binutils-gdb/elfcpp/elfcpp_swap.h

501 lines
12 KiB
C++

// elfcpp_swap.h -- Handle swapping for elfcpp -*- C++ -*-
// Copyright (C) 2006-2017 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <iant@google.com>.
// This file is part of elfcpp.
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU Library General Public License
// as published by the Free Software Foundation; either version 2, or
// (at your option) any later version.
// In addition to the permissions in the GNU Library General Public
// License, the Free Software Foundation gives you unlimited
// permission to link the compiled version of this file into
// combinations with other programs, and to distribute those
// combinations without any restriction coming from the use of this
// file. (The Library Public License restrictions do apply in other
// respects; for example, they cover modification of the file, and
/// distribution when not linked into a combined executable.)
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Library General Public License for more details.
// You should have received a copy of the GNU Library General Public
// License along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
// 02110-1301, USA.
// This header file defines basic template classes to efficiently swap
// numbers between host form and target form. When the host and
// target have the same endianness, these turn into no-ops.
#ifndef ELFCPP_SWAP_H
#define ELFCPP_SWAP_H
#include <stdint.h>
// We need an autoconf-generated config.h file for endianness and
// swapping. We check two macros: WORDS_BIGENDIAN and
// HAVE_BYTESWAP_H.
#include "config.h"
#ifdef HAVE_BYTESWAP_H
#include <byteswap.h>
#else
// Provide our own versions of the byteswap functions.
inline uint16_t
bswap_16(uint16_t v)
{
return ((v >> 8) & 0xff) | ((v & 0xff) << 8);
}
inline uint32_t
bswap_32(uint32_t v)
{
return ( ((v & 0xff000000) >> 24)
| ((v & 0x00ff0000) >> 8)
| ((v & 0x0000ff00) << 8)
| ((v & 0x000000ff) << 24));
}
inline uint64_t
bswap_64(uint64_t v)
{
return ( ((v & 0xff00000000000000ULL) >> 56)
| ((v & 0x00ff000000000000ULL) >> 40)
| ((v & 0x0000ff0000000000ULL) >> 24)
| ((v & 0x000000ff00000000ULL) >> 8)
| ((v & 0x00000000ff000000ULL) << 8)
| ((v & 0x0000000000ff0000ULL) << 24)
| ((v & 0x000000000000ff00ULL) << 40)
| ((v & 0x00000000000000ffULL) << 56));
}
#endif // !defined(HAVE_BYTESWAP_H)
// gcc 4.3 and later provides __builtin_bswap32 and __builtin_bswap64.
#if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3))
#undef bswap_32
#define bswap_32 __builtin_bswap32
#undef bswap_64
#define bswap_64 __builtin_bswap64
#endif
namespace elfcpp
{
// Endian simply indicates whether the host is big endian or not.
struct Endian
{
public:
// Used for template specializations.
static const bool host_big_endian =
#ifdef WORDS_BIGENDIAN
true
#else
false
#endif
;
};
// Valtype_base is a template based on size (8, 16, 32, 64) which
// defines the type Valtype as the unsigned integer, and
// Signed_valtype as the signed integer, of the specified size.
template<int size>
struct Valtype_base;
template<>
struct Valtype_base<8>
{
typedef uint8_t Valtype;
typedef int8_t Signed_valtype;
};
template<>
struct Valtype_base<16>
{
typedef uint16_t Valtype;
typedef int16_t Signed_valtype;
};
template<>
struct Valtype_base<32>
{
typedef uint32_t Valtype;
typedef int32_t Signed_valtype;
};
template<>
struct Valtype_base<64>
{
typedef uint64_t Valtype;
typedef int64_t Signed_valtype;
};
// Convert_endian is a template based on size and on whether the host
// and target have the same endianness. It defines the type Valtype
// as Valtype_base does, and also defines a function convert_host
// which takes an argument of type Valtype and returns the same value,
// but swapped if the host and target have different endianness.
