mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-25 02:53:48 +08:00
3b22753a67
2005-07-25 Jan Hubicka <jh@suse.cz> H.J. Lu <hongjiu.lu@intel.com> * elf-bfd.h (_bfd_elf_large_com_section): New. * elf.c (_bfd_elf_large_com_section): New. Defined. * elf64-x86-64.c (elf64_x86_64_add_symbol_hook): New. (elf64_x86_64_elf_section_from_bfd_section): New. (elf64_x86_64_symbol_processing): New. (elf64_x86_64_common_definition): New. (elf64_x86_64_common_section_index): New. (elf64_x86_64_common_section): New. (elf64_x86_64_merge_symbol): New. (elf64_x86_64_additional_program_headers): New. (elf64_x86_64_special_sections): New. (elf_backend_section_from_bfd_section): New. Defined. (elf_backend_add_symbol_hook): Likewise. (elf_backend_common_section_index): Likewise. (elf_backend_common_section): Likewise. (elf_backend_common_definition): Likewise. (elf_backend_merge_symbol): Likewise. (elf_backend_special_sections): Likewise. (elf_backend_additional_program_headers): Likewise. binutils/ 2005-07-25 H.J. Lu <hongjiu.lu@intel.com> * readelf.c (dump_relocations): Handle SHN_X86_64_LCOMMON. (get_symbol_index_type): Likewise. (get_elf_section_flags): Handle SHF_X86_64_LARGE. gas/ 2005-07-25 Jan Hubicka <jh@suse.cz> H.J. Lu <hongjiu.lu@intel.com> * config/obj-elf.c: Include "elf/x86-64.h" if TC_I386 is defined. (elf_com_section_ptr): New. (elf_begin): Set elf_com_section_ptr to bfd_com_section_ptr. (elf_common_parse): Make it global. Use elf_com_section_ptr instead of bfd_com_section_ptr. (obj_elf_change_section): Handle x86-64 large bss sections. * config/obj-elf.h (elf_com_section_ptr): New. (elf_common_parse): New. * config/tc-i386.c (handle_large_common): New. (md_pseudo_table): Add "largecomm". (x86_64_section_letter): New. (x86_64_section_word): New. * config/tc-i386.h (x86_64_section_word): New. (x86_64_section_letter): New. (md_elf_section_letter): New. Defined. (md_elf_section_word): Likewise. include/elf/ 2005-07-25 Jan Hubicka <jh@suse.cz> * x86-64.h (SHN_X86_64_LCOMMON): New. (SHF_X86_64_LARGE): New. ld/ 2005-07-25 Jan Hubicka <jh@suse.cz> H.J. Lu <hongjiu.lu@intel.com> * emulparams/elf_x86_64.sh (LARGE_SECTIONS): New. * scripttempl/elf.sc: Updated for large section support.
8465 lines
234 KiB
C
8465 lines
234 KiB
C
/* ELF executable support for BFD.
|
||
|
||
Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
|
||
2002, 2003, 2004, 2005 Free Software Foundation, Inc.
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
|
||
|
||
/* SECTION
|
||
|
||
ELF backends
|
||
|
||
BFD support for ELF formats is being worked on.
|
||
Currently, the best supported back ends are for sparc and i386
|
||
(running svr4 or Solaris 2).
|
||
|
||
Documentation of the internals of the support code still needs
|
||
to be written. The code is changing quickly enough that we
|
||
haven't bothered yet. */
|
||
|
||
/* For sparc64-cross-sparc32. */
|
||
#define _SYSCALL32
|
||
#include "bfd.h"
|
||
#include "sysdep.h"
|
||
#include "bfdlink.h"
|
||
#include "libbfd.h"
|
||
#define ARCH_SIZE 0
|
||
#include "elf-bfd.h"
|
||
#include "libiberty.h"
|
||
|
||
static int elf_sort_sections (const void *, const void *);
|
||
static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
|
||
static bfd_boolean prep_headers (bfd *);
|
||
static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
|
||
static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
|
||
|
||
/* Swap version information in and out. The version information is
|
||
currently size independent. If that ever changes, this code will
|
||
need to move into elfcode.h. */
|
||
|
||
/* Swap in a Verdef structure. */
|
||
|
||
void
|
||
_bfd_elf_swap_verdef_in (bfd *abfd,
|
||
const Elf_External_Verdef *src,
|
||
Elf_Internal_Verdef *dst)
|
||
{
|
||
dst->vd_version = H_GET_16 (abfd, src->vd_version);
|
||
dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
|
||
dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
|
||
dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
|
||
dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
|
||
dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
|
||
dst->vd_next = H_GET_32 (abfd, src->vd_next);
|
||
}
|
||
|
||
/* Swap out a Verdef structure. */
|
||
|
||
void
|
||
_bfd_elf_swap_verdef_out (bfd *abfd,
|
||
const Elf_Internal_Verdef *src,
|
||
Elf_External_Verdef *dst)
|
||
{
|
||
H_PUT_16 (abfd, src->vd_version, dst->vd_version);
|
||
H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
|
||
H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
|
||
H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
|
||
H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
|
||
H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
|
||
H_PUT_32 (abfd, src->vd_next, dst->vd_next);
|
||
}
|
||
|
||
/* Swap in a Verdaux structure. */
|
||
|
||
void
|
||
_bfd_elf_swap_verdaux_in (bfd *abfd,
|
||
const Elf_External_Verdaux *src,
|
||
Elf_Internal_Verdaux *dst)
|
||
{
|
||
dst->vda_name = H_GET_32 (abfd, src->vda_name);
|
||
dst->vda_next = H_GET_32 (abfd, src->vda_next);
|
||
}
|
||
|
||
/* Swap out a Verdaux structure. */
|
||
|
||
void
|
||
_bfd_elf_swap_verdaux_out (bfd *abfd,
|
||
const Elf_Internal_Verdaux *src,
|
||
Elf_External_Verdaux *dst)
|
||
{
|
||
H_PUT_32 (abfd, src->vda_name, dst->vda_name);
|
||
H_PUT_32 (abfd, src->vda_next, dst->vda_next);
|
||
}
|
||
|
||
/* Swap in a Verneed structure. */
|
||
|
||
void
|
||
_bfd_elf_swap_verneed_in (bfd *abfd,
|
||
const Elf_External_Verneed *src,
|
||
Elf_Internal_Verneed *dst)
|
||
{
|
||
dst->vn_version = H_GET_16 (abfd, src->vn_version);
|
||
dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
|
||
dst->vn_file = H_GET_32 (abfd, src->vn_file);
|
||
dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
|
||
dst->vn_next = H_GET_32 (abfd, src->vn_next);
|
||
}
|
||
|
||
/* Swap out a Verneed structure. */
|
||
|
||
void
|
||
_bfd_elf_swap_verneed_out (bfd *abfd,
|
||
const Elf_Internal_Verneed *src,
|
||
Elf_External_Verneed *dst)
|
||
{
|
||
H_PUT_16 (abfd, src->vn_version, dst->vn_version);
|
||
H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
|
||
H_PUT_32 (abfd, src->vn_file, dst->vn_file);
|
||
H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
|
||
H_PUT_32 (abfd, src->vn_next, dst->vn_next);
|
||
}
|
||
|
||
/* Swap in a Vernaux structure. */
|
||
|
||
void
|
||
_bfd_elf_swap_vernaux_in (bfd *abfd,
|
||
const Elf_External_Vernaux *src,
|
||
Elf_Internal_Vernaux *dst)
|
||
{
|
||
dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
|
||
dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
|
||
dst->vna_other = H_GET_16 (abfd, src->vna_other);
|
||
dst->vna_name = H_GET_32 (abfd, src->vna_name);
|
||
dst->vna_next = H_GET_32 (abfd, src->vna_next);
|
||
}
|
||
|
||
/* Swap out a Vernaux structure. */
|
||
|
||
void
|
||
_bfd_elf_swap_vernaux_out (bfd *abfd,
|
||
const Elf_Internal_Vernaux *src,
|
||
Elf_External_Vernaux *dst)
|
||
{
|
||
H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
|
||
H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
|
||
H_PUT_16 (abfd, src->vna_other, dst->vna_other);
|
||
H_PUT_32 (abfd, src->vna_name, dst->vna_name);
|
||
H_PUT_32 (abfd, src->vna_next, dst->vna_next);
|
||
}
|
||
|
||
/* Swap in a Versym structure. */
|
||
|
||
void
|
||
_bfd_elf_swap_versym_in (bfd *abfd,
|
||
const Elf_External_Versym *src,
|
||
Elf_Internal_Versym *dst)
|
||
{
|
||
dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
|
||
}
|
||
|
||
/* Swap out a Versym structure. */
|
||
|
||
void
|
||
_bfd_elf_swap_versym_out (bfd *abfd,
|
||
const Elf_Internal_Versym *src,
|
||
Elf_External_Versym *dst)
|
||
{
|
||
H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
|
||
}
|
||
|
||
/* Standard ELF hash function. Do not change this function; you will
|
||
cause invalid hash tables to be generated. */
|
||
|
||
unsigned long
|
||
bfd_elf_hash (const char *namearg)
|
||
{
|
||
const unsigned char *name = (const unsigned char *) namearg;
|
||
unsigned long h = 0;
|
||
unsigned long g;
|
||
int ch;
|
||
|
||
while ((ch = *name++) != '\0')
|
||
{
|
||
h = (h << 4) + ch;
|
||
if ((g = (h & 0xf0000000)) != 0)
|
||
{
|
||
h ^= g >> 24;
|
||
/* The ELF ABI says `h &= ~g', but this is equivalent in
|
||
this case and on some machines one insn instead of two. */
|
||
h ^= g;
|
||
}
|
||
}
|
||
return h & 0xffffffff;
|
||
}
|
||
|
||
bfd_boolean
|
||
bfd_elf_mkobject (bfd *abfd)
|
||
{
|
||
/* This just does initialization. */
|
||
/* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
|
||
elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
|
||
if (elf_tdata (abfd) == 0)
|
||
return FALSE;
|
||
/* Since everything is done at close time, do we need any
|
||
initialization? */
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
bfd_boolean
|
||
bfd_elf_mkcorefile (bfd *abfd)
|
||
{
|
||
/* I think this can be done just like an object file. */
|
||
return bfd_elf_mkobject (abfd);
|
||
}
|
||
|
||
char *
|
||
bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
|
||
{
|
||
Elf_Internal_Shdr **i_shdrp;
|
||
bfd_byte *shstrtab = NULL;
|
||
file_ptr offset;
|
||
bfd_size_type shstrtabsize;
|
||
|
||
i_shdrp = elf_elfsections (abfd);
|
||
if (i_shdrp == 0 || i_shdrp[shindex] == 0)
|
||
return NULL;
|
||
|
||
shstrtab = i_shdrp[shindex]->contents;
|
||
if (shstrtab == NULL)
|
||
{
|
||
/* No cached one, attempt to read, and cache what we read. */
|
||
offset = i_shdrp[shindex]->sh_offset;
|
||
shstrtabsize = i_shdrp[shindex]->sh_size;
|
||
|
||
/* Allocate and clear an extra byte at the end, to prevent crashes
|
||
in case the string table is not terminated. */
|
||
if (shstrtabsize + 1 == 0
|
||
|| (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
|
||
|| bfd_seek (abfd, offset, SEEK_SET) != 0)
|
||
shstrtab = NULL;
|
||
else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
|
||
{
|
||
if (bfd_get_error () != bfd_error_system_call)
|
||
bfd_set_error (bfd_error_file_truncated);
|
||
shstrtab = NULL;
|
||
}
|
||
else
|
||
shstrtab[shstrtabsize] = '\0';
|
||
i_shdrp[shindex]->contents = shstrtab;
|
||
}
|
||
return (char *) shstrtab;
|
||
}
|
||
|
||
char *
|
||
bfd_elf_string_from_elf_section (bfd *abfd,
|
||
unsigned int shindex,
|
||
unsigned int strindex)
|
||
{
|
||
Elf_Internal_Shdr *hdr;
|
||
|
||
if (strindex == 0)
|
||
return "";
|
||
|
||
hdr = elf_elfsections (abfd)[shindex];
|
||
|
||
if (hdr->contents == NULL
|
||
&& bfd_elf_get_str_section (abfd, shindex) == NULL)
|
||
return NULL;
|
||
|
||
if (strindex >= hdr->sh_size)
|
||
{
|
||
unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
|
||
(*_bfd_error_handler)
|
||
(_("%B: invalid string offset %u >= %lu for section `%s'"),
|
||
abfd, strindex, (unsigned long) hdr->sh_size,
|
||
(shindex == shstrndx && strindex == hdr->sh_name
|
||
? ".shstrtab"
|
||
: bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
|
||
return "";
|
||
}
|
||
|
||
return ((char *) hdr->contents) + strindex;
|
||
}
|
||
|
||
/* Read and convert symbols to internal format.
|
||
SYMCOUNT specifies the number of symbols to read, starting from
|
||
symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
|
||
are non-NULL, they are used to store the internal symbols, external
|
||
symbols, and symbol section index extensions, respectively. */
|
||
|
||
Elf_Internal_Sym *
|
||
bfd_elf_get_elf_syms (bfd *ibfd,
|
||
Elf_Internal_Shdr *symtab_hdr,
|
||
size_t symcount,
|
||
size_t symoffset,
|
||
Elf_Internal_Sym *intsym_buf,
|
||
void *extsym_buf,
|
||
Elf_External_Sym_Shndx *extshndx_buf)
|
||
{
|
||
Elf_Internal_Shdr *shndx_hdr;
|
||
void *alloc_ext;
|
||
const bfd_byte *esym;
|
||
Elf_External_Sym_Shndx *alloc_extshndx;
|
||
Elf_External_Sym_Shndx *shndx;
|
||
Elf_Internal_Sym *isym;
|
||
Elf_Internal_Sym *isymend;
|
||
const struct elf_backend_data *bed;
|
||
size_t extsym_size;
|
||
bfd_size_type amt;
|
||
file_ptr pos;
|
||
|
||
if (symcount == 0)
|
||
return intsym_buf;
|
||
|
||
/* Normal syms might have section extension entries. */
|
||
shndx_hdr = NULL;
|
||
if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
|
||
shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
|
||
|
||
/* Read the symbols. */
|
||
alloc_ext = NULL;
|
||
alloc_extshndx = NULL;
|
||
bed = get_elf_backend_data (ibfd);
|
||
extsym_size = bed->s->sizeof_sym;
|
||
amt = symcount * extsym_size;
|
||
pos = symtab_hdr->sh_offset + symoffset * extsym_size;
|
||
if (extsym_buf == NULL)
|
||
{
|
||
alloc_ext = bfd_malloc2 (symcount, extsym_size);
|
||
extsym_buf = alloc_ext;
|
||
}
|
||
if (extsym_buf == NULL
|
||
|| bfd_seek (ibfd, pos, SEEK_SET) != 0
|
||
|| bfd_bread (extsym_buf, amt, ibfd) != amt)
|
||
{
|
||
intsym_buf = NULL;
|
||
goto out;
|
||
}
|
||
|
||
if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
|
||
extshndx_buf = NULL;
|
||
else
|
||
{
|
||
amt = symcount * sizeof (Elf_External_Sym_Shndx);
|
||
pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
|
||
if (extshndx_buf == NULL)
|
||
{
|
||
alloc_extshndx = bfd_malloc2 (symcount,
|
||
sizeof (Elf_External_Sym_Shndx));
|
||
extshndx_buf = alloc_extshndx;
|
||
}
|
||
if (extshndx_buf == NULL
|
||
|| bfd_seek (ibfd, pos, SEEK_SET) != 0
|
||
|| bfd_bread (extshndx_buf, amt, ibfd) != amt)
|
||
{
|
||
intsym_buf = NULL;
|
||
goto out;
|
||
}
|
||
}
|
||
|
||
if (intsym_buf == NULL)
|
||
{
|
||
intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
|
||
if (intsym_buf == NULL)
|
||
goto out;
|
||
}
|
||
|
||
/* Convert the symbols to internal form. */
|
||
isymend = intsym_buf + symcount;
|
||
for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
|
||
isym < isymend;
|
||
esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
|
||
(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
|
||
|
||
out:
|
||
if (alloc_ext != NULL)
|
||
free (alloc_ext);
|
||
if (alloc_extshndx != NULL)
|
||
free (alloc_extshndx);
|
||
|
||
return intsym_buf;
|
||
}
|
||
|
||
/* Look up a symbol name. */
|
||
const char *
|
||
bfd_elf_sym_name (bfd *abfd,
|
||
Elf_Internal_Shdr *symtab_hdr,
|
||
Elf_Internal_Sym *isym,
|
||
asection *sym_sec)
|
||
{
|
||
const char *name;
|
||
unsigned int iname = isym->st_name;
|
||
unsigned int shindex = symtab_hdr->sh_link;
|
||
|
||
if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
|
||
/* Check for a bogus st_shndx to avoid crashing. */
|
||
&& isym->st_shndx < elf_numsections (abfd)
|
||
&& !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
|
||
{
|
||
iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
|
||
shindex = elf_elfheader (abfd)->e_shstrndx;
|
||
}
|
||
|
||
name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
|
||
if (name == NULL)
|
||
name = "(null)";
|
||
else if (sym_sec && *name == '\0')
|
||
name = bfd_section_name (abfd, sym_sec);
|
||
|
||
return name;
|
||
}
|
||
|
||
/* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
|
||
sections. The first element is the flags, the rest are section
|
||
pointers. */
|
||
|
||
typedef union elf_internal_group {
|
||
Elf_Internal_Shdr *shdr;
|
||
unsigned int flags;
|
||
} Elf_Internal_Group;
|
||
|
||
/* Return the name of the group signature symbol. Why isn't the
|
||
signature just a string? */
|
||
|
||
static const char *
|
||
group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
|
||
{
|
||
Elf_Internal_Shdr *hdr;
|
||
unsigned char esym[sizeof (Elf64_External_Sym)];
|
||
Elf_External_Sym_Shndx eshndx;
|
||
Elf_Internal_Sym isym;
|
||
|
||
/* First we need to ensure the symbol table is available. Make sure
|
||
that it is a symbol table section. */
|
||
hdr = elf_elfsections (abfd) [ghdr->sh_link];
|
||
if (hdr->sh_type != SHT_SYMTAB
|
||
|| ! bfd_section_from_shdr (abfd, ghdr->sh_link))
|
||
return NULL;
|
||
|
||
/* Go read the symbol. */
|
||
hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
|
||
&isym, esym, &eshndx) == NULL)
|
||
return NULL;
|
||
|
||
return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
|
||
}
|
||
|
||
/* Set next_in_group list pointer, and group name for NEWSECT. */
|
||
|
||
static bfd_boolean
|
||
setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
|
||
{
|
||
unsigned int num_group = elf_tdata (abfd)->num_group;
|
||
|
||
/* If num_group is zero, read in all SHT_GROUP sections. The count
|
||
is set to -1 if there are no SHT_GROUP sections. */
|
||
if (num_group == 0)
|
||
{
|
||
unsigned int i, shnum;
|
||
|
||
/* First count the number of groups. If we have a SHT_GROUP
|
||
section with just a flag word (ie. sh_size is 4), ignore it. */
|
||
shnum = elf_numsections (abfd);
|
||
num_group = 0;
|
||
for (i = 0; i < shnum; i++)
|
||
{
|
||
Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
|
||
if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
|
||
num_group += 1;
|
||
}
|
||
|
||
if (num_group == 0)
|
||
{
|
||
num_group = (unsigned) -1;
|
||
elf_tdata (abfd)->num_group = num_group;
|
||
}
|
||
else
|
||
{
|
||
/* We keep a list of elf section headers for group sections,
|
||
so we can find them quickly. */
|
||
bfd_size_type amt;
|
||
|
||
elf_tdata (abfd)->num_group = num_group;
|
||
elf_tdata (abfd)->group_sect_ptr
|
||
= bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
|
||
if (elf_tdata (abfd)->group_sect_ptr == NULL)
|
||
return FALSE;
|
||
|
||
num_group = 0;
|
||
for (i = 0; i < shnum; i++)
|
||
{
|
||
Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
|
||
if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
|
||
{
|
||
unsigned char *src;
|
||
Elf_Internal_Group *dest;
|
||
|
||
/* Add to list of sections. */
|
||
elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
|
||
num_group += 1;
|
||
|
||
/* Read the raw contents. */
|
||
BFD_ASSERT (sizeof (*dest) >= 4);
|
||
amt = shdr->sh_size * sizeof (*dest) / 4;
|
||
shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
|
||
sizeof (*dest) / 4);
|
||
if (shdr->contents == NULL
|
||
|| bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
|
||
|| (bfd_bread (shdr->contents, shdr->sh_size, abfd)
|
||
!= shdr->sh_size))
|
||
return FALSE;
|
||
|
||
/* Translate raw contents, a flag word followed by an
|
||
array of elf section indices all in target byte order,
|
||
to the flag word followed by an array of elf section
|
||
pointers. */
|
||
src = shdr->contents + shdr->sh_size;
|
||
dest = (Elf_Internal_Group *) (shdr->contents + amt);
|
||
while (1)
|
||
{
|
||
unsigned int idx;
|
||
|
||
src -= 4;
|
||
--dest;
|
||
idx = H_GET_32 (abfd, src);
|
||
if (src == shdr->contents)
|
||
{
|
||
dest->flags = idx;
|
||
if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
|
||
shdr->bfd_section->flags
|
||
|= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
|
||
break;
|
||
}
|
||
if (idx >= shnum)
|
||
{
|
||
((*_bfd_error_handler)
|
||
(_("%B: invalid SHT_GROUP entry"), abfd));
|
||
idx = 0;
|
||
}
|
||
dest->shdr = elf_elfsections (abfd)[idx];
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (num_group != (unsigned) -1)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < num_group; i++)
|
||
{
|
||
Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
|
||
Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
|
||
unsigned int n_elt = shdr->sh_size / 4;
|
||
|
||
/* Look through this group's sections to see if current
|
||
section is a member. */
|
||
while (--n_elt != 0)
|
||
if ((++idx)->shdr == hdr)
|
||
{
|
||
asection *s = NULL;
|
||
|
||
/* We are a member of this group. Go looking through
|
||
other members to see if any others are linked via
|
||
next_in_group. */
|
||
idx = (Elf_Internal_Group *) shdr->contents;
|
||
n_elt = shdr->sh_size / 4;
|
||
while (--n_elt != 0)
|
||
if ((s = (++idx)->shdr->bfd_section) != NULL
|
||
&& elf_next_in_group (s) != NULL)
|
||
break;
|
||
if (n_elt != 0)
|
||
{
|
||
/* Snarf the group name from other member, and
|
||
insert current section in circular list. */
|
||
elf_group_name (newsect) = elf_group_name (s);
|
||
elf_next_in_group (newsect) = elf_next_in_group (s);
|
||
elf_next_in_group (s) = newsect;
|
||
}
|
||
else
|
||
{
|
||
const char *gname;
|
||
|
||
gname = group_signature (abfd, shdr);
|
||
if (gname == NULL)
|
||
return FALSE;
|
||
elf_group_name (newsect) = gname;
|
||
|
||
/* Start a circular list with one element. */
|
||
elf_next_in_group (newsect) = newsect;
|
||
}
|
||
|
||
/* If the group section has been created, point to the
|
||
new member. */
|
||
if (shdr->bfd_section != NULL)
|
||
elf_next_in_group (shdr->bfd_section) = newsect;
|
||
|
||
i = num_group - 1;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (elf_group_name (newsect) == NULL)
|
||
{
|
||
(*_bfd_error_handler) (_("%B: no group info for section %A"),
|
||
abfd, newsect);
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
bfd_boolean
|
||
_bfd_elf_setup_group_pointers (bfd *abfd)
|
||
{
|
||
unsigned int i;
|
||
unsigned int num_group = elf_tdata (abfd)->num_group;
|
||
bfd_boolean result = TRUE;
|
||
|
||
if (num_group == (unsigned) -1)
|
||
return result;
|
||
|
||
for (i = 0; i < num_group; i++)
|
||
{
|
||
Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
|
||
Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
|
||
unsigned int n_elt = shdr->sh_size / 4;
|
||
|
||
while (--n_elt != 0)
|
||
if ((++idx)->shdr->bfd_section)
|
||
elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
|
||
else if (idx->shdr->sh_type == SHT_RELA
|
||
|| idx->shdr->sh_type == SHT_REL)
|
||
/* We won't include relocation sections in section groups in
|
||
output object files. We adjust the group section size here
|
||
so that relocatable link will work correctly when
|
||
relocation sections are in section group in input object
|
||
files. */
|
||
shdr->bfd_section->size -= 4;
|
||
else
|
||
{
|
||
/* There are some unknown sections in the group. */
|
||
(*_bfd_error_handler)
|
||
(_("%B: unknown [%d] section `%s' in group [%s]"),
|
||
abfd,
|
||
(unsigned int) idx->shdr->sh_type,
|
||
bfd_elf_string_from_elf_section (abfd,
|
||
(elf_elfheader (abfd)
|
||
->e_shstrndx),
|
||
idx->shdr->sh_name),
|
||
shdr->bfd_section->name);
|
||
result = FALSE;
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
|
||
bfd_boolean
|
||
bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
|
||
{
|
||
return elf_next_in_group (sec) != NULL;
|
||
}
|
||
|
||
/* Make a BFD section from an ELF section. We store a pointer to the
|
||
BFD section in the bfd_section field of the header. */
|
||
|
||
bfd_boolean
|
||
_bfd_elf_make_section_from_shdr (bfd *abfd,
|
||
Elf_Internal_Shdr *hdr,
|
||
const char *name,
|
||
int shindex)
|
||
{
|
||
asection *newsect;
|
||
flagword flags;
|
||
const struct elf_backend_data *bed;
|
||
|
||
if (hdr->bfd_section != NULL)
|
||
{
|
||
BFD_ASSERT (strcmp (name,
|
||
bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
|
||
return TRUE;
|
||
}
|
||
|
||
newsect = bfd_make_section_anyway (abfd, name);
|
||
if (newsect == NULL)
|
||
return FALSE;
|
||
|
||
hdr->bfd_section = newsect;
|
||
elf_section_data (newsect)->this_hdr = *hdr;
|
||
elf_section_data (newsect)->this_idx = shindex;
|
||
|
||
/* Always use the real type/flags. */
|
||
elf_section_type (newsect) = hdr->sh_type;
|
||
elf_section_flags (newsect) = hdr->sh_flags;
|
||
|
||
newsect->filepos = hdr->sh_offset;
|
||
|
||
if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
|
||
|| ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
|
||
|| ! bfd_set_section_alignment (abfd, newsect,
|
||
bfd_log2 ((bfd_vma) hdr->sh_addralign)))
|
||
return FALSE;
|
||
|
||
flags = SEC_NO_FLAGS;
|
||
if (hdr->sh_type != SHT_NOBITS)
|
||
flags |= SEC_HAS_CONTENTS;
|
||
if (hdr->sh_type == SHT_GROUP)
|
||
flags |= SEC_GROUP | SEC_EXCLUDE;
|
||
if ((hdr->sh_flags & SHF_ALLOC) != 0)
|
||
{
|
||
flags |= SEC_ALLOC;
|
||
if (hdr->sh_type != SHT_NOBITS)
|
||
flags |= SEC_LOAD;
|
||
}
|
||
if ((hdr->sh_flags & SHF_WRITE) == 0)
|
||
flags |= SEC_READONLY;
|
||
if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
|
||
flags |= SEC_CODE;
|
||
else if ((flags & SEC_LOAD) != 0)
|
||
flags |= SEC_DATA;
|
||
if ((hdr->sh_flags & SHF_MERGE) != 0)
|
||
{
|
||
flags |= SEC_MERGE;
|
||
newsect->entsize = hdr->sh_entsize;
|
||
if ((hdr->sh_flags & SHF_STRINGS) != 0)
|
||
flags |= SEC_STRINGS;
|
||
}
|
||
if (hdr->sh_flags & SHF_GROUP)
|
||
if (!setup_group (abfd, hdr, newsect))
|
||
return FALSE;
|
||
if ((hdr->sh_flags & SHF_TLS) != 0)
|
||
flags |= SEC_THREAD_LOCAL;
|
||
|
||
if ((flags & SEC_ALLOC) == 0)
|
||
{
|
||
/* The debugging sections appear to be recognized only by name,
|
||
not any sort of flag. Their SEC_ALLOC bits are cleared. */
|
||
static const struct
|
||
{
|
||
const char *name;
|
||
int len;
|
||
} debug_sections [] =
|
||
{
|
||
{ "debug", 5 }, /* 'd' */
|
||
{ NULL, 0 }, /* 'e' */
|
||
{ NULL, 0 }, /* 'f' */
|
||
{ "gnu.linkonce.wi.", 17 }, /* 'g' */
|
||
{ NULL, 0 }, /* 'h' */
|
||
{ NULL, 0 }, /* 'i' */
|
||
{ NULL, 0 }, /* 'j' */
|
||
{ NULL, 0 }, /* 'k' */
|
||
{ "line", 4 }, /* 'l' */
|
||
{ NULL, 0 }, /* 'm' */
|
||
{ NULL, 0 }, /* 'n' */
|
||
{ NULL, 0 }, /* 'o' */
|
||
{ NULL, 0 }, /* 'p' */
|
||
{ NULL, 0 }, /* 'q' */
|
||
{ NULL, 0 }, /* 'r' */
|
||
{ "stab", 4 } /* 's' */
|
||
};
|
||
|
||
if (name [0] == '.')
|
||
{
|
||
int i = name [1] - 'd';
|
||
if (i >= 0
|
||
&& i < (int) ARRAY_SIZE (debug_sections)
|
||
&& debug_sections [i].name != NULL
|
||
&& strncmp (&name [1], debug_sections [i].name,
|
||
debug_sections [i].len) == 0)
|
||
flags |= SEC_DEBUGGING;
|
||
}
|
||
}
|
||
|
||
/* As a GNU extension, if the name begins with .gnu.linkonce, we
|
||
only link a single copy of the section. This is used to support
|
||
g++. g++ will emit each template expansion in its own section.
|
||
The symbols will be defined as weak, so that multiple definitions
|
||
are permitted. The GNU linker extension is to actually discard
|
||
all but one of the sections. */
|
||
if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
|
||
&& elf_next_in_group (newsect) == NULL)
|
||
flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
|
||
|
||
bed = get_elf_backend_data (abfd);
|
||
if (bed->elf_backend_section_flags)
|
||
if (! bed->elf_backend_section_flags (&flags, hdr))
|
||
return FALSE;
|
||
|
||
if (! bfd_set_section_flags (abfd, newsect, flags))
|
||
return FALSE;
|
||
|
||
if ((flags & SEC_ALLOC) != 0)
|
||
{
|
||
Elf_Internal_Phdr *phdr;
|
||
unsigned int i;
|
||
|
||
/* Look through the phdrs to see if we need to adjust the lma.
|
||
If all the p_paddr fields are zero, we ignore them, since
|
||
some ELF linkers produce such output. */
|
||
phdr = elf_tdata (abfd)->phdr;
|
||
for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
|
||
{
|
||
if (phdr->p_paddr != 0)
|
||
break;
|
||
}
|
||
if (i < elf_elfheader (abfd)->e_phnum)
|
||
{
|
||
phdr = elf_tdata (abfd)->phdr;
|
||
for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
|
||
{
|
||
/* This section is part of this segment if its file
|
||
offset plus size lies within the segment's memory
|
||
span and, if the section is loaded, the extent of the
|
||
loaded data lies within the extent of the segment.
|
||
|
||
Note - we used to check the p_paddr field as well, and
|
||
refuse to set the LMA if it was 0. This is wrong
|
||
though, as a perfectly valid initialised segment can
|
||
have a p_paddr of zero. Some architectures, eg ARM,
|
||
place special significance on the address 0 and
|
||
executables need to be able to have a segment which
|
||
covers this address. */
|
||
if (phdr->p_type == PT_LOAD
|
||
&& (bfd_vma) hdr->sh_offset >= phdr->p_offset
|
||
&& (hdr->sh_offset + hdr->sh_size
|
||
<= phdr->p_offset + phdr->p_memsz)
|
||
&& ((flags & SEC_LOAD) == 0
|
||
|| (hdr->sh_offset + hdr->sh_size
|
||
<= phdr->p_offset + phdr->p_filesz)))
|
||
{
|
||
if ((flags & SEC_LOAD) == 0)
|
||
newsect->lma = (phdr->p_paddr
|
||
+ hdr->sh_addr - phdr->p_vaddr);
|
||
else
|
||
/* We used to use the same adjustment for SEC_LOAD
|
||
sections, but that doesn't work if the segment
|
||
is packed with code from multiple VMAs.
|
||
Instead we calculate the section LMA based on
|
||
the segment LMA. It is assumed that the
|
||
segment will contain sections with contiguous
|
||
LMAs, even if the VMAs are not. */
|
||
newsect->lma = (phdr->p_paddr
|
||
+ hdr->sh_offset - phdr->p_offset);
|
||
|
||
/* With contiguous segments, we can't tell from file
|
||
offsets whether a section with zero size should
|
||
be placed at the end of one segment or the
|
||
beginning of the next. Decide based on vaddr. */
|
||
if (hdr->sh_addr >= phdr->p_vaddr
|
||
&& (hdr->sh_addr + hdr->sh_size
|
||
<= phdr->p_vaddr + phdr->p_memsz))
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/*
|
||
INTERNAL_FUNCTION
|
||
bfd_elf_find_section
|
||
|
||
SYNOPSIS
|
||
struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
|
||
|
||
DESCRIPTION
|
||
Helper functions for GDB to locate the string tables.
|
||
Since BFD hides string tables from callers, GDB needs to use an
|
||
internal hook to find them. Sun's .stabstr, in particular,
|
||
isn't even pointed to by the .stab section, so ordinary
|
||
mechanisms wouldn't work to find it, even if we had some.
