|
printf("Target has been reset.");
|
|
}
|
|
}
|
|
pop_target();
|
|
#endif
|
|
}
|
|
|
|
|
|
|
|
/***************************************************************************/
|
|
/*
|
|
* Load a program into the target.
|
|
*/
|
|
static void
|
|
mm_load(arg_string,from_tty)
|
|
char *arg_string;
|
|
int from_tty;
|
|
{
|
|
dont_repeat ();
|
|
|
|
#if defined(KERNEL_DEBUGGING)
|
|
printf("The kernel had better be loaded already! Loading not done.\n");
|
|
#else
|
|
if (arg_string == 0)
|
|
error ("The load command takes a file name");
|
|
|
|
arg_string = tilde_expand (arg_string);
|
|
make_cleanup (free, arg_string);
|
|
QUIT;
|
|
immediate_quit++;
|
|
error("File loading is not yet supported for MiniMon.");
|
|
/* FIXME, code to load your file here... */
|
|
/* You may need to do an init_target_mm() */
|
|
/* init_target_mm(?,?,?,?,?,?,?,?); */
|
|
immediate_quit--;
|
|
/* symbol_file_add (arg_string, from_tty, text_addr, 0, 0); */
|
|
#endif
|
|
|
|
}
|
|
|
|
/************************************************ REMOTE_WRITE_INFERIOR_MEMORY
|
|
** Copy LEN bytes of data from debugger memory at MYADDR
|
|
to inferior's memory at MEMADDR. Returns number of bytes written. */
|
|
static int
|
|
mm_write_inferior_memory (memaddr, myaddr, len)
|
|
CORE_ADDR memaddr;
|
|
char *myaddr;
|
|
int len;
|
|
{
|
|
int i,nwritten;
|
|
|
|
out_msg_buf->write_req_msg.code= WRITE_REQ;
|
|
out_msg_buf->write_req_msg.memory_space = mm_memory_space(memaddr);
|
|
|
|
nwritten=0;
|
|
while (nwritten < len) {
|
|
int num_to_write = len - nwritten;
|
|
if (num_to_write > MAXDATA) num_to_write = MAXDATA;
|
|
for (i=0 ; i < num_to_write ; i++)
|
|
out_msg_buf->write_req_msg.data[i] = myaddr[i+nwritten];
|
|
out_msg_buf->write_req_msg.byte_count = num_to_write;
|
|
out_msg_buf->write_req_msg.length = 3*4 + num_to_write;
|
|
out_msg_buf->write_req_msg.address = memaddr + nwritten;
|
|
msg_send_serial(out_msg_buf);
|
|
|
|
if (expect_msg(WRITE_ACK,in_msg_buf,1)) {
|
|
nwritten += in_msg_buf->write_ack_msg.byte_count;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
return(nwritten);
|
|
}
|
|
|
|
/************************************************* REMOTE_READ_INFERIOR_MEMORY
|
|
** Read LEN bytes from inferior memory at MEMADDR. Put the result
|
|
at debugger address MYADDR. Returns number of bytes read. */
|
|
static int
|
|
mm_read_inferior_memory(memaddr, myaddr, len)
|
|
CORE_ADDR memaddr;
|
|
char *myaddr;
|
|
int len;
|
|
{
|
|
int i,nread;
|
|
|
|
out_msg_buf->read_req_msg.code= READ_REQ;
|
|
out_msg_buf->read_req_msg.memory_space = mm_memory_space(memaddr);
|
|
|
|
nread=0;
|
|
while (nread < len) {
|
|
int num_to_read = (len - nread);
|
|
if (num_to_read > MAXDATA) num_to_read = MAXDATA;
|
|
out_msg_buf->read_req_msg.byte_count = num_to_read;
|
|
out_msg_buf->read_req_msg.length = 3*4 + num_to_read;
|
|
out_msg_buf->read_req_msg.address = memaddr + nread;
|
|
msg_send_serial(out_msg_buf);
|
|
|
|
if (expect_msg(READ_ACK,in_msg_buf,1)) {
|
|
for (i=0 ; i<in_msg_buf->read_ack_msg.byte_count ; i++)
|
|
myaddr[i+nread] = in_msg_buf->read_ack_msg.data[i];
|
|
nread += in_msg_buf->read_ack_msg.byte_count;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
return(nread);
|
|
}
|
|
|
|
/* FIXME! Merge these two. */
|
|
static int
|
|
mm_xfer_inferior_memory (memaddr, myaddr, len, write)
|
|
CORE_ADDR memaddr;
|
|
char *myaddr;
|
|
int len;
|
|
int write;
|
|
{
|
|
|
|
memaddr = translate_addr(memaddr);
|
|
|
|
if (write)
|
|
return mm_write_inferior_memory (memaddr, myaddr, len);
|
|
else
|
|
return mm_read_inferior_memory (memaddr, myaddr, len);
