binutils-gdb/bfd/elfxx-sparc.c
Alan Modra 0a1b45a20e Use bool in bfd
* sysdep.h: POISON_BFD_BOOLEAN: Define.
	* aix5ppc-core.c, * aout-cris.c, * aout-ns32k.c, * aout-target.h,
	* aoutx.h, * arc-got.h, * archive.c, * archive64.c, * archures.c,
	* bfd-in.h, * bfd.c, * bfdwin.c, * binary.c, * cache.c,
	* coff-alpha.c, * coff-arm.c, * coff-arm.h, * coff-bfd.c,
	* coff-bfd.h, * coff-go32.c, * coff-i386.c, * coff-ia64.c,
	* coff-mcore.c, * coff-mips.c, * coff-rs6000.c, * coff-sh.c,
	* coff-stgo32.c, * coff-tic30.c, * coff-tic4x.c, * coff-tic54x.c,
	* coff-x86_64.c, * coff-z80.c, * coff-z8k.c, * coff64-rs6000.c,
	* coffcode.h, * coffgen.c, * cofflink.c, * compress.c,
	* corefile.c, * cpu-aarch64.c, * cpu-aarch64.h, * cpu-alpha.c,
	* cpu-arc.c, * cpu-arm.c, * cpu-arm.h, * cpu-avr.c, * cpu-bfin.c,
	* cpu-bpf.c, * cpu-cr16.c, * cpu-cris.c, * cpu-crx.c,
	* cpu-csky.c, * cpu-d10v.c, * cpu-d30v.c, * cpu-dlx.c,
	* cpu-epiphany.c, * cpu-fr30.c, * cpu-frv.c, * cpu-ft32.c,
	* cpu-h8300.c, * cpu-hppa.c, * cpu-i386.c, * cpu-ia64.c,
	* cpu-iamcu.c, * cpu-ip2k.c, * cpu-iq2000.c, * cpu-k1om.c,
	* cpu-l1om.c, * cpu-lm32.c, * cpu-m10200.c, * cpu-m10300.c,
	* cpu-m32c.c, * cpu-m32r.c, * cpu-m68hc11.c, * cpu-m68hc12.c,
	* cpu-m68k.c, * cpu-m9s12x.c, * cpu-m9s12xg.c, * cpu-mcore.c,
	* cpu-mep.c, * cpu-metag.c, * cpu-microblaze.c, * cpu-mips.c,
	* cpu-mmix.c, * cpu-moxie.c, * cpu-msp430.c, * cpu-mt.c,
	* cpu-nds32.c, * cpu-nfp.c, * cpu-nios2.c, * cpu-ns32k.c,
	* cpu-or1k.c, * cpu-pdp11.c, * cpu-pj.c, * cpu-powerpc.c,
	* cpu-pru.c, * cpu-riscv.c, * cpu-rl78.c, * cpu-rs6000.c,
	* cpu-rx.c, * cpu-s12z.c, * cpu-s390.c, * cpu-score.c,
	* cpu-sh.c, * cpu-sparc.c, * cpu-spu.c, * cpu-tic30.c,
	* cpu-tic4x.c, * cpu-tic54x.c, * cpu-tic6x.c, * cpu-tilegx.c,
	* cpu-tilepro.c, * cpu-v850.c, * cpu-v850_rh850.c, * cpu-vax.c,
	* cpu-visium.c, * cpu-wasm32.c, * cpu-xc16x.c, * cpu-xgate.c,
	* cpu-xstormy16.c, * cpu-xtensa.c, * cpu-z80.c, * cpu-z8k.c,
	* dwarf1.c, * dwarf2.c, * ecoff-bfd.h, * ecoff.c, * ecofflink.c,
	* elf-attrs.c, * elf-bfd.h, * elf-eh-frame.c, * elf-hppa.h,
	* elf-ifunc.c, * elf-m10200.c, * elf-m10300.c, * elf-nacl.c,
	* elf-nacl.h, * elf-properties.c, * elf-s390-common.c,
	* elf-s390.h, * elf-strtab.c, * elf-vxworks.c, * elf-vxworks.h,
	* elf.c, * elf32-am33lin.c, * elf32-arc.c, * elf32-arm.c,
	* elf32-arm.h, * elf32-avr.c, * elf32-avr.h, * elf32-bfin.c,
	* elf32-bfin.h, * elf32-cr16.c, * elf32-cr16.h, * elf32-cris.c,
	* elf32-crx.c, * elf32-csky.c, * elf32-csky.h, * elf32-d10v.c,
	* elf32-d30v.c, * elf32-dlx.c, * elf32-epiphany.c,
	* elf32-fr30.c, * elf32-frv.c, * elf32-ft32.c, * elf32-gen.c,
	* elf32-h8300.c, * elf32-hppa.c, * elf32-hppa.h, * elf32-i386.c,
	* elf32-ip2k.c, * elf32-iq2000.c, * elf32-lm32.c, * elf32-m32c.c,
	* elf32-m32r.c, * elf32-m68hc11.c, * elf32-m68hc12.c,
	* elf32-m68hc1x.c, * elf32-m68hc1x.h, * elf32-m68k.c,
	* elf32-m68k.h, * elf32-mcore.c, * elf32-mep.c, * elf32-metag.c,
	* elf32-metag.h, * elf32-microblaze.c, * elf32-mips.c,
	* elf32-moxie.c, * elf32-msp430.c, * elf32-mt.c, * elf32-nds32.c,
	* elf32-nios2.c, * elf32-nios2.h, * elf32-or1k.c, * elf32-pj.c,
	* elf32-ppc.c, * elf32-ppc.h, * elf32-pru.c, * elf32-rl78.c,
	* elf32-rx.c, * elf32-s12z.c, * elf32-s390.c, * elf32-score.c,
	* elf32-score.h, * elf32-score7.c, * elf32-sh-relocs.h,
	* elf32-sh.c, * elf32-sparc.c, * elf32-spu.c, * elf32-spu.h,
	* elf32-tic6x.c, * elf32-tic6x.h, * elf32-tilegx.c,
	* elf32-tilepro.c, * elf32-v850.c, * elf32-v850.h,
	* elf32-vax.c, * elf32-visium.c, * elf32-wasm32.c,
	* elf32-xc16x.c, * elf32-xgate.c, * elf32-xstormy16.c,
	* elf32-xtensa.c, * elf32-z80.c, * elf64-alpha.c, * elf64-bpf.c,
	* elf64-gen.c, * elf64-hppa.c, * elf64-ia64-vms.c,
	* elf64-mips.c, * elf64-mmix.c, * elf64-nfp.c, * elf64-ppc.c,
	* elf64-ppc.h, * elf64-s390.c, * elf64-sparc.c,
	* elf64-tilegx.c, * elf64-x86-64.c, * elfcode.h,
	* elfcore.h, * elflink.c, * elfn32-mips.c, * elfnn-aarch64.c,
	* elfnn-ia64.c, * elfnn-riscv.c, * elfxx-aarch64.c,
	* elfxx-aarch64.h, * elfxx-ia64.c, * elfxx-ia64.h,
	* elfxx-mips.c, * elfxx-mips.h, * elfxx-riscv.c, * elfxx-riscv.h,
	* elfxx-sparc.c, * elfxx-sparc.h, * elfxx-target.h,
	* elfxx-tilegx.c, * elfxx-tilegx.h, * elfxx-x86.c, * elfxx-x86.h,
	* format.c, * genlink.h, * hash.c, * i386aout.c, * i386lynx.c,
	* i386msdos.c, * ihex.c, * libaout.h, * libbfd-in.h,
	* libbfd.c, * libcoff-in.h, * libecoff.h, * libpei.h,
	* libxcoff.h, * linker.c, * mach-o-aarch64.c, * mach-o-arm.c,
	* mach-o-i386.c, * mach-o-x86-64.c, * mach-o.c, * mach-o.h,
	* merge.c, * mmo.c, * netbsd.h, * opncls.c, * pc532-mach.c,
	* pdp11.c, * pe-arm.c, * pe-i386.c, * pe-mcore.c, * pe-sh.c,
	* pe-x86_64.c, * peXXigen.c, * pef.c, * pei-arm.c, * pei-i386.c,
	* pei-ia64.c, * pei-mcore.c, * pei-sh.c, * pei-x86_64.c,
	* peicode.h, * plugin.c, * plugin.h, * ppcboot.c, * reloc.c,
	* reloc16.c, * rs6000-core.c, * section.c, * simple.c, * som.c,
	* som.h, * srec.c, * stabs.c, * syms.c, * targets.c, * tekhex.c,
	* verilog.c, * vms-alpha.c, * vms-lib.c, * vms-misc.c, * vms.h,
	* wasm-module.c, * xcofflink.c, * xcofflink.h, * xsym.c,
	* xsym.h: Replace bfd_boolean with bool, FALSE with false, and
	TRUE with true throughout.