|
||
*/
|
||
|
||
struct elf_internal_shdr *
|
||
bfd_elf_find_section (bfd *abfd, char *name)
|
||
{
|
||
Elf_Internal_Shdr **i_shdrp;
|
||
char *shstrtab;
|
||
unsigned int max;
|
||
unsigned int i;
|
||
|
||
i_shdrp = elf_elfsections (abfd);
|
||
if (i_shdrp != NULL)
|
||
{
|
||
shstrtab = bfd_elf_get_str_section (abfd,
|
||
elf_elfheader (abfd)->e_shstrndx);
|
||
if (shstrtab != NULL)
|
||
{
|
||
max = elf_numsections (abfd);
|
||
for (i = 1; i < max; i++)
|
||
if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
|
||
return i_shdrp[i];
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
const char *const bfd_elf_section_type_names[] = {
|
||
"SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
|
||
"SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
|
||
"SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
|
||
};
|
||
|
||
/* ELF relocs are against symbols. If we are producing relocatable
|
||
output, and the reloc is against an external symbol, and nothing
|
||
has given us any additional addend, the resulting reloc will also
|
||
be against the same symbol. In such a case, we don't want to
|
||
change anything about the way the reloc is handled, since it will
|
||
all be done at final link time. Rather than put special case code
|
||
into bfd_perform_relocation, all the reloc types use this howto
|
||
function. It just short circuits the reloc if producing
|
||
relocatable output against an external symbol. */
|
||
|
||
bfd_reloc_status_type
|
||
bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
|
||
arelent *reloc_entry,
|
||
asymbol *symbol,
|
||
void *data ATTRIBUTE_UNUSED,
|
||
asection *input_section,
|
||
bfd *output_bfd,
|
||
char **error_message ATTRIBUTE_UNUSED)
|
||
{
|
||
if (output_bfd != NULL
|
||
&& (symbol->flags & BSF_SECTION_SYM) == 0
|
||
&& (! reloc_entry->howto->partial_inplace
|
||
|| reloc_entry->addend == 0))
|
||
{
|
||
reloc_entry->address += input_section->output_offset;
|
||
return bfd_reloc_ok;
|
||
}
|
||
|
||
return bfd_reloc_continue;
|
||
}
|
||
|
||
/* Make sure sec_info_type is cleared if sec_info is cleared too. */
|
||
|
||
static void
|
||
merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
|
||
asection *sec)
|
||
{
|
||
BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
|
||
sec->sec_info_type = ELF_INFO_TYPE_NONE;
|
||
}
|
||
|
||
/* Finish SHF_MERGE section merging. */
|
||
|
||
bfd_boolean
|
||
_bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
|
||
{
|
||
bfd *ibfd;
|
||
asection *sec;
|
||
|
||
if (!is_elf_hash_table (info->hash))
|
||
return FALSE;
|
||
|
||
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
|
||
if ((ibfd->flags & DYNAMIC) == 0)
|
||
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
|
||
if ((sec->flags & SEC_MERGE) != 0
|
||
&& !bfd_is_abs_section (sec->output_section))
|
||
{
|
||
struct bfd_elf_section_data *secdata;
|
||
|
||
secdata = elf_section_data (sec);
|
||
if (! _bfd_add_merge_section (abfd,
|
||
&elf_hash_table (info)->merge_info,
|
||
sec, &secdata->sec_info))
|
||
return FALSE;
|
||
else if (secdata->sec_info)
|
||
sec->sec_info_type = ELF_INFO_TYPE_MERGE;
|
||
}
|
||
|
||
if (elf_hash_table (info)->merge_info != NULL)
|
||
_bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
|
||
merge_sections_remove_hook);
|
||
return TRUE;
|
||
}
|
||
|
||
void
|
||
_bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
|
||
{
|
||
sec->output_section = bfd_abs_section_ptr;
|
||
sec->output_offset = sec->vma;
|
||
if (!is_elf_hash_table (info->hash))
|
||
return;
|
||
|
||
sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
|
||
}
|
||
|
||
/* Copy the program header and other data from one object module to
|
||
another. */
|
||
|
||
bfd_boolean
|
||
_bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
|
||
{
|
||
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|
||
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
|
||
return TRUE;
|
||
|
||
BFD_ASSERT (!elf_flags_init (obfd)
|
||
|| (elf_elfheader (obfd)->e_flags
|
||
== elf_elfheader (ibfd)->e_flags));
|
||
|
||
elf_gp (obfd) = elf_gp (ibfd);
|
||
elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
|
||
elf_flags_init (obfd) = TRUE;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Print out the program headers. */
|
||
|
||
bfd_boolean
|
||
_bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
|
||
{
|
||
FILE *f = farg;
|
||
Elf_Internal_Phdr *p;
|
||
asection *s;
|
||
bfd_byte *dynbuf = NULL;
|
||
|
||
p = elf_tdata (abfd)->phdr;
|
||
if (p != NULL)
|
||
{
|
||
unsigned int i, c;
|
||
|
||
fprintf (f, _("\nProgram Header:\n"));
|
||
c = elf_elfheader (abfd)->e_phnum;
|
||
for (i = 0; i < c; i++, p++)
|
||
{
|
||
const char *pt;
|
||
char buf[20];
|
||
|
||
switch (p->p_type)
|
||
{
|
||
case PT_NULL: pt = "NULL"; break;
|
||
case PT_LOAD: pt = "LOAD"; break;
|
||
case PT_DYNAMIC: pt = "DYNAMIC"; break;
|
||
case PT_INTERP: pt = "INTERP"; break;
|
||
case PT_NOTE: pt = "NOTE"; break;
|
||
case PT_SHLIB: pt = "SHLIB"; break;
|
||
case PT_PHDR: pt = "PHDR"; break;
|
||
case PT_TLS: pt = "TLS"; break;
|
||
case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
|
||
case PT_GNU_STACK: pt = "STACK"; break;
|
||
case PT_GNU_RELRO: pt = "RELRO"; break;
|
||
default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
|
||
}
|
||
fprintf (f, "%8s off 0x", pt);
|
||
bfd_fprintf_vma (abfd, f, p->p_offset);
|
||
fprintf (f, " vaddr 0x");
|
||
bfd_fprintf_vma (abfd, f, p->p_vaddr);
|
||
fprintf (f, " paddr 0x");
|
||
bfd_fprintf_vma (abfd, f, p->p_paddr);
|
||
fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
|
||
fprintf (f, " filesz 0x");
|
||
bfd_fprintf_vma (abfd, f, p->p_filesz);
|
||
fprintf (f, " memsz 0x");
|
||
bfd_fprintf_vma (abfd, f, p->p_memsz);
|
||
fprintf (f, " flags %c%c%c",
|
||
(p->p_flags & PF_R) != 0 ? 'r' : '-',
|
||
(p->p_flags & PF_W) != 0 ? 'w' : '-',
|
||
(p->p_flags & PF_X) != 0 ? 'x' : '-');
|
||
if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
|
||
fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
|
||
fprintf (f, "\n");
|
||
}
|
||
}
|
||
|
||
s = bfd_get_section_by_name (abfd, ".dynamic");
|
||
if (s != NULL)
|
||
{
|
||
int elfsec;
|
||
unsigned long shlink;
|
||
bfd_byte *extdyn, *extdynend;
|
||
size_t extdynsize;
|
||
void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
|
||
|
||
fprintf (f, _("\nDynamic Section:\n"));
|
||
|
||
if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
|
||
goto error_return;
|
||
|
||
elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
|
||
if (elfsec == -1)
|
||
goto error_return;
|
||
shlink = elf_elfsections (abfd)[elfsec]->sh_link;
|
||
|
||
extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
|
||
swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
|
||
|
||
extdyn = dynbuf;
|
||
extdynend = extdyn + s->size;
|
||
for (; extdyn < extdynend; extdyn += extdynsize)
|
||
{
|
||
Elf_Internal_Dyn dyn;
|
||
const char *name;
|
||
char ab[20];
|
||
bfd_boolean stringp;
|
||
|
||
(*swap_dyn_in) (abfd, extdyn, &dyn);
|
||
|
||
if (dyn.d_tag == DT_NULL)
|
||
break;
|
||
|
||
stringp = FALSE;
|
||
switch (dyn.d_tag)
|
||
{
|
||
default:
|
||
sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
|
||
name = ab;
|
||
break;
|
||
|
||
case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
|
||
case DT_PLTRELSZ: name = "PLTRELSZ"; break;
|
||
case DT_PLTGOT: name = "PLTGOT"; break;
|
||
case DT_HASH: name = "HASH"; break;
|
||
case DT_STRTAB: name = "STRTAB"; break;
|
||
case DT_SYMTAB: name = "SYMTAB"; break;
|
||
case DT_RELA: name = "RELA"; break;
|
||
case DT_RELASZ: name = "RELASZ"; break;
|
||
case DT_RELAENT: name = "RELAENT"; break;
|
||
case DT_STRSZ: name = "STRSZ"; break;
|
||
case DT_SYMENT: name = "SYMENT"; break;
|
||
case DT_INIT: name = "INIT"; break;
|
||
case DT_FINI: name = "FINI"; break;
|
||
case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
|
||
case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
|
||
case DT_SYMBOLIC: name = "SYMBOLIC"; break;
|
||
case DT_REL: name = "REL"; break;
|
||
case DT_RELSZ: name = "RELSZ"; break;
|
||
case DT_RELENT: name = "RELENT"; break;
|
||
case DT_PLTREL: name = "PLTREL"; break;
|
||
case DT_DEBUG: name = "DEBUG"; break;
|
||
case DT_TEXTREL: name = "TEXTREL"; break;
|
||
case DT_JMPREL: name = "JMPREL"; break;
|
||
case DT_BIND_NOW: name = "BIND_NOW"; break;
|
||
case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
|
||
case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
|
||
case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
|
||
case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
|
||
case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
|
||
case DT_FLAGS: name = "FLAGS"; break;
|
||
case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
|
||
case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
|
||
case DT_CHECKSUM: name = "CHECKSUM"; break;
|
||
case DT_PLTPADSZ: name = "PLTPADSZ"; break;
|
||
case DT_MOVEENT: name = "MOVEENT"; break;
|
||
case DT_MOVESZ: name = "MOVESZ"; break;
|
||
case DT_FEATURE: name = "FEATURE"; break;
|
||
case DT_POSFLAG_1: name = "POSFLAG_1"; break;
|
||
case DT_SYMINSZ: name = "SYMINSZ"; break;
|
||
case DT_SYMINENT: name = "SYMINENT"; break;
|
||
case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
|
||
case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
|
||
case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
|
||
case DT_PLTPAD: name = "PLTPAD"; break;
|
||
case DT_MOVETAB: name = "MOVETAB"; break;
|
||
case DT_SYMINFO: name = "SYMINFO"; break;
|
||
case DT_RELACOUNT: name = "RELACOUNT"; break;
|
||
case DT_RELCOUNT: name = "RELCOUNT"; break;
|
||
case DT_FLAGS_1: name = "FLAGS_1"; break;
|
||
case DT_VERSYM: name = "VERSYM"; break;
|
||
case DT_VERDEF: name = "VERDEF"; break;
|
||
case DT_VERDEFNUM: name = "VERDEFNUM"; break;
|
||
case DT_VERNEED: name = "VERNEED"; break;
|
||
case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
|
||
case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
|
||
case DT_USED: name = "USED"; break;
|
||
case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
|
||
}
|
||
|
||
fprintf (f, " %-11s ", name);
|
||
if (! stringp)
|
||
fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
|
||
else
|
||
{
|
||
const char *string;
|
||
unsigned int tagv = dyn.d_un.d_val;
|
||
|
||
string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
|
||
if (string == NULL)
|
||
goto error_return;
|
||
fprintf (f, "%s", string);
|
||
}
|
||
fprintf (f, "\n");
|
||
}
|
||
|
||
free (dynbuf);
|
||
dynbuf = NULL;
|
||
}
|
||
|
||
if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
|
||
|| (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
|
||
{
|
||
if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
|
||
return FALSE;
|
||
}
|
||
|
||
if (elf_dynverdef (abfd) != 0)
|
||
{
|
||
Elf_Internal_Verdef *t;
|
||
|
||
fprintf (f, _("\nVersion definitions:\n"));
|
||
for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
|
||
{
|
||
fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
|
||
t->vd_flags, t->vd_hash,
|
||
t->vd_nodename ? t->vd_nodename : "<corrupt>");
|
||
if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
|
||
{
|
||
Elf_Internal_Verdaux *a;
|
||
|
||
fprintf (f, "\t");
|
||
for (a = t->vd_auxptr->vda_nextptr;
|
||
a != NULL;
|
||
a = a->vda_nextptr)
|
||
fprintf (f, "%s ",
|
||
a->vda_nodename ? a->vda_nodename : "<corrupt>");
|
||
fprintf (f, "\n");
|
||
}
|
||
}
|
||
}
|
||
|
||
if (elf_dynverref (abfd) != 0)
|
||
{
|
||
Elf_Internal_Verneed *t;
|
||
|
||
fprintf (f, _("\nVersion References:\n"));
|
||
for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
|
||
{
|
||
Elf_Internal_Vernaux *a;
|
||
|
||
fprintf (f, _(" required from %s:\n"),
|
||
t->vn_filename ? t->vn_filename : "<corrupt>");
|
||
for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
|
||
fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
|
||
a->vna_flags, a->vna_other,
|
||
a->vna_nodename ? a->vna_nodename : "<corrupt>");
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
|
||
error_return:
|
||
if (dynbuf != NULL)
|
||
free (dynbuf);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Display ELF-specific fields of a symbol. */
|
||
|
||
void
|
||
bfd_elf_print_symbol (bfd *abfd,
|
||
void *filep,
|
||
asymbol *symbol,
|
||
bfd_print_symbol_type how)
|
||
{
|
||
FILE *file = filep;
|
||
switch (how)
|
||
{
|
||
case bfd_print_symbol_name:
|
||
fprintf (file, "%s", symbol->name);
|
||
break;
|
||
case bfd_print_symbol_more:
|
||
fprintf (file, "elf ");
|
||
bfd_fprintf_vma (abfd, file, symbol->value);
|
||
fprintf (file, " %lx", (long) symbol->flags);
|
||
break;
|
||
case bfd_print_symbol_all:
|
||
{
|
||
const char *section_name;
|
||
const char *name = NULL;
|
||
const struct elf_backend_data *bed;
|
||
unsigned char st_other;
|
||
bfd_vma val;
|
||
|
||
section_name = symbol->section ? symbol->section->name : "(*none*)";
|
||
|
||
bed = get_elf_backend_data (abfd);
|
||
if (bed->elf_backend_print_symbol_all)
|
||
name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
|
||
|
||
if (name == NULL)
|
||
{
|
||
name = symbol->name;
|
||
bfd_print_symbol_vandf (abfd, file, symbol);
|
||
}
|
||
|
||
fprintf (file, " %s\t", section_name);
|
||
/* Print the "other" value for a symbol. For common symbols,
|
||
we've already printed the size; now print the alignment.
|
||
For other symbols, we have no specified alignment, and
|
||
we've printed the address; now print the size. */
|
||
if (bfd_is_com_section (symbol->section))
|
||
val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
|
||
else
|
||
val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
|
||
bfd_fprintf_vma (abfd, file, val);
|
||
|
||
/* If we have version information, print it. */
|
||
if (elf_tdata (abfd)->dynversym_section != 0
|
||
&& (elf_tdata (abfd)->dynverdef_section != 0
|
||
|| elf_tdata (abfd)->dynverref_section != 0))
|
||
{
|
||
unsigned int vernum;
|
||
const char *version_string;
|
||
|
||
vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
|
||
|
||
if (vernum == 0)
|
||
version_string = "";
|
||
else if (vernum == 1)
|
||
version_string = "Base";
|
||
else if (vernum <= elf_tdata (abfd)->cverdefs)
|
||
version_string =
|
||
elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
|
||
else
|
||
{
|
||
Elf_Internal_Verneed *t;
|
||
|
||
version_string = "";
|
||
for (t = elf_tdata (abfd)->verref;
|
||
t != NULL;
|
||
t = t->vn_nextref)
|
||
{
|
||
Elf_Internal_Vernaux *a;
|
||
|
||
for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
|
||
{
|
||
if (a->vna_other == vernum)
|
||
{
|
||
version_string = a->vna_nodename;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
|
||
fprintf (file, " %-11s", version_string);
|
||
else
|
||
{
|
||
int i;
|
||
|
||
fprintf (file, " (%s)", version_string);
|
||
for (i = 10 - strlen (version_string); i > 0; --i)
|
||
putc (' ', file);
|
||
}
|
||
}
|
||
|
||
/* If the st_other field is not zero, print it. */
|
||
st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
|
||
|
||
switch (st_other)
|
||
{
|
||
case 0: break;
|
||
case STV_INTERNAL: fprintf (file, " .internal"); break;
|
||
case STV_HIDDEN: fprintf (file, " .hidden"); break;
|
||
case STV_PROTECTED: fprintf (file, " .protected"); break;
|
||
default:
|
||
/* Some other non-defined flags are also present, so print
|
||
everything hex. */
|
||
fprintf (file, " 0x%02x", (unsigned int) st_other);
|
||
}
|
||
|
||
fprintf (file, " %s", name);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Create an entry in an ELF linker hash table. */
|
||
|
||
struct bfd_hash_entry *
|
||
_bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
|
||
struct bfd_hash_table *table,
|
||
const char *string)
|
||
{
|
||
/* Allocate the structure if it has not already been allocated by a
|
||
subclass. */
|
||
if (entry == NULL)
|
||
{
|
||
entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
|
||
if (entry == NULL)
|
||
return entry;
|
||
}
|
||
|
||
/* Call the allocation method of the superclass. */
|
||
entry = _bfd_link_hash_newfunc (entry, table, string);
|
||
if (entry != NULL)
|
||
{
|
||
struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
|
||
struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
|
||
|
||
/* Set local fields. */
|
||
ret->indx = -1;
|
||
ret->dynindx = -1;
|
||
ret->got = htab->init_got_refcount;
|
||
ret->plt = htab->init_plt_refcount;
|
||
memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
|
||
- offsetof (struct elf_link_hash_entry, size)));
|
||
/* Assume that we have been called by a non-ELF symbol reader.
|
||
This flag is then reset by the code which reads an ELF input
|
||
file. This ensures that a symbol created by a non-ELF symbol
|
||
reader will have the flag set correctly. */
|
||
ret->non_elf = 1;
|
||
}
|
||
|
||
return entry;
|
||
}
|
||
|
||
/* Copy data from an indirect symbol to its direct symbol, hiding the
|
||
old indirect symbol. Also used for copying flags to a weakdef. */
|
||
|
||
void
|
||
_bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
|
||
struct elf_link_hash_entry *dir,
|
||
struct elf_link_hash_entry *ind)
|
||
{
|
||
bfd_signed_vma tmp;
|
||
bfd_signed_vma lowest_valid = bed->can_refcount;
|
||
|
||
/* Copy down any references that we may have already seen to the
|
||
symbol which just became indirect. */
|
||
|
||
dir->ref_dynamic |= ind->ref_dynamic;
|
||
dir->ref_regular |= ind->ref_regular;
|
||
dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
|
||
dir->non_got_ref |= ind->non_got_ref;
|
||
dir->needs_plt |= ind->needs_plt;
|
||
dir->pointer_equality_needed |= ind->pointer_equality_needed;
|
||
|
||
if (ind->root.type != bfd_link_hash_indirect)
|
||
return;
|
||
|
||
/* Copy over the global and procedure linkage table refcount entries.
|
||
These may have been already set up by a check_relocs routine. */
|
||
tmp = dir->got.refcount;
|
||
if (tmp < lowest_valid)
|
||
{
|
||
dir->got.refcount = ind->got.refcount;
|
||
ind->got.refcount = tmp;
|
||
}
|
||
else
|
||
BFD_ASSERT (ind->got.refcount < lowest_valid);
|
||
|
||
tmp = dir->plt.refcount;
|
||
if (tmp < lowest_valid)
|
||
{
|
||
dir->plt.refcount = ind->plt.refcount;
|
||
ind->plt.refcount = tmp;
|
||
}
|
||
else
|
||
BFD_ASSERT (ind->plt.refcount < lowest_valid);
|
||
|
||
if (dir->dynindx == -1)
|
||
{
|
||
dir->dynindx = ind->dynindx;
|
||
dir->dynstr_index = ind->dynstr_index;
|
||
ind->dynindx = -1;
|
||
ind->dynstr_index = 0;
|
||
}
|
||
else
|
||
BFD_ASSERT (ind->dynindx == -1);
|
||
}
|
||
|
||
void
|
||
_bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
|
||
struct elf_link_hash_entry *h,
|
||
bfd_boolean force_local)
|
||
{
|
||
h->plt = elf_hash_table (info)->init_plt_offset;
|
||
h->needs_plt = 0;
|
||
if (force_local)
|
||
{
|
||
h->forced_local = 1;
|
||
if (h->dynindx != -1)
|
||
{
|
||
h->dynindx = -1;
|
||
_bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
|
||
h->dynstr_index);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Initialize an ELF linker hash table. */
|
||
|
||
bfd_boolean
|
||
_bfd_elf_link_hash_table_init
|
||
(struct elf_link_hash_table *table,
|
||
bfd *abfd,
|
||
struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
|
||
struct bfd_hash_table *,
|
||
const char *))
|
||
{
|
||
bfd_boolean ret;
|
||
int can_refcount = get_elf_backend_data (abfd)->can_refcount;
|
||
|
||
table->dynamic_sections_created = FALSE;
|
||
table->dynobj = NULL;
|
||
table->init_got_refcount.refcount = can_refcount - 1;
|
||
table->init_plt_refcount.refcount = can_refcount - 1;
|
||
table->init_got_offset.offset = -(bfd_vma) 1;
|
||
table->init_plt_offset.offset = -(bfd_vma) 1;
|
||
/* The first dynamic symbol is a dummy. */
|
||
table->dynsymcount = 1;
|
||
table->dynstr = NULL;
|
||
table->bucketcount = 0;
|
||
table->needed = NULL;
|
||
table->hgot = NULL;
|
||
table->merge_info = NULL;
|
||
memset (&table->stab_info, 0, sizeof (table->stab_info));
|
||
memset (&table->eh_info, 0, sizeof (table->eh_info));
|
||
table->dynlocal = NULL;
|
||
table->runpath = NULL;
|
||
table->tls_sec = NULL;
|
||
table->tls_size = 0;
|
||
table->loaded = NULL;
|
||
table->is_relocatable_executable = FALSE;
|
||
|
||
ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
|
||
table->root.type = bfd_link_elf_hash_table;
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Create an ELF linker hash table. */
|
||
|
||
struct bfd_link_hash_table *
|
||
_bfd_elf_link_hash_table_create (bfd *abfd)
|
||
{
|
||
struct elf_link_hash_table *ret;
|
||
bfd_size_type amt = sizeof (struct elf_link_hash_table);
|
||
|
||
ret = bfd_malloc (amt);
|
||
if (ret == NULL)
|
||
return NULL;
|
||
|
||
if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
|
||
{
|
||
free (ret);
|
||
return NULL;
|
||
}
|
||
|
||
return &ret->root;
|
||
}
|
||
|
||
/* This is a hook for the ELF emulation code in the generic linker to
|
||
tell the backend linker what file name to use for the DT_NEEDED
|
||
entry for a dynamic object. */
|
||
|
||
void
|
||
bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
|
||
{
|
||
if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
|
||
&& bfd_get_format (abfd) == bfd_object)
|
||
elf_dt_name (abfd) = name;
|
||
}
|
||
|
||
int
|
||
bfd_elf_get_dyn_lib_class (bfd *abfd)
|
||
{
|
||
int lib_class;
|
||
if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
|
||
&& bfd_get_format (abfd) == bfd_object)
|
||
lib_class = elf_dyn_lib_class (abfd);
|
||
else
|
||
lib_class = 0;
|
||
return lib_class;
|
||
}
|
||
|
||
void
|
||
bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
|
||
{
|
||
if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
|
||
&& bfd_get_format (abfd) == bfd_object)
|
||
elf_dyn_lib_class (abfd) = lib_class;
|
||
}
|
||
|
||
/* Get the list of DT_NEEDED entries for a link. This is a hook for
|
||
the linker ELF emulation code. */
|
||
|
||
struct bfd_link_needed_list *
|
||
bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
|
||
struct bfd_link_info *info)
|
||
{
|
||
if (! is_elf_hash_table (info->hash))
|
||
return NULL;
|
||
return elf_hash_table (info)->needed;
|
||
}
|
||
|
||
/* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
|
||
hook for the linker ELF emulation code. */
|
||
|
||
struct bfd_link_needed_list *
|
||
bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
|
||
struct bfd_link_info *info)
|
||
{
|
||
if (! is_elf_hash_table (info->hash))
|
||
return NULL;
|
||
return elf_hash_table (info)->runpath;
|
||
}
|
||
|
||
/* Get the name actually used for a dynamic object for a link. This
|
||
is the SONAME entry if there is one. Otherwise, it is the string
|
||
passed to bfd_elf_set_dt_needed_name, or it is the filename. */
|
||
|
||
const char *
|
||
bfd_elf_get_dt_soname (bfd *abfd)
|
||
{
|
||
if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
|
||
&& bfd_get_format (abfd) == bfd_object)
|
||
return elf_dt_name (abfd);
|
||
return NULL;
|
||
}
|
||
|
||
/* Get the list of DT_NEEDED entries from a BFD. This is a hook for
|
||
the ELF linker emulation code. */
|
||
|
||
bfd_boolean
|
||
bfd_elf_get_bfd_needed_list (bfd *abfd,
|
||
struct bfd_link_needed_list **pneeded)
|
||
{
|
||
asection *s;
|
||
bfd_byte *dynbuf = NULL;
|
||
int elfsec;
|
||
unsigned long shlink;
|
||
bfd_byte *extdyn, *extdynend;
|
||
size_t extdynsize;
|
||
void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
|
||
|
||
*pneeded = NULL;
|
||
|
||
if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
|
||
|| bfd_get_format (abfd) != bfd_object)
|
||
return TRUE;
|
||
|
||
s = bfd_get_section_by_name (abfd, ".dynamic");
|
||
if (s == NULL || s->size == 0)
|
||
return TRUE;
|
||
|
||
if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
|
||
goto error_return;
|
||
|
||
elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
|
||
if (elfsec == -1)
|
||
goto error_return;
|
||
|
||
shlink = elf_elfsections (abfd)[elfsec]->sh_link;
|
||
|
||
extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
|
||
swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
|
||
|
||
extdyn = dynbuf;
|
||
extdynend = extdyn + s->size;
|
||
for (; extdyn < extdynend; extdyn += extdynsize)
|
||
{
|
||
Elf_Internal_Dyn dyn;
|
||
|
||
(*swap_dyn_in) (abfd, extdyn, &dyn);
|
||
|
||
if (dyn.d_tag == DT_NULL)
|
||
break;
|
||
|
||
if (dyn.d_tag == DT_NEEDED)
|
||
{
|
||
const char *string;
|
||
struct bfd_link_needed_list *l;
|
||
unsigned int tagv = dyn.d_un.d_val;
|
||
bfd_size_type amt;
|
||
|
||
string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
|
||
if (string == NULL)
|
||
goto error_return;
|
||
|
||
amt = sizeof *l;
|
||
l = bfd_alloc (abfd, amt);
|
||
if (l == NULL)
|
||
goto error_return;
|
||
|
||
l->by = abfd;
|
||
l->name = string;
|
||
l->next = *pneeded;
|
||
*pneeded = l;
|
||
}
|
||
}
|
||
|
||
free (dynbuf);
|
||
|
||
return TRUE;
|
||
|
||
error_return:
|
||
if (dynbuf != NULL)
|
||
free (dynbuf);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Allocate an ELF string table--force the first byte to be zero. */
|
||
|
||
struct bfd_strtab_hash *
|
||
_bfd_elf_stringtab_init (void)
|
||
{
|
||
struct bfd_strtab_hash *ret;
|
||
|
||
ret = _bfd_stringtab_init ();
|
||
if (ret != NULL)
|
||
{
|
||
bfd_size_type loc;
|
||
|
||
loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
|
||
BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
|
||
if (loc == (bfd_size_type) -1)
|
||
{
|
||
_bfd_stringtab_free (ret);
|
||
ret = NULL;
|
||
}
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
/* ELF .o/exec file reading */
|
||
|
||
/* Create a new bfd section from an ELF section header. */
|
||
|
||
bfd_boolean
|
||
bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
|
||
{
|
||
Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
|
||
Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
|
||
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
const char *name;
|
||
|
||
name = bfd_elf_string_from_elf_section (abfd,
|
||
elf_elfheader (abfd)->e_shstrndx,
|
||
hdr->sh_name);
|
||
if (name == NULL)
|
||
return FALSE;
|
||
|
||
switch (hdr->sh_type)
|
||
{
|
||
case SHT_NULL:
|
||
/* Inactive section. Throw it away. */
|
||
return TRUE;
|
||
|
||
case SHT_PROGBITS: /* Normal section with contents. */
|
||
case SHT_NOBITS: /* .bss section. */
|
||
case SHT_HASH: /* .hash section. */
|
||
case SHT_NOTE: /* .note section. */
|
||
case SHT_INIT_ARRAY: /* .init_array section. */
|
||
case SHT_FINI_ARRAY: /* .fini_array section. */
|
||
case SHT_PREINIT_ARRAY: /* .preinit_array section. */
|
||
case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
|
||
return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
|
||
|
||
case SHT_DYNAMIC: /* Dynamic linking information. */
|
||
if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
|
||
return FALSE;
|
||
if (hdr->sh_link > elf_numsections (abfd)
|
||
|| elf_elfsections (abfd)[hdr->sh_link] == NULL)
|
||
return FALSE;
|
||
if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
|
||
{
|
||
Elf_Internal_Shdr *dynsymhdr;
|
||
|
||
/* The shared libraries distributed with hpux11 have a bogus
|
||
sh_link field for the ".dynamic" section. Find the
|
||
string table for the ".dynsym" section instead. */
|
||
if (elf_dynsymtab (abfd) != 0)
|
||
{
|
||
dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
|
||
hdr->sh_link = dynsymhdr->sh_link;
|
||
}
|
||
else
|
||
{
|
||
unsigned int i, num_sec;
|
||
|
||
num_sec = elf_numsections (abfd);
|
||
for (i = 1; i < num_sec; i++)
|
||
{
|
||
dynsymhdr = elf_elfsections (abfd)[i];
|
||
if (dynsymhdr->sh_type == SHT_DYNSYM)
|
||
{
|
||
hdr->sh_link = dynsymhdr->sh_link;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
|
||
case SHT_SYMTAB: /* A symbol table */
|
||
if (elf_onesymtab (abfd) == shindex)
|
||
return TRUE;
|
||
|
||
if (hdr->sh_entsize != bed->s->sizeof_sym)
|
||
return FALSE;
|
||
BFD_ASSERT (elf_onesymtab (abfd) == 0);
|
||
elf_onesymtab (abfd) = shindex;
|
||
elf_tdata (abfd)->symtab_hdr = *hdr;
|
||
elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
abfd->flags |= HAS_SYMS;
|
||
|
||
/* Sometimes a shared object will map in the symbol table. If
|
||
SHF_ALLOC is set, and this is a shared object, then we also
|
||
treat this section as a BFD section. We can not base the
|
||
decision purely on SHF_ALLOC, because that flag is sometimes
|
||
set in a relocatable object file, which would confuse the
|
||
linker. */
|
||
if ((hdr->sh_flags & SHF_ALLOC) != 0
|
||
&& (abfd->flags & DYNAMIC) != 0
|
||
&& ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
|
||
shindex))
|
||
return FALSE;
|
||
|
||
/* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
|
||
can't read symbols without that section loaded as well. It
|
||
is most likely specified by the next section header. */
|
||
if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
|
||
{
|
||
unsigned int i, num_sec;
|
||
|
||
num_sec = elf_numsections (abfd);
|
||
for (i = shindex + 1; i < num_sec; i++)
|
||
{
|
||
Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
|
||
if (hdr2->sh_type == SHT_SYMTAB_SHNDX
|
||
&& hdr2->sh_link == shindex)
|
||
break;
|
||
}
|
||
if (i == num_sec)
|
||
for (i = 1; i < shindex; i++)
|
||
{
|
||
Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
|
||
if (hdr2->sh_type == SHT_SYMTAB_SHNDX
|
||
&& hdr2->sh_link == shindex)
|
||
break;
|
||
}
|
||
if (i != shindex)
|
||
return bfd_section_from_shdr (abfd, i);
|
||
}
|
||
return TRUE;
|
||
|
||
case SHT_DYNSYM: /* A dynamic symbol table */
|
||
if (elf_dynsymtab (abfd) == shindex)
|
||
return TRUE;
|
||
|
||
if (hdr->sh_entsize != bed->s->sizeof_sym)
|
||
return FALSE;
|
||
BFD_ASSERT (elf_dynsymtab (abfd) == 0);
|
||
elf_dynsymtab (abfd) = shindex;
|
||
elf_tdata (abfd)->dynsymtab_hdr = *hdr;
|
||
elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
|
||
abfd->flags |= HAS_SYMS;
|
||
|
||
/* Besides being a symbol table, we also treat this as a regular
|
||
section, so that objcopy can handle it. */
|
||
return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
|
||
|
||
case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
|
||
if (elf_symtab_shndx (abfd) == shindex)
|
||
return TRUE;
|
||
|
||
BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
|
||
elf_symtab_shndx (abfd) = shindex;
|
||
elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
|
||
elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
|
||
return TRUE;
|
||
|
||
case SHT_STRTAB: /* A string table */
|
||
if (hdr->bfd_section != NULL)
|
||
return TRUE;
|
||
if (ehdr->e_shstrndx == shindex)
|
||
{
|
||
elf_tdata (abfd)->shstrtab_hdr = *hdr;
|
||
elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
|
||
return TRUE;
|
||
}
|
||
if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
|
||
{
|
||
symtab_strtab:
|
||
elf_tdata (abfd)->strtab_hdr = *hdr;
|
||
elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
|
||
return TRUE;
|
||
}
|
||
if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
|
||
{
|
||
dynsymtab_strtab:
|
||
elf_tdata (abfd)->dynstrtab_hdr = *hdr;
|
||
hdr = &elf_tdata (abfd)->dynstrtab_hdr;
|
||
elf_elfsections (abfd)[shindex] = hdr;
|
||
/* We also treat this as a regular section, so that objcopy
|
||
can handle it. */
|
||
return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
|
||
shindex);
|
||
}
|
||
|
||
/* If the string table isn't one of the above, then treat it as a
|
||
regular section. We need to scan all the headers to be sure,
|
||
just in case this strtab section appeared before the above. */
|
||
if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
|
||
{
|
||
unsigned int i, num_sec;
|
||
|
||
num_sec = elf_numsections (abfd);
|
||
for (i = 1; i < num_sec; i++)
|
||
{
|
||
Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
|
||
if (hdr2->sh_link == shindex)
|
||
{
|
||
/* Prevent endless recursion on broken objects. */
|
||
if (i == shindex)
|
||
return FALSE;
|
||
if (! bfd_section_from_shdr (abfd, i))
|
||
return FALSE;
|
||
if (elf_onesymtab (abfd) == i)
|
||
goto symtab_strtab;
|
||
if (elf_dynsymtab (abfd) == i)
|
||
goto dynsymtab_strtab;
|
||
}
|
||
}
|
||
}
|
||
return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
|
||
|
||
case SHT_REL:
|
||
case SHT_RELA:
|
||
/* *These* do a lot of work -- but build no sections! */
|
||
{
|
||
asection *target_sect;
|
||
Elf_Internal_Shdr *hdr2;
|
||
unsigned int num_sec = elf_numsections (abfd);
|
||
|
||
if (hdr->sh_entsize
|
||
!= (bfd_size_type) (hdr->sh_type == SHT_REL
|
||
? bed->s->sizeof_rel : bed->s->sizeof_rela))
|
||
return FALSE;
|
||
|
||
/* Check for a bogus link to avoid crashing. */
|
||
if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
|
||
|| hdr->sh_link >= num_sec)
|
||
{
|
||
((*_bfd_error_handler)
|
||
(_("%B: invalid link %lu for reloc section %s (index %u)"),
|
||
abfd, hdr->sh_link, name, shindex));
|
||
return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
|
||
shindex);
|
||
}
|
||
|
||
/* For some incomprehensible reason Oracle distributes
|
||
libraries for Solaris in which some of the objects have
|
||
bogus sh_link fields. It would be nice if we could just
|
||
reject them, but, unfortunately, some people need to use
|
||
them. We scan through the section headers; if we find only
|
||
one suitable symbol table, we clobber the sh_link to point
|
||
to it. I hope this doesn't break anything. */
|
||
if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
|
||
&& elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
|
||
{
|
||
unsigned int scan;
|
||
int found;
|
||
|
||
found = 0;
|
||
for (scan = 1; scan < num_sec; scan++)
|
||
{
|
||
if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
|
||
|| elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
|
||
{
|
||
if (found != 0)
|
||
{
|
||
found = 0;
|
||
break;
|
||
}
|
||
found = scan;
|
||
}
|
||
}
|
||
if (found != 0)
|
||
hdr->sh_link = found;
|
||
}
|
||
|
||
/* Get the symbol table. */
|
||
if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
|
||
|| elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
|
||
&& ! bfd_section_from_shdr (abfd, hdr->sh_link))
|
||
return FALSE;
|
||
|
||
/* If this reloc section does not use the main symbol table we
|
||
don't treat it as a reloc section. BFD can't adequately
|
||
represent such a section, so at least for now, we don't
|
||
try. We just present it as a normal section. We also
|
||
can't use it as a reloc section if it points to the null
|
||
section. */
|
||
if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
|
||
return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
|
||
shindex);
|
||
|
||
/* Prevent endless recursion on broken objects. */
|
||
if (elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
|
||
|| elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
|
||
return FALSE;
|
||
if (! bfd_section_from_shdr (abfd, hdr->sh_info))
|
||
return FALSE;
|
||
target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
|
||
if (target_sect == NULL)
|
||
return FALSE;
|
||
|
||
if ((target_sect->flags & SEC_RELOC) == 0
|
||
|| target_sect->reloc_count == 0)
|
||
hdr2 = &elf_section_data (target_sect)->rel_hdr;
|
||
else
|
||
{
|
||
bfd_size_type amt;
|
||
BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
|
||
amt = sizeof (*hdr2);
|
||
hdr2 = bfd_alloc (abfd, amt);
|
||
elf_section_data (target_sect)->rel_hdr2 = hdr2;
|
||
}
|
||
*hdr2 = *hdr;
|
||
elf_elfsections (abfd)[shindex] = hdr2;
|
||
target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
|
||
target_sect->flags |= SEC_RELOC;
|
||
target_sect->relocation = NULL;
|
||
target_sect->rel_filepos = hdr->sh_offset;
|
||
/* In the section to which the relocations apply, mark whether
|
||
its relocations are of the REL or RELA variety. */
|
||
if (hdr->sh_size != 0)
|
||
target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
|
||
abfd->flags |= HAS_RELOC;
|
||
return TRUE;
|
||
}
|
||
break;
|
||
|
||
case SHT_GNU_verdef:
|
||
elf_dynverdef (abfd) = shindex;
|
||
elf_tdata (abfd)->dynverdef_hdr = *hdr;
|
||
return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
|
||
break;
|
||
|
||
case SHT_GNU_versym:
|
||
if (hdr->sh_entsize != sizeof (Elf_External_Versym))
|
||
return FALSE;
|
||
elf_dynversym (abfd) = shindex;
|
||
elf_tdata (abfd)->dynversym_hdr = *hdr;
|
||
return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
|
||
break;
|
||
|
||
case SHT_GNU_verneed:
|
||
elf_dynverref (abfd) = shindex;
|
||
elf_tdata (abfd)->dynverref_hdr = *hdr;
|
||
return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
|
||
break;
|
||
|
||
case SHT_SHLIB:
|
||
return TRUE;
|
||
|
||
case SHT_GROUP:
|
||
/* We need a BFD section for objcopy and relocatable linking,
|
||
and it's handy to have the signature available as the section
|
||
name. */
|
||
if (hdr->sh_entsize != GRP_ENTRY_SIZE)
|
||
return FALSE;
|
||
name = group_signature (abfd, hdr);
|
||
if (name == NULL)
|
||
return FALSE;
|
||
if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
|
||
return FALSE;
|
||
if (hdr->contents != NULL)
|
||
{
|
||
Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
|
||
unsigned int n_elt = hdr->sh_size / 4;
|
||
asection *s;
|
||
|
||
if (idx->flags & GRP_COMDAT)
|
||
hdr->bfd_section->flags
|
||
|= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
|
||
|
||
/* We try to keep the same section order as it comes in. */
|
||
idx += n_elt;
|
||
while (--n_elt != 0)
|
||
if ((s = (--idx)->shdr->bfd_section) != NULL
|
||
&& elf_next_in_group (s) != NULL)
|
||
{
|
||
elf_next_in_group (hdr->bfd_section) = s;
|
||
break;
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
/* Check for any processor-specific section types. */
|
||
return bed->elf_backend_section_from_shdr (abfd, hdr, name,
|
||
shindex);
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return the section for the local symbol specified by ABFD, R_SYMNDX.