|
|
}
|
|
|
|
|
|
/********************************************************** MSG_SEND_SERIAL
|
|
** This function is used to send a message over the
|
|
** serial line.
|
|
**
|
|
** If the message is successfully sent, a zero is
|
|
** returned. If the message was not sendable, a -1
|
|
** is returned. This function blocks. That is, it
|
|
** does not return until the message is completely
|
|
** sent, or until an error is encountered.
|
|
**
|
|
*/
|
|
|
|
int
|
|
msg_send_serial(msg_ptr)
|
|
union msg_t *msg_ptr;
|
|
{
|
|
INT32 message_size;
|
|
int byte_count;
|
|
int result;
|
|
char c;
|
|
|
|
/* Send message header */
|
|
byte_count = 0;
|
|
message_size = msg_ptr->generic_msg.length + (2 * sizeof(INT32));
|
|
do {
|
|
c = *((char *)msg_ptr+byte_count);
|
|
result = write(mm_desc, &c, 1);
|
|
if (result == 1) {
|
|
byte_count = byte_count + 1;
|
|
}
|
|
} while ((byte_count < message_size) );
|
|
|
|
return(0);
|
|
} /* end msg_send_serial() */
|
|
|
|
/********************************************************** MSG_RECV_SERIAL
|
|
** This function is used to receive a message over a
|
|
** serial line.
|
|
**
|
|
** If the message is waiting in the buffer, a zero is
|
|
** returned and the buffer pointed to by msg_ptr is filled
|
|
** in. If no message was available, a -1 is returned.
|
|
** If timeout==0, wait indefinetly for a character.
|
|
**
|
|
*/
|
|
|
|
int
|
|
msg_recv_serial(msg_ptr)
|
|
union msg_t *msg_ptr;
|
|
{
|
|
static INT32 length=0;
|
|
static INT32 byte_count=0;
|
|
int result;
|
|
char c;
|
|
if(msg_ptr == 0) /* re-sync request */
|
|
{ length=0;
|
|
byte_count=0;
|
|
#ifdef HAVE_TERMIO
|
|
/* The timeout here is the prevailing timeout set with VTIME */
|
|
->"timeout==0 semantics not supported"
|
|
read(mm_desc, in_buf, BUFER_SIZE);
|
|
#else
|
|
alarm (1);
|
|
read(mm_desc, in_buf, BUFER_SIZE);
|
|
alarm (0);
|
|
#endif
|
|
return(0);
|
|
}
|
|
/* Receive message */
|
|
#ifdef HAVE_TERMIO
|
|
/* Timeout==0, help support the mm_wait() routine */
|
|
->"timeout==0 semantics not supported (and its nice if they are)"
|
|
result = read(mm_desc, &c, 1);
|
|
#else
|
|
alarm(timeout);
|
|
result = read(mm_desc, &c, 1);
|
|
alarm (0);
|
|
#endif
|
|
if ( result < 0) {
|
|
if (errno == EINTR) {
|
|
error ("Timeout reading from remote system.");
|
|
} else
|
|
perror_with_name ("remote");
|
|
} else if (result == 1) {
|
|
*((char *)msg_ptr+byte_count) = c;
|
|
byte_count = byte_count + 1;
|
|
}
|
|
|
|
/* Message header received. Save message length. */
|
|
if (byte_count == (2 * sizeof(INT32)))
|
|
length = msg_ptr->generic_msg.length;
|
|
|
|
if (byte_count >= (length + (2 * sizeof(INT32)))) {
|
|
/* Message received */
|
|
byte_count = 0;
|
|
return(0);
|
|
} else
|
|
return (-1);