	* bfd-in2.h: Regenerate.
	* libbfd.h: Regenerate.
	* libcoff.h: Regenerate.
2021-03-31 10:49:23 +10:30

4955 lines
152 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* SPARC-specific support for ELF
Copyright (C) 2005-2021 Free Software Foundation, Inc.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
/* This file handles functionality common to the different SPARC ABI's. */
#include "sysdep.h"
#include "bfd.h"
#include "bfdlink.h"
#include "libbfd.h"
#include "libiberty.h"
#include "elf-bfd.h"
#include "elf/sparc.h"
#include "opcode/sparc.h"
#include "elfxx-sparc.h"
#include "elf-vxworks.h"
#include "objalloc.h"
#include "hashtab.h"
/* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
#define MINUS_ONE (~ (bfd_vma) 0)
#define ABI_64_P(abfd) \
(get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
/* The relocation "howto" table. */
/* Utility for performing the standard initial work of an instruction
relocation.
*PRELOCATION will contain the relocated item.
*PINSN will contain the instruction from the input stream.
If the result is `bfd_reloc_other' the caller can continue with
performing the relocation. Otherwise it must stop and return the
value to its caller. */
static bfd_reloc_status_type
init_insn_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
void * data, asection *input_section, bfd *output_bfd,
bfd_vma *prelocation, bfd_vma *pinsn)
{
bfd_vma relocation;
reloc_howto_type *howto = reloc_entry->howto;
if (output_bfd != (bfd *) NULL
&& (symbol->flags & BSF_SECTION_SYM) == 0
&& (! howto->partial_inplace
|| reloc_entry->addend == 0))
{
reloc_entry->address += input_section->output_offset;
return bfd_reloc_ok;
}
/* This works because partial_inplace is FALSE. */
if (output_bfd != NULL)
return bfd_reloc_continue;
if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
return bfd_reloc_outofrange;
relocation = (symbol->value
+ symbol->section->output_section->vma
+ symbol->section->output_offset);
relocation += reloc_entry->addend;
if (howto->pc_relative)
{
relocation -= (input_section->output_section->vma
+ input_section->output_offset);
relocation -= reloc_entry->address;
}
*prelocation = relocation;
*pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
return bfd_reloc_other;
}
/* For unsupported relocs. */
static bfd_reloc_status_type
sparc_elf_notsup_reloc (bfd *abfd ATTRIBUTE_UNUSED,
arelent *reloc_entry ATTRIBUTE_UNUSED,
asymbol *symbol ATTRIBUTE_UNUSED,
void * data ATTRIBUTE_UNUSED,
asection *input_section ATTRIBUTE_UNUSED,
bfd *output_bfd ATTRIBUTE_UNUSED,
char **error_message ATTRIBUTE_UNUSED)
{
return bfd_reloc_notsupported;
}
/* Handle the WDISP16 reloc. */
static bfd_reloc_status_type
sparc_elf_wdisp16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
void * data, asection *input_section, bfd *output_bfd,
char **error_message ATTRIBUTE_UNUSED)
{
bfd_vma relocation;
bfd_vma insn;
bfd_reloc_status_type status;
status = init_insn_reloc (abfd, reloc_entry, symbol, data,
input_section, output_bfd, &relocation, &insn);
if (status != bfd_reloc_other)
return status;
insn &= ~ (bfd_vma) 0x303fff;
insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
if ((bfd_signed_vma) relocation < - 0x40000
|| (bfd_signed_vma) relocation > 0x3ffff)
return bfd_reloc_overflow;
else
return bfd_reloc_ok;
}
/* Handle the WDISP10 reloc. */
static bfd_reloc_status_type
sparc_elf_wdisp10_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
void * data, asection *input_section, bfd *output_bfd,
char **error_message ATTRIBUTE_UNUSED)
{
bfd_vma relocation;
bfd_vma insn;
bfd_reloc_status_type status;
status = init_insn_reloc (abfd, reloc_entry, symbol, data,
input_section, output_bfd, &relocation, &insn);
if (status != bfd_reloc_other)
return status;
insn &= ~ (bfd_vma) 0x181fe0;
insn |= (((relocation >> 2) & 0x300) << 11)
| (((relocation >> 2) & 0xff) << 5);
bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
if ((bfd_signed_vma) relocation < - 0x1000
|| (bfd_signed_vma) relocation > 0xfff)
return bfd_reloc_overflow;
else
return bfd_reloc_ok;
}
/* Handle the HIX22 reloc. */
static bfd_reloc_status_type
sparc_elf_hix22_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
void * data, asection *input_section, bfd *output_bfd,
char **error_message ATTRIBUTE_UNUSED)
{
bfd_vma relocation;
bfd_vma insn;
bfd_reloc_status_type status;
status = init_insn_reloc (abfd, reloc_entry, symbol, data,
input_section, output_bfd, &relocation, &insn);
if (status != bfd_reloc_other)
return status;
relocation ^= MINUS_ONE;
insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
return bfd_reloc_overflow;
else
return bfd_reloc_ok;
}
/* Handle the LOX10 reloc. */
static bfd_reloc_status_type
sparc_elf_lox10_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
void * data, asection *input_section, bfd *output_bfd,
char **error_message ATTRIBUTE_UNUSED)
{
bfd_vma relocation;
bfd_vma insn;
bfd_reloc_status_type status;
status = init_insn_reloc (abfd, reloc_entry, symbol, data,
input_section, output_bfd, &relocation, &insn);
if (status != bfd_reloc_other)
return status;
insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
return bfd_reloc_ok;
}
static reloc_howto_type _bfd_sparc_elf_howto_table[] =
{
HOWTO(R_SPARC_NONE, 0,3, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", false,0,0x00000000,true),
HOWTO(R_SPARC_8, 0,0, 8,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", false,0,0x000000ff,true),
HOWTO(R_SPARC_16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", false,0,0x0000ffff,true),
HOWTO(R_SPARC_32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", false,0,0xffffffff,true),