|
||
Return SEC for sections that have no elf section, and NULL on error. */
|
||
|
||
asection *
|
||
bfd_section_from_r_symndx (bfd *abfd,
|
||
struct sym_sec_cache *cache,
|
||
asection *sec,
|
||
unsigned long r_symndx)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
unsigned char esym[sizeof (Elf64_External_Sym)];
|
||
Elf_External_Sym_Shndx eshndx;
|
||
Elf_Internal_Sym isym;
|
||
unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
|
||
|
||
if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
|
||
return cache->sec[ent];
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
|
||
&isym, esym, &eshndx) == NULL)
|
||
return NULL;
|
||
|
||
if (cache->abfd != abfd)
|
||
{
|
||
memset (cache->indx, -1, sizeof (cache->indx));
|
||
cache->abfd = abfd;
|
||
}
|
||
cache->indx[ent] = r_symndx;
|
||
cache->sec[ent] = sec;
|
||
if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
|
||
|| isym.st_shndx > SHN_HIRESERVE)
|
||
{
|
||
asection *s;
|
||
s = bfd_section_from_elf_index (abfd, isym.st_shndx);
|
||
if (s != NULL)
|
||
cache->sec[ent] = s;
|
||
}
|
||
return cache->sec[ent];
|
||
}
|
||
|
||
/* Given an ELF section number, retrieve the corresponding BFD
|
||
section. */
|
||
|
||
asection *
|
||
bfd_section_from_elf_index (bfd *abfd, unsigned int index)
|
||
{
|
||
if (index >= elf_numsections (abfd))
|
||
return NULL;
|
||
return elf_elfsections (abfd)[index]->bfd_section;
|
||
}
|
||
|
||
static const struct bfd_elf_special_section special_sections_b[] =
|
||
{
|
||
{ ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
|
||
{ NULL, 0, 0, 0, 0 }
|
||
};
|
||
|
||
static const struct bfd_elf_special_section special_sections_c[] =
|
||
{
|
||
{ ".comment", 8, 0, SHT_PROGBITS, 0 },
|
||
{ NULL, 0, 0, 0, 0 }
|
||
};
|
||
|
||
static const struct bfd_elf_special_section special_sections_d[] =
|
||
{
|
||
{ ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
|
||
{ ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
|
||
{ ".debug", 6, 0, SHT_PROGBITS, 0 },
|
||
{ ".debug_line", 11, 0, SHT_PROGBITS, 0 },
|
||
{ ".debug_info", 11, 0, SHT_PROGBITS, 0 },
|
||
{ ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
|
||
{ ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
|
||
{ ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
|
||
{ ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
|
||
{ ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
|
||
{ NULL, 0, 0, 0, 0 }
|
||
};
|
||
|
||
static const struct bfd_elf_special_section special_sections_f[] =
|
||
{
|
||
{ ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
|
||
{ ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
|
||
{ NULL, 0, 0, 0, 0 }
|
||
};
|
||
|
||
static const struct bfd_elf_special_section special_sections_g[] =
|
||
{
|
||
{ ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
|
||
{ ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
|
||
{ ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
|
||
{ ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
|
||
{ ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
|
||
{ ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
|
||
{ ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
|
||
{ NULL, 0, 0, 0, 0 }
|
||
};
|
||
|
||
static const struct bfd_elf_special_section special_sections_h[] =
|
||
{
|
||
{ ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
|
||
{ NULL, 0, 0, 0, 0 }
|
||
};
|
||
|
||
static const struct bfd_elf_special_section special_sections_i[] =
|
||
{
|
||
{ ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
|
||
{ ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
|
||
{ ".interp", 7, 0, SHT_PROGBITS, 0 },
|
||
{ NULL, 0, 0, 0, 0 }
|
||
};
|
||
|
||
static const struct bfd_elf_special_section special_sections_l[] =
|
||
{
|
||
{ ".line", 5, 0, SHT_PROGBITS, 0 },
|
||
{ NULL, 0, 0, 0, 0 }
|
||
};
|
||
|
||
static const struct bfd_elf_special_section special_sections_n[] =
|
||
{
|
||
{ ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
|
||
{ ".note", 5, -1, SHT_NOTE, 0 },
|
||
{ NULL, 0, 0, 0, 0 }
|
||
};
|
||
|
||
static const struct bfd_elf_special_section special_sections_p[] =
|
||
{
|
||
{ ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
|
||
{ ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
|
||
{ NULL, 0, 0, 0, 0 }
|
||
};
|
||
|
||
static const struct bfd_elf_special_section special_sections_r[] =
|
||
{
|
||
{ ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
|
||
{ ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
|
||
{ ".rela", 5, -1, SHT_RELA, 0 },
|
||
{ ".rel", 4, -1, SHT_REL, 0 },
|
||
{ NULL, 0, 0, 0, 0 }
|
||
};
|
||
|
||
static const struct bfd_elf_special_section special_sections_s[] =
|
||
{
|
||
{ ".shstrtab", 9, 0, SHT_STRTAB, 0 },
|
||
{ ".strtab", 7, 0, SHT_STRTAB, 0 },
|
||
{ ".symtab", 7, 0, SHT_SYMTAB, 0 },
|
||
{ ".stabstr", 5, 3, SHT_STRTAB, 0 },
|
||
{ NULL, 0, 0, 0, 0 }
|
||
};
|
||
|
||
static const struct bfd_elf_special_section special_sections_t[] =
|
||
{
|
||
{ ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
|
||
{ ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
|
||
{ ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
|
||
{ NULL, 0, 0, 0, 0 }
|
||
};
|
||
|
||
static const struct bfd_elf_special_section *special_sections[] =
|
||
{
|
||
special_sections_b, /* 'b' */
|
||
special_sections_c, /* 'b' */
|
||
special_sections_d, /* 'd' */
|
||
NULL, /* 'e' */
|
||
special_sections_f, /* 'f' */
|
||
special_sections_g, /* 'g' */
|
||
special_sections_h, /* 'h' */
|
||
special_sections_i, /* 'i' */
|
||
NULL, /* 'j' */
|
||
NULL, /* 'k' */
|
||
special_sections_l, /* 'l' */
|
||
NULL, /* 'm' */
|
||
special_sections_n, /* 'n' */
|
||
NULL, /* 'o' */
|
||
special_sections_p, /* 'p' */
|
||
NULL, /* 'q' */
|
||
special_sections_r, /* 'r' */
|
||
special_sections_s, /* 's' */
|
||
special_sections_t, /* 't' */
|
||
};
|
||
|
||
const struct bfd_elf_special_section *
|
||
_bfd_elf_get_special_section (const char *name,
|
||
const struct bfd_elf_special_section *spec,
|
||
unsigned int rela)
|
||
{
|
||
int i;
|
||
int len;
|
||
|
||
len = strlen (name);
|
||
|
||
for (i = 0; spec[i].prefix != NULL; i++)
|
||
{
|
||
int suffix_len;
|
||
int prefix_len = spec[i].prefix_length;
|
||
|
||
if (len < prefix_len)
|
||
continue;
|
||
if (memcmp (name, spec[i].prefix, prefix_len) != 0)
|
||
continue;
|
||
|
||
suffix_len = spec[i].suffix_length;
|
||
if (suffix_len <= 0)
|
||
{
|
||
if (name[prefix_len] != 0)
|
||
{
|
||
if (suffix_len == 0)
|
||
continue;
|
||
if (name[prefix_len] != '.'
|
||
&& (suffix_len == -2
|
||
|| (rela && spec[i].type == SHT_REL)))
|
||
continue;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (len < prefix_len + suffix_len)
|
||
continue;
|
||
if (memcmp (name + len - suffix_len,
|
||
spec[i].prefix + prefix_len,
|
||
suffix_len) != 0)
|
||
continue;
|
||
}
|
||
return &spec[i];
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
const struct bfd_elf_special_section *
|
||
_bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
|
||
{
|
||
int i;
|
||
const struct bfd_elf_special_section *spec;
|
||
const struct elf_backend_data *bed;
|
||
|
||
/* See if this is one of the special sections. */
|
||
if (sec->name == NULL)
|
||
return NULL;
|
||
|
||
bed = get_elf_backend_data (abfd);
|
||
spec = bed->special_sections;
|
||
if (spec)
|
||
{
|
||
spec = _bfd_elf_get_special_section (sec->name,
|
||
bed->special_sections,
|
||
sec->use_rela_p);
|
||
if (spec != NULL)
|
||
return spec;
|
||
}
|
||
|
||
if (sec->name[0] != '.')
|
||
return NULL;
|
||
|
||
i = sec->name[1] - 'b';
|
||
if (i < 0 || i > 't' - 'b')
|
||
return NULL;
|
||
|
||
spec = special_sections[i];
|
||
|
||
if (spec == NULL)
|
||
return NULL;
|
||
|
||
return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
|
||
}
|
||
|
||
bfd_boolean
|
||
_bfd_elf_new_section_hook (bfd *abfd, asection *sec)
|
||
{
|
||
struct bfd_elf_section_data *sdata;
|
||
const struct elf_backend_data *bed;
|
||
const struct bfd_elf_special_section *ssect;
|
||
|
||
sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
|
||
if (sdata == NULL)
|
||
{
|
||
sdata = bfd_zalloc (abfd, sizeof (*sdata));
|
||
if (sdata == NULL)
|
||
return FALSE;
|
||
sec->used_by_bfd = sdata;
|
||
}
|
||
|
||
/* Indicate whether or not this section should use RELA relocations. */
|
||
bed = get_elf_backend_data (abfd);
|
||
sec->use_rela_p = bed->default_use_rela_p;
|
||
|
||
/* When we read a file, we don't need section type and flags unless
|
||
it is a linker created section. They will be overridden in
|
||
_bfd_elf_make_section_from_shdr anyway. */
|
||
if (abfd->direction != read_direction
|
||
|| (sec->flags & SEC_LINKER_CREATED) != 0)
|
||
{
|
||
ssect = (*bed->get_sec_type_attr) (abfd, sec);
|
||
if (ssect != NULL)
|
||
{
|
||
elf_section_type (sec) = ssect->type;
|
||
elf_section_flags (sec) = ssect->attr;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Create a new bfd section from an ELF program header.
|
||
|
||
Since program segments have no names, we generate a synthetic name
|
||
of the form segment<NUM>, where NUM is generally the index in the
|
||
program header table. For segments that are split (see below) we
|
||
generate the names segment<NUM>a and segment<NUM>b.
|
||
|
||
Note that some program segments may have a file size that is different than
|
||
(less than) the memory size. All this means is that at execution the
|
||
system must allocate the amount of memory specified by the memory size,
|
||
but only initialize it with the first "file size" bytes read from the
|
||
file. This would occur for example, with program segments consisting
|
||
of combined data+bss.
|
||
|
||
To handle the above situation, this routine generates TWO bfd sections
|
||
for the single program segment. The first has the length specified by
|
||
the file size of the segment, and the second has the length specified
|
||
by the difference between the two sizes. In effect, the segment is split
|
||
into it's initialized and uninitialized parts.
|
||
|
||
*/
|
||
|
||
bfd_boolean
|
||
_bfd_elf_make_section_from_phdr (bfd *abfd,
|
||
Elf_Internal_Phdr *hdr,
|
||
int index,
|
||
const char *typename)
|
||
{
|
||
asection *newsect;
|
||
char *name;
|
||
char namebuf[64];
|
||
size_t len;
|
||
int split;
|
||
|
||
split = ((hdr->p_memsz > 0)
|
||
&& (hdr->p_filesz > 0)
|
||
&& (hdr->p_memsz > hdr->p_filesz));
|
||
sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
|
||
len = strlen (namebuf) + 1;
|
||
name = bfd_alloc (abfd, len);
|
||
if (!name)
|
||
return FALSE;
|
||
memcpy (name, namebuf, len);
|
||
newsect = bfd_make_section (abfd, name);
|
||
if (newsect == NULL)
|
||
return FALSE;
|
||
newsect->vma = hdr->p_vaddr;
|
||
newsect->lma = hdr->p_paddr;
|
||
newsect->size = hdr->p_filesz;
|
||
newsect->filepos = hdr->p_offset;
|
||
newsect->flags |= SEC_HAS_CONTENTS;
|
||
newsect->alignment_power = bfd_log2 (hdr->p_align);
|
||
if (hdr->p_type == PT_LOAD)
|
||
{
|
||
newsect->flags |= SEC_ALLOC;
|
||
newsect->flags |= SEC_LOAD;
|
||
if (hdr->p_flags & PF_X)
|
||
{
|
||
/* FIXME: all we known is that it has execute PERMISSION,
|
||
may be data. */
|
||
newsect->flags |= SEC_CODE;
|
||
}
|
||
}
|
||
if (!(hdr->p_flags & PF_W))
|
||
{
|
||
newsect->flags |= SEC_READONLY;
|
||
}
|
||
|
||
if (split)
|
||
{
|
||
sprintf (namebuf, "%s%db", typename, index);
|
||
len = strlen (namebuf) + 1;
|
||
name = bfd_alloc (abfd, len);
|
||
if (!name)
|
||
return FALSE;
|
||
memcpy (name, namebuf, len);
|
||
newsect = bfd_make_section (abfd, name);
|
||
if (newsect == NULL)
|
||
return FALSE;
|
||
newsect->vma = hdr->p_vaddr + hdr->p_filesz;
|
||
newsect->lma = hdr->p_paddr + hdr->p_filesz;
|
||
newsect->size = hdr->p_memsz - hdr->p_filesz;
|
||
if (hdr->p_type == PT_LOAD)
|
||
{
|
||
newsect->flags |= SEC_ALLOC;
|
||
if (hdr->p_flags & PF_X)
|
||
newsect->flags |= SEC_CODE;
|
||
}
|
||
if (!(hdr->p_flags & PF_W))
|
||
newsect->flags |= SEC_READONLY;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
bfd_boolean
|
||
bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
|
||
{
|
||
const struct elf_backend_data *bed;
|
||
|
||
switch (hdr->p_type)
|
||
{
|
||
case PT_NULL:
|
||
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
|
||
|
||
case PT_LOAD:
|
||
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
|
||
|
||
case PT_DYNAMIC:
|
||
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
|
||
|
||
case PT_INTERP:
|
||
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
|
||
|
||
case PT_NOTE:
|
||
if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
|
||
return FALSE;
|
||
if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
|
||
return FALSE;
|
||
return TRUE;
|
||
|
||
case PT_SHLIB:
|
||
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
|
||
|
||
case PT_PHDR:
|
||
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
|
||
|
||
case PT_GNU_EH_FRAME:
|
||
return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
|
||
"eh_frame_hdr");
|
||
|
||
case PT_GNU_STACK:
|
||
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
|
||
|
||
case PT_GNU_RELRO:
|
||
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
|
||
|
||
default:
|
||
/* Check for any processor-specific program segment types. */
|
||
bed = get_elf_backend_data (abfd);
|
||
return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
|
||
}
|
||
}
|
||
|
||
/* Initialize REL_HDR, the section-header for new section, containing
|
||
relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
|
||
relocations; otherwise, we use REL relocations. */
|
||
|
||
bfd_boolean
|
||
_bfd_elf_init_reloc_shdr (bfd *abfd,
|
||
Elf_Internal_Shdr *rel_hdr,
|
||
asection *asect,
|
||
bfd_boolean use_rela_p)
|
||
{
|
||
char *name;
|
||
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
|
||
|
||
name = bfd_alloc (abfd, amt);
|
||
if (name == NULL)
|
||
return FALSE;
|
||
sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
|
||
rel_hdr->sh_name =
|
||
(unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
|
||
FALSE);
|
||
if (rel_hdr->sh_name == (unsigned int) -1)
|
||
return FALSE;
|
||
rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
|
||
rel_hdr->sh_entsize = (use_rela_p
|
||
? bed->s->sizeof_rela
|
||
: bed->s->sizeof_rel);
|
||
rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
|
||
rel_hdr->sh_flags = 0;
|
||
rel_hdr->sh_addr = 0;
|
||
rel_hdr->sh_size = 0;
|
||
rel_hdr->sh_offset = 0;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Set up an ELF internal section header for a section. */
|
||
|
||
static void
|
||
elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
|
||
{
|
||
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
bfd_boolean *failedptr = failedptrarg;
|
||
Elf_Internal_Shdr *this_hdr;
|
||
|
||
if (*failedptr)
|
||
{
|
||
/* We already failed; just get out of the bfd_map_over_sections
|
||
loop. */
|
||
return;
|
||
}
|
||
|
||
this_hdr = &elf_section_data (asect)->this_hdr;
|
||
|
||
this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
|
||
asect->name, FALSE);
|
||
if (this_hdr->sh_name == (unsigned int) -1)
|
||
{
|
||
*failedptr = TRUE;
|
||
return;
|
||
}
|
||
|
||
/* Don't clear sh_flags. Assembler may set additional bits. */
|
||
|
||
if ((asect->flags & SEC_ALLOC) != 0
|
||
|| asect->user_set_vma)
|
||
this_hdr->sh_addr = asect->vma;
|
||
else
|
||
this_hdr->sh_addr = 0;
|
||
|
||
this_hdr->sh_offset = 0;
|
||
this_hdr->sh_size = asect->size;
|
||
this_hdr->sh_link = 0;
|
||
this_hdr->sh_addralign = 1 << asect->alignment_power;
|
||
/* The sh_entsize and sh_info fields may have been set already by
|
||
copy_private_section_data. */
|
||
|
||
this_hdr->bfd_section = asect;
|
||
this_hdr->contents = NULL;
|
||
|
||
/* If the section type is unspecified, we set it based on
|
||
asect->flags. */
|
||
if (this_hdr->sh_type == SHT_NULL)
|
||
{
|
||
if ((asect->flags & SEC_GROUP) != 0)
|
||
{
|
||
/* We also need to mark SHF_GROUP here for relocatable
|
||
link. */
|
||
struct bfd_link_order *l;
|
||
asection *elt;
|
||
|
||
for (l = asect->map_head.link_order; l != NULL; l = l->next)
|
||
if (l->type == bfd_indirect_link_order
|
||
&& (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
|
||
do
|
||
{
|
||
/* The name is not important. Anything will do. */
|
||
elf_group_name (elt->output_section) = "G";
|
||
elf_section_flags (elt->output_section) |= SHF_GROUP;
|
||
|
||
elt = elf_next_in_group (elt);
|
||
/* During a relocatable link, the lists are
|
||
circular. */
|
||
}
|
||
while (elt != elf_next_in_group (l->u.indirect.section));
|
||
|
||
this_hdr->sh_type = SHT_GROUP;
|
||
}
|
||
else if ((asect->flags & SEC_ALLOC) != 0
|
||
&& (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
|
||
|| (asect->flags & SEC_NEVER_LOAD) != 0))
|
||
this_hdr->sh_type = SHT_NOBITS;
|
||
else
|
||
this_hdr->sh_type = SHT_PROGBITS;
|
||
}
|
||
|
||
switch (this_hdr->sh_type)
|
||
{
|
||
default:
|
||
break;
|
||
|
||
case SHT_STRTAB:
|
||
case SHT_INIT_ARRAY:
|
||
case SHT_FINI_ARRAY:
|
||
case SHT_PREINIT_ARRAY:
|
||
case SHT_NOTE:
|
||
case SHT_NOBITS:
|
||
case SHT_PROGBITS:
|
||
break;
|
||
|
||
case SHT_HASH:
|
||
this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
|
||
break;
|
||
|
||
case SHT_DYNSYM:
|
||
this_hdr->sh_entsize = bed->s->sizeof_sym;
|
||
break;
|
||
|
||
case SHT_DYNAMIC:
|
||
this_hdr->sh_entsize = bed->s->sizeof_dyn;
|
||
break;
|
||
|
||
case SHT_RELA:
|
||
if (get_elf_backend_data (abfd)->may_use_rela_p)
|
||
this_hdr->sh_entsize = bed->s->sizeof_rela;
|
||
break;
|
||
|
||
case SHT_REL:
|
||
if (get_elf_backend_data (abfd)->may_use_rel_p)
|
||
this_hdr->sh_entsize = bed->s->sizeof_rel;
|
||
break;
|
||
|
||
case SHT_GNU_versym:
|
||
this_hdr->sh_entsize = sizeof (Elf_External_Versym);
|
||
break;
|
||
|
||
case SHT_GNU_verdef:
|
||
this_hdr->sh_entsize = 0;
|
||
/* objcopy or strip will copy over sh_info, but may not set
|
||
cverdefs. The linker will set cverdefs, but sh_info will be
|
||
zero. */
|
||
if (this_hdr->sh_info == 0)
|
||
this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
|
||
else
|
||
BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
|
||
|| this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
|
||
break;
|
||
|
||
case SHT_GNU_verneed:
|
||
this_hdr->sh_entsize = 0;
|
||
/* objcopy or strip will copy over sh_info, but may not set
|
||
cverrefs. The linker will set cverrefs, but sh_info will be
|
||
zero. */
|
||
if (this_hdr->sh_info == 0)
|
||
this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
|
||
else
|
||
BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
|
||
|| this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
|
||
break;
|
||
|
||
case SHT_GROUP:
|
||
this_hdr->sh_entsize = 4;
|
||
break;
|
||
}
|
||
|
||
if ((asect->flags & SEC_ALLOC) != 0)
|
||
this_hdr->sh_flags |= SHF_ALLOC;
|
||
if ((asect->flags & SEC_READONLY) == 0)
|
||
this_hdr->sh_flags |= SHF_WRITE;
|
||
if ((asect->flags & SEC_CODE) != 0)
|
||
this_hdr->sh_flags |= SHF_EXECINSTR;
|
||
if ((asect->flags & SEC_MERGE) != 0)
|
||
{
|
||
this_hdr->sh_flags |= SHF_MERGE;
|
||
this_hdr->sh_entsize = asect->entsize;
|
||
if ((asect->flags & SEC_STRINGS) != 0)
|
||
this_hdr->sh_flags |= SHF_STRINGS;
|
||
}
|
||
if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
|
||
this_hdr->sh_flags |= SHF_GROUP;
|
||
if ((asect->flags & SEC_THREAD_LOCAL) != 0)
|
||
{
|
||
this_hdr->sh_flags |= SHF_TLS;
|
||
if (asect->size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
|
||
{
|
||
struct bfd_link_order *o;
|
||
|
||
this_hdr->sh_size = 0;
|
||
for (o = asect->map_head.link_order; o != NULL; o = o->next)
|
||
if (this_hdr->sh_size < o->offset + o->size)
|
||
this_hdr->sh_size = o->offset + o->size;
|
||
if (this_hdr->sh_size)
|
||
this_hdr->sh_type = SHT_NOBITS;
|
||
}
|
||
}
|
||
|
||
/* Check for processor-specific section types. */
|
||
if (bed->elf_backend_fake_sections
|
||
&& !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
|
||
*failedptr = TRUE;
|
||
|
||
/* If the section has relocs, set up a section header for the
|
||
SHT_REL[A] section. If two relocation sections are required for
|
||
this section, it is up to the processor-specific back-end to
|
||
create the other. */
|
||
if ((asect->flags & SEC_RELOC) != 0
|
||
&& !_bfd_elf_init_reloc_shdr (abfd,
|
||
&elf_section_data (asect)->rel_hdr,
|
||
asect,
|
||
asect->use_rela_p))
|
||
*failedptr = TRUE;
|
||
}
|
||
|
||
/* Fill in the contents of a SHT_GROUP section. */
|
||
|
||
void
|
||
bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
|
||
{
|
||
bfd_boolean *failedptr = failedptrarg;
|
||
unsigned long symindx;
|
||
asection *elt, *first;
|
||
unsigned char *loc;
|
||
struct bfd_link_order *l;
|
||
bfd_boolean gas;
|
||
|
||
/* Ignore linker created group section. See elfNN_ia64_object_p in
|
||
elfxx-ia64.c. */
|
||
if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
|
||
|| *failedptr)
|
||
return;
|
||
|
||
symindx = 0;
|
||
if (elf_group_id (sec) != NULL)
|
||
symindx = elf_group_id (sec)->udata.i;
|
||
|
||
if (symindx == 0)
|
||
{
|
||
/* If called from the assembler, swap_out_syms will have set up
|
||
elf_section_syms; If called for "ld -r", use target_index. */
|
||
if (elf_section_syms (abfd) != NULL)
|
||
symindx = elf_section_syms (abfd)[sec->index]->udata.i;
|
||
else
|
||
symindx = sec->target_index;
|
||
}
|
||
elf_section_data (sec)->this_hdr.sh_info = symindx;
|
||
|
||
/* The contents won't be allocated for "ld -r" or objcopy. */
|
||
gas = TRUE;
|
||
if (sec->contents == NULL)
|
||
{
|
||
gas = FALSE;
|
||
sec->contents = bfd_alloc (abfd, sec->size);
|
||
|
||
/* Arrange for the section to be written out. */
|
||
elf_section_data (sec)->this_hdr.contents = sec->contents;
|
||
if (sec->contents == NULL)
|
||
{
|
||
*failedptr = TRUE;
|
||
return;
|
||
}
|
||
}
|
||
|
||
loc = sec->contents + sec->size;
|
||
|
||
/* Get the pointer to the first section in the group that gas
|
||
squirreled away here. objcopy arranges for this to be set to the
|
||
start of the input section group. */
|
||
first = elt = elf_next_in_group (sec);
|
||
|
||
/* First element is a flag word. Rest of section is elf section
|
||
indices for all the sections of the group. Write them backwards
|
||
just to keep the group in the same order as given in .section
|
||
directives, not that it matters. */
|
||
while (elt != NULL)
|
||
{
|
||
asection *s;
|
||
unsigned int idx;
|
||
|
||
loc -= 4;
|
||
s = elt;
|
||
if (!gas)
|
||
s = s->output_section;
|
||
idx = 0;
|
||
if (s != NULL)
|
||
idx = elf_section_data (s)->this_idx;
|
||
H_PUT_32 (abfd, idx, loc);
|
||
elt = elf_next_in_group (elt);
|
||
if (elt == first)
|
||
break;
|
||
}
|
||
|
||
/* If this is a relocatable link, then the above did nothing because
|
||
SEC is the output section. Look through the input sections
|
||
instead. */
|
||
for (l = sec->map_head.link_order; l != NULL; l = l->next)
|
||
if (l->type == bfd_indirect_link_order
|
||
&& (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
|
||
do
|
||
{
|
||
loc -= 4;
|
||
H_PUT_32 (abfd,
|
||
elf_section_data (elt->output_section)->this_idx, loc);
|
||
elt = elf_next_in_group (elt);
|
||
/* During a relocatable link, the lists are circular. */
|
||
}
|
||
while (elt != elf_next_in_group (l->u.indirect.section));
|
||
|
||
if ((loc -= 4) != sec->contents)
|
||
abort ();
|
||
|
||
H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
|
||
}
|
||
|
||
/* Assign all ELF section numbers. The dummy first section is handled here
|
||
too. The link/info pointers for the standard section types are filled
|
||
in here too, while we're at it. */
|
||
|
||
static bfd_boolean
|
||
assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
|
||
{
|
||
struct elf_obj_tdata *t = elf_tdata (abfd);
|
||
asection *sec;
|
||
unsigned int section_number, secn;
|
||
Elf_Internal_Shdr **i_shdrp;
|
||
struct bfd_elf_section_data *d;
|
||
|
||
section_number = 1;
|
||
|
||
_bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
|
||
|
||
/* SHT_GROUP sections are in relocatable files only. */
|
||
if (link_info == NULL || link_info->relocatable)
|
||
{
|
||
/* Put SHT_GROUP sections first. */
|
||
for (sec = abfd->sections; sec != NULL; sec = sec->next)
|
||
{
|
||
d = elf_section_data (sec);
|
||
|
||
if (d->this_hdr.sh_type == SHT_GROUP)
|
||
{
|
||
if (sec->flags & SEC_LINKER_CREATED)
|
||
{
|
||
/* Remove the linker created SHT_GROUP sections. */
|
||
bfd_section_list_remove (abfd, sec);
|
||
abfd->section_count--;
|
||
}
|
||
else
|
||
{
|
||
if (section_number == SHN_LORESERVE)
|
||
section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
|
||
d->this_idx = section_number++;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
for (sec = abfd->sections; sec; sec = sec->next)
|
||
{
|
||
d = elf_section_data (sec);
|
||
|
||
if (d->this_hdr.sh_type != SHT_GROUP)
|
||
{
|
||
if (section_number == SHN_LORESERVE)
|
||
section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
|
||
d->this_idx = section_number++;
|
||
}
|
||
_bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
|
||
if ((sec->flags & SEC_RELOC) == 0)
|
||
d->rel_idx = 0;
|
||
else
|
||
{
|
||
if (section_number == SHN_LORESERVE)
|
||
section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
|
||
d->rel_idx = section_number++;
|
||
_bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
|
||
}
|
||
|
||
if (d->rel_hdr2)
|
||
{
|
||
if (section_number == SHN_LORESERVE)
|
||
section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
|
||
d->rel_idx2 = section_number++;
|
||
_bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
|
||
}
|
||
else
|
||
d->rel_idx2 = 0;
|
||
}
|
||
|
||
if (section_number == SHN_LORESERVE)
|
||
section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
|
||
t->shstrtab_section = section_number++;
|
||
_bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
|
||
elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
|
||
|
||
if (bfd_get_symcount (abfd) > 0)
|
||
{
|
||
if (section_number == SHN_LORESERVE)
|
||
section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
|
||
t->symtab_section = section_number++;
|
||
_bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
|
||
if (section_number > SHN_LORESERVE - 2)
|
||
{
|
||
if (section_number == SHN_LORESERVE)
|
||
section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
|
||
t->symtab_shndx_section = section_number++;
|
||
t->symtab_shndx_hdr.sh_name
|
||
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
|
||
".symtab_shndx", FALSE);
|
||
if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
|
||
return FALSE;
|
||
}
|
||
if (section_number == SHN_LORESERVE)
|
||
section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
|
||
t->strtab_section = section_number++;
|
||
_bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
|
||
}
|
||
|
||
_bfd_elf_strtab_finalize (elf_shstrtab (abfd));
|
||
t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
|
||
|
||
elf_numsections (abfd) = section_number;
|
||
elf_elfheader (abfd)->e_shnum = section_number;
|
||
if (section_number > SHN_LORESERVE)
|
||
elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
|
||
|
||
/* Set up the list of section header pointers, in agreement with the
|
||
indices. */
|
||
i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
|
||
if (i_shdrp == NULL)
|
||
return FALSE;
|
||
|
||
i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
|
||
if (i_shdrp[0] == NULL)
|
||
{
|
||
bfd_release (abfd, i_shdrp);
|
||
return FALSE;
|
||
}
|
||
|
||
elf_elfsections (abfd) = i_shdrp;
|
||
|
||
i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
|
||
if (bfd_get_symcount (abfd) > 0)
|
||
{
|
||
i_shdrp[t->symtab_section] = &t->symtab_hdr;
|
||
if (elf_numsections (abfd) > SHN_LORESERVE)
|
||
{
|
||
i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
|
||
t->symtab_shndx_hdr.sh_link = t->symtab_section;
|
||
}
|
||
i_shdrp[t->strtab_section] = &t->strtab_hdr;
|
||
t->symtab_hdr.sh_link = t->strtab_section;
|
||
}
|
||
|
||
for (sec = abfd->sections; sec; sec = sec->next)
|
||
{
|
||
struct bfd_elf_section_data *d = elf_section_data (sec);
|
||
asection *s;
|
||
const char *name;
|
||
|
||
i_shdrp[d->this_idx] = &d->this_hdr;
|
||
if (d->rel_idx != 0)
|
||
i_shdrp[d->rel_idx] = &d->rel_hdr;
|
||
if (d->rel_idx2 != 0)
|
||
i_shdrp[d->rel_idx2] = d->rel_hdr2;
|
||
|
||
/* Fill in the sh_link and sh_info fields while we're at it. */
|
||
|
||
/* sh_link of a reloc section is the section index of the symbol
|
||
table. sh_info is the section index of the section to which
|
||
the relocation entries apply. */
|
||
if (d->rel_idx != 0)
|
||
{
|
||
d->rel_hdr.sh_link = t->symtab_section;
|
||
d->rel_hdr.sh_info = d->this_idx;
|
||
}
|
||
if (d->rel_idx2 != 0)
|
||
{
|
||
d->rel_hdr2->sh_link = t->symtab_section;
|
||
d->rel_hdr2->sh_info = d->this_idx;
|
||
}
|
||
|
||
/* We need to set up sh_link for SHF_LINK_ORDER. */
|
||
if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
|
||
{
|
||
s = elf_linked_to_section (sec);
|
||
if (s)
|
||
d->this_hdr.sh_link = elf_section_data (s)->this_idx;
|
||
else
|
||
{
|
||
struct bfd_link_order *p;
|
||
|
||
/* Find out what the corresponding section in output
|
||
is. */
|
||
for (p = sec->map_head.link_order; p != NULL; p = p->next)
|
||
{
|
||
s = p->u.indirect.section;
|
||
if (p->type == bfd_indirect_link_order
|
||
&& (bfd_get_flavour (s->owner)
|
||
== bfd_target_elf_flavour))
|
||
{
|
||
Elf_Internal_Shdr ** const elf_shdrp
|
||
= elf_elfsections (s->owner);
|
||
int elfsec
|
||
= _bfd_elf_section_from_bfd_section (s->owner, s);
|
||
elfsec = elf_shdrp[elfsec]->sh_link;
|
||
/* PR 290:
|
||
The Intel C compiler generates SHT_IA_64_UNWIND with
|
||
SHF_LINK_ORDER. But it doesn't set the sh_link or
|
||
sh_info fields. Hence we could get the situation
|
||
where elfsec is 0. */
|
||
if (elfsec == 0)
|
||
{
|
||
const struct elf_backend_data *bed
|
||
= get_elf_backend_data (abfd);
|
||
if (bed->link_order_error_handler)
|
||
bed->link_order_error_handler
|
||
(_("%B: warning: sh_link not set for section `%A'"),
|
||
abfd, s);
|
||
}
|
||
else
|
||
{
|
||
s = elf_shdrp[elfsec]->bfd_section;
|
||
if (elf_discarded_section (s))
|
||
{
|
||
asection *kept;
|
||
(*_bfd_error_handler)
|
||
(_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
|
||
abfd, d->this_hdr.bfd_section,
|
||
s, s->owner);
|
||
/* Point to the kept section if it has
|
||
the same size as the discarded
|
||
one. */
|
||
kept = _bfd_elf_check_kept_section (s);
|
||
if (kept == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
s = kept;
|
||
}
|
||
s = s->output_section;
|
||
BFD_ASSERT (s != NULL);
|
||
d->this_hdr.sh_link = elf_section_data (s)->this_idx;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
switch (d->this_hdr.sh_type)
|
||
{
|
||
case SHT_REL:
|
||
case SHT_RELA:
|
||
/* A reloc section which we are treating as a normal BFD
|
||
section. sh_link is the section index of the symbol
|
||
table. sh_info is the section index of the section to
|
||
which the relocation entries apply. We assume that an
|
||
allocated reloc section uses the dynamic symbol table.