|
|
|
|
} /* end msg_recv_serial() */
|
|
|
|
/********************************************************************* KBD_RAW
|
|
** This function is used to put the keyboard in "raw"
|
|
** mode for BSD Unix. The original status is saved
|
|
** so that it may be restored later.
|
|
*/
|
|
TERMINAL kbd_tbuf;
|
|
|
|
int
|
|
kbd_raw() {
|
|
int result;
|
|
TERMINAL tbuf;
|
|
|
|
/* Get keyboard termio (to save to restore original modes) */
|
|
#ifdef HAVE_TERMIO
|
|
result = ioctl(0, TCGETA, &kbd_tbuf);
|
|
#else
|
|
result = ioctl(0, TIOCGETP, &kbd_tbuf);
|
|
#endif
|
|
if (result == -1)
|
|
return (errno);
|
|
|
|
/* Get keyboard TERMINAL (for modification) */
|
|
#ifdef HAVE_TERMIO
|
|
result = ioctl(0, TCGETA, &tbuf);
|
|
#else
|
|
result = ioctl(0, TIOCGETP, &tbuf);
|
|
#endif
|
|
if (result == -1)
|
|
return (errno);
|
|
|
|
/* Set up new parameters */
|
|
#ifdef HAVE_TERMIO
|
|
tbuf.c_iflag = tbuf.c_iflag &
|
|
~(INLCR | ICRNL | IUCLC | ISTRIP | IXON | BRKINT);
|
|
tbuf.c_lflag = tbuf.c_lflag & ~(ICANON | ISIG | ECHO);
|
|
tbuf.c_cc[4] = 0; /* MIN */
|
|
tbuf.c_cc[5] = 0; /* TIME */
|
|
#else
|
|
/* FIXME: not sure if this is correct (matches HAVE_TERMIO). */
|
|
tbuf.sg_flags |= RAW;
|
|
tbuf.sg_flags |= ANYP;
|
|
tbuf.sg_flags &= ~ECHO;
|
|
#endif
|
|
|
|
/* Set keyboard termio to new mode (RAW) */
|
|
#ifdef HAVE_TERMIO
|
|
result = ioctl(0, TCSETAF, &tbuf);
|
|
#else
|
|
result = ioctl(0, TIOCSETP, &tbuf);
|
|
#endif
|
|
if (result == -1)
|
|
return (errno);
|
|
|
|
return (0);
|
|
} /* end kbd_raw() */
|
|
|
|
|
|
|
|
/***************************************************************** KBD_RESTORE
|
|
** This function is used to put the keyboard back in the
|
|
** mode it was in before kbk_raw was called. Note that
|
|
** kbk_raw() must have been called at least once before
|
|
** kbd_restore() is called.
|
|
*/
|
|
|
|
int
|
|
kbd_restore() {
|
|
int result;
|
|
|
|
/* Set keyboard termio to original mode */
|
|
#ifdef HAVE_TERMIO
|
|
result = ioctl(0, TCSETAF, &kbd_tbuf);
|
|
#else
|
|
result = ioctl(0, TIOCGETP, &kbd_tbuf);
|
|
#endif
|
|
|
|
if (result == -1)
|
|
return (errno);
|
|
|
|
return(0);
|
|
} /* end kbd_cooked() */
|
|
|
|
|
|
/*****************************************************************************/
|
|
/* Fetch a single register indicatated by 'regno'.
|
|
* Returns 0/-1 on success/failure.