template<int size, bool same_endian>
struct Convert_endian;
template<int size>
struct Convert_endian<size, true>
{
typedef typename Valtype_base<size>::Valtype Valtype;
static inline Valtype
convert_host(Valtype v)
{ return v; }
};
template<>
struct Convert_endian<8, false>
{
typedef Valtype_base<8>::Valtype Valtype;
static inline Valtype
convert_host(Valtype v)
{ return v; }
};
template<>
struct Convert_endian<16, false>
{
typedef Valtype_base<16>::Valtype Valtype;
static inline Valtype
convert_host(Valtype v)
{ return bswap_16(v); }
};
template<>
struct Convert_endian<32, false>
{
typedef Valtype_base<32>::Valtype Valtype;
static inline Valtype
convert_host(Valtype v)
{ return bswap_32(v); }
};
template<>
struct Convert_endian<64, false>
{
typedef Valtype_base<64>::Valtype Valtype;
static inline Valtype
convert_host(Valtype v)
{ return bswap_64(v); }
};
// Convert is a template based on size and on whether the target is
// big endian. It defines Valtype and convert_host like
// Convert_endian. That is, it is just like Convert_endian except in
// the meaning of the second template parameter.
template<int size, bool big_endian>
struct Convert
{
typedef typename Valtype_base<size>::Valtype Valtype;
static inline Valtype
convert_host(Valtype v)
{
return Convert_endian<size, big_endian == Endian::host_big_endian>
::convert_host(v);
}
};
// Swap is a template based on size and on whether the target is big
// endian. It defines the type Valtype and the functions readval and
// writeval. The functions read and write values of the appropriate
// size out of buffers, swapping them if necessary. readval and
// writeval are overloaded to take pointers to the appropriate type or
// pointers to unsigned char.
template<int size, bool big_endian>
struct Swap
{
typedef typename Valtype_base<size>::Valtype Valtype;
static inline Valtype
readval(const Valtype* wv)
{ return Convert<size, big_endian>::convert_host(*wv); }
static inline void
writeval(Valtype* wv, Valtype v)
{ *wv = Convert<size, big_endian>::convert_host(v); }
static inline Valtype
readval(const unsigned char* wv)
{ return readval(reinterpret_cast<const Valtype*>(wv)); }
static inline void
writeval(unsigned char* wv, Valtype v)
{ writeval(reinterpret_cast<Valtype*>(wv), v); }
};
// We need to specialize the 8-bit version of Swap to avoid
// conflicting overloads, since both versions of readval and writeval
// will have the same type parameters.
template<bool big_endian>
struct Swap<8, big_endian>
{
typedef typename Valtype_base<8>::Valtype Valtype;
static inline Valtype
readval(const Valtype* wv)
{ return *wv; }
static inline void
writeval(Valtype* wv, Valtype v)
{ *wv = v; }
};
// Swap_unaligned is a template based on size and on whether the
// target is big endian. It defines the type Valtype and the
// functions readval and writeval. The functions read and write
// values of the appropriate size out of buffers which may be
// misaligned.
template<int size, bool big_endian>
struct Swap_unaligned;
template<bool big_endian>
struct Swap_unaligned<8, big_endian>
{
typedef typename Valtype_base<8>::Valtype Valtype;
static inline Valtype
readval(const unsigned char* wv)
{ return *wv; }
static inline void
writeval(unsigned char* wv, Valtype v)
{ *wv = v; }
};
template<>
struct Swap_unaligned<16, false>
{
typedef Valtype_base<16>::Valtype Valtype;
static inline Valtype
readval(const unsigned char* wv)
{
return (wv[1] << 8) | wv[0];
}
static inline void
writeval(unsigned char* wv, Valtype v)
{
wv[1] = v >> 8;
wv[0] = v;
}
};
template<>
struct Swap_unaligned<16, true>
{
typedef Valtype_base<16>::Valtype Valtype;
static inline Valtype
readval(const unsigned char* wv)
{
return (wv[0] << 8) | wv[1];
}
static inline void
writeval(unsigned char* wv, Valtype v)