|
||
FIXME: How can we be sure? */
|
||
s = bfd_get_section_by_name (abfd, ".dynsym");
|
||
if (s != NULL)
|
||
d->this_hdr.sh_link = elf_section_data (s)->this_idx;
|
||
|
||
/* We look up the section the relocs apply to by name. */
|
||
name = sec->name;
|
||
if (d->this_hdr.sh_type == SHT_REL)
|
||
name += 4;
|
||
else
|
||
name += 5;
|
||
s = bfd_get_section_by_name (abfd, name);
|
||
if (s != NULL)
|
||
d->this_hdr.sh_info = elf_section_data (s)->this_idx;
|
||
break;
|
||
|
||
case SHT_STRTAB:
|
||
/* We assume that a section named .stab*str is a stabs
|
||
string section. We look for a section with the same name
|
||
but without the trailing ``str'', and set its sh_link
|
||
field to point to this section. */
|
||
if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
|
||
&& strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
|
||
{
|
||
size_t len;
|
||
char *alc;
|
||
|
||
len = strlen (sec->name);
|
||
alc = bfd_malloc (len - 2);
|
||
if (alc == NULL)
|
||
return FALSE;
|
||
memcpy (alc, sec->name, len - 3);
|
||
alc[len - 3] = '\0';
|
||
s = bfd_get_section_by_name (abfd, alc);
|
||
free (alc);
|
||
if (s != NULL)
|
||
{
|
||
elf_section_data (s)->this_hdr.sh_link = d->this_idx;
|
||
|
||
/* This is a .stab section. */
|
||
if (elf_section_data (s)->this_hdr.sh_entsize == 0)
|
||
elf_section_data (s)->this_hdr.sh_entsize
|
||
= 4 + 2 * bfd_get_arch_size (abfd) / 8;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case SHT_DYNAMIC:
|
||
case SHT_DYNSYM:
|
||
case SHT_GNU_verneed:
|
||
case SHT_GNU_verdef:
|
||
/* sh_link is the section header index of the string table
|
||
used for the dynamic entries, or the symbol table, or the
|
||
version strings. */
|
||
s = bfd_get_section_by_name (abfd, ".dynstr");
|
||
if (s != NULL)
|
||
d->this_hdr.sh_link = elf_section_data (s)->this_idx;
|
||
break;
|
||
|
||
case SHT_GNU_LIBLIST:
|
||
/* sh_link is the section header index of the prelink library
|
||
list
|
||
used for the dynamic entries, or the symbol table, or the
|
||
version strings. */
|
||
s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
|
||
? ".dynstr" : ".gnu.libstr");
|
||
if (s != NULL)
|
||
d->this_hdr.sh_link = elf_section_data (s)->this_idx;
|
||
break;
|
||
|
||
case SHT_HASH:
|
||
case SHT_GNU_versym:
|
||
/* sh_link is the section header index of the symbol table
|
||
this hash table or version table is for. */
|
||
s = bfd_get_section_by_name (abfd, ".dynsym");
|
||
if (s != NULL)
|
||
d->this_hdr.sh_link = elf_section_data (s)->this_idx;
|
||
break;
|
||
|
||
case SHT_GROUP:
|
||
d->this_hdr.sh_link = t->symtab_section;
|
||
}
|
||
}
|
||
|
||
for (secn = 1; secn < section_number; ++secn)
|
||
if (i_shdrp[secn] == NULL)
|
||
i_shdrp[secn] = i_shdrp[0];
|
||
else
|
||
i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
|
||
i_shdrp[secn]->sh_name);
|
||
return TRUE;
|
||
}
|
||
|
||
/* Map symbol from it's internal number to the external number, moving
|
||
all local symbols to be at the head of the list. */
|
||
|
||
static int
|
||
sym_is_global (bfd *abfd, asymbol *sym)
|
||
{
|
||
/* If the backend has a special mapping, use it. */
|
||
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
if (bed->elf_backend_sym_is_global)
|
||
return (*bed->elf_backend_sym_is_global) (abfd, sym);
|
||
|
||
return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
|
||
|| bfd_is_und_section (bfd_get_section (sym))
|
||
|| bfd_is_com_section (bfd_get_section (sym)));
|
||
}
|
||
|
||
static bfd_boolean
|
||
elf_map_symbols (bfd *abfd)
|
||
{
|
||
unsigned int symcount = bfd_get_symcount (abfd);
|
||
asymbol **syms = bfd_get_outsymbols (abfd);
|
||
asymbol **sect_syms;
|
||
unsigned int num_locals = 0;
|
||
unsigned int num_globals = 0;
|
||
unsigned int num_locals2 = 0;
|
||
unsigned int num_globals2 = 0;
|
||
int max_index = 0;
|
||
unsigned int idx;
|
||
asection *asect;
|
||
asymbol **new_syms;
|
||
|
||
#ifdef DEBUG
|
||
fprintf (stderr, "elf_map_symbols\n");
|
||
fflush (stderr);
|
||
#endif
|
||
|
||
for (asect = abfd->sections; asect; asect = asect->next)
|
||
{
|
||
if (max_index < asect->index)
|
||
max_index = asect->index;
|
||
}
|
||
|
||
max_index++;
|
||
sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
|
||
if (sect_syms == NULL)
|
||
return FALSE;
|
||
elf_section_syms (abfd) = sect_syms;
|
||
elf_num_section_syms (abfd) = max_index;
|
||
|
||
/* Init sect_syms entries for any section symbols we have already
|
||
decided to output. */
|
||
for (idx = 0; idx < symcount; idx++)
|
||
{
|
||
asymbol *sym = syms[idx];
|
||
|
||
if ((sym->flags & BSF_SECTION_SYM) != 0
|
||
&& sym->value == 0)
|
||
{
|
||
asection *sec;
|
||
|
||
sec = sym->section;
|
||
|
||
if (sec->owner != NULL)
|
||
{
|
||
if (sec->owner != abfd)
|
||
{
|
||
if (sec->output_offset != 0)
|
||
continue;
|
||
|
||
sec = sec->output_section;
|
||
|
||
/* Empty sections in the input files may have had a
|
||
section symbol created for them. (See the comment
|
||
near the end of _bfd_generic_link_output_symbols in
|
||
linker.c). If the linker script discards such
|
||
sections then we will reach this point. Since we know
|
||
that we cannot avoid this case, we detect it and skip
|
||
the abort and the assignment to the sect_syms array.
|
||
To reproduce this particular case try running the
|
||
linker testsuite test ld-scripts/weak.exp for an ELF
|
||
port that uses the generic linker. */
|
||
if (sec->owner == NULL)
|
||
continue;
|
||
|
||
BFD_ASSERT (sec->owner == abfd);
|
||
}
|
||
sect_syms[sec->index] = syms[idx];
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Classify all of the symbols. */
|
||
for (idx = 0; idx < symcount; idx++)
|
||
{
|
||
if (!sym_is_global (abfd, syms[idx]))
|
||
num_locals++;
|
||
else
|
||
num_globals++;
|
||
}
|
||
|
||
/* We will be adding a section symbol for each BFD section. Most normal
|
||
sections will already have a section symbol in outsymbols, but
|
||
eg. SHT_GROUP sections will not, and we need the section symbol mapped
|
||
at least in that case. */
|
||
for (asect = abfd->sections; asect; asect = asect->next)
|
||
{
|
||
if (sect_syms[asect->index] == NULL)
|
||
{
|
||
if (!sym_is_global (abfd, asect->symbol))
|
||
num_locals++;
|
||
else
|
||
num_globals++;
|
||
}
|
||
}
|
||
|
||
/* Now sort the symbols so the local symbols are first. */
|
||
new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
|
||
|
||
if (new_syms == NULL)
|
||
return FALSE;
|
||
|
||
for (idx = 0; idx < symcount; idx++)
|
||
{
|
||
asymbol *sym = syms[idx];
|
||
unsigned int i;
|
||
|
||
if (!sym_is_global (abfd, sym))
|
||
i = num_locals2++;
|
||
else
|
||
i = num_locals + num_globals2++;
|
||
new_syms[i] = sym;
|
||
sym->udata.i = i + 1;
|
||
}
|
||
for (asect = abfd->sections; asect; asect = asect->next)
|
||
{
|
||
if (sect_syms[asect->index] == NULL)
|
||
{
|
||
asymbol *sym = asect->symbol;
|
||
unsigned int i;
|
||
|
||
sect_syms[asect->index] = sym;
|
||
if (!sym_is_global (abfd, sym))
|
||
i = num_locals2++;
|
||
else
|
||
i = num_locals + num_globals2++;
|
||
new_syms[i] = sym;
|
||
sym->udata.i = i + 1;
|
||
}
|
||
}
|
||
|
||
bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
|
||
|
||
elf_num_locals (abfd) = num_locals;
|
||
elf_num_globals (abfd) = num_globals;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Align to the maximum file alignment that could be required for any
|
||
ELF data structure. */
|
||
|
||
static inline file_ptr
|
||
align_file_position (file_ptr off, int align)
|
||
{
|
||
return (off + align - 1) & ~(align - 1);
|
||
}
|
||
|
||
/* Assign a file position to a section, optionally aligning to the
|
||
required section alignment. */
|
||
|
||
file_ptr
|
||
_bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
|
||
file_ptr offset,
|
||
bfd_boolean align)
|
||
{
|
||
if (align)
|
||
{
|
||
unsigned int al;
|
||
|
||
al = i_shdrp->sh_addralign;
|
||
if (al > 1)
|
||
offset = BFD_ALIGN (offset, al);
|
||
}
|
||
i_shdrp->sh_offset = offset;
|
||
if (i_shdrp->bfd_section != NULL)
|
||
i_shdrp->bfd_section->filepos = offset;
|
||
if (i_shdrp->sh_type != SHT_NOBITS)
|
||
offset += i_shdrp->sh_size;
|
||
return offset;
|
||
}
|
||
|
||
/* Compute the file positions we are going to put the sections at, and
|
||
otherwise prepare to begin writing out the ELF file. If LINK_INFO
|
||
is not NULL, this is being called by the ELF backend linker. */
|
||
|
||
bfd_boolean
|
||
_bfd_elf_compute_section_file_positions (bfd *abfd,
|
||
struct bfd_link_info *link_info)
|
||
{
|
||
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
bfd_boolean failed;
|
||
struct bfd_strtab_hash *strtab = NULL;
|
||
Elf_Internal_Shdr *shstrtab_hdr;
|
||
|
||
if (abfd->output_has_begun)
|
||
return TRUE;
|
||
|
||
/* Do any elf backend specific processing first. */
|
||
if (bed->elf_backend_begin_write_processing)
|
||
(*bed->elf_backend_begin_write_processing) (abfd, link_info);
|
||
|
||
if (! prep_headers (abfd))
|
||
return FALSE;
|
||
|
||
/* Post process the headers if necessary. */
|
||
if (bed->elf_backend_post_process_headers)
|
||
(*bed->elf_backend_post_process_headers) (abfd, link_info);
|
||
|
||
failed = FALSE;
|
||
bfd_map_over_sections (abfd, elf_fake_sections, &failed);
|
||
if (failed)
|
||
return FALSE;
|
||
|
||
if (!assign_section_numbers (abfd, link_info))
|
||
return FALSE;
|
||
|
||
/* The backend linker builds symbol table information itself. */
|
||
if (link_info == NULL && bfd_get_symcount (abfd) > 0)
|
||
{
|
||
/* Non-zero if doing a relocatable link. */
|
||
int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
|
||
|
||
if (! swap_out_syms (abfd, &strtab, relocatable_p))
|
||
return FALSE;
|
||
}
|
||
|
||
if (link_info == NULL)
|
||
{
|
||
bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
|
||
if (failed)
|
||
return FALSE;
|
||
}
|
||
|
||
shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
|
||
/* sh_name was set in prep_headers. */
|
||
shstrtab_hdr->sh_type = SHT_STRTAB;
|
||
shstrtab_hdr->sh_flags = 0;
|
||
shstrtab_hdr->sh_addr = 0;
|
||
shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
|
||
shstrtab_hdr->sh_entsize = 0;
|
||
shstrtab_hdr->sh_link = 0;
|
||
shstrtab_hdr->sh_info = 0;
|
||
/* sh_offset is set in assign_file_positions_except_relocs. */
|
||
shstrtab_hdr->sh_addralign = 1;
|
||
|
||
if (!assign_file_positions_except_relocs (abfd, link_info))
|
||
return FALSE;
|
||
|
||
if (link_info == NULL && bfd_get_symcount (abfd) > 0)
|
||
{
|
||
file_ptr off;
|
||
Elf_Internal_Shdr *hdr;
|
||
|
||
off = elf_tdata (abfd)->next_file_pos;
|
||
|
||
hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
|
||
|
||
hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
|
||
if (hdr->sh_size != 0)
|
||
off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
|
||
|
||
hdr = &elf_tdata (abfd)->strtab_hdr;
|
||
off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
|
||
|
||
elf_tdata (abfd)->next_file_pos = off;
|
||
|
||
/* Now that we know where the .strtab section goes, write it
|
||
out. */
|
||
if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
|
||
|| ! _bfd_stringtab_emit (abfd, strtab))
|
||
return FALSE;
|
||
_bfd_stringtab_free (strtab);
|
||
}
|
||
|
||
abfd->output_has_begun = TRUE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Create a mapping from a set of sections to a program segment. */
|
||
|
||
static struct elf_segment_map *
|
||
make_mapping (bfd *abfd,
|
||
asection **sections,
|
||
unsigned int from,
|
||
unsigned int to,
|
||
bfd_boolean phdr)
|
||
{
|
||
struct elf_segment_map *m;
|
||
unsigned int i;
|
||
asection **hdrpp;
|
||
bfd_size_type amt;
|
||
|
||
amt = sizeof (struct elf_segment_map);
|
||
amt += (to - from - 1) * sizeof (asection *);
|
||
m = bfd_zalloc (abfd, amt);
|
||
if (m == NULL)
|
||
return NULL;
|
||
m->next = NULL;
|
||
m->p_type = PT_LOAD;
|
||
for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
|
||
m->sections[i - from] = *hdrpp;
|
||
m->count = to - from;
|
||
|
||
if (from == 0 && phdr)
|
||
{
|
||
/* Include the headers in the first PT_LOAD segment. */
|
||
m->includes_filehdr = 1;
|
||
m->includes_phdrs = 1;
|
||
}
|
||
|
||
return m;
|
||
}
|
||
|
||
/* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
|
||
on failure. */
|
||
|
||
struct elf_segment_map *
|
||
_bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
|
||
{
|
||
struct elf_segment_map *m;
|
||
|
||
m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
|
||
if (m == NULL)
|
||
return NULL;
|
||
m->next = NULL;
|
||
m->p_type = PT_DYNAMIC;
|
||
m->count = 1;
|
||
m->sections[0] = dynsec;
|
||
|
||
return m;
|
||
}
|
||
|
||
/* Set up a mapping from BFD sections to program segments. */
|
||
|
||
static bfd_boolean
|
||
map_sections_to_segments (bfd *abfd)
|
||
{
|
||
asection **sections = NULL;
|
||
asection *s;
|
||
unsigned int i;
|
||
unsigned int count;
|
||
struct elf_segment_map *mfirst;
|
||
struct elf_segment_map **pm;
|
||
struct elf_segment_map *m;
|
||
asection *last_hdr;
|
||
bfd_vma last_size;
|
||
unsigned int phdr_index;
|
||
bfd_vma maxpagesize;
|
||
asection **hdrpp;
|
||
bfd_boolean phdr_in_segment = TRUE;
|
||
bfd_boolean writable;
|
||
int tls_count = 0;
|
||
asection *first_tls = NULL;
|
||
asection *dynsec, *eh_frame_hdr;
|
||
bfd_size_type amt;
|
||
|
||
if (elf_tdata (abfd)->segment_map != NULL)
|
||
return TRUE;
|
||
|
||
if (bfd_count_sections (abfd) == 0)
|
||
return TRUE;
|
||
|
||
/* Select the allocated sections, and sort them. */
|
||
|
||
sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
|
||
if (sections == NULL)
|
||
goto error_return;
|
||
|
||
i = 0;
|
||
for (s = abfd->sections; s != NULL; s = s->next)
|
||
{
|
||
if ((s->flags & SEC_ALLOC) != 0)
|
||
{
|
||
sections[i] = s;
|
||
++i;
|
||
}
|
||
}
|
||
BFD_ASSERT (i <= bfd_count_sections (abfd));
|
||
count = i;
|
||
|
||
qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
|
||
|
||
/* Build the mapping. */
|
||
|
||
mfirst = NULL;
|
||
pm = &mfirst;
|
||
|
||
/* If we have a .interp section, then create a PT_PHDR segment for
|
||
the program headers and a PT_INTERP segment for the .interp
|
||
section. */
|
||
s = bfd_get_section_by_name (abfd, ".interp");
|
||
if (s != NULL && (s->flags & SEC_LOAD) != 0)
|
||
{
|
||
amt = sizeof (struct elf_segment_map);
|
||
m = bfd_zalloc (abfd, amt);
|
||
if (m == NULL)
|
||
goto error_return;
|
||
m->next = NULL;
|
||
m->p_type = PT_PHDR;
|
||
/* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
|
||
m->p_flags = PF_R | PF_X;
|
||
m->p_flags_valid = 1;
|
||
m->includes_phdrs = 1;
|
||
|
||
*pm = m;
|
||
pm = &m->next;
|
||
|
||
amt = sizeof (struct elf_segment_map);
|
||
m = bfd_zalloc (abfd, amt);
|
||
if (m == NULL)
|
||
goto error_return;
|
||
m->next = NULL;
|
||
m->p_type = PT_INTERP;
|
||
m->count = 1;
|
||
m->sections[0] = s;
|
||
|
||
*pm = m;
|
||
pm = &m->next;
|
||
}
|
||
|
||
/* Look through the sections. We put sections in the same program
|
||
segment when the start of the second section can be placed within
|
||
a few bytes of the end of the first section. */
|
||
last_hdr = NULL;
|
||
last_size = 0;
|
||
phdr_index = 0;
|
||
maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
|
||
writable = FALSE;
|
||
dynsec = bfd_get_section_by_name (abfd, ".dynamic");
|
||
if (dynsec != NULL
|
||
&& (dynsec->flags & SEC_LOAD) == 0)
|
||
dynsec = NULL;
|
||
|
||
/* Deal with -Ttext or something similar such that the first section
|
||
is not adjacent to the program headers. This is an
|
||
approximation, since at this point we don't know exactly how many
|
||
program headers we will need. */
|
||
if (count > 0)
|
||
{
|
||
bfd_size_type phdr_size;
|
||
|
||
phdr_size = elf_tdata (abfd)->program_header_size;
|
||
if (phdr_size == 0)
|
||
phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
|
||
if ((abfd->flags & D_PAGED) == 0
|
||
|| sections[0]->lma < phdr_size
|
||
|| sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
|
||
phdr_in_segment = FALSE;
|
||
}
|
||
|
||
for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
|
||
{
|
||
asection *hdr;
|
||
bfd_boolean new_segment;
|
||
|
||
hdr = *hdrpp;
|
||
|
||
/* See if this section and the last one will fit in the same
|
||
segment. */
|
||
|
||
if (last_hdr == NULL)
|
||
{
|
||
/* If we don't have a segment yet, then we don't need a new
|
||
one (we build the last one after this loop). */
|
||
new_segment = FALSE;
|
||
}
|
||
else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
|
||
{
|
||
/* If this section has a different relation between the
|
||
virtual address and the load address, then we need a new
|
||
segment. */
|
||
new_segment = TRUE;
|
||
}
|
||
else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
|
||
< BFD_ALIGN (hdr->lma, maxpagesize))
|
||
{
|
||
/* If putting this section in this segment would force us to
|
||
skip a page in the segment, then we need a new segment. */
|
||
new_segment = TRUE;
|
||
}
|
||
else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
|
||
&& (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
|
||
{
|
||
/* We don't want to put a loadable section after a
|
||
nonloadable section in the same segment.
|
||
Consider .tbss sections as loadable for this purpose. */
|
||
new_segment = TRUE;
|
||
}
|
||
else if ((abfd->flags & D_PAGED) == 0)
|
||
{
|
||
/* If the file is not demand paged, which means that we
|
||
don't require the sections to be correctly aligned in the
|
||
file, then there is no other reason for a new segment. */
|
||
new_segment = FALSE;
|
||
}
|
||
else if (! writable
|
||
&& (hdr->flags & SEC_READONLY) == 0
|
||
&& (((last_hdr->lma + last_size - 1)
|
||
& ~(maxpagesize - 1))
|
||
!= (hdr->lma & ~(maxpagesize - 1))))
|
||
{
|
||
/* We don't want to put a writable section in a read only
|
||
segment, unless they are on the same page in memory
|
||
anyhow. We already know that the last section does not
|
||
bring us past the current section on the page, so the
|
||
only case in which the new section is not on the same
|
||
page as the previous section is when the previous section
|
||
ends precisely on a page boundary. */
|
||
new_segment = TRUE;
|
||
}
|
||
else
|
||
{
|
||
/* Otherwise, we can use the same segment. */
|
||
new_segment = FALSE;
|
||
}
|
||
|
||
if (! new_segment)
|
||
{
|
||
if ((hdr->flags & SEC_READONLY) == 0)
|
||
writable = TRUE;
|
||
last_hdr = hdr;
|
||
/* .tbss sections effectively have zero size. */
|
||
if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
|
||
last_size = hdr->size;
|
||
else
|
||
last_size = 0;
|
||
continue;
|
||
}
|
||
|
||
/* We need a new program segment. We must create a new program
|
||
header holding all the sections from phdr_index until hdr. */
|
||
|
||
m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
|
||
if (m == NULL)
|
||
goto error_return;
|
||
|
||
*pm = m;
|
||
pm = &m->next;
|
||
|
||
if ((hdr->flags & SEC_READONLY) == 0)
|
||
writable = TRUE;
|
||
else
|
||
writable = FALSE;
|
||
|
||
last_hdr = hdr;
|
||
/* .tbss sections effectively have zero size. */
|
||
if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
|
||
last_size = hdr->size;
|
||
else
|
||
last_size = 0;
|
||
phdr_index = i;
|
||
phdr_in_segment = FALSE;
|
||
}
|
||
|
||
/* Create a final PT_LOAD program segment. */
|
||
if (last_hdr != NULL)
|
||
{
|
||
m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
|
||
if (m == NULL)
|
||
goto error_return;
|
||
|
||
*pm = m;
|
||
pm = &m->next;
|
||
}
|
||
|
||
/* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
|
||
if (dynsec != NULL)
|
||
{
|
||
m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
|
||
if (m == NULL)
|
||
goto error_return;
|
||
*pm = m;
|
||
pm = &m->next;
|
||
}
|
||
|
||
/* For each loadable .note section, add a PT_NOTE segment. We don't
|
||
use bfd_get_section_by_name, because if we link together
|
||
nonloadable .note sections and loadable .note sections, we will
|
||
generate two .note sections in the output file. FIXME: Using
|
||
names for section types is bogus anyhow. */
|
||
for (s = abfd->sections; s != NULL; s = s->next)
|
||
{
|
||
if ((s->flags & SEC_LOAD) != 0
|
||
&& strncmp (s->name, ".note", 5) == 0)
|
||
{
|
||
amt = sizeof (struct elf_segment_map);
|
||
m = bfd_zalloc (abfd, amt);
|
||
if (m == NULL)
|
||
goto error_return;
|
||
m->next = NULL;
|
||
m->p_type = PT_NOTE;
|
||
m->count = 1;
|
||
m->sections[0] = s;
|
||
|
||
*pm = m;
|
||
pm = &m->next;
|
||
}
|
||
if (s->flags & SEC_THREAD_LOCAL)
|
||
{
|
||
if (! tls_count)
|
||
first_tls = s;
|
||
tls_count++;
|
||
}
|
||
}
|
||
|
||
/* If there are any SHF_TLS output sections, add PT_TLS segment. */
|
||
if (tls_count > 0)
|
||
{
|
||
int i;
|
||
|
||
amt = sizeof (struct elf_segment_map);
|
||
amt += (tls_count - 1) * sizeof (asection *);
|
||
m = bfd_zalloc (abfd, amt);
|
||
if (m == NULL)
|
||
goto error_return;
|
||
m->next = NULL;
|
||
m->p_type = PT_TLS;
|
||
m->count = tls_count;
|
||
/* Mandated PF_R. */
|
||
m->p_flags = PF_R;
|
||
m->p_flags_valid = 1;
|
||
for (i = 0; i < tls_count; ++i)
|
||
{
|
||
BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
|
||
m->sections[i] = first_tls;
|
||
first_tls = first_tls->next;
|
||
}
|
||
|
||
*pm = m;
|
||
pm = &m->next;
|
||
}
|
||
|
||
/* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
|
||
segment. */
|
||
eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
|
||
if (eh_frame_hdr != NULL
|
||
&& (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
|
||
{
|
||
amt = sizeof (struct elf_segment_map);
|
||
m = bfd_zalloc (abfd, amt);
|
||
if (m == NULL)
|
||
goto error_return;
|
||
m->next = NULL;
|
||
m->p_type = PT_GNU_EH_FRAME;
|
||
m->count = 1;
|
||
m->sections[0] = eh_frame_hdr->output_section;
|
||
|
||
*pm = m;
|
||
pm = &m->next;
|
||
}
|
||
|
||
if (elf_tdata (abfd)->stack_flags)
|
||
{
|
||
amt = sizeof (struct elf_segment_map);
|
||
m = bfd_zalloc (abfd, amt);
|
||
if (m == NULL)
|
||
goto error_return;
|
||
m->next = NULL;
|
||
m->p_type = PT_GNU_STACK;
|
||
m->p_flags = elf_tdata (abfd)->stack_flags;
|
||
m->p_flags_valid = 1;
|
||
|
||
*pm = m;
|
||
pm = &m->next;
|
||
}
|
||
|
||
if (elf_tdata (abfd)->relro)
|
||
{
|
||
amt = sizeof (struct elf_segment_map);
|
||
m = bfd_zalloc (abfd, amt);
|
||
if (m == NULL)
|
||
goto error_return;
|
||
m->next = NULL;
|
||
m->p_type = PT_GNU_RELRO;
|
||
m->p_flags = PF_R;
|
||
m->p_flags_valid = 1;
|
||
|
||
*pm = m;
|
||
pm = &m->next;
|
||
}
|
||
|
||
free (sections);
|
||
sections = NULL;
|
||
|
||
elf_tdata (abfd)->segment_map = mfirst;
|
||
return TRUE;
|
||
|
||
error_return:
|
||
if (sections != NULL)
|
||
free (sections);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Sort sections by address. */
|
||
|
||
static int
|
||
elf_sort_sections (const void *arg1, const void *arg2)
|
||
{
|
||
const asection *sec1 = *(const asection **) arg1;
|
||
const asection *sec2 = *(const asection **) arg2;
|
||
bfd_size_type size1, size2;
|
||
|
||
/* Sort by LMA first, since this is the address used to
|
||
place the section into a segment. */
|
||
if (sec1->lma < sec2->lma)
|
||
return -1;
|
||
else if (sec1->lma > sec2->lma)
|
||
return 1;
|
||
|
||
/* Then sort by VMA. Normally the LMA and the VMA will be
|
||
the same, and this will do nothing. */
|
||
if (sec1->vma < sec2->vma)
|
||
return -1;
|
||
else if (sec1->vma > sec2->vma)
|
||
return 1;
|
||
|
||
/* Put !SEC_LOAD sections after SEC_LOAD ones. */
|
||
|
||
#define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
|
||
|
||
if (TOEND (sec1))
|
||
{
|
||
if (TOEND (sec2))
|
||
{
|
||
/* If the indicies are the same, do not return 0
|
||
here, but continue to try the next comparison. */
|
||
if (sec1->target_index - sec2->target_index != 0)
|
||
return sec1->target_index - sec2->target_index;
|
||
}
|
||
else
|
||
return 1;
|
||
}
|
||
else if (TOEND (sec2))
|
||
return -1;
|
||
|
||
#undef TOEND
|
||
|
||
/* Sort by size, to put zero sized sections
|
||
before others at the same address. */
|
||
|
||
size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
|
||
size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
|
||
|
||
if (size1 < size2)
|
||
return -1;
|
||
if (size1 > size2)
|
||
return 1;
|
||
|
||
return sec1->target_index - sec2->target_index;
|
||
}
|
||
|
||
/* Ian Lance Taylor writes:
|
||
|
||
We shouldn't be using % with a negative signed number. That's just
|
||
not good. We have to make sure either that the number is not
|
||
negative, or that the number has an unsigned type. When the types
|
||
are all the same size they wind up as unsigned. When file_ptr is a
|
||
larger signed type, the arithmetic winds up as signed long long,
|
||
which is wrong.
|
||
|
||
What we're trying to say here is something like ``increase OFF by
|
||
the least amount that will cause it to be equal to the VMA modulo
|
||
the page size.'' */
|
||
/* In other words, something like:
|
||
|
||
vma_offset = m->sections[0]->vma % bed->maxpagesize;
|
||
off_offset = off % bed->maxpagesize;
|
||
if (vma_offset < off_offset)
|
||
adjustment = vma_offset + bed->maxpagesize - off_offset;
|
||
else
|
||
adjustment = vma_offset - off_offset;
|
||
|
||
which can can be collapsed into the expression below. */
|
||
|
||
static file_ptr
|
||
vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
|
||
{
|
||
return ((vma - off) % maxpagesize);
|
||
}
|
||
|
||
/* Assign file positions to the sections based on the mapping from
|
||
sections to segments. This function also sets up some fields in
|
||
the file header, and writes out the program headers. */
|
||
|
||
static bfd_boolean
|
||
assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
|
||
{
|
||
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
unsigned int count;
|
||
struct elf_segment_map *m;
|
||
unsigned int alloc;
|
||
Elf_Internal_Phdr *phdrs;
|
||
file_ptr off, voff;
|
||
bfd_vma filehdr_vaddr, filehdr_paddr;
|
||
bfd_vma phdrs_vaddr, phdrs_paddr;
|
||
Elf_Internal_Phdr *p;
|
||
|
||
if (elf_tdata (abfd)->segment_map == NULL)
|
||
{
|
||
if (! map_sections_to_segments (abfd))
|
||
return FALSE;
|
||
}
|
||
else
|
||
{
|
||
/* The placement algorithm assumes that non allocated sections are
|
||
not in PT_LOAD segments. We ensure this here by removing such
|
||
sections from the segment map. We also remove excluded
|
||
sections. */
|
||
for (m = elf_tdata (abfd)->segment_map;
|
||
m != NULL;
|
||
m = m->next)
|
||
{
|
||
unsigned int new_count;
|
||
unsigned int i;
|
||
|
||
new_count = 0;
|
||
for (i = 0; i < m->count; i ++)
|
||
{
|
||
if ((m->sections[i]->flags & SEC_EXCLUDE) == 0
|
||
&& ((m->sections[i]->flags & SEC_ALLOC) != 0
|
||
|| m->p_type != PT_LOAD))
|
||
{
|
||
if (i != new_count)
|
||
m->sections[new_count] = m->sections[i];
|
||
|
||
new_count ++;
|
||
}
|
||
}
|
||
|
||
if (new_count != m->count)
|
||
m->count = new_count;
|
||
}
|
||
}
|
||
|
||
if (bed->elf_backend_modify_segment_map)
|
||
{
|
||
if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
|
||
return FALSE;
|
||
}
|
||
|
||
count = 0;
|
||
for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
|
||
++count;
|
||
|
||
elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
|
||
elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
|
||
elf_elfheader (abfd)->e_phnum = count;
|
||
|
||
if (count == 0)
|
||
{
|
||
elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
|
||
return TRUE;
|
||
}
|
||
|
||
/* If we already counted the number of program segments, make sure
|
||
that we allocated enough space. This happens when SIZEOF_HEADERS
|
||
is used in a linker script. */
|
||
alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
|
||
if (alloc != 0 && count > alloc)
|
||
{
|
||
((*_bfd_error_handler)
|
||
(_("%B: Not enough room for program headers (allocated %u, need %u)"),
|
||
abfd, alloc, count));
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
|
||
if (alloc == 0)
|
||
alloc = count;
|
||
|
||
phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
|
||
if (phdrs == NULL)
|
||
return FALSE;
|
||
|
||
off = bed->s->sizeof_ehdr;
|
||
off += alloc * bed->s->sizeof_phdr;
|
||
|
||
filehdr_vaddr = 0;
|
||
filehdr_paddr = 0;
|
||
phdrs_vaddr = 0;
|
||
phdrs_paddr = 0;
|
||
|
||
for (m = elf_tdata (abfd)->segment_map, p = phdrs;
|
||
m != NULL;
|
||
m = m->next, p++)
|
||
{
|
||
unsigned int i;
|
||
asection **secpp;
|
||
|
||
/* If elf_segment_map is not from map_sections_to_segments, the
|
||
sections may not be correctly ordered. NOTE: sorting should
|
||
not be done to the PT_NOTE section of a corefile, which may
|
||
contain several pseudo-sections artificially created by bfd.