|
|
*/
|
|
static int
|
|
fetch_register (regno)
|
|
int regno;
|
|
{
|
|
int result;
|
|
out_msg_buf->read_req_msg.code= READ_REQ;
|
|
out_msg_buf->read_req_msg.length = 4*3;
|
|
out_msg_buf->read_req_msg.byte_count = 4;
|
|
|
|
if (regno == GR1_REGNUM)
|
|
{ out_msg_buf->read_req_msg.memory_space = GLOBAL_REG;
|
|
out_msg_buf->read_req_msg.address = 1;
|
|
}
|
|
else if (regno >= GR96_REGNUM && regno < GR96_REGNUM + 32)
|
|
{ out_msg_buf->read_req_msg.memory_space = GLOBAL_REG;
|
|
out_msg_buf->read_req_msg.address = (regno - GR96_REGNUM) + 96;
|
|
}
|
|
#if defined(GR64_REGNUM)
|
|
else if (regno >= GR64_REGNUM && regno < GR64_REGNUM + 32 )
|
|
{ out_msg_buf->read_req_msg.memory_space = GLOBAL_REG;
|
|
out_msg_buf->read_req_msg.address = (regno - GR64_REGNUM) + 64;
|
|
}
|
|
#endif /* GR64_REGNUM */
|
|
else if (regno >= LR0_REGNUM && regno < LR0_REGNUM + 128)
|
|
{ out_msg_buf->read_req_msg.memory_space = LOCAL_REG;
|
|
out_msg_buf->read_req_msg.address = (regno - LR0_REGNUM);
|
|
}
|
|
else if (regno>=FPE_REGNUM && regno<=EXO_REGNUM)
|
|
{ int val = -1;
|
|
supply_register(160 + (regno - FPE_REGNUM),&val);
|
|
return 0; /* Pretend Success */
|
|
}
|
|
else
|
|
{ out_msg_buf->read_req_msg.memory_space = SPECIAL_REG;
|
|
out_msg_buf->read_req_msg.address = regnum_to_srnum(regno);
|
|
}
|
|
|
|
msg_send_serial(out_msg_buf);
|
|
|
|
if (expect_msg(READ_ACK,in_msg_buf,1)) {
|
|
supply_register (regno, &(in_msg_buf->read_r_ack_msg.data[0]));
|
|
result = 0;
|
|
} else {
|
|
result = -1;
|
|
}
|
|
return result;
|
|
}
|
|
/*****************************************************************************/
|
|
/* Store a single register indicated by 'regno'.
|
|
* Returns 0/-1 on success/failure.
|
|
*/
|
|
static int
|
|
store_register (regno)
|
|
int regno;
|
|
{
|
|
int result;
|
|
|
|
out_msg_buf->write_req_msg.code= WRITE_REQ;
|
|
out_msg_buf->write_req_msg.length = 4*4;
|
|
out_msg_buf->write_req_msg.byte_count = 4;
|
|
out_msg_buf->write_r_msg.data[0] = read_register (regno);
|
|
|
|
if (regno == GR1_REGNUM)
|
|
{ out_msg_buf->write_req_msg.memory_space = GLOBAL_REG;
|
|
out_msg_buf->write_req_msg.address = 1;
|
|
/* Setting GR1 changes the numbers of all the locals, so invalidate the
|
|
* register cache. Do this *after* calling read_register, because we want
|
|
* read_register to return the value that write_register has just stuffed
|
|
* into the registers array, not the value of the register fetched from
|
|
* the inferior.