HOWTO(R_SPARC_DISP8, 0,0, 8,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", false,0,0x000000ff,true),
HOWTO(R_SPARC_DISP16, 0,1,16,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", false,0,0x0000ffff,true),
HOWTO(R_SPARC_DISP32, 0,2,32,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", false,0,0xffffffff,true),
HOWTO(R_SPARC_WDISP30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
HOWTO(R_SPARC_WDISP22, 2,2,22,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", false,0,0x003fffff,true),
HOWTO(R_SPARC_HI22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", false,0,0x003fffff,true),
HOWTO(R_SPARC_22, 0,2,22,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", false,0,0x003fffff,true),
HOWTO(R_SPARC_13, 0,2,13,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", false,0,0x00001fff,true),
HOWTO(R_SPARC_LO10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", false,0,0x000003ff,true),
HOWTO(R_SPARC_GOT10, 0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", false,0,0x000003ff,true),
HOWTO(R_SPARC_GOT13, 0,2,13,false,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", false,0,0x00001fff,true),
HOWTO(R_SPARC_GOT22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", false,0,0x003fffff,true),
HOWTO(R_SPARC_PC10, 0,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", false,0,0x000003ff,true),
HOWTO(R_SPARC_PC22, 10,2,22,true, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", false,0,0x003fffff,true),
HOWTO(R_SPARC_WPLT30, 2,2,30,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
HOWTO(R_SPARC_COPY, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", false,0,0x00000000,true),
HOWTO(R_SPARC_GLOB_DAT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
HOWTO(R_SPARC_JMP_SLOT, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
HOWTO(R_SPARC_RELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",false,0,0x00000000,true),
HOWTO(R_SPARC_UA32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", false,0,0xffffffff,true),
HOWTO(R_SPARC_PLT32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT32", false,0,0xffffffff,true),
HOWTO(R_SPARC_HIPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", false,0,0x00000000,true),
HOWTO(R_SPARC_LOPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", false,0,0x00000000,true),
HOWTO(R_SPARC_PCPLT32, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", false,0,0x00000000,true),
HOWTO(R_SPARC_PCPLT22, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", false,0,0x00000000,true),
HOWTO(R_SPARC_PCPLT10, 0,0,00,false,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", false,0,0x00000000,true),
HOWTO(R_SPARC_10, 0,2,10,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", false,0,0x000003ff,true),
HOWTO(R_SPARC_11, 0,2,11,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", false,0,0x000007ff,true),
HOWTO(R_SPARC_64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", false,0,MINUS_ONE, true),
HOWTO(R_SPARC_OLO10, 0,2,13,false,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", false,0,0x00001fff,true),
HOWTO(R_SPARC_HH22, 42,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", false,0,0x003fffff,true),
HOWTO(R_SPARC_HM10, 32,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", false,0,0x000003ff,true),
HOWTO(R_SPARC_LM22, 10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", false,0,0x003fffff,true),
HOWTO(R_SPARC_PC_HH22, 42,2,22,true, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
HOWTO(R_SPARC_PC_HM10, 32,2,10,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
HOWTO(R_SPARC_PC_LM22, 10,2,22,true, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
HOWTO(R_SPARC_WDISP16, 2,2,16,true, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", false,0,0x00000000,true),
HOWTO(R_SPARC_WDISP19, 2,2,19,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
HOWTO(R_SPARC_UNUSED_42, 0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
HOWTO(R_SPARC_7, 0,2, 7,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", false,0,0x0000007f,true),
HOWTO(R_SPARC_5, 0,2, 5,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", false,0,0x0000001f,true),
HOWTO(R_SPARC_6, 0,2, 6,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", false,0,0x0000003f,true),
HOWTO(R_SPARC_DISP64, 0,4,64,true, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", false,0,MINUS_ONE, true),
HOWTO(R_SPARC_PLT64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT64", false,0,MINUS_ONE, true),
HOWTO(R_SPARC_HIX22, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", false,0,MINUS_ONE, false),
HOWTO(R_SPARC_LOX10, 0,4, 0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", false,0,MINUS_ONE, false),
HOWTO(R_SPARC_H44, 22,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", false,0,0x003fffff,false),
HOWTO(R_SPARC_M44, 12,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", false,0,0x000003ff,false),
HOWTO(R_SPARC_L44, 0,2,13,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", false,0,0x00000fff,false),
HOWTO(R_SPARC_REGISTER, 0,4, 0,false,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",false,0,MINUS_ONE, false),
HOWTO(R_SPARC_UA64, 0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", false,0,MINUS_ONE, true),
HOWTO(R_SPARC_UA16, 0,1,16,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", false,0,0x0000ffff,true),
HOWTO(R_SPARC_TLS_GD_HI22,10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_HI22",false,0,0x003fffff,true),
HOWTO(R_SPARC_TLS_GD_LO10,0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_LO10",false,0,0x000003ff,true),
HOWTO(R_SPARC_TLS_GD_ADD,0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_ADD",false,0,0x00000000,true),