|
||
Sorting these pseudo-sections breaks things badly. */
|
||
if (m->count > 1
|
||
&& !(elf_elfheader (abfd)->e_type == ET_CORE
|
||
&& m->p_type == PT_NOTE))
|
||
qsort (m->sections, (size_t) m->count, sizeof (asection *),
|
||
elf_sort_sections);
|
||
|
||
/* An ELF segment (described by Elf_Internal_Phdr) may contain a
|
||
number of sections with contents contributing to both p_filesz
|
||
and p_memsz, followed by a number of sections with no contents
|
||
that just contribute to p_memsz. In this loop, OFF tracks next
|
||
available file offset for PT_LOAD and PT_NOTE segments. VOFF is
|
||
an adjustment we use for segments that have no file contents
|
||
but need zero filled memory allocation. */
|
||
voff = 0;
|
||
p->p_type = m->p_type;
|
||
p->p_flags = m->p_flags;
|
||
|
||
if (p->p_type == PT_LOAD
|
||
&& m->count > 0)
|
||
{
|
||
bfd_size_type align;
|
||
bfd_vma adjust;
|
||
unsigned int align_power = 0;
|
||
|
||
for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
|
||
{
|
||
unsigned int secalign;
|
||
|
||
secalign = bfd_get_section_alignment (abfd, *secpp);
|
||
if (secalign > align_power)
|
||
align_power = secalign;
|
||
}
|
||
align = (bfd_size_type) 1 << align_power;
|
||
|
||
if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > align)
|
||
align = bed->maxpagesize;
|
||
|
||
adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
|
||
off += adjust;
|
||
if (adjust != 0
|
||
&& !m->includes_filehdr
|
||
&& !m->includes_phdrs
|
||
&& (ufile_ptr) off >= align)
|
||
{
|
||
/* If the first section isn't loadable, the same holds for
|
||
any other sections. Since the segment won't need file
|
||
space, we can make p_offset overlap some prior segment.
|
||
However, .tbss is special. If a segment starts with
|
||
.tbss, we need to look at the next section to decide
|
||
whether the segment has any loadable sections. */
|
||
i = 0;
|
||
while ((m->sections[i]->flags & SEC_LOAD) == 0)
|
||
{
|
||
if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
|
||
|| ++i >= m->count)
|
||
{
|
||
off -= adjust;
|
||
voff = adjust - align;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
/* Make sure the .dynamic section is the first section in the
|
||
PT_DYNAMIC segment. */
|
||
else if (p->p_type == PT_DYNAMIC
|
||
&& m->count > 1
|
||
&& strcmp (m->sections[0]->name, ".dynamic") != 0)
|
||
{
|
||
_bfd_error_handler
|
||
(_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
|
||
abfd);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
|
||
if (m->count == 0)
|
||
p->p_vaddr = 0;
|
||
else
|
||
p->p_vaddr = m->sections[0]->vma;
|
||
|
||
if (m->p_paddr_valid)
|
||
p->p_paddr = m->p_paddr;
|
||
else if (m->count == 0)
|
||
p->p_paddr = 0;
|
||
else
|
||
p->p_paddr = m->sections[0]->lma;
|
||
|
||
if (p->p_type == PT_LOAD
|
||
&& (abfd->flags & D_PAGED) != 0)
|
||
p->p_align = bed->maxpagesize;
|
||
else if (m->count == 0)
|
||
p->p_align = 1 << bed->s->log_file_align;
|
||
else
|
||
p->p_align = 0;
|
||
|
||
p->p_offset = 0;
|
||
p->p_filesz = 0;
|
||
p->p_memsz = 0;
|
||
|
||
if (m->includes_filehdr)
|
||
{
|
||
if (! m->p_flags_valid)
|
||
p->p_flags |= PF_R;
|
||
p->p_offset = 0;
|
||
p->p_filesz = bed->s->sizeof_ehdr;
|
||
p->p_memsz = bed->s->sizeof_ehdr;
|
||
if (m->count > 0)
|
||
{
|
||
BFD_ASSERT (p->p_type == PT_LOAD);
|
||
|
||
if (p->p_vaddr < (bfd_vma) off)
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: Not enough room for program headers, try linking with -N"),
|
||
abfd);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
|
||
p->p_vaddr -= off;
|
||
if (! m->p_paddr_valid)
|
||
p->p_paddr -= off;
|
||
}
|
||
if (p->p_type == PT_LOAD)
|
||
{
|
||
filehdr_vaddr = p->p_vaddr;
|
||
filehdr_paddr = p->p_paddr;
|
||
}
|
||
}
|
||
|
||
if (m->includes_phdrs)
|
||
{
|
||
if (! m->p_flags_valid)
|
||
p->p_flags |= PF_R;
|
||
|
||
if (m->includes_filehdr)
|
||
{
|
||
if (p->p_type == PT_LOAD)
|
||
{
|
||
phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
|
||
phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
p->p_offset = bed->s->sizeof_ehdr;
|
||
|
||
if (m->count > 0)
|
||
{
|
||
BFD_ASSERT (p->p_type == PT_LOAD);
|
||
p->p_vaddr -= off - p->p_offset;
|
||
if (! m->p_paddr_valid)
|
||
p->p_paddr -= off - p->p_offset;
|
||
}
|
||
|
||
if (p->p_type == PT_LOAD)
|
||
{
|
||
phdrs_vaddr = p->p_vaddr;
|
||
phdrs_paddr = p->p_paddr;
|
||
}
|
||
else
|
||
phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
|
||
}
|
||
|
||
p->p_filesz += alloc * bed->s->sizeof_phdr;
|
||
p->p_memsz += alloc * bed->s->sizeof_phdr;
|
||
}
|
||
|
||
if (p->p_type == PT_LOAD
|
||
|| (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
|
||
{
|
||
if (! m->includes_filehdr && ! m->includes_phdrs)
|
||
p->p_offset = off + voff;
|
||
else
|
||
{
|
||
file_ptr adjust;
|
||
|
||
adjust = off - (p->p_offset + p->p_filesz);
|
||
p->p_filesz += adjust;
|
||
p->p_memsz += adjust;
|
||
}
|
||
}
|
||
|
||
for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
|
||
{
|
||
asection *sec;
|
||
flagword flags;
|
||
bfd_size_type align;
|
||
|
||
sec = *secpp;
|
||
flags = sec->flags;
|
||
align = 1 << bfd_get_section_alignment (abfd, sec);
|
||
|
||
if (p->p_type == PT_LOAD
|
||
|| p->p_type == PT_TLS)
|
||
{
|
||
bfd_signed_vma adjust;
|
||
|
||
if ((flags & SEC_LOAD) != 0)
|
||
{
|
||
adjust = sec->lma - (p->p_paddr + p->p_filesz);
|
||
if (adjust < 0)
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: section %A lma 0x%lx overlaps previous sections"),
|
||
abfd, sec, (unsigned long) sec->lma);
|
||
adjust = 0;
|
||
}
|
||
off += adjust;
|
||
p->p_filesz += adjust;
|
||
p->p_memsz += adjust;
|
||
}
|
||
/* .tbss is special. It doesn't contribute to p_memsz of
|
||
normal segments. */
|
||
else if ((flags & SEC_THREAD_LOCAL) == 0
|
||
|| p->p_type == PT_TLS)
|
||
{
|
||
/* The section VMA must equal the file position
|
||
modulo the page size. */
|
||
bfd_size_type page = align;
|
||
if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > page)
|
||
page = bed->maxpagesize;
|
||
adjust = vma_page_aligned_bias (sec->vma,
|
||
p->p_vaddr + p->p_memsz,
|
||
page);
|
||
p->p_memsz += adjust;
|
||
}
|
||
}
|
||
|
||
if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
|
||
{
|
||
/* The section at i == 0 is the one that actually contains
|
||
everything. */
|
||
if (i == 0)
|
||
{
|
||
sec->filepos = off;
|
||
off += sec->size;
|
||
p->p_filesz = sec->size;
|
||
p->p_memsz = 0;
|
||
p->p_align = 1;
|
||
}
|
||
else
|
||
{
|
||
/* The rest are fake sections that shouldn't be written. */
|
||
sec->filepos = 0;
|
||
sec->size = 0;
|
||
sec->flags = 0;
|
||
continue;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (p->p_type == PT_LOAD)
|
||
{
|
||
sec->filepos = off;
|
||
/* FIXME: The SEC_HAS_CONTENTS test here dates back to
|
||
1997, and the exact reason for it isn't clear. One
|
||
plausible explanation is that it is to work around
|
||
a problem we have with linker scripts using data
|
||
statements in NOLOAD sections. I don't think it
|
||
makes a great deal of sense to have such a section
|
||
assigned to a PT_LOAD segment, but apparently
|
||
people do this. The data statement results in a
|
||
bfd_data_link_order being built, and these need
|
||
section contents to write into. Eventually, we get
|
||
to _bfd_elf_write_object_contents which writes any
|
||
section with contents to the output. Make room
|
||
here for the write, so that following segments are
|
||
not trashed. */
|
||
if ((flags & SEC_LOAD) != 0
|
||
|| (flags & SEC_HAS_CONTENTS) != 0)
|
||
off += sec->size;
|
||
}
|
||
|
||
if ((flags & SEC_LOAD) != 0)
|
||
{
|
||
p->p_filesz += sec->size;
|
||
p->p_memsz += sec->size;
|
||
}
|
||
/* PR ld/594: Sections in note segments which are not loaded
|
||
contribute to the file size but not the in-memory size. */
|
||
else if (p->p_type == PT_NOTE
|
||
&& (flags & SEC_HAS_CONTENTS) != 0)
|
||
p->p_filesz += sec->size;
|
||
|
||
/* .tbss is special. It doesn't contribute to p_memsz of
|
||
normal segments. */
|
||
else if ((flags & SEC_THREAD_LOCAL) == 0
|
||
|| p->p_type == PT_TLS)
|
||
p->p_memsz += sec->size;
|
||
|
||
if (p->p_type == PT_TLS
|
||
&& sec->size == 0
|
||
&& (sec->flags & SEC_HAS_CONTENTS) == 0)
|
||
{
|
||
struct bfd_link_order *o;
|
||
bfd_vma tbss_size = 0;
|
||
|
||
for (o = sec->map_head.link_order; o != NULL; o = o->next)
|
||
if (tbss_size < o->offset + o->size)
|
||
tbss_size = o->offset + o->size;
|
||
|
||
p->p_memsz += tbss_size;
|
||
}
|
||
|
||
if (align > p->p_align
|
||
&& (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
|
||
p->p_align = align;
|
||
}
|
||
|
||
if (! m->p_flags_valid)
|
||
{
|
||
p->p_flags |= PF_R;
|
||
if ((flags & SEC_CODE) != 0)
|
||
p->p_flags |= PF_X;
|
||
if ((flags & SEC_READONLY) == 0)
|
||
p->p_flags |= PF_W;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now that we have set the section file positions, we can set up
|
||
the file positions for the non PT_LOAD segments. */
|
||
for (m = elf_tdata (abfd)->segment_map, p = phdrs;
|
||
m != NULL;
|
||
m = m->next, p++)
|
||
{
|
||
if (p->p_type != PT_LOAD && m->count > 0)
|
||
{
|
||
BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
|
||
/* If the section has not yet been assigned a file position,
|
||
do so now. The ARM BPABI requires that .dynamic section
|
||
not be marked SEC_ALLOC because it is not part of any
|
||
PT_LOAD segment, so it will not be processed above. */
|
||
if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
|
||
{
|
||
unsigned int i;
|
||
Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
|
||
|
||
i = 1;
|
||
while (i_shdrpp[i]->bfd_section != m->sections[0])
|
||
++i;
|
||
off = (_bfd_elf_assign_file_position_for_section
|
||
(i_shdrpp[i], off, TRUE));
|
||
p->p_filesz = m->sections[0]->size;
|
||
}
|
||
p->p_offset = m->sections[0]->filepos;
|
||
}
|
||
if (m->count == 0)
|
||
{
|
||
if (m->includes_filehdr)
|
||
{
|
||
p->p_vaddr = filehdr_vaddr;
|
||
if (! m->p_paddr_valid)
|
||
p->p_paddr = filehdr_paddr;
|
||
}
|
||
else if (m->includes_phdrs)
|
||
{
|
||
p->p_vaddr = phdrs_vaddr;
|
||
if (! m->p_paddr_valid)
|
||
p->p_paddr = phdrs_paddr;
|
||
}
|
||
else if (p->p_type == PT_GNU_RELRO)
|
||
{
|
||
Elf_Internal_Phdr *lp;
|
||
|
||
for (lp = phdrs; lp < phdrs + count; ++lp)
|
||
{
|
||
if (lp->p_type == PT_LOAD
|
||
&& lp->p_vaddr <= link_info->relro_end
|
||
&& lp->p_vaddr >= link_info->relro_start
|
||
&& lp->p_vaddr + lp->p_filesz
|
||
>= link_info->relro_end)
|
||
break;
|
||
}
|
||
|
||
if (lp < phdrs + count
|
||
&& link_info->relro_end > lp->p_vaddr)
|
||
{
|
||
p->p_vaddr = lp->p_vaddr;
|
||
p->p_paddr = lp->p_paddr;
|
||
p->p_offset = lp->p_offset;
|
||
p->p_filesz = link_info->relro_end - lp->p_vaddr;
|
||
p->p_memsz = p->p_filesz;
|
||
p->p_align = 1;
|
||
p->p_flags = (lp->p_flags & ~PF_W);
|
||
}
|
||
else
|
||
{
|
||
memset (p, 0, sizeof *p);
|
||
p->p_type = PT_NULL;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Clear out any program headers we allocated but did not use. */
|
||
for (; count < alloc; count++, p++)
|
||
{
|
||
memset (p, 0, sizeof *p);
|
||
p->p_type = PT_NULL;
|
||
}
|
||
|
||
elf_tdata (abfd)->phdr = phdrs;
|
||
|
||
elf_tdata (abfd)->next_file_pos = off;
|
||
|
||
/* Write out the program headers. */
|
||
if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
|
||
|| bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
|
||
return FALSE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Get the size of the program header.
|
||
|
||
If this is called by the linker before any of the section VMA's are set, it
|
||
can't calculate the correct value for a strange memory layout. This only
|
||
happens when SIZEOF_HEADERS is used in a linker script. In this case,
|
||
SORTED_HDRS is NULL and we assume the normal scenario of one text and one
|
||
data segment (exclusive of .interp and .dynamic).
|
||
|
||
??? User written scripts must either not use SIZEOF_HEADERS, or assume there
|
||
will be two segments. */
|
||
|
||
static bfd_size_type
|
||
get_program_header_size (bfd *abfd)
|
||
{
|
||
size_t segs;
|
||
asection *s;
|
||
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
|
||
/* We can't return a different result each time we're called. */
|
||
if (elf_tdata (abfd)->program_header_size != 0)
|
||
return elf_tdata (abfd)->program_header_size;
|
||
|
||
if (elf_tdata (abfd)->segment_map != NULL)
|
||
{
|
||
struct elf_segment_map *m;
|
||
|
||
segs = 0;
|
||
for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
|
||
++segs;
|
||
elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
|
||
return elf_tdata (abfd)->program_header_size;
|
||
}
|
||
|
||
/* Assume we will need exactly two PT_LOAD segments: one for text
|
||
and one for data. */
|
||
segs = 2;
|
||
|
||
s = bfd_get_section_by_name (abfd, ".interp");
|
||
if (s != NULL && (s->flags & SEC_LOAD) != 0)
|
||
{
|
||
/* If we have a loadable interpreter section, we need a
|
||
PT_INTERP segment. In this case, assume we also need a
|
||
PT_PHDR segment, although that may not be true for all
|
||
targets. */
|
||
segs += 2;
|
||
}
|
||
|
||
if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
|
||
{
|
||
/* We need a PT_DYNAMIC segment. */
|
||
++segs;
|
||
}
|
||
|
||
if (elf_tdata (abfd)->eh_frame_hdr)
|
||
{
|
||
/* We need a PT_GNU_EH_FRAME segment. */
|
||
++segs;
|
||
}
|
||
|
||
if (elf_tdata (abfd)->stack_flags)
|
||
{
|
||
/* We need a PT_GNU_STACK segment. */
|
||
++segs;
|
||
}
|
||
|
||
if (elf_tdata (abfd)->relro)
|
||
{
|
||
/* We need a PT_GNU_RELRO segment. */
|
||
++segs;
|
||
}
|
||
|
||
for (s = abfd->sections; s != NULL; s = s->next)
|
||
{
|
||
if ((s->flags & SEC_LOAD) != 0
|
||
&& strncmp (s->name, ".note", 5) == 0)
|
||
{
|
||
/* We need a PT_NOTE segment. */
|
||
++segs;
|
||
}
|
||
}
|
||
|
||
for (s = abfd->sections; s != NULL; s = s->next)
|
||
{
|
||
if (s->flags & SEC_THREAD_LOCAL)
|
||
{
|
||
/* We need a PT_TLS segment. */
|
||
++segs;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Let the backend count up any program headers it might need. */
|
||
if (bed->elf_backend_additional_program_headers)
|
||
{
|
||
int a;
|
||
|
||
a = (*bed->elf_backend_additional_program_headers) (abfd);
|
||
if (a == -1)
|
||
abort ();
|
||
segs += a;
|
||
}
|
||
|
||
elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
|
||
return elf_tdata (abfd)->program_header_size;
|
||
}
|
||
|
||
/* Work out the file positions of all the sections. This is called by
|
||
_bfd_elf_compute_section_file_positions. All the section sizes and
|
||
VMAs must be known before this is called.
|
||
|
||
Reloc sections come in two flavours: Those processed specially as
|
||
"side-channel" data attached to a section to which they apply, and
|
||
those that bfd doesn't process as relocations. The latter sort are
|
||
stored in a normal bfd section by bfd_section_from_shdr. We don't
|
||
consider the former sort here, unless they form part of the loadable
|
||
image. Reloc sections not assigned here will be handled later by
|
||
assign_file_positions_for_relocs.
|
||
|
||
We also don't set the positions of the .symtab and .strtab here. */
|
||
|
||
static bfd_boolean
|
||
assign_file_positions_except_relocs (bfd *abfd,
|
||
struct bfd_link_info *link_info)
|
||
{
|
||
struct elf_obj_tdata * const tdata = elf_tdata (abfd);
|
||
Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
|
||
Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
|
||
unsigned int num_sec = elf_numsections (abfd);
|
||
file_ptr off;
|
||
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
|
||
if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
|
||
&& bfd_get_format (abfd) != bfd_core)
|
||
{
|
||
Elf_Internal_Shdr **hdrpp;
|
||
unsigned int i;
|
||
|
||
/* Start after the ELF header. */
|
||
off = i_ehdrp->e_ehsize;
|
||
|
||
/* We are not creating an executable, which means that we are
|
||
not creating a program header, and that the actual order of
|
||
the sections in the file is unimportant. */
|
||
for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
|
||
{
|
||
Elf_Internal_Shdr *hdr;
|
||
|
||
hdr = *hdrpp;
|
||
if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
|
||
&& hdr->bfd_section == NULL)
|
||
|| i == tdata->symtab_section
|
||
|| i == tdata->symtab_shndx_section
|
||
|| i == tdata->strtab_section)
|
||
{
|
||
hdr->sh_offset = -1;
|
||
}
|
||
else
|
||
off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
|
||
|
||
if (i == SHN_LORESERVE - 1)
|
||
{
|
||
i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
|
||
hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
unsigned int i;
|
||
Elf_Internal_Shdr **hdrpp;
|
||
|
||
/* Assign file positions for the loaded sections based on the
|
||
assignment of sections to segments. */
|
||
if (! assign_file_positions_for_segments (abfd, link_info))
|
||
return FALSE;
|
||
|
||
/* Assign file positions for the other sections. */
|
||
|
||
off = elf_tdata (abfd)->next_file_pos;
|
||
for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
|
||
{
|
||
Elf_Internal_Shdr *hdr;
|
||
|
||
hdr = *hdrpp;
|
||
if (hdr->bfd_section != NULL
|
||
&& hdr->bfd_section->filepos != 0)
|
||
hdr->sh_offset = hdr->bfd_section->filepos;
|
||
else if ((hdr->sh_flags & SHF_ALLOC) != 0)
|
||
{
|
||
((*_bfd_error_handler)
|
||
(_("%B: warning: allocated section `%s' not in segment"),
|
||
abfd,
|
||
(hdr->bfd_section == NULL
|
||
? "*unknown*"
|
||
: hdr->bfd_section->name)));
|
||
if ((abfd->flags & D_PAGED) != 0)
|
||
off += vma_page_aligned_bias (hdr->sh_addr, off,
|
||
bed->maxpagesize);
|
||
else
|
||
off += vma_page_aligned_bias (hdr->sh_addr, off,
|
||
hdr->sh_addralign);
|
||
off = _bfd_elf_assign_file_position_for_section (hdr, off,
|
||
FALSE);
|
||
}
|
||
else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
|
||
&& hdr->bfd_section == NULL)
|
||
|| hdr == i_shdrpp[tdata->symtab_section]
|
||
|| hdr == i_shdrpp[tdata->symtab_shndx_section]
|
||
|| hdr == i_shdrpp[tdata->strtab_section])
|
||
hdr->sh_offset = -1;
|
||
else
|
||
off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
|
||
|
||
if (i == SHN_LORESERVE - 1)
|
||
{
|
||
i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
|
||
hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Place the section headers. */
|
||
off = align_file_position (off, 1 << bed->s->log_file_align);
|
||
i_ehdrp->e_shoff = off;
|
||
off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
|
||
|
||
elf_tdata (abfd)->next_file_pos = off;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
static bfd_boolean
|
||
prep_headers (bfd *abfd)
|
||
{
|
||
Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
|
||
Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
|
||
Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
|
||
struct elf_strtab_hash *shstrtab;
|
||
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
|
||
i_ehdrp = elf_elfheader (abfd);
|
||
i_shdrp = elf_elfsections (abfd);
|
||
|
||
shstrtab = _bfd_elf_strtab_init ();
|
||
if (shstrtab == NULL)
|
||
return FALSE;
|
||
|
||
elf_shstrtab (abfd) = shstrtab;
|
||
|
||
i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
|
||
i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
|
||
i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
|
||
i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
|
||
|
||
i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
|
||
i_ehdrp->e_ident[EI_DATA] =
|
||
bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
|
||
i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
|
||
|
||
if ((abfd->flags & DYNAMIC) != 0)
|
||
i_ehdrp->e_type = ET_DYN;
|
||
else if ((abfd->flags & EXEC_P) != 0)
|
||
i_ehdrp->e_type = ET_EXEC;
|
||
else if (bfd_get_format (abfd) == bfd_core)
|
||
i_ehdrp->e_type = ET_CORE;
|
||
else
|
||
i_ehdrp->e_type = ET_REL;
|
||
|
||
switch (bfd_get_arch (abfd))
|
||
{
|
||
case bfd_arch_unknown:
|
||
i_ehdrp->e_machine = EM_NONE;
|
||
break;
|
||
|
||
/* There used to be a long list of cases here, each one setting
|
||
e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
|
||
in the corresponding bfd definition. To avoid duplication,
|
||
the switch was removed. Machines that need special handling
|
||
can generally do it in elf_backend_final_write_processing(),
|
||
unless they need the information earlier than the final write.
|
||
Such need can generally be supplied by replacing the tests for
|
||
e_machine with the conditions used to determine it. */
|
||
default:
|
||
i_ehdrp->e_machine = bed->elf_machine_code;
|
||
}
|
||
|
||
i_ehdrp->e_version = bed->s->ev_current;
|
||
i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
|
||
|
||
/* No program header, for now. */
|
||
i_ehdrp->e_phoff = 0;
|
||
i_ehdrp->e_phentsize = 0;
|
||
i_ehdrp->e_phnum = 0;
|
||
|
||
/* Each bfd section is section header entry. */
|
||
i_ehdrp->e_entry = bfd_get_start_address (abfd);
|
||
i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
|
||
|
||
/* If we're building an executable, we'll need a program header table. */
|
||
if (abfd->flags & EXEC_P)
|
||
/* It all happens later. */
|
||
;
|
||
else
|
||
{
|
||
i_ehdrp->e_phentsize = 0;
|
||
i_phdrp = 0;
|
||
i_ehdrp->e_phoff = 0;
|
||
}
|
||
|
||
elf_tdata (abfd)->symtab_hdr.sh_name =
|
||
(unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
|
||
elf_tdata (abfd)->strtab_hdr.sh_name =
|
||
(unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
|
||
elf_tdata (abfd)->shstrtab_hdr.sh_name =
|
||
(unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
|
||
if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
|
||
|| elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
|
||
|| elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
|
||
return FALSE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Assign file positions for all the reloc sections which are not part
|
||
of the loadable file image. */
|
||
|
||
void
|
||
_bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
|
||
{
|
||
file_ptr off;
|
||
unsigned int i, num_sec;
|
||
Elf_Internal_Shdr **shdrpp;
|
||
|
||
off = elf_tdata (abfd)->next_file_pos;
|
||
|
||
num_sec = elf_numsections (abfd);
|
||
for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
|
||
{
|
||
Elf_Internal_Shdr *shdrp;
|
||
|
||
shdrp = *shdrpp;
|
||
if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
|
||
&& shdrp->sh_offset == -1)
|
||
off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
|
||
}
|
||
|
||
elf_tdata (abfd)->next_file_pos = off;
|
||
}
|
||
|
||
bfd_boolean
|
||
_bfd_elf_write_object_contents (bfd *abfd)
|
||
{
|
||
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
Elf_Internal_Ehdr *i_ehdrp;
|
||
Elf_Internal_Shdr **i_shdrp;
|
||
bfd_boolean failed;
|
||
unsigned int count, num_sec;
|
||
|
||
if (! abfd->output_has_begun
|
||
&& ! _bfd_elf_compute_section_file_positions (abfd, NULL))
|
||
return FALSE;
|
||
|
||
i_shdrp = elf_elfsections (abfd);
|
||
i_ehdrp = elf_elfheader (abfd);
|
||
|
||
failed = FALSE;
|
||
bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
|
||
if (failed)
|
||
return FALSE;
|
||
|
||
_bfd_elf_assign_file_positions_for_relocs (abfd);
|
||
|
||
/* After writing the headers, we need to write the sections too... */
|
||
num_sec = elf_numsections (abfd);
|
||
for (count = 1; count < num_sec; count++)
|
||
{
|
||
if (bed->elf_backend_section_processing)
|
||
(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
|
||
if (i_shdrp[count]->contents)
|
||
{
|
||
bfd_size_type amt = i_shdrp[count]->sh_size;
|
||
|
||
if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
|
||
|| bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
|
||
return FALSE;
|
||
}
|
||
if (count == SHN_LORESERVE - 1)
|
||
count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
|
||
}
|
||
|
||
/* Write out the section header names. */
|
||
if (elf_shstrtab (abfd) != NULL
|
||
&& (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
|
||
|| ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
|
||
return FALSE;
|
||
|
||
if (bed->elf_backend_final_write_processing)
|
||
(*bed->elf_backend_final_write_processing) (abfd,
|
||
elf_tdata (abfd)->linker);
|
||
|
||
return bed->s->write_shdrs_and_ehdr (abfd);
|
||
}
|
||
|
||
bfd_boolean
|
||
_bfd_elf_write_corefile_contents (bfd *abfd)
|
||
{
|
||
/* Hopefully this can be done just like an object file. */
|
||
return _bfd_elf_write_object_contents (abfd);
|
||
}
|
||
|
||
/* Given a section, search the header to find them. */
|
||
|
||
int
|
||
_bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
|
||
{
|
||
const struct elf_backend_data *bed;
|
||
int index;
|
||
|
||
if (elf_section_data (asect) != NULL
|
||
&& elf_section_data (asect)->this_idx != 0)
|
||
return elf_section_data (asect)->this_idx;
|
||
|
||
if (bfd_is_abs_section (asect))
|
||
index = SHN_ABS;
|
||
else if (bfd_is_com_section (asect))
|
||
index = SHN_COMMON;
|
||
else if (bfd_is_und_section (asect))
|
||
index = SHN_UNDEF;
|
||
else
|
||
index = -1;
|
||
|
||
bed = get_elf_backend_data (abfd);
|
||
if (bed->elf_backend_section_from_bfd_section)
|
||
{
|
||
int retval = index;
|
||
|
||
if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
|
||
return retval;
|
||
}
|
||
|
||
if (index == -1)
|
||
bfd_set_error (bfd_error_nonrepresentable_section);
|
||
|
||
return index;
|
||
}
|
||
|
||
/* Given a BFD symbol, return the index in the ELF symbol table, or -1
|
||
on error. */
|
||
|
||
int
|
||
_bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
|
||
{
|
||
asymbol *asym_ptr = *asym_ptr_ptr;
|
||
int idx;
|
||
flagword flags = asym_ptr->flags;
|
||
|
||
/* When gas creates relocations against local labels, it creates its
|
||
own symbol for the section, but does put the symbol into the
|
||
symbol chain, so udata is 0. When the linker is generating
|
||
relocatable output, this section symbol may be for one of the
|
||
input sections rather than the output section. */
|
||
if (asym_ptr->udata.i == 0
|
||
&& (flags & BSF_SECTION_SYM)
|
||
&& asym_ptr->section)
|
||
{
|
||
int indx;
|
||
|
||
if (asym_ptr->section->output_section != NULL)
|
||
indx = asym_ptr->section->output_section->index;
|
||
else
|
||
indx = asym_ptr->section->index;
|
||
if (indx < elf_num_section_syms (abfd)
|
||
&& elf_section_syms (abfd)[indx] != NULL)
|
||
asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
|
||
}
|
||
|
||
idx = asym_ptr->udata.i;
|
||
|
||
if (idx == 0)
|
||
{
|
||
/* This case can occur when using --strip-symbol on a symbol
|
||
which is used in a relocation entry. */
|
||
(*_bfd_error_handler)
|
||
(_("%B: symbol `%s' required but not present"),
|
||
abfd, bfd_asymbol_name (asym_ptr));
|
||
bfd_set_error (bfd_error_no_symbols);
|
||
return -1;
|
||
}
|
||
|
||
#if DEBUG & 4
|
||
{
|
||
fprintf (stderr,
|
||
"elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
|
||
(long) asym_ptr, asym_ptr->name, idx, flags,
|
||
elf_symbol_flags (flags));
|
||
fflush (stderr);
|
||
}
|
||
#endif
|
||
|
||
return idx;
|
||
}
|
||
|
||
/* Copy private BFD data. This copies any program header information. */
|
||
|
||
static bfd_boolean
|
||
copy_private_bfd_data (bfd *ibfd, bfd *obfd)
|
||
{
|
||
Elf_Internal_Ehdr *iehdr;
|
||
struct elf_segment_map *map;
|
||
struct elf_segment_map *map_first;
|
||
struct elf_segment_map **pointer_to_map;
|
||
Elf_Internal_Phdr *segment;
|
||
asection *section;
|
||
unsigned int i;
|
||
unsigned int num_segments;
|
||
bfd_boolean phdr_included = FALSE;
|
||
bfd_vma maxpagesize;
|
||
struct elf_segment_map *phdr_adjust_seg = NULL;
|
||
unsigned int phdr_adjust_num = 0;
|
||
const struct elf_backend_data *bed;
|
||
|
||
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|
||
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
|
||
return TRUE;
|
||
|
||
if (elf_tdata (ibfd)->phdr == NULL)
|
||
return TRUE;
|
||
|
||
bed = get_elf_backend_data (ibfd);
|
||
iehdr = elf_elfheader (ibfd);
|
||
|
||
map_first = NULL;
|
||
pointer_to_map = &map_first;
|
||
|
||
num_segments = elf_elfheader (ibfd)->e_phnum;
|
||
maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
|
||
|
||
/* Returns the end address of the segment + 1. */
|
||
#define SEGMENT_END(segment, start) \
|
||
(start + (segment->p_memsz > segment->p_filesz \
|
||
? segment->p_memsz : segment->p_filesz))
|
||
|
||
#define SECTION_SIZE(section, segment) \
|
||
(((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
|
||
!= SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
|
||
? section->size : 0)
|
||
|
||
/* Returns TRUE if the given section is contained within
|
||
the given segment. VMA addresses are compared. */
|
||
#define IS_CONTAINED_BY_VMA(section, segment) \
|
||
(section->vma >= segment->p_vaddr \
|
||
&& (section->vma + SECTION_SIZE (section, segment) \
|
||
<= (SEGMENT_END (segment, segment->p_vaddr))))
|
||
|
||
/* Returns TRUE if the given section is contained within
|
||
the given segment. LMA addresses are compared. */
|
||
#define IS_CONTAINED_BY_LMA(section, segment, base) \
|
||
(section->lma >= base \
|
||
&& (section->lma + SECTION_SIZE (section, segment) \
|
||
<= SEGMENT_END (segment, base)))
|
||
|
||
/* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
|
||
#define IS_COREFILE_NOTE(p, s) \
|
||
(p->p_type == PT_NOTE \
|
||
&& bfd_get_format (ibfd) == bfd_core \
|
||
&& s->vma == 0 && s->lma == 0 \
|
||
&& (bfd_vma) s->filepos >= p->p_offset \
|
||
&& ((bfd_vma) s->filepos + s->size \
|
||
<= p->p_offset + p->p_filesz))
|
||
|
||
/* The complicated case when p_vaddr is 0 is to handle the Solaris
|
||
linker, which generates a PT_INTERP section with p_vaddr and
|
||
p_memsz set to 0. */
|
||
#define IS_SOLARIS_PT_INTERP(p, s) \
|
||
(p->p_vaddr == 0 \
|
||
&& p->p_paddr == 0 \
|
||
&& p->p_memsz == 0 \
|
||
&& p->p_filesz > 0 \
|
||
&& (s->flags & SEC_HAS_CONTENTS) != 0 \
|
||
&& s->size > 0 \
|
||
&& (bfd_vma) s->filepos >= p->p_offset \
|
||
&& ((bfd_vma) s->filepos + s->size \
|
||
<= p->p_offset + p->p_filesz))
|
||
|
||
/* Decide if the given section should be included in the given segment.
|
||
A section will be included if:
|
||
1. It is within the address space of the segment -- we use the LMA
|
||
if that is set for the segment and the VMA otherwise,
|
||
2. It is an allocated segment,
|
||
3. There is an output section associated with it,
|
||
4. The section has not already been allocated to a previous segment.
|
||
5. PT_GNU_STACK segments do not include any sections.
|
||
6. PT_TLS segment includes only SHF_TLS sections.
|
||
7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
|
||
8. PT_DYNAMIC should not contain empty sections at the beginning
|
||
(with the possible exception of .dynamic). */
|
||
#define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
|
||
((((segment->p_paddr \
|
||
? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
|
||
: IS_CONTAINED_BY_VMA (section, segment)) \
|
||
&& (section->flags & SEC_ALLOC) != 0) \
|
||
|| IS_COREFILE_NOTE (segment, section)) \
|
||
&& section->output_section != NULL \
|
||
&& segment->p_type != PT_GNU_STACK \
|
||
&& (segment->p_type != PT_TLS \
|
||
|| (section->flags & SEC_THREAD_LOCAL)) \
|
||
&& (segment->p_type == PT_LOAD \
|
||
|| segment->p_type == PT_TLS \
|
||
|| (section->flags & SEC_THREAD_LOCAL) == 0) \
|
||
&& (segment->p_type != PT_DYNAMIC \
|
||
|| SECTION_SIZE (section, segment) > 0 \
|
||
|| (segment->p_paddr \
|
||
? segment->p_paddr != section->lma \
|
||
: segment->p_vaddr != section->vma) \
|
||
|| (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
|
||
== 0)) \
|
||
&& ! section->segment_mark)
|
||
|
||
/* Returns TRUE iff seg1 starts after the end of seg2. */
|
||
#define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
|
||
(seg1->field >= SEGMENT_END (seg2, seg2->field))
|
||
|
||
/* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
|
||
their VMA address ranges and their LMA address ranges overlap.