{
wv[0] = v >> 8;
wv[1] = v;
}
};
template<>
struct Swap_unaligned<32, false>
{
typedef Valtype_base<32>::Valtype Valtype;
static inline Valtype
readval(const unsigned char* wv)
{
return (wv[3] << 24) | (wv[2] << 16) | (wv[1] << 8) | wv[0];
}
static inline void
writeval(unsigned char* wv, Valtype v)
{
wv[3] = v >> 24;
wv[2] = v >> 16;
wv[1] = v >> 8;
wv[0] = v;
}
};
template<>
struct Swap_unaligned<32, true>
{
typedef Valtype_base<32>::Valtype Valtype;
static inline Valtype
readval(const unsigned char* wv)
{
return (wv[0] << 24) | (wv[1] << 16) | (wv[2] << 8) | wv[3];
}
static inline void
writeval(unsigned char* wv, Valtype v)
{
wv[0] = v >> 24;
wv[1] = v >> 16;
wv[2] = v >> 8;
wv[3] = v;
}
};
template<>
struct Swap_unaligned<64, false>
{
typedef Valtype_base<64>::Valtype Valtype;
static inline Valtype
readval(const unsigned char* wv)
{
return ((static_cast<Valtype>(wv[7]) << 56)
| (static_cast<Valtype>(wv[6]) << 48)
| (static_cast<Valtype>(wv[5]) << 40)
| (static_cast<Valtype>(wv[4]) << 32)
| (static_cast<Valtype>(wv[3]) << 24)
| (static_cast<Valtype>(wv[2]) << 16)
| (static_cast<Valtype>(wv[1]) << 8)
| static_cast<Valtype>(wv[0]));
}
static inline void
writeval(unsigned char* wv, Valtype v)
{
wv[7] = v >> 56;
wv[6] = v >> 48;
wv[5] = v >> 40;
wv[4] = v >> 32;
wv[3] = v >> 24;
wv[2] = v >> 16;
wv[1] = v >> 8;
wv[0] = v;
}
};
template<>
struct Swap_unaligned<64, true>
{
typedef Valtype_base<64>::Valtype Valtype;
static inline Valtype
readval(const unsigned char* wv)
{
return ((static_cast<Valtype>(wv[0]) << 56)
| (static_cast<Valtype>(wv[1]) << 48)
| (static_cast<Valtype>(wv[2]) << 40)
| (static_cast<Valtype>(wv[3]) << 32)
| (static_cast<Valtype>(wv[4]) << 24)
| (static_cast<Valtype>(wv[5]) << 16)
| (static_cast<Valtype>(wv[6]) << 8)
| static_cast<Valtype>(wv[7]));
}
static inline void
writeval(unsigned char* wv, Valtype v)
{
wv[0] = v >> 56;
wv[1] = v >> 48;
wv[2] = v >> 40;
wv[3] = v >> 32;
wv[4] = v >> 24;
wv[5] = v >> 16;
wv[6] = v >> 8;
wv[7] = v;
}
};
// Swap_aligned32 is a template based on size and on whether the
// target is big endian. It defines the type Valtype and the
// functions readval and writeval. The functions read and write
// values of the appropriate size out of buffers which may not be
// 64-bit aligned, but are 32-bit aligned.
template<int size, bool big_endian>
struct Swap_aligned32
{
typedef typename Valtype_base<size>::Valtype Valtype;
static inline Valtype
readval(const unsigned char* wv)
{ return Swap<size, big_endian>::readval(
reinterpret_cast<const Valtype*>(wv)); }
static inline void
writeval(unsigned char* wv, Valtype v)
{ Swap<size, big_endian>::writeval(reinterpret_cast<Valtype*>(wv), v); }
};
template<>
struct Swap_aligned32<64, true>
{
typedef Valtype_base<64>::Valtype Valtype;
static inline Valtype
readval(const unsigned char* wv)
{
return ((static_cast<Valtype>(Swap<32, true>::readval(wv)) << 32)
| static_cast<Valtype>(Swap<32, true>::readval(wv + 4)));
}
static inline void
writeval(unsigned char* wv, Valtype v)
{
typedef Valtype_base<32>::Valtype Valtype32;
Swap<32, true>::writeval(wv, static_cast<Valtype32>(v >> 32));
Swap<32, true>::writeval(wv + 4, static_cast<Valtype32>(v));
}
};
template<>
struct Swap_aligned32<64, false>
{
typedef Valtype_base<64>::Valtype Valtype;
static inline Valtype
readval(const unsigned char* wv)
{
return ((static_cast<Valtype>(Swap<32, false>::readval(wv + 4)) << 32)
| static_cast<Valtype>(Swap<32, false>::readval(wv)));
}
static inline void
writeval(unsigned char* wv, Valtype v)
{
typedef Valtype_base<32>::Valtype Valtype32;
Swap<32, false>::writeval(wv + 4, static_cast<Valtype32>(v >> 32));
Swap<32, false>::writeval(wv, static_cast<Valtype32>(v));
}
};
} // End namespace elfcpp.
#endif // !defined(ELFCPP_SWAP_H)