HOWTO(R_SPARC_TLS_GD_CALL,2,2,30,true,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_CALL",false,0,0x3fffffff,true),
HOWTO(R_SPARC_TLS_LDM_HI22,10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_HI22",false,0,0x003fffff,true),
HOWTO(R_SPARC_TLS_LDM_LO10,0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_LO10",false,0,0x000003ff,true),
HOWTO(R_SPARC_TLS_LDM_ADD,0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_ADD",false,0,0x00000000,true),
HOWTO(R_SPARC_TLS_LDM_CALL,2,2,30,true,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_CALL",false,0,0x3fffffff,true),
HOWTO(R_SPARC_TLS_LDO_HIX22,0,2,0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,"R_SPARC_TLS_LDO_HIX22",false,0,0x003fffff, false),
HOWTO(R_SPARC_TLS_LDO_LOX10,0,2,0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LDO_LOX10",false,0,0x000003ff, false),
HOWTO(R_SPARC_TLS_LDO_ADD,0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDO_ADD",false,0,0x00000000,true),
HOWTO(R_SPARC_TLS_IE_HI22,10,2,22,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_HI22",false,0,0x003fffff,true),
HOWTO(R_SPARC_TLS_IE_LO10,0,2,10,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LO10",false,0,0x000003ff,true),
HOWTO(R_SPARC_TLS_IE_LD,0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LD",false,0,0x00000000,true),
HOWTO(R_SPARC_TLS_IE_LDX,0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LDX",false,0,0x00000000,true),
HOWTO(R_SPARC_TLS_IE_ADD,0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_ADD",false,0,0x00000000,true),
HOWTO(R_SPARC_TLS_LE_HIX22,0,2,0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_TLS_LE_HIX22",false,0,0x003fffff, false),
HOWTO(R_SPARC_TLS_LE_LOX10,0,2,0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LE_LOX10",false,0,0x000003ff, false),
HOWTO(R_SPARC_TLS_DTPMOD32,0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD32",false,0,0x00000000,true),
HOWTO(R_SPARC_TLS_DTPMOD64,0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD64",false,0,0x00000000,true),
HOWTO(R_SPARC_TLS_DTPOFF32,0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF32",false,0,0xffffffff,true),
HOWTO(R_SPARC_TLS_DTPOFF64,0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF64",false,0,MINUS_ONE,true),
HOWTO(R_SPARC_TLS_TPOFF32,0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF32",false,0,0x00000000,true),
HOWTO(R_SPARC_TLS_TPOFF64,0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF64",false,0,0x00000000,true),
HOWTO(R_SPARC_GOTDATA_HIX22,0,2,0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,"R_SPARC_GOTDATA_HIX22",false,0,0x003fffff, false),
HOWTO(R_SPARC_GOTDATA_LOX10,0,2,0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_GOTDATA_LOX10",false,0,0x000003ff, false),
HOWTO(R_SPARC_GOTDATA_OP_HIX22,0,2,0,false,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,"R_SPARC_GOTDATA_OP_HIX22",false,0,0x003fffff, false),
HOWTO(R_SPARC_GOTDATA_OP_LOX10,0,2,0,false,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_GOTDATA_OP_LOX10",false,0,0x000003ff, false),
HOWTO(R_SPARC_GOTDATA_OP,0,0, 0,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOTDATA_OP",false,0,0x00000000,true),
HOWTO(R_SPARC_H34,12,2,22,false,0,complain_overflow_unsigned,bfd_elf_generic_reloc,"R_SPARC_H34",false,0,0x003fffff,false),
HOWTO(R_SPARC_SIZE32,0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_SIZE32",false,0,0xffffffff,true),
HOWTO(R_SPARC_SIZE64,0,4,64,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_SIZE64",false,0,MINUS_ONE, true),
HOWTO(R_SPARC_WDISP10,2,2,10,true, 0,complain_overflow_signed,sparc_elf_wdisp10_reloc,"R_SPARC_WDISP10",false,0,0x00000000,true),
};
static reloc_howto_type sparc_jmp_irel_howto =
HOWTO(R_SPARC_JMP_IREL, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_IREL",false,0,0x00000000,true);
static reloc_howto_type sparc_irelative_howto =
HOWTO(R_SPARC_IRELATIVE, 0,0,00,false,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_IRELATIVE",false,0,0x00000000,true);
static reloc_howto_type sparc_vtinherit_howto =
HOWTO (R_SPARC_GNU_VTINHERIT, 0,2,0,false,0,complain_overflow_dont, NULL, "R_SPARC_GNU_VTINHERIT", false,0, 0, false);
static reloc_howto_type sparc_vtentry_howto =
HOWTO (R_SPARC_GNU_VTENTRY, 0,2,0,false,0,complain_overflow_dont, _bfd_elf_rel_vtable_reloc_fn,"R_SPARC_GNU_VTENTRY", false,0,0, false);
static reloc_howto_type sparc_rev32_howto =
HOWTO(R_SPARC_REV32, 0,2,32,false,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_REV32", false,0,0xffffffff,true);
reloc_howto_type *
_bfd_sparc_elf_reloc_type_lookup (bfd *abfd,
bfd_reloc_code_real_type code)
{
/* We explicitly handle each relocation type in the switch
instead of using a lookup table for efficiency. */
switch (code)
{
case BFD_RELOC_NONE:
return &_bfd_sparc_elf_howto_table[R_SPARC_NONE];
case BFD_RELOC_8:
return &_bfd_sparc_elf_howto_table[R_SPARC_8];
case BFD_RELOC_16:
return &_bfd_sparc_elf_howto_table[R_SPARC_16];
case BFD_RELOC_32:
return &_bfd_sparc_elf_howto_table[R_SPARC_32];
case BFD_RELOC_8_PCREL:
return &_bfd_sparc_elf_howto_table[R_SPARC_DISP8];
case BFD_RELOC_16_PCREL:
return &_bfd_sparc_elf_howto_table[R_SPARC_DISP16];
case BFD_RELOC_32_PCREL:
return &_bfd_sparc_elf_howto_table[R_SPARC_DISP32];
case BFD_RELOC_32_PCREL_S2:
return &_bfd_sparc_elf_howto_table[R_SPARC_WDISP30];
case BFD_RELOC_SPARC_WDISP22:
return &_bfd_sparc_elf_howto_table[R_SPARC_WDISP22];
case BFD_RELOC_HI22:
return &_bfd_sparc_elf_howto_table[R_SPARC_HI22];
case BFD_RELOC_SPARC22:
return &_bfd_sparc_elf_howto_table[R_SPARC_22];
case BFD_RELOC_SPARC13:
return &_bfd_sparc_elf_howto_table[R_SPARC_13];
case BFD_RELOC_LO10:
return &_bfd_sparc_elf_howto_table[R_SPARC_LO10];
case BFD_RELOC_SPARC_GOT10:
return &_bfd_sparc_elf_howto_table[R_SPARC_GOT10];
case BFD_RELOC_SPARC_GOT13:
return &_bfd_sparc_elf_howto_table[R_SPARC_GOT13];
case BFD_RELOC_SPARC_GOT22:
return &_bfd_sparc_elf_howto_table[R_SPARC_GOT22];
case BFD_RELOC_SPARC_PC10:
return &_bfd_sparc_elf_howto_table[R_SPARC_PC10];
case BFD_RELOC_SPARC_PC22:
return &_bfd_sparc_elf_howto_table[R_SPARC_PC22];
case BFD_RELOC_SPARC_WPLT30:
return &_bfd_sparc_elf_howto_table[R_SPARC_WPLT30];
case BFD_RELOC_SPARC_COPY:
return &_bfd_sparc_elf_howto_table[R_SPARC_COPY];
case BFD_RELOC_SPARC_GLOB_DAT:
return &_bfd_sparc_elf_howto_table[R_SPARC_GLOB_DAT];
case BFD_RELOC_SPARC_JMP_SLOT:
return &_bfd_sparc_elf_howto_table[R_SPARC_JMP_SLOT];
case BFD_RELOC_SPARC_RELATIVE:
return &_bfd_sparc_elf_howto_table[R_SPARC_RELATIVE];
case BFD_RELOC_SPARC_UA32:
return &_bfd_sparc_elf_howto_table[R_SPARC_UA32];
case BFD_RELOC_SPARC_PLT32:
return &_bfd_sparc_elf_howto_table[R_SPARC_PLT32];
case BFD_RELOC_SPARC_10:
return &_bfd_sparc_elf_howto_table[R_SPARC_10];
case BFD_RELOC_SPARC_11:
return &_bfd_sparc_elf_howto_table[R_SPARC_11];
case BFD_RELOC_SPARC_64:
return &_bfd_sparc_elf_howto_table[R_SPARC_64];
case BFD_RELOC_SPARC_OLO10:
return &_bfd_sparc_elf_howto_table[R_SPARC_OLO10];
case BFD_RELOC_SPARC_HH22:
return &_bfd_sparc_elf_howto_table[R_SPARC_HH22];
case BFD_RELOC_SPARC_HM10:
return &_bfd_sparc_elf_howto_table[R_SPARC_HM10];
case BFD_RELOC_SPARC_LM22:
return &_bfd_sparc_elf_howto_table[R_SPARC_LM22];
case BFD_RELOC_SPARC_PC_HH22:
return &_bfd_sparc_elf_howto_table[R_SPARC_PC_HH22];
case BFD_RELOC_SPARC_PC_HM10:
return &_bfd_sparc_elf_howto_table[R_SPARC_PC_HM10];
case BFD_RELOC_SPARC_PC_LM22:
return &_bfd_sparc_elf_howto_table[R_SPARC_PC_LM22];
case BFD_RELOC_SPARC_WDISP16:
return &_bfd_sparc_elf_howto_table[R_SPARC_WDISP16];
case BFD_RELOC_SPARC_WDISP19:
return &_bfd_sparc_elf_howto_table[R_SPARC_WDISP19];
case BFD_RELOC_SPARC_7:
return &_bfd_sparc_elf_howto_table[R_SPARC_7];
case BFD_RELOC_SPARC_5:
return &_bfd_sparc_elf_howto_table[R_SPARC_5];
case BFD_RELOC_SPARC_6:
return &_bfd_sparc_elf_howto_table[R_SPARC_6];
case BFD_RELOC_SPARC_DISP64:
return &_bfd_sparc_elf_howto_table[R_SPARC_DISP64];
case BFD_RELOC_SPARC_PLT64:
return &_bfd_sparc_elf_howto_table[R_SPARC_PLT64];
case BFD_RELOC_SPARC_HIX22:
return &_bfd_sparc_elf_howto_table[R_SPARC_HIX22];
case BFD_RELOC_SPARC_LOX10:
return &_bfd_sparc_elf_howto_table[R_SPARC_LOX10];
case BFD_RELOC_SPARC_H44:
return &_bfd_sparc_elf_howto_table[R_SPARC_H44];
case BFD_RELOC_SPARC_M44:
return &_bfd_sparc_elf_howto_table[R_SPARC_M44];
case BFD_RELOC_SPARC_L44:
return &_bfd_sparc_elf_howto_table[R_SPARC_L44];
case BFD_RELOC_SPARC_REGISTER:
return &_bfd_sparc_elf_howto_table[R_SPARC_REGISTER];
case BFD_RELOC_SPARC_UA64:
return &_bfd_sparc_elf_howto_table[R_SPARC_UA64];
case BFD_RELOC_SPARC_UA16:
return &_bfd_sparc_elf_howto_table[R_SPARC_UA16];
case BFD_RELOC_SPARC_TLS_GD_HI22:
return &_bfd_sparc_elf_howto_table[R_SPARC_TLS_GD_HI22];
case BFD_RELOC_SPARC_TLS_GD_LO10:
return &_bfd_sparc_elf_howto_table[R_SPARC_TLS_GD_LO10];
case BFD_RELOC_SPARC_TLS_GD_ADD:
return &_bfd_sparc_elf_howto_table[R_SPARC_TLS_GD_ADD];
case BFD_RELOC_SPARC_TLS_GD_CALL:
return &_bfd_sparc_elf_howto_table[R_SPARC_TLS_GD_CALL];
case BFD_RELOC_SPARC_TLS_LDM_HI22:
return &_bfd_sparc_elf_howto_table[R_SPARC_TLS_LDM_HI22];
case BFD_RELOC_SPARC_TLS_LDM_LO10:
return &_bfd_sparc_elf_howto_table[R_SPARC_TLS_LDM_LO10];
case BFD_RELOC_SPARC_TLS_LDM_ADD:
return &_bfd_sparc_elf_howto_table[R_SPARC_TLS_LDM_ADD];
case BFD_RELOC_SPARC_TLS_LDM_CALL:
return &_bfd_sparc_elf_howto_table[R_SPARC_TLS_LDM_CALL];
case BFD_RELOC_SPARC_TLS_LDO_HIX22:
return &_bfd_sparc_elf_howto_table[R_SPARC_TLS_LDO_HIX22];
case BFD_RELOC_SPARC_TLS_LDO_LOX10:
return &_bfd_sparc_elf_howto_table[R_SPARC_TLS_LDO_LOX10];
case BFD_RELOC_SPARC_TLS_LDO_ADD:
return &_bfd_sparc_elf_howto_table[R_SPARC_TLS_LDO_ADD];
case BFD_RELOC_SPARC_TLS_IE_HI22:
return &_bfd_sparc_elf_howto_table[R_SPARC_TLS_IE_HI22];
case BFD_RELOC_SPARC_TLS_IE_LO10:
return &_bfd_sparc_elf_howto_table[R_SPARC_TLS_IE_LO10];
case BFD_RELOC_SPARC_TLS_IE_LD:
return &_bfd_sparc_elf_howto_table[R_SPARC_TLS_IE_LD];
case BFD_RELOC_SPARC_TLS_IE_LDX:
return &_bfd_sparc_elf_howto_table[R_SPARC_TLS_IE_LDX];
case BFD_RELOC_SPARC_TLS_IE_ADD:
return &_bfd_sparc_elf_howto_table[R_SPARC_TLS_IE_ADD];
case BFD_RELOC_SPARC_TLS_LE_HIX22:
return &_bfd_sparc_elf_howto_table[R_SPARC_TLS_LE_HIX22];
case BFD_RELOC_SPARC_TLS_LE_LOX10:
return &_bfd_sparc_elf_howto_table[R_SPARC_TLS_LE_LOX10];
case BFD_RELOC_SPARC_TLS_DTPMOD32:
return &_bfd_sparc_elf_howto_table[R_SPARC_TLS_DTPMOD32];
case BFD_RELOC_SPARC_TLS_DTPMOD64:
return &_bfd_sparc_elf_howto_table[R_SPARC_TLS_DTPMOD64];
case BFD_RELOC_SPARC_TLS_DTPOFF32:
return &_bfd_sparc_elf_howto_table[R_SPARC_TLS_DTPOFF32];
case BFD_RELOC_SPARC_TLS_DTPOFF64:
return &_bfd_sparc_elf_howto_table[R_SPARC_TLS_DTPOFF64];
case BFD_RELOC_SPARC_TLS_TPOFF32:
return &_bfd_sparc_elf_howto_table[R_SPARC_TLS_TPOFF32];
case BFD_RELOC_SPARC_TLS_TPOFF64:
return &_bfd_sparc_elf_howto_table[R_SPARC_TLS_TPOFF64];
case BFD_RELOC_SPARC_GOTDATA_HIX22:
return &_bfd_sparc_elf_howto_table[R_SPARC_GOTDATA_HIX22];
case BFD_RELOC_SPARC_GOTDATA_LOX10:
return &_bfd_sparc_elf_howto_table[R_SPARC_GOTDATA_LOX10];
case BFD_RELOC_SPARC_GOTDATA_OP_HIX22:
return &_bfd_sparc_elf_howto_table[R_SPARC_GOTDATA_OP_HIX22];
case BFD_RELOC_SPARC_GOTDATA_OP_LOX10:
return &_bfd_sparc_elf_howto_table[R_SPARC_GOTDATA_OP_LOX10];
case BFD_RELOC_SPARC_GOTDATA_OP:
return &_bfd_sparc_elf_howto_table[R_SPARC_GOTDATA_OP];
case BFD_RELOC_SPARC_H34:
return &_bfd_sparc_elf_howto_table[R_SPARC_H34];
case BFD_RELOC_SPARC_SIZE32:
return &_bfd_sparc_elf_howto_table[R_SPARC_SIZE32];
case BFD_RELOC_SPARC_SIZE64:
return &_bfd_sparc_elf_howto_table[R_SPARC_SIZE64];
case BFD_RELOC_SPARC_WDISP10:
return &_bfd_sparc_elf_howto_table[R_SPARC_WDISP10];
case BFD_RELOC_SPARC_JMP_IREL:
return &sparc_jmp_irel_howto;
case BFD_RELOC_SPARC_IRELATIVE:
return &sparc_irelative_howto;
case BFD_RELOC_VTABLE_INHERIT:
return &sparc_vtinherit_howto;
case BFD_RELOC_VTABLE_ENTRY:
return &sparc_vtentry_howto;
case BFD_RELOC_SPARC_REV32:
return &sparc_rev32_howto;
default:
break;
}
/* xgettext:c-format */
_bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, (int) code);
bfd_set_error (bfd_error_bad_value);
return NULL;
}
reloc_howto_type *
_bfd_sparc_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
const char *r_name)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE (_bfd_sparc_elf_howto_table); i++)
if (_bfd_sparc_elf_howto_table[i].name != NULL
&& strcasecmp (_bfd_sparc_elf_howto_table[i].name, r_name) == 0)
return &_bfd_sparc_elf_howto_table[i];
if (strcasecmp (sparc_vtinherit_howto.name, r_name) == 0)
return &sparc_vtinherit_howto;
if (strcasecmp (sparc_vtentry_howto.name, r_name) == 0)
return &sparc_vtentry_howto;
if (strcasecmp (sparc_rev32_howto.name, r_name) == 0)
return &sparc_rev32_howto;
return NULL;
}
reloc_howto_type *
_bfd_sparc_elf_info_to_howto_ptr (bfd *abfd ATTRIBUTE_UNUSED,
unsigned int r_type)
{
switch (r_type)
{
case R_SPARC_JMP_IREL:
return &sparc_jmp_irel_howto;
case R_SPARC_IRELATIVE:
return &sparc_irelative_howto;
case R_SPARC_GNU_VTINHERIT:
return &sparc_vtinherit_howto;
case R_SPARC_GNU_VTENTRY:
return &sparc_vtentry_howto;
case R_SPARC_REV32:
return &sparc_rev32_howto;
default:
if (r_type >= (unsigned int) R_SPARC_max_std)
{
_bfd_error_handler (_("%pB: unsupported relocation type %#x"),
abfd, r_type);
bfd_set_error (bfd_error_bad_value);
return NULL;
}
return &_bfd_sparc_elf_howto_table[r_type];
}
}
/* Both 32-bit and 64-bit sparc encode this in an identical manner,
so just take advantage of that. */
#define SPARC_ELF_R_TYPE(r_info) \
((r_info) & 0xff)
bool
_bfd_sparc_elf_info_to_howto (bfd *abfd, arelent *cache_ptr,
Elf_Internal_Rela *dst)
{
unsigned int r_type = SPARC_ELF_R_TYPE (dst->r_info);
if ((cache_ptr->howto = _bfd_sparc_elf_info_to_howto_ptr (abfd, r_type)) == NULL)
{
bfd_set_error (bfd_error_bad_value);
return false;
}
return true;
}
/* The nop opcode we use. */
#define SPARC_NOP 0x01000000
#define SPARC_INSN_BYTES 4
/* Is an undefined weak symbol resolved to 0 ?
Reference to an undefined weak symbol is resolved to 0 when
building an executable if it isn't dynamic and
1. Has non-GOT/non-PLT relocations in text section.
Or
2. Has no GOT/PLT relocation. */
#define UNDEFINED_WEAK_RESOLVED_TO_ZERO(INFO, EH) \
((EH)->elf.root.type == bfd_link_hash_undefweak \
&& bfd_link_executable (INFO) \
&& (_bfd_sparc_elf_hash_table (INFO)->interp == NULL \
|| !(INFO)->dynamic_undefined_weak \
|| (EH)->has_non_got_reloc \
|| !(EH)->has_got_reloc))
/* SPARC ELF linker hash entry. */
struct _bfd_sparc_elf_link_hash_entry
{
struct elf_link_hash_entry elf;
#define GOT_UNKNOWN 0
#define GOT_NORMAL 1
#define GOT_TLS_GD 2
#define GOT_TLS_IE 3
unsigned char tls_type;
/* Symbol has GOT or PLT relocations. */
unsigned int has_got_reloc : 1;
/* Symbol has old-style, non-relaxable GOT relocations. */
unsigned int has_old_style_got_reloc : 1;
/* Symbol has non-GOT/non-PLT relocations in text sections. */
unsigned int has_non_got_reloc : 1;
};
#define _bfd_sparc_elf_hash_entry(ent) ((struct _bfd_sparc_elf_link_hash_entry *)(ent))
struct _bfd_sparc_elf_obj_tdata
{
struct elf_obj_tdata root;
/* tls_type for each local got entry. */
char *local_got_tls_type;
/* TRUE if TLS GD relocs has been seen for this object. */
bool has_tlsgd;
};
#define _bfd_sparc_elf_tdata(abfd) \
((struct _bfd_sparc_elf_obj_tdata *) (abfd)->tdata.any)
#define _bfd_sparc_elf_local_got_tls_type(abfd) \
(_bfd_sparc_elf_tdata (abfd)->local_got_tls_type)
#define is_sparc_elf(bfd) \
(bfd_get_flavour (bfd) == bfd_target_elf_flavour \
&& elf_tdata (bfd) != NULL \
&& elf_object_id (bfd) == SPARC_ELF_DATA)
bool
_bfd_sparc_elf_mkobject (bfd *abfd)
{
return bfd_elf_allocate_object (abfd, sizeof (struct _bfd_sparc_elf_obj_tdata),
SPARC_ELF_DATA);
}
static void
sparc_put_word_32 (bfd *abfd, bfd_vma val, void *ptr)
{
bfd_put_32 (abfd, val, ptr);
}
static void
sparc_put_word_64 (bfd *abfd, bfd_vma val, void *ptr)
{
bfd_put_64 (abfd, val, ptr);
}
static void
sparc_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
{
const struct elf_backend_data *bed;
bfd_byte *loc;
bed = get_elf_backend_data (abfd);
BFD_ASSERT (s->reloc_count * bed->s->sizeof_rela < s->size);
loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
bed->s->swap_reloca_out (abfd, rel, loc);
}
static bfd_vma
sparc_elf_r_info_64 (Elf_Internal_Rela *in_rel ATTRIBUTE_UNUSED,
bfd_vma rel_index ATTRIBUTE_UNUSED,
bfd_vma type ATTRIBUTE_UNUSED)
{
return ELF64_R_INFO (rel_index,
(in_rel ?
ELF64_R_TYPE_INFO (ELF64_R_TYPE_DATA (in_rel->r_info),
type) : type));
}
static bfd_vma
sparc_elf_r_info_32 (Elf_Internal_Rela *in_rel ATTRIBUTE_UNUSED,
bfd_vma rel_index, bfd_vma type)
{
return ELF32_R_INFO (rel_index, type);
}
static bfd_vma
sparc_elf_r_symndx_64 (bfd_vma r_info)
{
bfd_vma r_symndx = ELF32_R_SYM (r_info);
return (r_symndx >> 24);
}
static bfd_vma
sparc_elf_r_symndx_32 (bfd_vma r_info)
{
return ELF32_R_SYM (r_info);
}
/* PLT/GOT stuff */
#define PLT32_ENTRY_SIZE 12
#define PLT32_HEADER_SIZE (4 * PLT32_ENTRY_SIZE)
/* The first four entries in a 32-bit procedure linkage table are reserved,
and the initial contents are unimportant (we zero them out).