|
||
It is possible to have overlapping VMA ranges without overlapping LMA
|
||
ranges. RedBoot images for example can have both .data and .bss mapped
|
||
to the same VMA range, but with the .data section mapped to a different
|
||
LMA. */
|
||
#define SEGMENT_OVERLAPS(seg1, seg2) \
|
||
( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
|
||
|| SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
|
||
&& !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
|
||
|| SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
|
||
|
||
/* Initialise the segment mark field. */
|
||
for (section = ibfd->sections; section != NULL; section = section->next)
|
||
section->segment_mark = FALSE;
|
||
|
||
/* Scan through the segments specified in the program header
|
||
of the input BFD. For this first scan we look for overlaps
|
||
in the loadable segments. These can be created by weird
|
||
parameters to objcopy. Also, fix some solaris weirdness. */
|
||
for (i = 0, segment = elf_tdata (ibfd)->phdr;
|
||
i < num_segments;
|
||
i++, segment++)
|
||
{
|
||
unsigned int j;
|
||
Elf_Internal_Phdr *segment2;
|
||
|
||
if (segment->p_type == PT_INTERP)
|
||
for (section = ibfd->sections; section; section = section->next)
|
||
if (IS_SOLARIS_PT_INTERP (segment, section))
|
||
{
|
||
/* Mininal change so that the normal section to segment
|
||
assignment code will work. */
|
||
segment->p_vaddr = section->vma;
|
||
break;
|
||
}
|
||
|
||
if (segment->p_type != PT_LOAD)
|
||
continue;
|
||
|
||
/* Determine if this segment overlaps any previous segments. */
|
||
for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
|
||
{
|
||
bfd_signed_vma extra_length;
|
||
|
||
if (segment2->p_type != PT_LOAD
|
||
|| ! SEGMENT_OVERLAPS (segment, segment2))
|
||
continue;
|
||
|
||
/* Merge the two segments together. */
|
||
if (segment2->p_vaddr < segment->p_vaddr)
|
||
{
|
||
/* Extend SEGMENT2 to include SEGMENT and then delete
|
||
SEGMENT. */
|
||
extra_length =
|
||
SEGMENT_END (segment, segment->p_vaddr)
|
||
- SEGMENT_END (segment2, segment2->p_vaddr);
|
||
|
||
if (extra_length > 0)
|
||
{
|
||
segment2->p_memsz += extra_length;
|
||
segment2->p_filesz += extra_length;
|
||
}
|
||
|
||
segment->p_type = PT_NULL;
|
||
|
||
/* Since we have deleted P we must restart the outer loop. */
|
||
i = 0;
|
||
segment = elf_tdata (ibfd)->phdr;
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
/* Extend SEGMENT to include SEGMENT2 and then delete
|
||
SEGMENT2. */
|
||
extra_length =
|
||
SEGMENT_END (segment2, segment2->p_vaddr)
|
||
- SEGMENT_END (segment, segment->p_vaddr);
|
||
|
||
if (extra_length > 0)
|
||
{
|
||
segment->p_memsz += extra_length;
|
||
segment->p_filesz += extra_length;
|
||
}
|
||
|
||
segment2->p_type = PT_NULL;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* The second scan attempts to assign sections to segments. */
|
||
for (i = 0, segment = elf_tdata (ibfd)->phdr;
|
||
i < num_segments;
|
||
i ++, segment ++)
|
||
{
|
||
unsigned int section_count;
|
||
asection ** sections;
|
||
asection * output_section;
|
||
unsigned int isec;
|
||
bfd_vma matching_lma;
|
||
bfd_vma suggested_lma;
|
||
unsigned int j;
|
||
bfd_size_type amt;
|
||
|
||
if (segment->p_type == PT_NULL)
|
||
continue;
|
||
|
||
/* Compute how many sections might be placed into this segment. */
|
||
for (section = ibfd->sections, section_count = 0;
|
||
section != NULL;
|
||
section = section->next)
|
||
if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
|
||
++section_count;
|
||
|
||
/* Allocate a segment map big enough to contain
|
||
all of the sections we have selected. */
|
||
amt = sizeof (struct elf_segment_map);
|
||
amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
|
||
map = bfd_alloc (obfd, amt);
|
||
if (map == NULL)
|
||
return FALSE;
|
||
|
||
/* Initialise the fields of the segment map. Default to
|
||
using the physical address of the segment in the input BFD. */
|
||
map->next = NULL;
|
||
map->p_type = segment->p_type;
|
||
map->p_flags = segment->p_flags;
|
||
map->p_flags_valid = 1;
|
||
map->p_paddr = segment->p_paddr;
|
||
map->p_paddr_valid = 1;
|
||
|
||
/* Determine if this segment contains the ELF file header
|
||
and if it contains the program headers themselves. */
|
||
map->includes_filehdr = (segment->p_offset == 0
|
||
&& segment->p_filesz >= iehdr->e_ehsize);
|
||
|
||
map->includes_phdrs = 0;
|
||
|
||
if (! phdr_included || segment->p_type != PT_LOAD)
|
||
{
|
||
map->includes_phdrs =
|
||
(segment->p_offset <= (bfd_vma) iehdr->e_phoff
|
||
&& (segment->p_offset + segment->p_filesz
|
||
>= ((bfd_vma) iehdr->e_phoff
|
||
+ iehdr->e_phnum * iehdr->e_phentsize)));
|
||
|
||
if (segment->p_type == PT_LOAD && map->includes_phdrs)
|
||
phdr_included = TRUE;
|
||
}
|
||
|
||
if (section_count == 0)
|
||
{
|
||
/* Special segments, such as the PT_PHDR segment, may contain
|
||
no sections, but ordinary, loadable segments should contain
|
||
something. They are allowed by the ELF spec however, so only
|
||
a warning is produced. */
|
||
if (segment->p_type == PT_LOAD)
|
||
(*_bfd_error_handler)
|
||
(_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
|
||
ibfd);
|
||
|
||
map->count = 0;
|
||
*pointer_to_map = map;
|
||
pointer_to_map = &map->next;
|
||
|
||
continue;
|
||
}
|
||
|
||
/* Now scan the sections in the input BFD again and attempt
|
||
to add their corresponding output sections to the segment map.
|
||
The problem here is how to handle an output section which has
|
||
been moved (ie had its LMA changed). There are four possibilities:
|
||
|
||
1. None of the sections have been moved.
|
||
In this case we can continue to use the segment LMA from the
|
||
input BFD.
|
||
|
||
2. All of the sections have been moved by the same amount.
|
||
In this case we can change the segment's LMA to match the LMA
|
||
of the first section.
|
||
|
||
3. Some of the sections have been moved, others have not.
|
||
In this case those sections which have not been moved can be
|
||
placed in the current segment which will have to have its size,
|
||
and possibly its LMA changed, and a new segment or segments will
|
||
have to be created to contain the other sections.
|
||
|
||
4. The sections have been moved, but not by the same amount.
|
||
In this case we can change the segment's LMA to match the LMA
|
||
of the first section and we will have to create a new segment
|
||
or segments to contain the other sections.
|
||
|
||
In order to save time, we allocate an array to hold the section
|
||
pointers that we are interested in. As these sections get assigned
|
||
to a segment, they are removed from this array. */
|
||
|
||
/* Gcc 2.96 miscompiles this code on mips. Don't do casting here
|
||
to work around this long long bug. */
|
||
sections = bfd_malloc2 (section_count, sizeof (asection *));
|
||
if (sections == NULL)
|
||
return FALSE;
|
||
|
||
/* Step One: Scan for segment vs section LMA conflicts.
|
||
Also add the sections to the section array allocated above.
|
||
Also add the sections to the current segment. In the common
|
||
case, where the sections have not been moved, this means that
|
||
we have completely filled the segment, and there is nothing
|
||
more to do. */
|
||
isec = 0;
|
||
matching_lma = 0;
|
||
suggested_lma = 0;
|
||
|
||
for (j = 0, section = ibfd->sections;
|
||
section != NULL;
|
||
section = section->next)
|
||
{
|
||
if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
|
||
{
|
||
output_section = section->output_section;
|
||
|
||
sections[j ++] = section;
|
||
|
||
/* The Solaris native linker always sets p_paddr to 0.
|
||
We try to catch that case here, and set it to the
|
||
correct value. Note - some backends require that
|
||
p_paddr be left as zero. */
|
||
if (segment->p_paddr == 0
|
||
&& segment->p_vaddr != 0
|
||
&& (! bed->want_p_paddr_set_to_zero)
|
||
&& isec == 0
|
||
&& output_section->lma != 0
|
||
&& (output_section->vma == (segment->p_vaddr
|
||
+ (map->includes_filehdr
|
||
? iehdr->e_ehsize
|
||
: 0)
|
||
+ (map->includes_phdrs
|
||
? (iehdr->e_phnum
|
||
* iehdr->e_phentsize)
|
||
: 0))))
|
||
map->p_paddr = segment->p_vaddr;
|
||
|
||
/* Match up the physical address of the segment with the
|
||
LMA address of the output section. */
|
||
if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
|
||
|| IS_COREFILE_NOTE (segment, section)
|
||
|| (bed->want_p_paddr_set_to_zero &&
|
||
IS_CONTAINED_BY_VMA (output_section, segment))
|
||
)
|
||
{
|
||
if (matching_lma == 0)
|
||
matching_lma = output_section->lma;
|
||
|
||
/* We assume that if the section fits within the segment
|
||
then it does not overlap any other section within that
|
||
segment. */
|
||
map->sections[isec ++] = output_section;
|
||
}
|
||
else if (suggested_lma == 0)
|
||
suggested_lma = output_section->lma;
|
||
}
|
||
}
|
||
|
||
BFD_ASSERT (j == section_count);
|
||
|
||
/* Step Two: Adjust the physical address of the current segment,
|
||
if necessary. */
|
||
if (isec == section_count)
|
||
{
|
||
/* All of the sections fitted within the segment as currently
|
||
specified. This is the default case. Add the segment to
|
||
the list of built segments and carry on to process the next
|
||
program header in the input BFD. */
|
||
map->count = section_count;
|
||
*pointer_to_map = map;
|
||
pointer_to_map = &map->next;
|
||
|
||
free (sections);
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
if (matching_lma != 0)
|
||
{
|
||
/* At least one section fits inside the current segment.
|
||
Keep it, but modify its physical address to match the
|
||
LMA of the first section that fitted. */
|
||
map->p_paddr = matching_lma;
|
||
}
|
||
else
|
||
{
|
||
/* None of the sections fitted inside the current segment.
|
||
Change the current segment's physical address to match
|
||
the LMA of the first section. */
|
||
map->p_paddr = suggested_lma;
|
||
}
|
||
|
||
/* Offset the segment physical address from the lma
|
||
to allow for space taken up by elf headers. */
|
||
if (map->includes_filehdr)
|
||
map->p_paddr -= iehdr->e_ehsize;
|
||
|
||
if (map->includes_phdrs)
|
||
{
|
||
map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
|
||
|
||
/* iehdr->e_phnum is just an estimate of the number
|
||
of program headers that we will need. Make a note
|
||
here of the number we used and the segment we chose
|
||
to hold these headers, so that we can adjust the
|
||
offset when we know the correct value. */
|
||
phdr_adjust_num = iehdr->e_phnum;
|
||
phdr_adjust_seg = map;
|
||
}
|
||
}
|
||
|
||
/* Step Three: Loop over the sections again, this time assigning
|
||
those that fit to the current segment and removing them from the
|
||
sections array; but making sure not to leave large gaps. Once all
|
||
possible sections have been assigned to the current segment it is
|
||
added to the list of built segments and if sections still remain
|
||
to be assigned, a new segment is constructed before repeating
|
||
the loop. */
|
||
isec = 0;
|
||
do
|
||
{
|
||
map->count = 0;
|
||
suggested_lma = 0;
|
||
|
||
/* Fill the current segment with sections that fit. */
|
||
for (j = 0; j < section_count; j++)
|
||
{
|
||
section = sections[j];
|
||
|
||
if (section == NULL)
|
||
continue;
|
||
|
||
output_section = section->output_section;
|
||
|
||
BFD_ASSERT (output_section != NULL);
|
||
|
||
if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
|
||
|| IS_COREFILE_NOTE (segment, section))
|
||
{
|
||
if (map->count == 0)
|
||
{
|
||
/* If the first section in a segment does not start at
|
||
the beginning of the segment, then something is
|
||
wrong. */
|
||
if (output_section->lma !=
|
||
(map->p_paddr
|
||
+ (map->includes_filehdr ? iehdr->e_ehsize : 0)
|
||
+ (map->includes_phdrs
|
||
? iehdr->e_phnum * iehdr->e_phentsize
|
||
: 0)))
|
||
abort ();
|
||
}
|
||
else
|
||
{
|
||
asection * prev_sec;
|
||
|
||
prev_sec = map->sections[map->count - 1];
|
||
|
||
/* If the gap between the end of the previous section
|
||
and the start of this section is more than
|
||
maxpagesize then we need to start a new segment. */
|
||
if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
|
||
maxpagesize)
|
||
< BFD_ALIGN (output_section->lma, maxpagesize))
|
||
|| ((prev_sec->lma + prev_sec->size)
|
||
> output_section->lma))
|
||
{
|
||
if (suggested_lma == 0)
|
||
suggested_lma = output_section->lma;
|
||
|
||
continue;
|
||
}
|
||
}
|
||
|
||
map->sections[map->count++] = output_section;
|
||
++isec;
|
||
sections[j] = NULL;
|
||
section->segment_mark = TRUE;
|
||
}
|
||
else if (suggested_lma == 0)
|
||
suggested_lma = output_section->lma;
|
||
}
|
||
|
||
BFD_ASSERT (map->count > 0);
|
||
|
||
/* Add the current segment to the list of built segments. */
|
||
*pointer_to_map = map;
|
||
pointer_to_map = &map->next;
|
||
|
||
if (isec < section_count)
|
||
{
|
||
/* We still have not allocated all of the sections to
|
||
segments. Create a new segment here, initialise it
|
||
and carry on looping. */
|
||
amt = sizeof (struct elf_segment_map);
|
||
amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
|
||
map = bfd_alloc (obfd, amt);
|
||
if (map == NULL)
|
||
{
|
||
free (sections);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Initialise the fields of the segment map. Set the physical
|
||
physical address to the LMA of the first section that has
|
||
not yet been assigned. */
|
||
map->next = NULL;
|
||
map->p_type = segment->p_type;
|
||
map->p_flags = segment->p_flags;
|
||
map->p_flags_valid = 1;
|
||
map->p_paddr = suggested_lma;
|
||
map->p_paddr_valid = 1;
|
||
map->includes_filehdr = 0;
|
||
map->includes_phdrs = 0;
|
||
}
|
||
}
|
||
while (isec < section_count);
|
||
|
||
free (sections);
|
||
}
|
||
|
||
/* The Solaris linker creates program headers in which all the
|
||
p_paddr fields are zero. When we try to objcopy or strip such a
|
||
file, we get confused. Check for this case, and if we find it
|
||
reset the p_paddr_valid fields. */
|
||
for (map = map_first; map != NULL; map = map->next)
|
||
if (map->p_paddr != 0)
|
||
break;
|
||
if (map == NULL)
|
||
for (map = map_first; map != NULL; map = map->next)
|
||
map->p_paddr_valid = 0;
|
||
|
||
elf_tdata (obfd)->segment_map = map_first;
|
||
|
||
/* If we had to estimate the number of program headers that were
|
||
going to be needed, then check our estimate now and adjust
|
||
the offset if necessary. */
|
||
if (phdr_adjust_seg != NULL)
|
||
{
|
||
unsigned int count;
|
||
|
||
for (count = 0, map = map_first; map != NULL; map = map->next)
|
||
count++;
|
||
|
||
if (count > phdr_adjust_num)
|
||
phdr_adjust_seg->p_paddr
|
||
-= (count - phdr_adjust_num) * iehdr->e_phentsize;
|
||
}
|
||
|
||
#undef SEGMENT_END
|
||
#undef SECTION_SIZE
|
||
#undef IS_CONTAINED_BY_VMA
|
||
#undef IS_CONTAINED_BY_LMA
|
||
#undef IS_COREFILE_NOTE
|
||
#undef IS_SOLARIS_PT_INTERP
|
||
#undef INCLUDE_SECTION_IN_SEGMENT
|
||
#undef SEGMENT_AFTER_SEGMENT
|
||
#undef SEGMENT_OVERLAPS
|
||
return TRUE;
|
||
}
|
||
|
||
/* Copy private section information. This copies over the entsize
|
||
field, and sometimes the info field. */
|
||
|
||
bfd_boolean
|
||
_bfd_elf_copy_private_section_data (bfd *ibfd,
|
||
asection *isec,
|
||
bfd *obfd,
|
||
asection *osec)
|
||
{
|
||
Elf_Internal_Shdr *ihdr, *ohdr;
|
||
|
||
if (ibfd->xvec->flavour != bfd_target_elf_flavour
|
||
|| obfd->xvec->flavour != bfd_target_elf_flavour)
|
||
return TRUE;
|
||
|
||
ihdr = &elf_section_data (isec)->this_hdr;
|
||
ohdr = &elf_section_data (osec)->this_hdr;
|
||
|
||
ohdr->sh_entsize = ihdr->sh_entsize;
|
||
|
||
if (ihdr->sh_type == SHT_SYMTAB
|
||
|| ihdr->sh_type == SHT_DYNSYM
|
||
|| ihdr->sh_type == SHT_GNU_verneed
|
||
|| ihdr->sh_type == SHT_GNU_verdef)
|
||
ohdr->sh_info = ihdr->sh_info;
|
||
|
||
/* Set things up for objcopy. The output SHT_GROUP section will
|
||
have its elf_next_in_group pointing back to the input group
|
||
members. Ignore linker created group section. See
|
||
elfNN_ia64_object_p in elfxx-ia64.c. */
|
||
if (elf_sec_group (isec) == NULL
|
||
|| (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
|
||
{
|
||
elf_next_in_group (osec) = elf_next_in_group (isec);
|
||
elf_group_name (osec) = elf_group_name (isec);
|
||
}
|
||
|
||
osec->use_rela_p = isec->use_rela_p;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Copy private header information. */
|
||
|
||
bfd_boolean
|
||
_bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
|
||
{
|
||
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|
||
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
|
||
return TRUE;
|
||
|
||
/* Copy over private BFD data if it has not already been copied.
|
||
This must be done here, rather than in the copy_private_bfd_data
|
||
entry point, because the latter is called after the section
|
||
contents have been set, which means that the program headers have
|
||
already been worked out. */
|
||
if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
|
||
{
|
||
if (! copy_private_bfd_data (ibfd, obfd))
|
||
return FALSE;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Copy private symbol information. If this symbol is in a section
|
||
which we did not map into a BFD section, try to map the section
|
||
index correctly. We use special macro definitions for the mapped
|
||
section indices; these definitions are interpreted by the
|
||
swap_out_syms function. */
|
||
|
||
#define MAP_ONESYMTAB (SHN_HIOS + 1)
|
||
#define MAP_DYNSYMTAB (SHN_HIOS + 2)
|
||
#define MAP_STRTAB (SHN_HIOS + 3)
|
||
#define MAP_SHSTRTAB (SHN_HIOS + 4)
|
||
#define MAP_SYM_SHNDX (SHN_HIOS + 5)
|
||
|
||
bfd_boolean
|
||
_bfd_elf_copy_private_symbol_data (bfd *ibfd,
|
||
asymbol *isymarg,
|
||
bfd *obfd,
|
||
asymbol *osymarg)
|
||
{
|
||
elf_symbol_type *isym, *osym;
|
||
|
||
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|
||
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
|
||
return TRUE;
|
||
|
||
isym = elf_symbol_from (ibfd, isymarg);
|
||
osym = elf_symbol_from (obfd, osymarg);
|
||
|
||
if (isym != NULL
|
||
&& osym != NULL
|
||
&& bfd_is_abs_section (isym->symbol.section))
|
||
{
|
||
unsigned int shndx;
|
||
|
||
shndx = isym->internal_elf_sym.st_shndx;
|
||
if (shndx == elf_onesymtab (ibfd))
|
||
shndx = MAP_ONESYMTAB;
|
||
else if (shndx == elf_dynsymtab (ibfd))
|
||
shndx = MAP_DYNSYMTAB;
|
||
else if (shndx == elf_tdata (ibfd)->strtab_section)
|
||
shndx = MAP_STRTAB;
|
||
else if (shndx == elf_tdata (ibfd)->shstrtab_section)
|
||
shndx = MAP_SHSTRTAB;
|
||
else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
|
||
shndx = MAP_SYM_SHNDX;
|
||
osym->internal_elf_sym.st_shndx = shndx;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Swap out the symbols. */
|
||
|
||
static bfd_boolean
|
||
swap_out_syms (bfd *abfd,
|
||
struct bfd_strtab_hash **sttp,
|
||
int relocatable_p)
|
||
{
|
||
const struct elf_backend_data *bed;
|
||
int symcount;
|
||
asymbol **syms;
|
||
struct bfd_strtab_hash *stt;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf_Internal_Shdr *symtab_shndx_hdr;
|
||
Elf_Internal_Shdr *symstrtab_hdr;
|
||
bfd_byte *outbound_syms;
|
||
bfd_byte *outbound_shndx;
|
||
int idx;
|
||
bfd_size_type amt;
|
||
bfd_boolean name_local_sections;
|
||
|
||
if (!elf_map_symbols (abfd))
|
||
return FALSE;
|
||
|
||
/* Dump out the symtabs. */
|
||
stt = _bfd_elf_stringtab_init ();
|
||
if (stt == NULL)
|
||
return FALSE;
|
||
|
||
bed = get_elf_backend_data (abfd);
|
||
symcount = bfd_get_symcount (abfd);
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
symtab_hdr->sh_type = SHT_SYMTAB;
|
||
symtab_hdr->sh_entsize = bed->s->sizeof_sym;
|
||
symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
|
||
symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
|
||
symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
|
||
|
||
symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
|
||
symstrtab_hdr->sh_type = SHT_STRTAB;
|
||
|
||
outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
|
||
if (outbound_syms == NULL)
|
||
{
|
||
_bfd_stringtab_free (stt);
|
||
return FALSE;
|
||
}
|
||
symtab_hdr->contents = outbound_syms;
|
||
|
||
outbound_shndx = NULL;
|
||
symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
|
||
if (symtab_shndx_hdr->sh_name != 0)
|
||
{
|
||
amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
|
||
outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
|
||
sizeof (Elf_External_Sym_Shndx));
|
||
if (outbound_shndx == NULL)
|
||
{
|
||
_bfd_stringtab_free (stt);
|
||
return FALSE;
|
||
}
|
||
|
||
symtab_shndx_hdr->contents = outbound_shndx;
|
||
symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
|
||
symtab_shndx_hdr->sh_size = amt;
|
||
symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
|
||
symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
|
||
}
|
||
|
||
/* Now generate the data (for "contents"). */
|
||
{
|
||
/* Fill in zeroth symbol and swap it out. */
|
||
Elf_Internal_Sym sym;
|
||
sym.st_name = 0;
|
||
sym.st_value = 0;
|
||
sym.st_size = 0;
|
||
sym.st_info = 0;
|
||
sym.st_other = 0;
|
||
sym.st_shndx = SHN_UNDEF;
|
||
bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
|
||
outbound_syms += bed->s->sizeof_sym;
|
||
if (outbound_shndx != NULL)
|
||
outbound_shndx += sizeof (Elf_External_Sym_Shndx);
|
||
}
|
||
|
||
name_local_sections
|
||
= (bed->elf_backend_name_local_section_symbols
|
||
&& bed->elf_backend_name_local_section_symbols (abfd));
|
||
|
||
syms = bfd_get_outsymbols (abfd);
|
||
for (idx = 0; idx < symcount; idx++)
|
||
{
|
||
Elf_Internal_Sym sym;
|
||
bfd_vma value = syms[idx]->value;
|
||
elf_symbol_type *type_ptr;
|
||
flagword flags = syms[idx]->flags;
|
||
int type;
|
||
|
||
if (!name_local_sections
|
||
&& (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
|
||
{
|
||
/* Local section symbols have no name. */
|
||
sym.st_name = 0;
|
||
}
|
||
else
|
||
{
|
||
sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
|
||
syms[idx]->name,
|
||
TRUE, FALSE);
|
||
if (sym.st_name == (unsigned long) -1)
|
||
{
|
||
_bfd_stringtab_free (stt);
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
type_ptr = elf_symbol_from (abfd, syms[idx]);
|
||
|
||
if ((flags & BSF_SECTION_SYM) == 0
|
||
&& bfd_is_com_section (syms[idx]->section))
|
||
{
|
||
/* ELF common symbols put the alignment into the `value' field,
|
||
and the size into the `size' field. This is backwards from
|
||
how BFD handles it, so reverse it here. */
|
||
sym.st_size = value;
|
||
if (type_ptr == NULL
|
||
|| type_ptr->internal_elf_sym.st_value == 0)
|
||
sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
|
||
else
|
||
sym.st_value = type_ptr->internal_elf_sym.st_value;
|
||
sym.st_shndx = _bfd_elf_section_from_bfd_section
|
||
(abfd, syms[idx]->section);
|
||
}
|
||
else
|
||
{
|
||
asection *sec = syms[idx]->section;
|
||
int shndx;
|
||
|
||
if (sec->output_section)
|
||
{
|
||
value += sec->output_offset;
|
||
sec = sec->output_section;
|
||
}
|
||
|
||
/* Don't add in the section vma for relocatable output. */
|
||
if (! relocatable_p)
|
||
value += sec->vma;
|
||
sym.st_value = value;
|
||
sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
|
||
|
||
if (bfd_is_abs_section (sec)
|
||
&& type_ptr != NULL
|
||
&& type_ptr->internal_elf_sym.st_shndx != 0)
|
||
{
|
||
/* This symbol is in a real ELF section which we did
|
||
not create as a BFD section. Undo the mapping done
|
||
by copy_private_symbol_data. */
|
||
shndx = type_ptr->internal_elf_sym.st_shndx;
|
||
switch (shndx)
|
||
{
|
||
case MAP_ONESYMTAB:
|
||
shndx = elf_onesymtab (abfd);
|
||
break;
|
||
case MAP_DYNSYMTAB:
|
||
shndx = elf_dynsymtab (abfd);
|
||
break;
|
||
case MAP_STRTAB:
|
||
shndx = elf_tdata (abfd)->strtab_section;
|
||
break;
|
||
case MAP_SHSTRTAB:
|
||
shndx = elf_tdata (abfd)->shstrtab_section;
|
||
break;
|
||
case MAP_SYM_SHNDX:
|
||
shndx = elf_tdata (abfd)->symtab_shndx_section;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
|
||
|
||
if (shndx == -1)
|
||
{
|
||
asection *sec2;
|
||
|
||
/* Writing this would be a hell of a lot easier if
|
||
we had some decent documentation on bfd, and
|
||
knew what to expect of the library, and what to
|
||
demand of applications. For example, it
|
||
appears that `objcopy' might not set the
|
||
section of a symbol to be a section that is
|
||
actually in the output file. */
|
||
sec2 = bfd_get_section_by_name (abfd, sec->name);
|
||
if (sec2 == NULL)
|
||
{
|
||
_bfd_error_handler (_("\
|
||
Unable to find equivalent output section for symbol '%s' from section '%s'"),
|
||
syms[idx]->name ? syms[idx]->name : "<Local sym>",
|
||
sec->name);
|
||
bfd_set_error (bfd_error_invalid_operation);
|
||
_bfd_stringtab_free (stt);
|
||
return FALSE;
|
||
}
|
||
|
||
shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
|
||
BFD_ASSERT (shndx != -1);
|
||
}
|
||
}
|
||
|
||
sym.st_shndx = shndx;
|
||
}
|
||
|
||
if ((flags & BSF_THREAD_LOCAL) != 0)
|
||
type = STT_TLS;
|
||
else if ((flags & BSF_FUNCTION) != 0)
|
||
type = STT_FUNC;
|
||
else if ((flags & BSF_OBJECT) != 0)
|
||
type = STT_OBJECT;
|
||
else
|
||
type = STT_NOTYPE;
|
||
|
||
if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
|
||
type = STT_TLS;
|
||
|
||
/* Processor-specific types. */
|
||
if (type_ptr != NULL
|
||
&& bed->elf_backend_get_symbol_type)
|
||
type = ((*bed->elf_backend_get_symbol_type)
|
||
(&type_ptr->internal_elf_sym, type));
|
||
|
||
if (flags & BSF_SECTION_SYM)
|
||
{
|
||
if (flags & BSF_GLOBAL)
|
||
sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
|
||
else
|
||
sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
|
||
}
|
||
else if (bfd_is_com_section (syms[idx]->section))
|
||
sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
|
||
else if (bfd_is_und_section (syms[idx]->section))
|
||
sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
|
||
? STB_WEAK
|
||
: STB_GLOBAL),
|
||
type);
|
||
else if (flags & BSF_FILE)
|
||
sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
|
||
else
|
||
{
|
||
int bind = STB_LOCAL;
|
||
|
||
if (flags & BSF_LOCAL)
|
||
bind = STB_LOCAL;
|
||
else if (flags & BSF_WEAK)
|
||
bind = STB_WEAK;
|
||
else if (flags & BSF_GLOBAL)
|
||
bind = STB_GLOBAL;
|
||
|
||
sym.st_info = ELF_ST_INFO (bind, type);
|
||
}
|
||
|
||
if (type_ptr != NULL)
|
||
sym.st_other = type_ptr->internal_elf_sym.st_other;
|
||
else
|
||
sym.st_other = 0;
|
||
|
||
bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
|
||
outbound_syms += bed->s->sizeof_sym;
|
||
if (outbound_shndx != NULL)
|
||
outbound_shndx += sizeof (Elf_External_Sym_Shndx);
|
||
}
|
||
|
||
*sttp = stt;
|
||
symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
|
||
symstrtab_hdr->sh_type = SHT_STRTAB;
|
||
|
||
symstrtab_hdr->sh_flags = 0;
|
||
symstrtab_hdr->sh_addr = 0;
|
||
symstrtab_hdr->sh_entsize = 0;
|
||
symstrtab_hdr->sh_link = 0;
|
||
symstrtab_hdr->sh_info = 0;
|
||
symstrtab_hdr->sh_addralign = 1;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return the number of bytes required to hold the symtab vector.