|
|
*/
|
|
registers_changed ();
|
|
}
|
|
#if defined(GR64_REGNUM)
|
|
else if (regno >= GR64_REGNUM && regno < GR64_REGNUM + 32 )
|
|
{ out_msg_buf->write_req_msg.memory_space = GLOBAL_REG;
|
|
out_msg_buf->write_req_msg.address = (regno - GR64_REGNUM) + 64;
|
|
}
|
|
#endif /* GR64_REGNUM */
|
|
else if (regno >= GR96_REGNUM && regno < GR96_REGNUM + 32)
|
|
{ out_msg_buf->write_req_msg.memory_space = GLOBAL_REG;
|
|
out_msg_buf->write_req_msg.address = (regno - GR96_REGNUM) + 96;
|
|
}
|
|
else if (regno >= LR0_REGNUM && regno < LR0_REGNUM + 128)
|
|
{ out_msg_buf->write_req_msg.memory_space = LOCAL_REG;
|
|
out_msg_buf->write_req_msg.address = (regno - LR0_REGNUM);
|
|
}
|
|
else if (regno>=FPE_REGNUM && regno<=EXO_REGNUM)
|
|
{
|
|
return 0; /* Pretend Success */
|
|
}
|
|
else /* An unprotected or protected special register */
|
|
{ out_msg_buf->write_req_msg.memory_space = SPECIAL_REG;
|
|
out_msg_buf->write_req_msg.address = regnum_to_srnum(regno);
|
|
}
|
|
|
|
msg_send_serial(out_msg_buf);
|
|
|
|
if (expect_msg(WRITE_ACK,in_msg_buf,1)) {
|
|
result = 0;
|
|
} else {
|
|
result = -1;
|
|
}
|
|
return result;
|
|
}
|
|
/****************************************************************************/
|
|
/*
|
|
* Convert a gdb special register number to a 29000 special register number.
|
|
*/
|
|
static int
|
|
regnum_to_srnum(regno)
|
|
int regno;
|
|
{
|
|
switch(regno) {
|
|
case VAB_REGNUM: return(0);
|
|
case OPS_REGNUM: return(1);
|
|
case CPS_REGNUM: return(2);
|
|
case CFG_REGNUM: return(3);
|
|
case CHA_REGNUM: return(4);
|
|
case CHD_REGNUM: return(5);
|
|
case CHC_REGNUM: return(6);
|
|
case RBP_REGNUM: return(7);
|
|
case TMC_REGNUM: return(8);
|
|
case TMR_REGNUM: return(9);
|
|
case NPC_REGNUM: return(USE_SHADOW_PC ? (20) : (10));
|
|
case PC_REGNUM: return(USE_SHADOW_PC ? (21) : (11));
|
|
case PC2_REGNUM: return(USE_SHADOW_PC ? (22) : (12));
|
|
case MMU_REGNUM: return(13);
|
|
case LRU_REGNUM: return(14);
|
|
case IPC_REGNUM: return(128);
|
|
case IPA_REGNUM: return(129);
|
|
case IPB_REGNUM: return(130);
|
|
case Q_REGNUM: return(131);
|
|
case ALU_REGNUM: return(132);
|
|
case BP_REGNUM: return(133);
|
|
case FC_REGNUM: return(134);
|
|
case CR_REGNUM: return(135);
|
|
case FPE_REGNUM: return(160);
|
|
case INTE_REGNUM: return(161);
|
|
case FPS_REGNUM: return(162);
|
|
case EXO_REGNUM:return(164);
|
|
default:
|
|
return(255); /* Failure ? */
|
|
}
|
|
}
|
|
/****************************************************************************/
|
|
/*
|
|
* Initialize the target debugger (minimon only).
|
|
*/
|
|
static void
|
|
init_target_mm(tstart,tend,dstart,dend,entry,ms_size,rs_size,arg_start)
|
|
ADDR32 tstart,tend,dstart,dend,entry;
|
|
INT32 ms_size,rs_size;
|
|
ADDR32 arg_start;
|
|
{
|
|
out_msg_buf->init_msg.code = INIT;
|
|
out_msg_buf->init_msg.length= sizeof(struct init_msg_t)-2*sizeof(INT32);
|
|
out_msg_buf->init_msg.text_start = tstart;
|
|
out_msg_buf->init_msg.text_end = tend;
|
|
out_msg_buf->init_msg.data_start = dstart;
|
|
out_msg_buf->init_msg.data_end = dend;
|
|
out_msg_buf->init_msg.entry_point = entry;
|
|
out_msg_buf->init_msg.mem_stack_size = ms_size;
|
|
out_msg_buf->init_msg.reg_stack_size = rs_size;
|
|
out_msg_buf->init_msg.arg_start = arg_start;
|
|
msg_send_serial(out_msg_buf);
|
|
expect_msg(INIT_ACK,in_msg_buf,1);
|
|
}
|
|
/****************************************************************************/
|
|
/*
|
|
* Return a pointer to a string representing the given message code.