Subsequent entries look like this. See the SVR4 ABI SPARC
supplement to see how this works. */
/* sethi %hi(.-.plt0),%g1. We fill in the address later. */
#define PLT32_ENTRY_WORD0 0x03000000
/* b,a .plt0. We fill in the offset later. */
#define PLT32_ENTRY_WORD1 0x30800000
/* nop. */
#define PLT32_ENTRY_WORD2 SPARC_NOP
static int
sparc32_plt_entry_build (bfd *output_bfd, asection *splt, bfd_vma offset,
bfd_vma max ATTRIBUTE_UNUSED,
bfd_vma *r_offset)
{
bfd_put_32 (output_bfd,
PLT32_ENTRY_WORD0 + offset,
splt->contents + offset);
bfd_put_32 (output_bfd,
(PLT32_ENTRY_WORD1
+ (((- (offset + 4)) >> 2) & 0x3fffff)),
splt->contents + offset + 4);
bfd_put_32 (output_bfd, (bfd_vma) PLT32_ENTRY_WORD2,
splt->contents + offset + 8);
*r_offset = offset;
return offset / PLT32_ENTRY_SIZE - 4;
}
/* Both the headers and the entries are icache aligned. */
#define PLT64_ENTRY_SIZE 32
#define PLT64_HEADER_SIZE (4 * PLT64_ENTRY_SIZE)
#define PLT64_LARGE_THRESHOLD 32768
static int
sparc64_plt_entry_build (bfd *output_bfd, asection *splt, bfd_vma offset,
bfd_vma max, bfd_vma *r_offset)
{
unsigned char *entry = splt->contents + offset;
const unsigned int nop = SPARC_NOP;
int plt_index;
if (offset < (PLT64_LARGE_THRESHOLD * PLT64_ENTRY_SIZE))
{
unsigned int sethi, ba;
*r_offset = offset;
plt_index = (offset / PLT64_ENTRY_SIZE);
sethi = 0x03000000 | (plt_index * PLT64_ENTRY_SIZE);
ba = 0x30680000
| (((splt->contents + PLT64_ENTRY_SIZE) - (entry + 4)) / 4 & 0x7ffff);
bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4);
bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12);
bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16);
bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20);
bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24);
bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28);
}
else
{
unsigned char *ptr;
unsigned int ldx;
int block, last_block, ofs, last_ofs, chunks_this_block;
const int insn_chunk_size = (6 * 4);
const int ptr_chunk_size = (1 * 8);
const int entries_per_block = 160;
const int block_size = entries_per_block * (insn_chunk_size
+ ptr_chunk_size);
/* Entries 32768 and higher are grouped into blocks of 160.
The blocks are further subdivided into 160 sequences of
6 instructions and 160 pointers. If a block does not require
the full 160 entries, let's say it requires N, then there
will be N sequences of 6 instructions and N pointers. */
offset -= (PLT64_LARGE_THRESHOLD * PLT64_ENTRY_SIZE);
max -= (PLT64_LARGE_THRESHOLD * PLT64_ENTRY_SIZE);
block = offset / block_size;
last_block = max / block_size;
if (block != last_block)
{
chunks_this_block = 160;
}
else
{
last_ofs = max % block_size;
chunks_this_block = last_ofs / (insn_chunk_size + ptr_chunk_size);
}
ofs = offset % block_size;
plt_index = (PLT64_LARGE_THRESHOLD +
(block * 160) +
(ofs / insn_chunk_size));
ptr = splt->contents
+ (PLT64_LARGE_THRESHOLD * PLT64_ENTRY_SIZE)
+ (block * block_size)
+ (chunks_this_block * insn_chunk_size)
+ (ofs / insn_chunk_size) * ptr_chunk_size;
*r_offset = (bfd_vma) (ptr - splt->contents);
ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
/* mov %o7,%g5
call .+8
nop
ldx [%o7+P],%g1
jmpl %o7+%g1,%g1
mov %g5,%o7 */
bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
bfd_put_32 (output_bfd, (bfd_vma) SPARC_NOP, entry + 8);
bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12);
bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
bfd_put_64 (output_bfd, (bfd_vma) (splt->contents - (entry + 4)), ptr);
}
return plt_index - 4;
}
/* The format of the first PLT entry in a VxWorks executable. */
static const bfd_vma sparc_vxworks_exec_plt0_entry[] =
{
0x05000000, /* sethi %hi(_GLOBAL_OFFSET_TABLE_+8), %g2 */
0x8410a000, /* or %g2, %lo(_GLOBAL_OFFSET_TABLE_+8), %g2 */
0xc4008000, /* ld [ %g2 ], %g2 */
0x81c08000, /* jmp %g2 */
0x01000000 /* nop */
};
/* The format of subsequent PLT entries. */
static const bfd_vma sparc_vxworks_exec_plt_entry[] =
{
0x03000000, /* sethi %hi(_GLOBAL_OFFSET_TABLE_+f@got), %g1 */
0x82106000, /* or %g1, %lo(_GLOBAL_OFFSET_TABLE_+f@got), %g1 */
0xc2004000, /* ld [ %g1 ], %g1 */
0x81c04000, /* jmp %g1 */
0x01000000, /* nop */
0x03000000, /* sethi %hi(f@pltindex), %g1 */
0x10800000, /* b _PLT_resolve */
0x82106000 /* or %g1, %lo(f@pltindex), %g1 */
};
/* The format of the first PLT entry in a VxWorks shared object. */
static const bfd_vma sparc_vxworks_shared_plt0_entry[] =
{
0xc405e008, /* ld [ %l7 + 8 ], %g2 */
0x81c08000, /* jmp %g2 */
0x01000000 /* nop */
};
/* The format of subsequent PLT entries. */
static const bfd_vma sparc_vxworks_shared_plt_entry[] =
{
0x03000000, /* sethi %hi(f@got), %g1 */
0x82106000, /* or %g1, %lo(f@got), %g1 */
0xc205c001, /* ld [ %l7 + %g1 ], %g1 */
0x81c04000, /* jmp %g1 */
0x01000000, /* nop */
0x03000000, /* sethi %hi(f@pltindex), %g1 */
0x10800000, /* b _PLT_resolve */
0x82106000 /* or %g1, %lo(f@pltindex), %g1 */
};
#define SPARC_ELF_PUT_WORD(htab, bfd, val, ptr) \
htab->put_word(bfd, val, ptr)
#define SPARC_ELF_R_INFO(htab, in_rel, index, type) \
htab->r_info(in_rel, index, type)
#define SPARC_ELF_R_SYMNDX(htab, r_info) \
htab->r_symndx(r_info)
#define SPARC_ELF_WORD_BYTES(htab) \
htab->bytes_per_word
#define SPARC_ELF_RELA_BYTES(htab) \
htab->bytes_per_rela
#define SPARC_ELF_DTPOFF_RELOC(htab) \
htab->dtpoff_reloc
#define SPARC_ELF_DTPMOD_RELOC(htab) \
htab->dtpmod_reloc
#define SPARC_ELF_TPOFF_RELOC(htab) \
htab->tpoff_reloc
#define SPARC_ELF_BUILD_PLT_ENTRY(htab, obfd, splt, off, max, r_off) \
htab->build_plt_entry (obfd, splt, off, max, r_off)
/* Create an entry in an SPARC ELF linker hash table. */
static struct bfd_hash_entry *
link_hash_newfunc (struct bfd_hash_entry *entry,
struct bfd_hash_table *table, const char *string)
{
/* Allocate the structure if it has not already been allocated by a
subclass. */
if (entry == NULL)
{
entry = bfd_hash_allocate (table,
sizeof (struct _bfd_sparc_elf_link_hash_entry));
if (entry == NULL)
return entry;
}
/* Call the allocation method of the superclass. */
entry = _bfd_elf_link_hash_newfunc (entry, table, string);