|
||
|
||
Note that we base it on the count plus 1, since we will null terminate
|
||
the vector allocated based on this size. However, the ELF symbol table
|
||
always has a dummy entry as symbol #0, so it ends up even. */
|
||
|
||
long
|
||
_bfd_elf_get_symtab_upper_bound (bfd *abfd)
|
||
{
|
||
long symcount;
|
||
long symtab_size;
|
||
Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
|
||
symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
|
||
symtab_size = (symcount + 1) * (sizeof (asymbol *));
|
||
if (symcount > 0)
|
||
symtab_size -= sizeof (asymbol *);
|
||
|
||
return symtab_size;
|
||
}
|
||
|
||
long
|
||
_bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
|
||
{
|
||
long symcount;
|
||
long symtab_size;
|
||
Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
|
||
|
||
if (elf_dynsymtab (abfd) == 0)
|
||
{
|
||
bfd_set_error (bfd_error_invalid_operation);
|
||
return -1;
|
||
}
|
||
|
||
symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
|
||
symtab_size = (symcount + 1) * (sizeof (asymbol *));
|
||
if (symcount > 0)
|
||
symtab_size -= sizeof (asymbol *);
|
||
|
||
return symtab_size;
|
||
}
|
||
|
||
long
|
||
_bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
|
||
sec_ptr asect)
|
||
{
|
||
return (asect->reloc_count + 1) * sizeof (arelent *);
|
||
}
|
||
|
||
/* Canonicalize the relocs. */
|
||
|
||
long
|
||
_bfd_elf_canonicalize_reloc (bfd *abfd,
|
||
sec_ptr section,
|
||
arelent **relptr,
|
||
asymbol **symbols)
|
||
{
|
||
arelent *tblptr;
|
||
unsigned int i;
|
||
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
|
||
if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
|
||
return -1;
|
||
|
||
tblptr = section->relocation;
|
||
for (i = 0; i < section->reloc_count; i++)
|
||
*relptr++ = tblptr++;
|
||
|
||
*relptr = NULL;
|
||
|
||
return section->reloc_count;
|
||
}
|
||
|
||
long
|
||
_bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
|
||
{
|
||
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
|
||
|
||
if (symcount >= 0)
|
||
bfd_get_symcount (abfd) = symcount;
|
||
return symcount;
|
||
}
|
||
|
||
long
|
||
_bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
|
||
asymbol **allocation)
|
||
{
|
||
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
|
||
|
||
if (symcount >= 0)
|
||
bfd_get_dynamic_symcount (abfd) = symcount;
|
||
return symcount;
|
||
}
|
||
|
||
/* Return the size required for the dynamic reloc entries. Any loadable
|
||
section that was actually installed in the BFD, and has type SHT_REL
|
||
or SHT_RELA, and uses the dynamic symbol table, is considered to be a
|
||
dynamic reloc section. */
|
||
|
||
long
|
||
_bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
|
||
{
|
||
long ret;
|
||
asection *s;
|
||
|
||
if (elf_dynsymtab (abfd) == 0)
|
||
{
|
||
bfd_set_error (bfd_error_invalid_operation);
|
||
return -1;
|
||
}
|
||
|
||
ret = sizeof (arelent *);
|
||
for (s = abfd->sections; s != NULL; s = s->next)
|
||
if ((s->flags & SEC_LOAD) != 0
|
||
&& elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
|
||
&& (elf_section_data (s)->this_hdr.sh_type == SHT_REL
|
||
|| elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
|
||
ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
|
||
* sizeof (arelent *));
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Canonicalize the dynamic relocation entries. Note that we return the
|
||
dynamic relocations as a single block, although they are actually
|
||
associated with particular sections; the interface, which was
|
||
designed for SunOS style shared libraries, expects that there is only
|
||
one set of dynamic relocs. Any loadable section that was actually
|
||
installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
|
||
dynamic symbol table, is considered to be a dynamic reloc section. */
|
||
|
||
long
|
||
_bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
|
||
arelent **storage,
|
||
asymbol **syms)
|
||
{
|
||
bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
|
||
asection *s;
|
||
long ret;
|
||
|
||
if (elf_dynsymtab (abfd) == 0)
|
||
{
|
||
bfd_set_error (bfd_error_invalid_operation);
|
||
return -1;
|
||
}
|
||
|
||
slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
|
||
ret = 0;
|
||
for (s = abfd->sections; s != NULL; s = s->next)
|
||
{
|
||
if ((s->flags & SEC_LOAD) != 0
|
||
&& elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
|
||
&& (elf_section_data (s)->this_hdr.sh_type == SHT_REL
|
||
|| elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
|
||
{
|
||
arelent *p;
|
||
long count, i;
|
||
|
||
if (! (*slurp_relocs) (abfd, s, syms, TRUE))
|
||
return -1;
|
||
count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
|
||
p = s->relocation;
|
||
for (i = 0; i < count; i++)
|
||
*storage++ = p++;
|
||
ret += count;
|
||
}
|
||
}
|
||
|
||
*storage = NULL;
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Read in the version information. */
|
||
|
||
bfd_boolean
|
||
_bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
|
||
{
|
||
bfd_byte *contents = NULL;
|
||
unsigned int freeidx = 0;
|
||
|
||
if (elf_dynverref (abfd) != 0)
|
||
{
|
||
Elf_Internal_Shdr *hdr;
|
||
Elf_External_Verneed *everneed;
|
||
Elf_Internal_Verneed *iverneed;
|
||
unsigned int i;
|
||
bfd_byte *contents_end;
|
||
|
||
hdr = &elf_tdata (abfd)->dynverref_hdr;
|
||
|
||
elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
|
||
sizeof (Elf_Internal_Verneed));
|
||
if (elf_tdata (abfd)->verref == NULL)
|
||
goto error_return;
|
||
|
||
elf_tdata (abfd)->cverrefs = hdr->sh_info;
|
||
|
||
contents = bfd_malloc (hdr->sh_size);
|
||
if (contents == NULL)
|
||
{
|
||
error_return_verref:
|
||
elf_tdata (abfd)->verref = NULL;
|
||
elf_tdata (abfd)->cverrefs = 0;
|
||
goto error_return;
|
||
}
|
||
if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
|
||
|| bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
|
||
goto error_return_verref;
|
||
|
||
if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
|
||
goto error_return_verref;
|
||
|
||
BFD_ASSERT (sizeof (Elf_External_Verneed)
|
||
== sizeof (Elf_External_Vernaux));
|
||
contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
|
||
everneed = (Elf_External_Verneed *) contents;
|
||
iverneed = elf_tdata (abfd)->verref;
|
||
for (i = 0; i < hdr->sh_info; i++, iverneed++)
|
||
{
|
||
Elf_External_Vernaux *evernaux;
|
||
Elf_Internal_Vernaux *ivernaux;
|
||
unsigned int j;
|
||
|
||
_bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
|
||
|
||
iverneed->vn_bfd = abfd;
|
||
|
||
iverneed->vn_filename =
|
||
bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
|
||
iverneed->vn_file);
|
||
if (iverneed->vn_filename == NULL)
|
||
goto error_return_verref;
|
||
|
||
if (iverneed->vn_cnt == 0)
|
||
iverneed->vn_auxptr = NULL;
|
||
else
|
||
{
|
||
iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
|
||
sizeof (Elf_Internal_Vernaux));
|
||
if (iverneed->vn_auxptr == NULL)
|
||
goto error_return_verref;
|
||
}
|
||
|
||
if (iverneed->vn_aux
|
||
> (size_t) (contents_end - (bfd_byte *) everneed))
|
||
goto error_return_verref;
|
||
|
||
evernaux = ((Elf_External_Vernaux *)
|
||
((bfd_byte *) everneed + iverneed->vn_aux));
|
||
ivernaux = iverneed->vn_auxptr;
|
||
for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
|
||
{
|
||
_bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
|
||
|
||
ivernaux->vna_nodename =
|
||
bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
|
||
ivernaux->vna_name);
|
||
if (ivernaux->vna_nodename == NULL)
|
||
goto error_return_verref;
|
||
|
||
if (j + 1 < iverneed->vn_cnt)
|
||
ivernaux->vna_nextptr = ivernaux + 1;
|
||
else
|
||
ivernaux->vna_nextptr = NULL;
|
||
|
||
if (ivernaux->vna_next
|
||
> (size_t) (contents_end - (bfd_byte *) evernaux))
|
||
goto error_return_verref;
|
||
|
||
evernaux = ((Elf_External_Vernaux *)
|
||
((bfd_byte *) evernaux + ivernaux->vna_next));
|
||
|
||
if (ivernaux->vna_other > freeidx)
|
||
freeidx = ivernaux->vna_other;
|
||
}
|
||
|
||
if (i + 1 < hdr->sh_info)
|
||
iverneed->vn_nextref = iverneed + 1;
|
||
else
|
||
iverneed->vn_nextref = NULL;
|
||
|
||
if (iverneed->vn_next
|
||
> (size_t) (contents_end - (bfd_byte *) everneed))
|
||
goto error_return_verref;
|
||
|
||
everneed = ((Elf_External_Verneed *)
|
||
((bfd_byte *) everneed + iverneed->vn_next));
|
||
}
|
||
|
||
free (contents);
|
||
contents = NULL;
|
||
}
|
||
|
||
if (elf_dynverdef (abfd) != 0)
|
||
{
|
||
Elf_Internal_Shdr *hdr;
|
||
Elf_External_Verdef *everdef;
|
||
Elf_Internal_Verdef *iverdef;
|
||
Elf_Internal_Verdef *iverdefarr;
|
||
Elf_Internal_Verdef iverdefmem;
|
||
unsigned int i;
|
||
unsigned int maxidx;
|
||
bfd_byte *contents_end_def, *contents_end_aux;
|
||
|
||
hdr = &elf_tdata (abfd)->dynverdef_hdr;
|
||
|
||
contents = bfd_malloc (hdr->sh_size);
|
||
if (contents == NULL)
|
||
goto error_return;
|
||
if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
|
||
|| bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
|
||
goto error_return;
|
||
|
||
if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
|
||
goto error_return;
|
||
|
||
BFD_ASSERT (sizeof (Elf_External_Verdef)
|
||
>= sizeof (Elf_External_Verdaux));
|
||
contents_end_def = contents + hdr->sh_size
|
||
- sizeof (Elf_External_Verdef);
|
||
contents_end_aux = contents + hdr->sh_size
|
||
- sizeof (Elf_External_Verdaux);
|
||
|
||
/* We know the number of entries in the section but not the maximum
|
||
index. Therefore we have to run through all entries and find
|
||
the maximum. */
|
||
everdef = (Elf_External_Verdef *) contents;
|
||
maxidx = 0;
|
||
for (i = 0; i < hdr->sh_info; ++i)
|
||
{
|
||
_bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
|
||
|
||
if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
|
||
maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
|
||
|
||
if (iverdefmem.vd_next
|
||
> (size_t) (contents_end_def - (bfd_byte *) everdef))
|
||
goto error_return;
|
||
|
||
everdef = ((Elf_External_Verdef *)
|
||
((bfd_byte *) everdef + iverdefmem.vd_next));
|
||
}
|
||
|
||
if (default_imported_symver)
|
||
{
|
||
if (freeidx > maxidx)
|
||
maxidx = ++freeidx;
|
||
else
|
||
freeidx = ++maxidx;
|
||
}
|
||
elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
|
||
sizeof (Elf_Internal_Verdef));
|
||
if (elf_tdata (abfd)->verdef == NULL)
|
||
goto error_return;
|
||
|
||
elf_tdata (abfd)->cverdefs = maxidx;
|
||
|
||
everdef = (Elf_External_Verdef *) contents;
|
||
iverdefarr = elf_tdata (abfd)->verdef;
|
||
for (i = 0; i < hdr->sh_info; i++)
|
||
{
|
||
Elf_External_Verdaux *everdaux;
|
||
Elf_Internal_Verdaux *iverdaux;
|
||
unsigned int j;
|
||
|
||
_bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
|
||
|
||
if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
|
||
{
|
||
error_return_verdef:
|
||
elf_tdata (abfd)->verdef = NULL;
|
||
elf_tdata (abfd)->cverdefs = 0;
|
||
goto error_return;
|
||
}
|
||
|
||
iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
|
||
memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
|
||
|
||
iverdef->vd_bfd = abfd;
|
||
|
||
if (iverdef->vd_cnt == 0)
|
||
iverdef->vd_auxptr = NULL;
|
||
else
|
||
{
|
||
iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
|
||
sizeof (Elf_Internal_Verdaux));
|
||
if (iverdef->vd_auxptr == NULL)
|
||
goto error_return_verdef;
|
||
}
|
||
|
||
if (iverdef->vd_aux
|
||
> (size_t) (contents_end_aux - (bfd_byte *) everdef))
|
||
goto error_return_verdef;
|
||
|
||
everdaux = ((Elf_External_Verdaux *)
|
||
((bfd_byte *) everdef + iverdef->vd_aux));
|
||
iverdaux = iverdef->vd_auxptr;
|
||
for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
|
||
{
|
||
_bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
|
||
|
||
iverdaux->vda_nodename =
|
||
bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
|
||
iverdaux->vda_name);
|
||
if (iverdaux->vda_nodename == NULL)
|
||
goto error_return_verdef;
|
||
|
||
if (j + 1 < iverdef->vd_cnt)
|
||
iverdaux->vda_nextptr = iverdaux + 1;
|
||
else
|
||
iverdaux->vda_nextptr = NULL;
|
||
|
||
if (iverdaux->vda_next
|
||
> (size_t) (contents_end_aux - (bfd_byte *) everdaux))
|
||
goto error_return_verdef;
|
||
|
||
everdaux = ((Elf_External_Verdaux *)
|
||
((bfd_byte *) everdaux + iverdaux->vda_next));
|
||
}
|
||
|
||
if (iverdef->vd_cnt)
|
||
iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
|
||
|
||
if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
|
||
iverdef->vd_nextdef = iverdef + 1;
|
||
else
|
||
iverdef->vd_nextdef = NULL;
|
||
|
||
everdef = ((Elf_External_Verdef *)
|
||
((bfd_byte *) everdef + iverdef->vd_next));
|
||
}
|
||
|
||
free (contents);
|
||
contents = NULL;
|
||
}
|
||
else if (default_imported_symver)
|
||
{
|
||
if (freeidx < 3)
|
||
freeidx = 3;
|
||
else
|
||
freeidx++;
|
||
|
||
elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
|
||
sizeof (Elf_Internal_Verdef));
|
||
if (elf_tdata (abfd)->verdef == NULL)
|
||
goto error_return;
|
||
|
||
elf_tdata (abfd)->cverdefs = freeidx;
|
||
}
|
||
|
||
/* Create a default version based on the soname. */
|
||
if (default_imported_symver)
|
||
{
|
||
Elf_Internal_Verdef *iverdef;
|
||
Elf_Internal_Verdaux *iverdaux;
|
||
|
||
iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
|
||
|
||
iverdef->vd_version = VER_DEF_CURRENT;
|
||
iverdef->vd_flags = 0;
|
||
iverdef->vd_ndx = freeidx;
|
||
iverdef->vd_cnt = 1;
|
||
|
||
iverdef->vd_bfd = abfd;
|
||
|
||
iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
|
||
if (iverdef->vd_nodename == NULL)
|
||
goto error_return_verdef;
|
||
iverdef->vd_nextdef = NULL;
|
||
iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
|
||
if (iverdef->vd_auxptr == NULL)
|
||
goto error_return_verdef;
|
||
|
||
iverdaux = iverdef->vd_auxptr;
|
||
iverdaux->vda_nodename = iverdef->vd_nodename;
|
||
iverdaux->vda_nextptr = NULL;
|
||
}
|
||
|
||
return TRUE;
|
||
|
||
error_return:
|
||
if (contents != NULL)
|
||
free (contents);
|
||
return FALSE;
|
||
}
|
||
|
||
asymbol *
|
||
_bfd_elf_make_empty_symbol (bfd *abfd)
|
||
{
|
||
elf_symbol_type *newsym;
|
||
bfd_size_type amt = sizeof (elf_symbol_type);
|
||
|
||
newsym = bfd_zalloc (abfd, amt);
|
||
if (!newsym)
|
||
return NULL;
|
||
else
|
||
{
|
||
newsym->symbol.the_bfd = abfd;
|
||
return &newsym->symbol;
|
||
}
|
||
}
|
||
|
||
void
|
||
_bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
|
||
asymbol *symbol,
|
||
symbol_info *ret)
|
||
{
|
||
bfd_symbol_info (symbol, ret);
|
||
}
|
||
|
||
/* Return whether a symbol name implies a local symbol. Most targets
|
||
use this function for the is_local_label_name entry point, but some
|
||
override it. */
|
||
|
||
bfd_boolean
|
||
_bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
|
||
const char *name)
|
||
{
|
||
/* Normal local symbols start with ``.L''. */
|
||
if (name[0] == '.' && name[1] == 'L')
|
||
return TRUE;
|
||
|
||
/* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
|
||
DWARF debugging symbols starting with ``..''. */
|
||
if (name[0] == '.' && name[1] == '.')
|
||
return TRUE;
|
||
|
||
/* gcc will sometimes generate symbols beginning with ``_.L_'' when
|
||
emitting DWARF debugging output. I suspect this is actually a
|
||
small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
|
||
ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
|
||
underscore to be emitted on some ELF targets). For ease of use,
|
||
we treat such symbols as local. */
|
||
if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
|
||
return TRUE;
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
alent *
|
||
_bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
|
||
asymbol *symbol ATTRIBUTE_UNUSED)
|
||
{
|
||
abort ();
|
||
return NULL;
|
||
}
|
||
|
||
bfd_boolean
|
||
_bfd_elf_set_arch_mach (bfd *abfd,
|
||
enum bfd_architecture arch,
|
||
unsigned long machine)
|
||
{
|
||
/* If this isn't the right architecture for this backend, and this
|
||
isn't the generic backend, fail. */
|
||
if (arch != get_elf_backend_data (abfd)->arch
|
||
&& arch != bfd_arch_unknown
|
||
&& get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
|
||
return FALSE;
|
||
|
||
return bfd_default_set_arch_mach (abfd, arch, machine);
|
||
}
|
||
|
||
/* Find the function to a particular section and offset,
|
||
for error reporting. */
|
||
|
||
static bfd_boolean
|
||
elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
|
||
asection *section,
|
||
asymbol **symbols,
|
||
bfd_vma offset,
|
||
const char **filename_ptr,
|
||
const char **functionname_ptr)
|
||
{
|
||
const char *filename;
|
||
asymbol *func, *file;
|
||
bfd_vma low_func;
|
||
asymbol **p;
|
||
/* ??? Given multiple file symbols, it is impossible to reliably
|
||
choose the right file name for global symbols. File symbols are
|
||
local symbols, and thus all file symbols must sort before any
|
||
global symbols. The ELF spec may be interpreted to say that a
|
||
file symbol must sort before other local symbols, but currently
|
||
ld -r doesn't do this. So, for ld -r output, it is possible to
|
||
make a better choice of file name for local symbols by ignoring
|
||
file symbols appearing after a given local symbol. */
|
||
enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
|
||
|
||
filename = NULL;
|
||
func = NULL;
|
||
file = NULL;
|
||
low_func = 0;
|
||
state = nothing_seen;
|
||
|
||
for (p = symbols; *p != NULL; p++)
|
||
{
|
||
elf_symbol_type *q;
|
||
|
||
q = (elf_symbol_type *) *p;
|
||
|
||
switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
|
||
{
|
||
default:
|
||
break;
|
||
case STT_FILE:
|
||
file = &q->symbol;
|
||
if (state == symbol_seen)
|
||
state = file_after_symbol_seen;
|
||
continue;
|
||
case STT_SECTION:
|
||
continue;
|
||
case STT_NOTYPE:
|
||
case STT_FUNC:
|
||
if (bfd_get_section (&q->symbol) == section
|
||
&& q->symbol.value >= low_func
|
||
&& q->symbol.value <= offset)
|
||
{
|
||
func = (asymbol *) q;
|
||
low_func = q->symbol.value;
|
||
if (file == NULL)
|
||
filename = NULL;
|
||
else if (ELF_ST_BIND (q->internal_elf_sym.st_info) != STB_LOCAL
|
||
&& state == file_after_symbol_seen)
|
||
filename = NULL;
|
||
else
|
||
filename = bfd_asymbol_name (file);
|
||
}
|
||
break;
|
||
}
|
||
if (state == nothing_seen)
|
||
state = symbol_seen;
|
||
}
|
||
|
||
if (func == NULL)
|
||
return FALSE;
|
||
|
||
if (filename_ptr)
|
||
*filename_ptr = filename;
|
||
if (functionname_ptr)
|
||
*functionname_ptr = bfd_asymbol_name (func);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Find the nearest line to a particular section and offset,
|
||
for error reporting. */
|
||
|
||
bfd_boolean
|
||
_bfd_elf_find_nearest_line (bfd *abfd,
|
||
asection *section,
|
||
asymbol **symbols,
|
||
bfd_vma offset,
|
||
const char **filename_ptr,
|
||
const char **functionname_ptr,
|
||
unsigned int *line_ptr)
|
||
{
|
||
bfd_boolean found;
|
||
|
||
if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
|
||
filename_ptr, functionname_ptr,
|
||
line_ptr))
|
||
{
|
||
if (!*functionname_ptr)
|
||
elf_find_function (abfd, section, symbols, offset,
|
||
*filename_ptr ? NULL : filename_ptr,
|
||
functionname_ptr);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
|
||
filename_ptr, functionname_ptr,
|
||
line_ptr, 0,
|
||
&elf_tdata (abfd)->dwarf2_find_line_info))
|
||
{
|
||
if (!*functionname_ptr)
|
||
elf_find_function (abfd, section, symbols, offset,
|
||
*filename_ptr ? NULL : filename_ptr,
|
||
functionname_ptr);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
|
||
&found, filename_ptr,
|
||
functionname_ptr, line_ptr,
|
||
&elf_tdata (abfd)->line_info))
|
||
return FALSE;
|
||
if (found && (*functionname_ptr || *line_ptr))
|
||
return TRUE;
|
||
|
||
if (symbols == NULL)
|
||
return FALSE;
|
||
|
||
if (! elf_find_function (abfd, section, symbols, offset,
|
||
filename_ptr, functionname_ptr))
|
||
return FALSE;
|
||
|
||
*line_ptr = 0;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Find the line for a symbol. */
|
||
|
||
bfd_boolean
|
||
_bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
|
||
const char **filename_ptr, unsigned int *line_ptr)
|
||
{
|
||
return _bfd_dwarf2_find_line (abfd, symbols, symbol,
|
||
filename_ptr, line_ptr, 0,
|
||
&elf_tdata (abfd)->dwarf2_find_line_info);
|
||
}
|
||
|
||
/* After a call to bfd_find_nearest_line, successive calls to
|
||
bfd_find_inliner_info can be used to get source information about
|
||
each level of function inlining that terminated at the address
|
||
passed to bfd_find_nearest_line. Currently this is only supported
|
||
for DWARF2 with appropriate DWARF3 extensions. */
|
||
|
||
bfd_boolean
|
||
_bfd_elf_find_inliner_info (bfd *abfd,
|
||
const char **filename_ptr,
|
||
const char **functionname_ptr,
|
||
unsigned int *line_ptr)
|
||
{
|
||
bfd_boolean found;
|
||
found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
|
||
functionname_ptr, line_ptr,
|
||
& elf_tdata (abfd)->dwarf2_find_line_info);
|
||
return found;
|
||
}
|
||
|
||
int
|
||
_bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
|
||
{
|
||
int ret;
|
||
|
||
ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
|
||
if (! reloc)
|
||
ret += get_program_header_size (abfd);
|
||
return ret;
|
||
}
|
||
|
||
bfd_boolean
|
||
_bfd_elf_set_section_contents (bfd *abfd,
|
||
sec_ptr section,
|
||
const void *location,
|
||
file_ptr offset,
|
||
bfd_size_type count)
|
||
{
|
||
Elf_Internal_Shdr *hdr;
|
||
bfd_signed_vma pos;
|
||
|
||
if (! abfd->output_has_begun
|
||
&& ! _bfd_elf_compute_section_file_positions (abfd, NULL))
|
||
return FALSE;
|
||
|
||
hdr = &elf_section_data (section)->this_hdr;
|
||
pos = hdr->sh_offset + offset;
|
||
if (bfd_seek (abfd, pos, SEEK_SET) != 0
|
||
|| bfd_bwrite (location, count, abfd) != count)
|
||
return FALSE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
void
|
||
_bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
|
||
arelent *cache_ptr ATTRIBUTE_UNUSED,
|
||
Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
|
||
{
|
||
abort ();
|
||
}
|
||
|
||
/* Try to convert a non-ELF reloc into an ELF one. */
|
||
|
||
bfd_boolean
|
||
_bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
|
||
{
|
||
/* Check whether we really have an ELF howto. */
|
||
|
||
if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
|
||
{
|
||
bfd_reloc_code_real_type code;
|
||
reloc_howto_type *howto;
|
||
|
||
/* Alien reloc: Try to determine its type to replace it with an
|
||
equivalent ELF reloc. */
|
||
|
||
if (areloc->howto->pc_relative)
|
||
{
|
||
switch (areloc->howto->bitsize)
|
||
{
|
||
case 8:
|
||
code = BFD_RELOC_8_PCREL;
|
||
break;
|
||
case 12:
|
||
code = BFD_RELOC_12_PCREL;
|
||
break;
|
||
case 16:
|
||
code = BFD_RELOC_16_PCREL;
|
||
break;
|
||
case 24:
|
||
code = BFD_RELOC_24_PCREL;
|
||
break;
|
||
case 32:
|
||
code = BFD_RELOC_32_PCREL;
|
||
break;
|
||
case 64:
|
||
code = BFD_RELOC_64_PCREL;
|
||
break;
|
||
default:
|
||
goto fail;
|
||
}
|
||
|
||
howto = bfd_reloc_type_lookup (abfd, code);
|
||
|
||
if (areloc->howto->pcrel_offset != howto->pcrel_offset)
|
||
{
|
||
if (howto->pcrel_offset)
|
||
areloc->addend += areloc->address;
|
||
else
|
||
areloc->addend -= areloc->address; /* addend is unsigned!! */
|
||
}
|
||
}
|
||
else
|
||
{
|
||
switch (areloc->howto->bitsize)
|
||
{
|
||
case 8:
|
||
code = BFD_RELOC_8;
|
||
break;
|
||
case 14:
|
||
code = BFD_RELOC_14;
|
||
break;
|
||
case 16:
|
||
code = BFD_RELOC_16;
|
||
break;
|
||
case 26:
|
||
code = BFD_RELOC_26;
|
||
break;
|
||
case 32:
|
||
code = BFD_RELOC_32;
|
||
break;
|
||
case 64:
|
||
code = BFD_RELOC_64;
|
||
break;
|
||
default:
|
||
goto fail;
|
||
}
|
||
|
||
howto = bfd_reloc_type_lookup (abfd, code);
|
||
}
|
||
|
||
if (howto)
|
||
areloc->howto = howto;
|
||
else
|
||
goto fail;
|
||
}
|
||
|
||
return TRUE;
|
||
|
||
fail:
|
||
(*_bfd_error_handler)
|
||
(_("%B: unsupported relocation type %s"),
|
||
abfd, areloc->howto->name);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
|
||
bfd_boolean
|
||
_bfd_elf_close_and_cleanup (bfd *abfd)
|
||
{
|
||
if (bfd_get_format (abfd) == bfd_object)
|
||
{
|
||
if (elf_shstrtab (abfd) != NULL)
|
||
_bfd_elf_strtab_free (elf_shstrtab (abfd));
|
||
_bfd_dwarf2_cleanup_debug_info (abfd);
|
||
}
|
||
|
||
return _bfd_generic_close_and_cleanup (abfd);
|
||
}
|
||
|
||
/* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
|
||
in the relocation's offset. Thus we cannot allow any sort of sanity
|
||
range-checking to interfere. There is nothing else to do in processing
|
||
this reloc. */
|
||
|
||
bfd_reloc_status_type
|
||
_bfd_elf_rel_vtable_reloc_fn
|
||
(bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
|
||
struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
|
||
void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
|
||
bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
|
||
{
|
||
return bfd_reloc_ok;
|
||
}
|
||
|
||
/* Elf core file support. Much of this only works on native
|
||
toolchains, since we rely on knowing the
|
||
machine-dependent procfs structure in order to pick
|
||
out details about the corefile. */
|
||
|
||
#ifdef HAVE_SYS_PROCFS_H
|
||
# include <sys/procfs.h>
|
||
#endif
|
||
|
||
/* FIXME: this is kinda wrong, but it's what gdb wants. */
|
||
|
||
static int
|
||
elfcore_make_pid (bfd *abfd)
|
||
{
|
||
return ((elf_tdata (abfd)->core_lwpid << 16)
|
||
+ (elf_tdata (abfd)->core_pid));
|
||
}
|
||
|
||
/* If there isn't a section called NAME, make one, using
|
||
data from SECT. Note, this function will generate a
|
||
reference to NAME, so you shouldn't deallocate or
|
||
overwrite it. */
|
||
|
||
static bfd_boolean
|
||
elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
|
||
{
|
||
asection *sect2;
|
||
|
||
if (bfd_get_section_by_name (abfd, name) != NULL)
|
||
return TRUE;
|
||
|
||
sect2 = bfd_make_section (abfd, name);
|
||
if (sect2 == NULL)
|
||
return FALSE;
|
||
|
||
sect2->size = sect->size;
|
||
sect2->filepos = sect->filepos;
|
||
sect2->flags = sect->flags;
|
||
sect2->alignment_power = sect->alignment_power;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Create a pseudosection containing SIZE bytes at FILEPOS. This
|
||
actually creates up to two pseudosections:
|
||
- For the single-threaded case, a section named NAME, unless
|
||
such a section already exists.
|
||
- For the multi-threaded case, a section named "NAME/PID", where
|
||
PID is elfcore_make_pid (abfd).
|
||
Both pseudosections have identical contents. */
|
||
bfd_boolean
|
||
_bfd_elfcore_make_pseudosection (bfd *abfd,
|
||
char *name,
|
||
size_t size,
|
||
ufile_ptr filepos)
|
||
{
|
||
char buf[100];
|
||
char *threaded_name;
|
||
size_t len;
|
||
asection *sect;
|
||
|
||
/* Build the section name. */
|
||
|
||
sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
|
||
len = strlen (buf) + 1;
|
||
threaded_name = bfd_alloc (abfd, len);
|
||
if (threaded_name == NULL)
|
||
return FALSE;
|
||
memcpy (threaded_name, buf, len);
|
||
|
||
sect = bfd_make_section_anyway (abfd, threaded_name);
|
||
if (sect == NULL)
|
||
return FALSE;
|
||
sect->size = size;
|
||
sect->filepos = filepos;
|
||
sect->flags = SEC_HAS_CONTENTS;
|
||
sect->alignment_power = 2;
|
||
|
||
return elfcore_maybe_make_sect (abfd, name, sect);
|
||
}
|
||
|
||
/* prstatus_t exists on:
|
||
solaris 2.5+
|
||
linux 2.[01] + glibc
|
||
unixware 4.2
|
||
*/
|
||
|
||
#if defined (HAVE_PRSTATUS_T)
|
||
|
||
static bfd_boolean
|
||
elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
|
||
{
|
||
size_t size;
|
||
int offset;
|
||
|
||
if (note->descsz == sizeof (prstatus_t))
|
||
{
|
||
prstatus_t prstat;
|
||
|
||
size = sizeof (prstat.pr_reg);
|
||
offset = offsetof (prstatus_t, pr_reg);
|
||
memcpy (&prstat, note->descdata, sizeof (prstat));
|
||
|
||
/* Do not overwrite the core signal if it
|
||
has already been set by another thread. */
|
||
if (elf_tdata (abfd)->core_signal == 0)
|
||
elf_tdata (abfd)->core_signal = prstat.pr_cursig;
|
||
elf_tdata (abfd)->core_pid = prstat.pr_pid;
|
||
|
||
/* pr_who exists on:
|
||
solaris 2.5+
|
||
unixware 4.2
|
||
pr_who doesn't exist on:
|
||
linux 2.[01]
|
||
*/
|
||
#if defined (HAVE_PRSTATUS_T_PR_WHO)
|
||
elf_tdata (abfd)->core_lwpid = prstat.pr_who;
|
||
#endif
|
||
}
|
||
#if defined (HAVE_PRSTATUS32_T)
|
||
else if (note->descsz == sizeof (prstatus32_t))
|
||
{
|
||
/* 64-bit host, 32-bit corefile */
|
||
prstatus32_t prstat;
|
||
|
||
size = sizeof (prstat.pr_reg);
|
||
offset = offsetof (prstatus32_t, pr_reg);
|
||
memcpy (&prstat, note->descdata, sizeof (prstat));
|
||
|
||
/* Do not overwrite the core signal if it
|
||
has already been set by another thread. */
|
||
if (elf_tdata (abfd)->core_signal == 0)
|
||
elf_tdata (abfd)->core_signal = prstat.pr_cursig;
|
||
elf_tdata (abfd)->core_pid = prstat.pr_pid;
|
||
|
||
/* pr_who exists on:
|
||
solaris 2.5+
|
||
unixware 4.2
|
||
pr_who doesn't exist on:
|
||
linux 2.[01]
|
||
*/
|
||
#if defined (HAVE_PRSTATUS32_T_PR_WHO)
|
||
elf_tdata (abfd)->core_lwpid = prstat.pr_who;
|
||
#endif
|
||
}
|
||
#endif /* HAVE_PRSTATUS32_T */
|
||
else
|
||
{
|
||
/* Fail - we don't know how to handle any other
|
||
note size (ie. data object type). */
|
||
return TRUE;
|
||
}
|
||
|
||
/* Make a ".reg/999" section and a ".reg" section. */
|
||
return _bfd_elfcore_make_pseudosection (abfd, ".reg",
|
||
size, note->descpos + offset);
|
||
}
|
||
#endif /* defined (HAVE_PRSTATUS_T) */
|
||
|
||
/* Create a pseudosection containing the exact contents of NOTE. */
|
||
static bfd_boolean
|
||
elfcore_make_note_pseudosection (bfd *abfd,
|
||
char *name,
|
||
Elf_Internal_Note *note)
|
||
{
|
||
return _bfd_elfcore_make_pseudosection (abfd, name,
|
||
note->descsz, note->descpos);
|
||
}
|
||
|
||
/* There isn't a consistent prfpregset_t across platforms,
|
||
but it doesn't matter, because we don't have to pick this
|
||
data structure apart. */
|
||
|
||
static bfd_boolean
|
||
elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
|
||
{
|
||
return elfcore_make_note_pseudosection (abfd, ".reg2", note);
|
||
}
|
||
|
||
/* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
|
||
type of 5 (NT_PRXFPREG). Just include the whole note's contents
|
||
literally. */
|
||
|
||
static bfd_boolean
|
||
elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
|
||
{
|
||
return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
|
||
}
|
||
|
||
#if defined (HAVE_PRPSINFO_T)
|
||
typedef prpsinfo_t elfcore_psinfo_t;
|
||
#if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
|
||
typedef prpsinfo32_t elfcore_psinfo32_t;
|
||
#endif
|
||
#endif
|
||
|
||
#if defined (HAVE_PSINFO_T)
|
||
typedef psinfo_t elfcore_psinfo_t;
|
||
#if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
|
||
typedef psinfo32_t elfcore_psinfo32_t;
|
||
#endif
|
||
#endif
|
||
|
||
/* return a malloc'ed copy of a string at START which is at
|
||
most MAX bytes long, possibly without a terminating '\0'.