|
|
* Not all messages are represented here, only the ones that we expect
|
|
* to be called with.
|
|
*/
|
|
static char*
|
|
msg_str(code)
|
|
INT32 code;
|
|
{
|
|
static char cbuf[32];
|
|
|
|
switch (code) {
|
|
case BKPT_SET_ACK: sprintf(cbuf,"%s (%d)","BKPT_SET_ACK",code); break;
|
|
case BKPT_RM_ACK: sprintf(cbuf,"%s (%d)","BKPT_RM_ACK",code); break;
|
|
case INIT_ACK: sprintf(cbuf,"%s (%d)","INIT_ACK",code); break;
|
|
case READ_ACK: sprintf(cbuf,"%s (%d)","READ_ACK",code); break;
|
|
case WRITE_ACK: sprintf(cbuf,"%s (%d)","WRITE_ACK",code); break;
|
|
case ERROR: sprintf(cbuf,"%s (%d)","ERROR",code); break;
|
|
case HALT: sprintf(cbuf,"%s (%d)","HALT",code); break;
|
|
default: sprintf(cbuf,"UNKNOWN (%d)",code); break;
|
|
}
|
|
return(cbuf);
|
|
}
|
|
/****************************************************************************/
|
|
/*
|
|
* Selected (not all of them) error codes that we might get.
|
|
*/
|
|
static char*
|
|
error_msg_str(code)
|
|
INT32 code;
|
|
{
|
|
static char cbuf[50];
|
|
|
|
switch (code) {
|
|
case EMFAIL: return("EMFAIL: unrecoverable error");
|
|
case EMBADADDR: return("EMBADADDR: Illegal address");
|
|
case EMBADREG: return("EMBADREG: Illegal register ");
|
|
case EMACCESS: return("EMACCESS: Could not access memory");
|
|
case EMBADMSG: return("EMBADMSG: Unknown message type");
|
|
case EMMSG2BIG: return("EMMSG2BIG: Message to large");
|
|
case EMNOSEND: return("EMNOSEND: Could not send message");
|
|
case EMNORECV: return("EMNORECV: Could not recv message");
|
|
case EMRESET: return("EMRESET: Could not RESET target");
|
|
case EMCONFIG: return("EMCONFIG: Could not get target CONFIG");
|
|
case EMSTATUS: return("EMSTATUS: Could not get target STATUS");
|
|
case EMREAD: return("EMREAD: Could not READ target memory");
|
|
case EMWRITE: return("EMWRITE: Could not WRITE target memory");
|
|
case EMBKPTSET: return("EMBKPTSET: Could not set breakpoint");
|
|
case EMBKPTRM: return("EMBKPTRM: Could not remove breakpoint");
|
|
case EMBKPTSTAT:return("EMBKPTSTAT: Could not get breakpoint status");
|
|
case EMBKPTNONE:return("EMBKPTNONE: All breakpoints in use");
|
|
case EMBKPTUSED:return("EMBKPTUSED: Breakpoints already in use");
|
|
case EMINIT: return("EMINIT: Could not init target memory");
|
|
case EMGO: return("EMGO: Could not start execution");
|
|
case EMSTEP: return("EMSTEP: Could not single step");
|
|
case EMBREAK: return("EMBREAK: Could not BREAK");
|
|
case EMCOMMERR: return("EMCOMMERR: Communication error");
|
|
default: sprintf(cbuf,"error number %d",code); break;
|
|
} /* end switch */
|
|
|
|
return (cbuf);
|
|
}
|
|
/****************************************************************************/
|
|
/*
|
|
* Receive a message and expect it to be of type msgcode.
|
|
* Returns 0/1 on failure/success.