|
||
the copy will always have a terminating '\0'. */
|
||
|
||
char *
|
||
_bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
|
||
{
|
||
char *dups;
|
||
char *end = memchr (start, '\0', max);
|
||
size_t len;
|
||
|
||
if (end == NULL)
|
||
len = max;
|
||
else
|
||
len = end - start;
|
||
|
||
dups = bfd_alloc (abfd, len + 1);
|
||
if (dups == NULL)
|
||
return NULL;
|
||
|
||
memcpy (dups, start, len);
|
||
dups[len] = '\0';
|
||
|
||
return dups;
|
||
}
|
||
|
||
#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
|
||
static bfd_boolean
|
||
elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
|
||
{
|
||
if (note->descsz == sizeof (elfcore_psinfo_t))
|
||
{
|
||
elfcore_psinfo_t psinfo;
|
||
|
||
memcpy (&psinfo, note->descdata, sizeof (psinfo));
|
||
|
||
elf_tdata (abfd)->core_program
|
||
= _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
|
||
sizeof (psinfo.pr_fname));
|
||
|
||
elf_tdata (abfd)->core_command
|
||
= _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
|
||
sizeof (psinfo.pr_psargs));
|
||
}
|
||
#if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
|
||
else if (note->descsz == sizeof (elfcore_psinfo32_t))
|
||
{
|
||
/* 64-bit host, 32-bit corefile */
|
||
elfcore_psinfo32_t psinfo;
|
||
|
||
memcpy (&psinfo, note->descdata, sizeof (psinfo));
|
||
|
||
elf_tdata (abfd)->core_program
|
||
= _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
|
||
sizeof (psinfo.pr_fname));
|
||
|
||
elf_tdata (abfd)->core_command
|
||
= _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
|
||
sizeof (psinfo.pr_psargs));
|
||
}
|
||
#endif
|
||
|
||
else
|
||
{
|
||
/* Fail - we don't know how to handle any other
|
||
note size (ie. data object type). */
|
||
return TRUE;
|
||
}
|
||
|
||
/* Note that for some reason, a spurious space is tacked
|
||
onto the end of the args in some (at least one anyway)
|
||
implementations, so strip it off if it exists. */
|
||
|
||
{
|
||
char *command = elf_tdata (abfd)->core_command;
|
||
int n = strlen (command);
|
||
|
||
if (0 < n && command[n - 1] == ' ')
|
||
command[n - 1] = '\0';
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
#endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
|
||
|
||
#if defined (HAVE_PSTATUS_T)
|
||
static bfd_boolean
|
||
elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
|
||
{
|
||
if (note->descsz == sizeof (pstatus_t)
|
||
#if defined (HAVE_PXSTATUS_T)
|
||
|| note->descsz == sizeof (pxstatus_t)
|
||
#endif
|
||
)
|
||
{
|
||
pstatus_t pstat;
|
||
|
||
memcpy (&pstat, note->descdata, sizeof (pstat));
|
||
|
||
elf_tdata (abfd)->core_pid = pstat.pr_pid;
|
||
}
|
||
#if defined (HAVE_PSTATUS32_T)
|
||
else if (note->descsz == sizeof (pstatus32_t))
|
||
{
|
||
/* 64-bit host, 32-bit corefile */
|
||
pstatus32_t pstat;
|
||
|
||
memcpy (&pstat, note->descdata, sizeof (pstat));
|
||
|
||
elf_tdata (abfd)->core_pid = pstat.pr_pid;
|
||
}
|
||
#endif
|
||
/* Could grab some more details from the "representative"
|
||
lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
|
||
NT_LWPSTATUS note, presumably. */
|
||
|
||
return TRUE;
|
||
}
|
||
#endif /* defined (HAVE_PSTATUS_T) */
|
||
|
||
#if defined (HAVE_LWPSTATUS_T)
|
||
static bfd_boolean
|
||
elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
|
||
{
|
||
lwpstatus_t lwpstat;
|
||
char buf[100];
|
||
char *name;
|
||
size_t len;
|
||
asection *sect;
|
||
|
||
if (note->descsz != sizeof (lwpstat)
|
||
#if defined (HAVE_LWPXSTATUS_T)
|
||
&& note->descsz != sizeof (lwpxstatus_t)
|
||
#endif
|
||
)
|
||
return TRUE;
|
||
|
||
memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
|
||
|
||
elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
|
||
elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
|
||
|
||
/* Make a ".reg/999" section. */
|
||
|
||
sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
|
||
len = strlen (buf) + 1;
|
||
name = bfd_alloc (abfd, len);
|
||
if (name == NULL)
|
||
return FALSE;
|
||
memcpy (name, buf, len);
|
||
|
||
sect = bfd_make_section_anyway (abfd, name);
|
||
if (sect == NULL)
|
||
return FALSE;
|
||
|
||
#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
|
||
sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
|
||
sect->filepos = note->descpos
|
||
+ offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
|
||
#endif
|
||
|
||
#if defined (HAVE_LWPSTATUS_T_PR_REG)
|
||
sect->size = sizeof (lwpstat.pr_reg);
|
||
sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
|
||
#endif
|
||
|
||
sect->flags = SEC_HAS_CONTENTS;
|
||
sect->alignment_power = 2;
|
||
|
||
if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
|
||
return FALSE;
|
||
|
||
/* Make a ".reg2/999" section */
|
||
|
||
sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
|
||
len = strlen (buf) + 1;
|
||
name = bfd_alloc (abfd, len);
|
||
if (name == NULL)
|
||
return FALSE;
|
||
memcpy (name, buf, len);
|
||
|
||
sect = bfd_make_section_anyway (abfd, name);
|
||
if (sect == NULL)
|
||
return FALSE;
|
||
|
||
#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
|
||
sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
|
||
sect->filepos = note->descpos
|
||
+ offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
|
||
#endif
|
||
|
||
#if defined (HAVE_LWPSTATUS_T_PR_FPREG)
|
||
sect->size = sizeof (lwpstat.pr_fpreg);
|
||
sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
|
||
#endif
|
||
|
||
sect->flags = SEC_HAS_CONTENTS;
|
||
sect->alignment_power = 2;
|
||
|
||
return elfcore_maybe_make_sect (abfd, ".reg2", sect);
|
||
}
|
||
#endif /* defined (HAVE_LWPSTATUS_T) */
|
||
|
||
#if defined (HAVE_WIN32_PSTATUS_T)
|
||
static bfd_boolean
|
||
elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
|
||
{
|
||
char buf[30];
|
||
char *name;
|
||
size_t len;
|
||
asection *sect;
|
||
win32_pstatus_t pstatus;
|
||
|
||
if (note->descsz < sizeof (pstatus))
|
||
return TRUE;
|
||
|
||
memcpy (&pstatus, note->descdata, sizeof (pstatus));
|
||
|
||
switch (pstatus.data_type)
|
||
{
|
||
case NOTE_INFO_PROCESS:
|
||
/* FIXME: need to add ->core_command. */
|
||
elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
|
||
elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
|
||
break;
|
||
|
||
case NOTE_INFO_THREAD:
|
||
/* Make a ".reg/999" section. */
|
||
sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
|
||
|
||
len = strlen (buf) + 1;
|
||
name = bfd_alloc (abfd, len);
|
||
if (name == NULL)
|
||
return FALSE;
|
||
|
||
memcpy (name, buf, len);
|
||
|
||
sect = bfd_make_section_anyway (abfd, name);
|
||
if (sect == NULL)
|
||
return FALSE;
|
||
|
||
sect->size = sizeof (pstatus.data.thread_info.thread_context);
|
||
sect->filepos = (note->descpos
|
||
+ offsetof (struct win32_pstatus,
|
||
data.thread_info.thread_context));
|
||
sect->flags = SEC_HAS_CONTENTS;
|
||
sect->alignment_power = 2;
|
||
|
||
if (pstatus.data.thread_info.is_active_thread)
|
||
if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
|
||
return FALSE;
|
||
break;
|
||
|
||
case NOTE_INFO_MODULE:
|
||
/* Make a ".module/xxxxxxxx" section. */
|
||
sprintf (buf, ".module/%08lx",
|
||
(long) pstatus.data.module_info.base_address);
|
||
|
||
len = strlen (buf) + 1;
|
||
name = bfd_alloc (abfd, len);
|
||
if (name == NULL)
|
||
return FALSE;
|
||
|
||
memcpy (name, buf, len);
|
||
|
||
sect = bfd_make_section_anyway (abfd, name);
|
||
|
||
if (sect == NULL)
|
||
return FALSE;
|
||
|
||
sect->size = note->descsz;
|
||
sect->filepos = note->descpos;
|
||
sect->flags = SEC_HAS_CONTENTS;
|
||
sect->alignment_power = 2;
|
||
break;
|
||
|
||
default:
|
||
return TRUE;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
#endif /* HAVE_WIN32_PSTATUS_T */
|
||
|
||
static bfd_boolean
|
||
elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
|
||
{
|
||
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
|
||
switch (note->type)
|
||
{
|
||
default:
|
||
return TRUE;
|
||
|
||
case NT_PRSTATUS:
|
||
if (bed->elf_backend_grok_prstatus)
|
||
if ((*bed->elf_backend_grok_prstatus) (abfd, note))
|
||
return TRUE;
|
||
#if defined (HAVE_PRSTATUS_T)
|
||
return elfcore_grok_prstatus (abfd, note);
|
||
#else
|
||
return TRUE;
|
||
#endif
|
||
|
||
#if defined (HAVE_PSTATUS_T)
|
||
case NT_PSTATUS:
|
||
return elfcore_grok_pstatus (abfd, note);
|
||
#endif
|
||
|
||
#if defined (HAVE_LWPSTATUS_T)
|
||
case NT_LWPSTATUS:
|
||
return elfcore_grok_lwpstatus (abfd, note);
|
||
#endif
|
||
|
||
case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
|
||
return elfcore_grok_prfpreg (abfd, note);
|
||
|
||
#if defined (HAVE_WIN32_PSTATUS_T)
|
||
case NT_WIN32PSTATUS:
|
||
return elfcore_grok_win32pstatus (abfd, note);
|
||
#endif
|
||
|
||
case NT_PRXFPREG: /* Linux SSE extension */
|
||
if (note->namesz == 6
|
||
&& strcmp (note->namedata, "LINUX") == 0)
|
||
return elfcore_grok_prxfpreg (abfd, note);
|
||
else
|
||
return TRUE;
|
||
|
||
case NT_PRPSINFO:
|
||
case NT_PSINFO:
|
||
if (bed->elf_backend_grok_psinfo)
|
||
if ((*bed->elf_backend_grok_psinfo) (abfd, note))
|
||
return TRUE;
|
||
#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
|
||
return elfcore_grok_psinfo (abfd, note);
|
||
#else
|
||
return TRUE;
|
||
#endif
|
||
|
||
case NT_AUXV:
|
||
{
|
||
asection *sect = bfd_make_section_anyway (abfd, ".auxv");
|
||
|
||
if (sect == NULL)
|
||
return FALSE;
|
||
sect->size = note->descsz;
|
||
sect->filepos = note->descpos;
|
||
sect->flags = SEC_HAS_CONTENTS;
|
||
sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
|
||
|
||
return TRUE;
|
||
}
|
||
}
|
||
}
|
||
|
||
static bfd_boolean
|
||
elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
|
||
{
|
||
char *cp;
|
||
|
||
cp = strchr (note->namedata, '@');
|
||
if (cp != NULL)
|
||
{
|
||
*lwpidp = atoi(cp + 1);
|
||
return TRUE;
|
||
}
|
||
return FALSE;
|
||
}
|
||
|
||
static bfd_boolean
|
||
elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
|
||
{
|
||
|
||
/* Signal number at offset 0x08. */
|
||
elf_tdata (abfd)->core_signal
|
||
= bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
|
||
|
||
/* Process ID at offset 0x50. */
|
||
elf_tdata (abfd)->core_pid
|
||
= bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
|
||
|
||
/* Command name at 0x7c (max 32 bytes, including nul). */
|
||
elf_tdata (abfd)->core_command
|
||
= _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
|
||
|
||
return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
|
||
note);
|
||
}
|
||
|
||
static bfd_boolean
|
||
elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
|
||
{
|
||
int lwp;
|
||
|
||
if (elfcore_netbsd_get_lwpid (note, &lwp))
|
||
elf_tdata (abfd)->core_lwpid = lwp;
|
||
|
||
if (note->type == NT_NETBSDCORE_PROCINFO)
|
||
{
|
||
/* NetBSD-specific core "procinfo". Note that we expect to
|
||
find this note before any of the others, which is fine,
|
||
since the kernel writes this note out first when it
|
||
creates a core file. */
|
||
|
||
return elfcore_grok_netbsd_procinfo (abfd, note);
|
||
}
|
||
|
||
/* As of Jan 2002 there are no other machine-independent notes
|
||
defined for NetBSD core files. If the note type is less
|
||
than the start of the machine-dependent note types, we don't
|
||
understand it. */
|
||
|
||
if (note->type < NT_NETBSDCORE_FIRSTMACH)
|
||
return TRUE;
|
||
|
||
|
||
switch (bfd_get_arch (abfd))
|
||
{
|
||
/* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
|
||
PT_GETFPREGS == mach+2. */
|
||
|
||
case bfd_arch_alpha:
|
||
case bfd_arch_sparc:
|
||
switch (note->type)
|
||
{
|
||
case NT_NETBSDCORE_FIRSTMACH+0:
|
||
return elfcore_make_note_pseudosection (abfd, ".reg", note);
|
||
|
||
case NT_NETBSDCORE_FIRSTMACH+2:
|
||
return elfcore_make_note_pseudosection (abfd, ".reg2", note);
|
||
|
||
default:
|
||
return TRUE;
|
||
}
|
||
|
||
/* On all other arch's, PT_GETREGS == mach+1 and
|
||
PT_GETFPREGS == mach+3. */
|
||
|
||
default:
|
||
switch (note->type)
|
||
{
|
||
case NT_NETBSDCORE_FIRSTMACH+1:
|
||
return elfcore_make_note_pseudosection (abfd, ".reg", note);
|
||
|
||
case NT_NETBSDCORE_FIRSTMACH+3:
|
||
return elfcore_make_note_pseudosection (abfd, ".reg2", note);
|
||
|
||
default:
|
||
return TRUE;
|
||
}
|
||
}
|
||
/* NOTREACHED */
|
||
}
|
||
|
||
static bfd_boolean
|
||
elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
|
||
{
|
||
void *ddata = note->descdata;
|
||
char buf[100];
|
||
char *name;
|
||
asection *sect;
|
||
short sig;
|
||
unsigned flags;
|
||
|
||
/* nto_procfs_status 'pid' field is at offset 0. */
|
||
elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
|
||
|
||
/* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
|
||
*tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
|
||
|
||
/* nto_procfs_status 'flags' field is at offset 8. */
|
||
flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
|
||
|
||
/* nto_procfs_status 'what' field is at offset 14. */
|
||
if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
|
||
{
|
||
elf_tdata (abfd)->core_signal = sig;
|
||
elf_tdata (abfd)->core_lwpid = *tid;
|
||
}
|
||
|
||
/* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
|
||
do not come from signals so we make sure we set the current
|
||
thread just in case. */
|
||
if (flags & 0x00000080)
|
||
elf_tdata (abfd)->core_lwpid = *tid;
|
||
|
||
/* Make a ".qnx_core_status/%d" section. */
|
||
sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
|
||
|
||
name = bfd_alloc (abfd, strlen (buf) + 1);
|
||
if (name == NULL)
|
||
return FALSE;
|
||
strcpy (name, buf);
|
||
|
||
sect = bfd_make_section_anyway (abfd, name);
|
||
if (sect == NULL)
|
||
return FALSE;
|
||
|
||
sect->size = note->descsz;
|
||
sect->filepos = note->descpos;
|
||
sect->flags = SEC_HAS_CONTENTS;
|
||
sect->alignment_power = 2;
|
||
|
||
return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
|
||
}
|
||
|
||
static bfd_boolean
|
||
elfcore_grok_nto_regs (bfd *abfd,
|
||
Elf_Internal_Note *note,
|
||
pid_t tid,
|
||
char *base)
|
||
{
|
||
char buf[100];
|
||
char *name;
|
||
asection *sect;
|
||
|
||
/* Make a "(base)/%d" section. */
|
||
sprintf (buf, "%s/%ld", base, (long) tid);
|
||
|
||
name = bfd_alloc (abfd, strlen (buf) + 1);
|
||
if (name == NULL)
|
||
return FALSE;
|
||
strcpy (name, buf);
|
||
|
||
sect = bfd_make_section_anyway (abfd, name);
|
||
if (sect == NULL)
|
||
return FALSE;
|
||
|
||
sect->size = note->descsz;
|
||
sect->filepos = note->descpos;
|
||
sect->flags = SEC_HAS_CONTENTS;
|
||
sect->alignment_power = 2;
|
||
|
||
/* This is the current thread. */
|
||
if (elf_tdata (abfd)->core_lwpid == tid)
|
||
return elfcore_maybe_make_sect (abfd, base, sect);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
#define BFD_QNT_CORE_INFO 7
|
||
#define BFD_QNT_CORE_STATUS 8
|
||
#define BFD_QNT_CORE_GREG 9
|
||
#define BFD_QNT_CORE_FPREG 10
|
||
|
||
static bfd_boolean
|
||
elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
|
||
{
|
||
/* Every GREG section has a STATUS section before it. Store the
|
||
tid from the previous call to pass down to the next gregs
|
||
function. */
|
||
static pid_t tid = 1;
|
||
|
||
switch (note->type)
|
||
{
|
||
case BFD_QNT_CORE_INFO:
|
||
return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
|
||
case BFD_QNT_CORE_STATUS:
|
||
return elfcore_grok_nto_status (abfd, note, &tid);
|
||
case BFD_QNT_CORE_GREG:
|
||
return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
|
||
case BFD_QNT_CORE_FPREG:
|
||
return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
|
||
default:
|
||
return TRUE;
|
||
}
|
||
}
|
||
|
||
/* Function: elfcore_write_note
|
||
|
||
Inputs:
|
||
buffer to hold note
|
||
name of note
|
||
type of note
|
||
data for note
|
||
size of data for note
|
||
|
||
Return:
|
||
End of buffer containing note. */
|
||
|
||
char *
|
||
elfcore_write_note (bfd *abfd,
|
||
char *buf,
|
||
int *bufsiz,
|
||
const char *name,
|
||
int type,
|
||
const void *input,
|
||
int size)
|
||
{
|
||
Elf_External_Note *xnp;
|
||
size_t namesz;
|
||
size_t pad;
|
||
size_t newspace;
|
||
char *p, *dest;
|
||
|
||
namesz = 0;
|
||
pad = 0;
|
||
if (name != NULL)
|
||
{
|
||
const struct elf_backend_data *bed;
|
||
|
||
namesz = strlen (name) + 1;
|
||
bed = get_elf_backend_data (abfd);
|
||
pad = -namesz & ((1 << bed->s->log_file_align) - 1);
|
||
}
|
||
|
||
newspace = 12 + namesz + pad + size;
|
||
|
||
p = realloc (buf, *bufsiz + newspace);
|
||
dest = p + *bufsiz;
|
||
*bufsiz += newspace;
|
||
xnp = (Elf_External_Note *) dest;
|
||
H_PUT_32 (abfd, namesz, xnp->namesz);
|
||
H_PUT_32 (abfd, size, xnp->descsz);
|
||
H_PUT_32 (abfd, type, xnp->type);
|
||
dest = xnp->name;
|
||
if (name != NULL)
|
||
{
|
||
memcpy (dest, name, namesz);
|
||
dest += namesz;
|
||
while (pad != 0)
|
||
{
|
||
*dest++ = '\0';
|
||
--pad;
|
||
}
|
||
}
|
||
memcpy (dest, input, size);
|
||
return p;
|
||
}
|
||
|
||
#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
|
||
char *
|
||
elfcore_write_prpsinfo (bfd *abfd,
|
||
char *buf,
|
||
int *bufsiz,
|
||
const char *fname,
|
||
const char *psargs)
|
||
{
|
||
int note_type;
|
||
char *note_name = "CORE";
|
||
|
||
#if defined (HAVE_PSINFO_T)
|
||
psinfo_t data;
|
||
note_type = NT_PSINFO;
|
||
#else
|
||
prpsinfo_t data;
|
||
note_type = NT_PRPSINFO;
|
||
#endif
|
||
|
||
memset (&data, 0, sizeof (data));
|
||
strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
|
||
strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
|
||
return elfcore_write_note (abfd, buf, bufsiz,
|
||
note_name, note_type, &data, sizeof (data));
|
||
}
|
||
#endif /* PSINFO_T or PRPSINFO_T */
|
||
|
||
#if defined (HAVE_PRSTATUS_T)
|
||
char *
|
||
elfcore_write_prstatus (bfd *abfd,
|
||
char *buf,
|
||
int *bufsiz,
|
||
long pid,
|
||
int cursig,
|
||
const void *gregs)
|
||
{
|
||
prstatus_t prstat;
|
||
char *note_name = "CORE";
|
||
|
||
memset (&prstat, 0, sizeof (prstat));
|
||
prstat.pr_pid = pid;
|
||
prstat.pr_cursig = cursig;
|
||
memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
|
||
return elfcore_write_note (abfd, buf, bufsiz,
|
||
note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
|
||
}
|
||
#endif /* HAVE_PRSTATUS_T */
|
||
|
||
#if defined (HAVE_LWPSTATUS_T)
|
||
char *
|
||
elfcore_write_lwpstatus (bfd *abfd,
|
||
char *buf,
|
||
int *bufsiz,
|
||
long pid,
|
||
int cursig,
|
||
const void *gregs)
|
||
{
|
||
lwpstatus_t lwpstat;
|
||
char *note_name = "CORE";
|
||
|
||
memset (&lwpstat, 0, sizeof (lwpstat));
|
||
lwpstat.pr_lwpid = pid >> 16;
|
||
lwpstat.pr_cursig = cursig;
|
||
#if defined (HAVE_LWPSTATUS_T_PR_REG)
|
||
memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
|
||
#elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
|
||
#if !defined(gregs)
|
||
memcpy (lwpstat.pr_context.uc_mcontext.gregs,
|
||
gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
|
||
#else
|
||
memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
|
||
gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
|
||
#endif
|
||
#endif
|
||
return elfcore_write_note (abfd, buf, bufsiz, note_name,
|
||
NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
|
||
}
|
||
#endif /* HAVE_LWPSTATUS_T */
|
||
|
||
#if defined (HAVE_PSTATUS_T)
|
||
char *
|
||
elfcore_write_pstatus (bfd *abfd,
|
||
char *buf,
|
||
int *bufsiz,
|
||
long pid,
|
||
int cursig,
|
||
const void *gregs)
|
||
{
|
||
pstatus_t pstat;
|
||
char *note_name = "CORE";
|
||
|
||
memset (&pstat, 0, sizeof (pstat));
|
||
pstat.pr_pid = pid & 0xffff;
|
||
buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
|
||
NT_PSTATUS, &pstat, sizeof (pstat));
|
||
return buf;
|
||
}
|
||
#endif /* HAVE_PSTATUS_T */
|
||
|
||
char *
|
||
elfcore_write_prfpreg (bfd *abfd,
|
||
char *buf,
|
||
int *bufsiz,
|
||
const void *fpregs,
|
||
int size)
|
||
{
|
||
char *note_name = "CORE";
|
||
return elfcore_write_note (abfd, buf, bufsiz,
|
||
note_name, NT_FPREGSET, fpregs, size);
|
||
}
|
||
|
||
char *
|
||
elfcore_write_prxfpreg (bfd *abfd,
|
||
char *buf,
|
||
int *bufsiz,
|
||
const void *xfpregs,
|
||
int size)
|
||
{
|
||
char *note_name = "LINUX";
|
||
return elfcore_write_note (abfd, buf, bufsiz,
|
||
note_name, NT_PRXFPREG, xfpregs, size);
|
||
}
|
||
|
||
static bfd_boolean
|
||
elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
|
||
{
|
||
char *buf;
|
||
char *p;
|
||
|
||
if (size <= 0)
|
||
return TRUE;
|
||
|
||
if (bfd_seek (abfd, offset, SEEK_SET) != 0)
|
||
return FALSE;
|
||
|
||
buf = bfd_malloc (size);
|
||
if (buf == NULL)
|
||
return FALSE;
|
||
|
||
if (bfd_bread (buf, size, abfd) != size)
|
||
{
|
||
error:
|
||
free (buf);
|
||
return FALSE;
|
||
}
|
||
|
||
p = buf;
|
||
while (p < buf + size)
|
||
{
|
||
/* FIXME: bad alignment assumption. */
|
||
Elf_External_Note *xnp = (Elf_External_Note *) p;
|
||
Elf_Internal_Note in;
|
||
|
||
in.type = H_GET_32 (abfd, xnp->type);
|
||
|
||
in.namesz = H_GET_32 (abfd, xnp->namesz);
|
||
in.namedata = xnp->name;
|
||
|
||
in.descsz = H_GET_32 (abfd, xnp->descsz);
|
||
in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
|
||
in.descpos = offset + (in.descdata - buf);
|
||
|
||
if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
|
||
{
|
||
if (! elfcore_grok_netbsd_note (abfd, &in))
|
||
goto error;
|
||
}
|
||
else if (strncmp (in.namedata, "QNX", 3) == 0)
|
||
{
|
||
if (! elfcore_grok_nto_note (abfd, &in))
|
||
goto error;
|
||
}
|
||
else
|
||
{
|
||
if (! elfcore_grok_note (abfd, &in))
|
||
goto error;
|
||
}
|
||
|
||
p = in.descdata + BFD_ALIGN (in.descsz, 4);
|
||
}
|
||
|
||
free (buf);
|
||
return TRUE;
|
||
}
|
||
|
||
/* Providing external access to the ELF program header table. */
|
||
|
||
/* Return an upper bound on the number of bytes required to store a
|
||
copy of ABFD's program header table entries. Return -1 if an error
|
||
occurs; bfd_get_error will return an appropriate code. */
|
||
|
||
long
|
||
bfd_get_elf_phdr_upper_bound (bfd *abfd)
|
||
{
|
||
if (abfd->xvec->flavour != bfd_target_elf_flavour)
|
||
{
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
return -1;
|
||
}
|
||
|
||
return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
|
||
}
|
||
|
||
/* Copy ABFD's program header table entries to *PHDRS. The entries
|
||
will be stored as an array of Elf_Internal_Phdr structures, as
|
||
defined in include/elf/internal.h. To find out how large the
|
||
buffer needs to be, call bfd_get_elf_phdr_upper_bound.
|
||
|
||
Return the number of program header table entries read, or -1 if an
|
||
error occurs; bfd_get_error will return an appropriate code. */
|
||
|
||
int
|
||
bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
|
||
{
|
||
int num_phdrs;
|
||
|
||
if (abfd->xvec->flavour != bfd_target_elf_flavour)
|
||
{
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
return -1;
|
||
}
|
||
|
||
num_phdrs = elf_elfheader (abfd)->e_phnum;
|
||
memcpy (phdrs, elf_tdata (abfd)->phdr,
|
||
num_phdrs * sizeof (Elf_Internal_Phdr));
|
||
|
||
return num_phdrs;
|
||
}
|
||
|
||
void
|
||
_bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
|
||
{
|
||
#ifdef BFD64
|
||
Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
|
||
|
||
i_ehdrp = elf_elfheader (abfd);
|
||
if (i_ehdrp == NULL)
|
||
sprintf_vma (buf, value);
|
||
else
|
||
{
|
||
if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
|
||
{
|
||
#if BFD_HOST_64BIT_LONG
|
||
sprintf (buf, "%016lx", value);
|
||
#else
|
||
sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
|
||
_bfd_int64_low (value));
|
||
#endif
|
||
}
|
||
else
|
||
sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
|
||
}
|
||
#else
|
||
sprintf_vma (buf, value);
|
||
#endif
|
||
}
|
||
|
||
void
|
||
_bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
|
||
{
|
||
#ifdef BFD64
|
||
Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
|
||
|
||
i_ehdrp = elf_elfheader (abfd);
|
||
if (i_ehdrp == NULL)
|
||
fprintf_vma ((FILE *) stream, value);
|
||
else
|
||
{
|
||
if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
|
||
{
|
||
#if BFD_HOST_64BIT_LONG
|
||
fprintf ((FILE *) stream, "%016lx", value);
|
||
#else
|
||
fprintf ((FILE *) stream, "%08lx%08lx",
|
||
_bfd_int64_high (value), _bfd_int64_low (value));
|
||
#endif
|
||
}
|
||
else
|
||
fprintf ((FILE *) stream, "%08lx",
|
||
(unsigned long) (value & 0xffffffff));
|
||
}
|
||
#else
|
||
fprintf_vma ((FILE *) stream, value);
|
||
#endif
|
||
}
|
||
|
||
enum elf_reloc_type_class
|
||
_bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
|
||
{
|
||
return reloc_class_normal;
|
||
}
|
||
|
||
/* For RELA architectures, return the relocation value for a
|
||
relocation against a local symbol. */
|
||
|
||
bfd_vma
|
||
_bfd_elf_rela_local_sym (bfd *abfd,
|
||
Elf_Internal_Sym *sym,
|
||
asection **psec,
|
||
Elf_Internal_Rela *rel)
|
||
{
|
||
asection *sec = *psec;
|
||
bfd_vma relocation;
|
||
|
||
relocation = (sec->output_section->vma
|
||
+ sec->output_offset
|
||
+ sym->st_value);
|
||
if ((sec->flags & SEC_MERGE)
|
||
&& ELF_ST_TYPE (sym->st_info) == STT_SECTION
|
||
&& sec->sec_info_type == ELF_INFO_TYPE_MERGE)
|
||
{
|
||
rel->r_addend =
|
||
_bfd_merged_section_offset (abfd, psec,
|
||
elf_section_data (sec)->sec_info,
|
||
sym->st_value + rel->r_addend);
|
||
if (sec != *psec)
|
||
{
|
||
/* If we have changed the section, and our original section is
|
||
marked with SEC_EXCLUDE, it means that the original
|
||
SEC_MERGE section has been completely subsumed in some
|
||
other SEC_MERGE section. In this case, we need to leave
|
||
some info around for --emit-relocs. */
|
||
if ((sec->flags & SEC_EXCLUDE) != 0)
|
||
sec->kept_section = *psec;
|
||
sec = *psec;
|
||
}
|
||
rel->r_addend -= relocation;
|
||
rel->r_addend += sec->output_section->vma + sec->output_offset;
|
||
}
|
||
return relocation;
|
||
}
|
||
|
||
bfd_vma
|
||
_bfd_elf_rel_local_sym (bfd *abfd,
|
||
Elf_Internal_Sym *sym,
|
||
asection **psec,
|
||
bfd_vma addend)
|
||
{
|
||
asection *sec = *psec;
|
||
|
||
if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
|
||
return sym->st_value + addend;
|
||
|
||
return _bfd_merged_section_offset (abfd, psec,
|
||
elf_section_data (sec)->sec_info,
|
||
sym->st_value + addend);
|
||
}
|
||
|
||
bfd_vma
|
||
_bfd_elf_section_offset (bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
asection *sec,
|
||
bfd_vma offset)
|
||
{
|
||
switch (sec->sec_info_type)
|
||
{
|
||
case ELF_INFO_TYPE_STABS:
|
||
return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
|
||
offset);
|
||
case ELF_INFO_TYPE_EH_FRAME:
|
||
return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
|
||
default:
|
||
return offset;
|
||
}
|
||
}
|
||
|
||
/* Create a new BFD as if by bfd_openr. Rather than opening a file,
|
||
reconstruct an ELF file by reading the segments out of remote memory
|
||
based on the ELF file header at EHDR_VMA and the ELF program headers it
|
||
points to. If not null, *LOADBASEP is filled in with the difference
|
||
between the VMAs from which the segments were read, and the VMAs the
|
||
file headers (and hence BFD's idea of each section's VMA) put them at.
|
||
|
||
The function TARGET_READ_MEMORY is called to copy LEN bytes from the
|
||
remote memory at target address VMA into the local buffer at MYADDR; it
|
||
should return zero on success or an `errno' code on failure. TEMPL must
|
||
be a BFD for an ELF target with the word size and byte order found in
|
||
the remote memory. */
|
||
|
||
bfd *
|
||
bfd_elf_bfd_from_remote_memory
|
||
(bfd *templ,
|
||
bfd_vma ehdr_vma,
|
||
bfd_vma *loadbasep,
|
||
int (*target_read_memory) (bfd_vma, bfd_byte *, int))
|
||
{
|
||
return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
|
||
(templ, ehdr_vma, loadbasep, target_read_memory);
|
||
}
|
||
|
||
long
|
||
_bfd_elf_get_synthetic_symtab (bfd *abfd,
|
||
long symcount ATTRIBUTE_UNUSED,
|
||
asymbol **syms ATTRIBUTE_UNUSED,
|
||
long dynsymcount,
|
||
asymbol **dynsyms,
|
||
asymbol **ret)
|
||
{
|
||
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
asection *relplt;
|
||
asymbol *s;
|
||
const char *relplt_name;
|
||
bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
|
||
arelent *p;
|
||
long count, i, n;
|
||
size_t size;
|
||
Elf_Internal_Shdr *hdr;
|
||
char *names;
|
||
asection *plt;
|
||
|
||
*ret = NULL;
|
||
|
||
if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
|
||
return 0;
|
||
|
||
if (dynsymcount <= 0)
|
||
return 0;
|
||
|
||
if (!bed->plt_sym_val)
|
||
return 0;
|
||
|
||
relplt_name = bed->relplt_name;
|
||
if (relplt_name == NULL)
|
||
relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
|
||
relplt = bfd_get_section_by_name (abfd, relplt_name);
|
||
if (relplt == NULL)
|
||
return 0;
|
||
|
||
hdr = &elf_section_data (relplt)->this_hdr;
|
||
if (hdr->sh_link != elf_dynsymtab (abfd)
|
||
|| (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
|
||
return 0;
|
||
|
||
plt = bfd_get_section_by_name (abfd, ".plt");
|
||
if (plt == NULL)
|
||
return 0;
|
||
|
||
slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
|
||
if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
|
||
return -1;
|
||
|
||
count = relplt->size / hdr->sh_entsize;
|
||
size = count * sizeof (asymbol);
|
||
p = relplt->relocation;
|
||
for (i = 0; i < count; i++, s++, p++)
|
||
size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
|
||
|
||
s = *ret = bfd_malloc (size);
|
||
if (s == NULL)
|
||
return -1;
|
||
|
||
names = (char *) (s + count);
|
||
p = relplt->relocation;
|
||
n = 0;
|
||
for (i = 0; i < count; i++, s++, p++)
|
||
{
|
||
size_t len;
|
||
bfd_vma addr;
|
||
|
||
addr = bed->plt_sym_val (i, plt, p);
|
||
if (addr == (bfd_vma) -1)
|
||
continue;
|
||
|
||
*s = **p->sym_ptr_ptr;
|
||
s->section = plt;
|
||
s->value = addr - plt->vma;
|
||
s->name = names;
|
||
len = strlen ((*p->sym_ptr_ptr)->name);
|
||
memcpy (names, (*p->sym_ptr_ptr)->name, len);
|
||
names += len;
|
||
memcpy (names, "@plt", sizeof ("@plt"));
|
||
names += sizeof ("@plt");
|
||
++n;
|
||
}
|
||
|
||
return n;
|
||
}
|
||
|
||
/* Sort symbol by binding and section. We want to put definitions
|
||
sorted by section at the beginning. */
|
||
|
||
static int
|
||
elf_sort_elf_symbol (const void *arg1, const void *arg2)
|
||
{
|
||
const Elf_Internal_Sym *s1;
|
||
const Elf_Internal_Sym *s2;
|
||
int shndx;
|
||
|
||
/* Make sure that undefined symbols are at the end. */
|
||
s1 = (const Elf_Internal_Sym *) arg1;
|
||
if (s1->st_shndx == SHN_UNDEF)
|
||
return 1;
|
||
s2 = (const Elf_Internal_Sym *) arg2;
|
||
if (s2->st_shndx == SHN_UNDEF)
|
||
return -1;
|
||
|
||
/* Sorted by section index. */
|
||
shndx = s1->st_shndx - s2->st_shndx;
|
||
if (shndx != 0)
|
||
return shndx;
|
||
|
||
/* Sorted by binding. */
|
||
return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
|
||
}
|
||
|
||
struct elf_symbol
|
||
{
|
||
Elf_Internal_Sym *sym;
|
||
const char *name;
|
||
};
|
||
|
||
static int
|
||
elf_sym_name_compare (const void *arg1, const void *arg2)
|
||
{
|
||
const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
|
||
const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
|
||
return strcmp (s1->name, s2->name);
|
||
}
|
||
|
||
/* Check if 2 sections define the same set of local and global
|
||
symbols. */
|
||
|
||
bfd_boolean
|
||
bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
|
||
{
|
||
bfd *bfd1, *bfd2;
|
||
const struct elf_backend_data *bed1, *bed2;
|
||
Elf_Internal_Shdr *hdr1, *hdr2;
|
||
bfd_size_type symcount1, symcount2;
|
||
Elf_Internal_Sym *isymbuf1, *isymbuf2;
|
||
Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
|
||
Elf_Internal_Sym *isymend;
|
||
struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
|
||
bfd_size_type count1, count2, i;
|
||
int shndx1, shndx2;
|
||
bfd_boolean result;
|
||
|
||
bfd1 = sec1->owner;
|
||
bfd2 = sec2->owner;
|
||
|
||
/* If both are .gnu.linkonce sections, they have to have the same
|
||
section name. */
|
||
if (strncmp (sec1->name, ".gnu.linkonce",
|
||
sizeof ".gnu.linkonce" - 1) == 0
|
||
&& strncmp (sec2->name, ".gnu.linkonce",
|
||
sizeof ".gnu.linkonce" - 1) == 0)
|
||
return strcmp (sec1->name + sizeof ".gnu.linkonce",
|
||
sec2->name + sizeof ".gnu.linkonce") == 0;
|
||
|
||
/* Both sections have to be in ELF. */
|
||
if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
|
||
|| bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
|
||
return FALSE;
|
||
|
||
if (elf_section_type (sec1) != elf_section_type (sec2))
|
||
return FALSE;
|
||
|
||
if ((elf_section_flags (sec1) & SHF_GROUP) != 0
|
||
&& (elf_section_flags (sec2) & SHF_GROUP) != 0)
|
||
{
|
||
/* If both are members of section groups, they have to have the
|
||
same group name. */
|
||
if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
|
||
return FALSE;
|
||
}
|
||
|
||
shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
|
||
shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
|
||
if (shndx1 == -1 || shndx2 == -1)
|
||
return FALSE;
|
||
|
||
bed1 = get_elf_backend_data (bfd1);
|
||
bed2 = get_elf_backend_data (bfd2);
|
||
hdr1 = &elf_tdata (bfd1)->symtab_hdr;
|
||
symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
|
||
hdr2 = &elf_tdata (bfd2)->symtab_hdr;
|
||
symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
|
||
|
||
if (symcount1 == 0 || symcount2 == 0)
|
||
return FALSE;
|
||
|
||
isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
|
||
NULL, NULL, NULL);
|
||
isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
|
||
NULL, NULL, NULL);
|
||
|
||
result = FALSE;
|
||
if (isymbuf1 == NULL || isymbuf2 == NULL)
|
||
goto done;
|
||
|
||
/* Sort symbols by binding and section. Global definitions are at
|
||
the beginning. */
|
||
qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
|
||
elf_sort_elf_symbol);
|
||
qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
|
||
elf_sort_elf_symbol);
|
||
|
||
/* Count definitions in the section. */
|
||
count1 = 0;
|
||
for (isym = isymbuf1, isymend = isym + symcount1;
|
||
isym < isymend; isym++)
|
||
{
|
||
if (isym->st_shndx == (unsigned int) shndx1)
|
||
{
|
||
if (count1 == 0)
|
||
isymstart1 = isym;
|
||
count1++;
|
||
}
|
||
|
||
if (count1 && isym->st_shndx != (unsigned int) shndx1)
|
||
break;
|
||
}
|
||
|
||
count2 = 0;
|
||
for (isym = isymbuf2, isymend = isym + symcount2;
|
||
isym < isymend; isym++)
|
||
{
|
||
if (isym->st_shndx == (unsigned int) shndx2)
|
||
{
|
||
if (count2 == 0)
|
||
isymstart2 = isym;
|
||
count2++;
|
||
}
|
||
|
||
if (count2 && isym->st_shndx != (unsigned int) shndx2)
|
||
break;
|
||
}
|
||
|
||
if (count1 == 0 || count2 == 0 || count1 != count2)
|
||
goto done;
|
||
|
||
symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
|
||
symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
|
||
|
||
if (symtable1 == NULL || symtable2 == NULL)
|
||
goto done;
|
||
|
||
symp = symtable1;
|
||
for (isym = isymstart1, isymend = isym + count1;
|
||
isym < isymend; isym++)
|
||
{
|
||
symp->sym = isym;
|
||
symp->name = bfd_elf_string_from_elf_section (bfd1,
|
||
hdr1->sh_link,
|
||
isym->st_name);
|
||
symp++;
|
||
}
|
||
|
||
symp = symtable2;
|
||
for (isym = isymstart2, isymend = isym + count1;
|
||
isym < isymend; isym++)
|
||
{
|
||
symp->sym = isym;
|
||
symp->name = bfd_elf_string_from_elf_section (bfd2,
|
||
hdr2->sh_link,
|
||
isym->st_name);
|
||
symp++;
|
||
}
|
||
|
||
/* Sort symbol by name. */
|
||
qsort (symtable1, count1, sizeof (struct elf_symbol),
|
||
elf_sym_name_compare);
|
||
qsort (symtable2, count1, sizeof (struct elf_symbol),
|
||
elf_sym_name_compare);
|
||
|
||
for (i = 0; i < count1; i++)
|
||
/* Two symbols must have the same binding, type and name. */
|
||
if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
|
||
|| symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
|
||
|| strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
|
||
goto done;
|
||
|
||
result = TRUE;
|
||
|
||
done:
|
||
if (symtable1)
|
||
free (symtable1);
|
||
if (symtable2)
|
||
free (symtable2);
|
||
if (isymbuf1)
|
||
free (isymbuf1);
|
||
if (isymbuf2)
|
||
free (isymbuf2);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* It is only used by x86-64 so far. */
|
||
asection _bfd_elf_large_com_section
|
||
= BFD_FAKE_SECTION (_bfd_elf_large_com_section,
|
||
SEC_IS_COMMON, NULL, NULL, "LARGE_COMMON",
|
||
0);
|