|
|
*/
|
|
static int
|
|
expect_msg(msgcode,msg_buf,from_tty)
|
|
INT32 msgcode; /* Msg code we expect */
|
|
union msg_t *msg_buf; /* Where to put the message received */
|
|
int from_tty; /* Print message on error if non-zero */
|
|
{
|
|
int retries=0;
|
|
while(msg_recv_serial(msg_buf) && (retries++<MAX_RETRIES));
|
|
if (retries >= MAX_RETRIES) {
|
|
printf("Expected msg %s, ",msg_str(msgcode));
|
|
printf("no message received!\n");
|
|
return(0); /* Failure */
|
|
}
|
|
|
|
if (msg_buf->generic_msg.code != msgcode) {
|
|
if (from_tty) {
|
|
printf("Expected msg %s, ",msg_str(msgcode));
|
|
printf("got msg %s\n",msg_str(msg_buf->generic_msg.code));
|
|
if (msg_buf->generic_msg.code == ERROR)
|
|
printf("%s\n",error_msg_str(msg_buf->error_msg.error_code));
|
|
}
|
|
return(0); /* Failure */
|
|
}
|
|
return(1); /* Success */
|
|
}
|
|
/****************************************************************************/
|
|
/*
|
|
* Determine the MiniMon memory space qualifier based on the addr.
|
|
* FIXME: Can't distinguis I_ROM/D_ROM.
|
|
* FIXME: Doesn't know anything about I_CACHE/D_CACHE.
|
|
*/
|
|
static int
|
|
mm_memory_space(addr)
|
|
CORE_ADDR *addr;
|
|
{
|
|
ADDR32 tstart = target_config.I_mem_start;
|
|
ADDR32 tend = tstart + target_config.I_mem_size;
|
|
ADDR32 dstart = target_config.D_mem_start;
|
|
ADDR32 dend = tstart + target_config.D_mem_size;
|
|
ADDR32 rstart = target_config.ROM_start;
|
|
ADDR32 rend = tstart + target_config.ROM_size;
|
|
|
|
if (((ADDR32)addr >= tstart) && ((ADDR32)addr < tend)) {
|
|
return I_MEM;
|
|
} else if (((ADDR32)addr >= dstart) && ((ADDR32)addr < dend)) {
|
|
return D_MEM;
|
|
} else if (((ADDR32)addr >= rstart) && ((ADDR32)addr < rend)) {
|
|
/* FIXME: how do we determine between D_ROM and I_ROM */
|
|
return D_ROM;
|
|
} else /* FIXME: what do me do now? */
|
|
return D_MEM; /* Hmmm! */
|
|
}
|
|
|
|
/****************************************************************************/
|
|
/*
|
|
* Define the target subroutine names
|
|
*/
|
|
struct target_ops mm_ops = {
|
|
"minimon", "Remote AMD/Minimon target",
|
|
"Remote debug an AMD 290*0 using the MiniMon dbg core on the target",
|
|
mm_open, mm_close,
|
|
mm_attach, mm_detach, mm_resume, mm_wait,
|
|
mm_fetch_registers, mm_store_registers,
|
|
mm_prepare_to_store,
|
|
mm_xfer_inferior_memory,
|
|
mm_files_info,
|
|
mm_insert_breakpoint, mm_remove_breakpoint, /* Breakpoints */
|
|
0, 0, 0, 0, 0, /* Terminal handling */
|
|
mm_kill, /* FIXME, kill */
|
|
mm_load,
|
|
0, /* lookup_symbol */
|
|
mm_create_inferior, /* create_inferior */
|
|
mm_mourn, /* mourn_inferior FIXME */
|
|
0, /* can_run */
|
|
0, /* notice_signals */
|
|
0, /* to_stop */
|
|
process_stratum, 0, /* next */
|
|
1, 1, 1, 1, 1, /* all mem, mem, stack, regs, exec */
|
|
0,0, /* sections, sections_end */
|
|
OPS_MAGIC, /* Always the last thing */
|
|
};
|
|
|
|
void
|
|
_initialize_remote_mm()
|
|
{
|
|
add_target (&mm_ops);
|
|
}
|
|
|
|
#ifdef NO_HIF_SUPPORT
|
|
service_HIF(msg)
|
|
union msg_t *msg;
|
|
{
|
|
return(0); /* Emulate a failure */
|
|
}
|
|
#endif
|