if (entry != NULL)
{
struct _bfd_sparc_elf_link_hash_entry *eh;
eh = (struct _bfd_sparc_elf_link_hash_entry *) entry;
eh->tls_type = GOT_UNKNOWN;
eh->has_got_reloc = 0;
eh->has_non_got_reloc = 0;
}
return entry;
}
/* The name of the dynamic interpreter. This is put in the .interp
section. */
#define ELF32_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
#define ELF64_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
/* Compute a hash of a local hash entry. We use elf_link_hash_entry
for local symbol so that we can handle local STT_GNU_IFUNC symbols
as global symbol. We reuse indx and dynstr_index for local symbol
hash since they aren't used by global symbols in this backend. */
static hashval_t
elf_sparc_local_htab_hash (const void *ptr)
{
struct elf_link_hash_entry *h
= (struct elf_link_hash_entry *) ptr;
return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
}
/* Compare local hash entries. */
static int
elf_sparc_local_htab_eq (const void *ptr1, const void *ptr2)
{
struct elf_link_hash_entry *h1
= (struct elf_link_hash_entry *) ptr1;
struct elf_link_hash_entry *h2
= (struct elf_link_hash_entry *) ptr2;
return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
}
/* Find and/or create a hash entry for local symbol. */
static struct elf_link_hash_entry *
elf_sparc_get_local_sym_hash (struct _bfd_sparc_elf_link_hash_table *htab,
bfd *abfd, const Elf_Internal_Rela *rel,
bool create)
{
struct _bfd_sparc_elf_link_hash_entry e, *ret;
asection *sec = abfd->sections;
unsigned long r_symndx;
hashval_t h;
void **slot;
r_symndx = SPARC_ELF_R_SYMNDX (htab, rel->r_info);
h = ELF_LOCAL_SYMBOL_HASH (sec->id, r_symndx);
e.elf.indx = sec->id;
e.elf.dynstr_index = r_symndx;
slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
create ? INSERT : NO_INSERT);
if (!slot)
return NULL;
if (*slot)
{
ret = (struct _bfd_sparc_elf_link_hash_entry *) *slot;
return &ret->elf;
}
ret = (struct _bfd_sparc_elf_link_hash_entry *)
objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
sizeof (struct _bfd_sparc_elf_link_hash_entry));
if (ret)
{
memset (ret, 0, sizeof (*ret));
ret->elf.indx = sec->id;
ret->elf.dynstr_index = r_symndx;
ret->elf.dynindx = -1;
ret->elf.plt.offset = (bfd_vma) -1;
ret->elf.got.offset = (bfd_vma) -1;
*slot = ret;
}
return &ret->elf;
}
/* Destroy a SPARC ELF linker hash table. */
static void
_bfd_sparc_elf_link_hash_table_free (bfd *obfd)
{
struct _bfd_sparc_elf_link_hash_table *htab
= (struct _bfd_sparc_elf_link_hash_table *) obfd->link.hash;
if (htab->loc_hash_table)
htab_delete (htab->loc_hash_table);
if (htab->loc_hash_memory)
objalloc_free ((struct objalloc *) htab->loc_hash_memory);
_bfd_elf_link_hash_table_free (obfd);
}
/* Create a SPARC ELF linker hash table. */
struct bfd_link_hash_table *
_bfd_sparc_elf_link_hash_table_create (bfd *abfd)
{
struct _bfd_sparc_elf_link_hash_table *ret;
size_t amt = sizeof (struct _bfd_sparc_elf_link_hash_table);
ret = (struct _bfd_sparc_elf_link_hash_table *) bfd_zmalloc (amt);
if (ret == NULL)
return NULL;
if (ABI_64_P (abfd))
{
ret->put_word = sparc_put_word_64;
ret->r_info = sparc_elf_r_info_64;
ret->r_symndx = sparc_elf_r_symndx_64;
ret->dtpoff_reloc = R_SPARC_TLS_DTPOFF64;
ret->dtpmod_reloc = R_SPARC_TLS_DTPMOD64;
ret->tpoff_reloc = R_SPARC_TLS_TPOFF64;
ret->word_align_power = 3;
ret->align_power_max = 4;
ret->bytes_per_word = 8;
ret->bytes_per_rela = sizeof (Elf64_External_Rela);
ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
ret->build_plt_entry = sparc64_plt_entry_build;
ret->plt_header_size = PLT64_HEADER_SIZE;
ret->plt_entry_size = PLT64_ENTRY_SIZE;
}
else
{
ret->put_word = sparc_put_word_32;
ret->r_info = sparc_elf_r_info_32;
ret->r_symndx = sparc_elf_r_symndx_32;
ret->dtpoff_reloc = R_SPARC_TLS_DTPOFF32;
ret->dtpmod_reloc = R_SPARC_TLS_DTPMOD32;
ret->tpoff_reloc = R_SPARC_TLS_TPOFF32;
ret->word_align_power = 2;
ret->align_power_max = 3;
ret->bytes_per_word = 4;
ret->bytes_per_rela = sizeof (Elf32_External_Rela);
ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
ret->build_plt_entry = sparc32_plt_entry_build;
ret->plt_header_size = PLT32_HEADER_SIZE;
ret->plt_entry_size = PLT32_ENTRY_SIZE;
}
if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
sizeof (struct _bfd_sparc_elf_link_hash_entry),
SPARC_ELF_DATA))
{
free (ret);
return NULL;
}
ret->loc_hash_table = htab_try_create (1024,
elf_sparc_local_htab_hash,
elf_sparc_local_htab_eq,
NULL);
ret->loc_hash_memory = objalloc_create ();
if (!ret->loc_hash_table || !ret->loc_hash_memory)
{
_bfd_sparc_elf_link_hash_table_free (abfd);
return NULL;
}
ret->elf.root.hash_table_free = _bfd_sparc_elf_link_hash_table_free;
return &ret->elf.root;
}
/* Create .plt, .rela.plt, .got, .rela.got, .dynbss, and
.rela.bss sections in DYNOBJ, and set up shortcuts to them in our
hash table. */
bool
_bfd_sparc_elf_create_dynamic_sections (bfd *dynobj,
struct bfd_link_info *info)
{
struct _bfd_sparc_elf_link_hash_table *htab;
htab = _bfd_sparc_elf_hash_table (info);
BFD_ASSERT (htab != NULL);
if (!_bfd_elf_create_dynamic_sections (dynobj, info))
return false;
if (htab->elf.target_os == is_vxworks)
{
if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
return false;
if (bfd_link_pic (info))
{
htab->plt_header_size
= 4 * ARRAY_SIZE (sparc_vxworks_shared_plt0_entry);
htab->plt_entry_size
= 4 * ARRAY_SIZE (sparc_vxworks_shared_plt_entry);
}
else
{
htab->plt_header_size
= 4 * ARRAY_SIZE (sparc_vxworks_exec_plt0_entry);
htab->plt_entry_size
= 4 * ARRAY_SIZE (sparc_vxworks_exec_plt_entry);
}
}
if (!htab->elf.splt || !htab->elf.srelplt || !htab->elf.sdynbss
|| (!bfd_link_pic (info) && !htab->elf.srelbss))
abort ();
return true;
}
static bool
create_ifunc_sections (bfd *abfd, struct bfd_link_info *info)
{
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
struct elf_link_hash_table *htab = elf_hash_table (info);
flagword flags, pltflags;
asection *s;
if (htab->irelifunc != NULL || htab->iplt != NULL)
return true;
flags = bed->dynamic_sec_flags;
pltflags = flags | SEC_ALLOC | SEC_CODE | SEC_LOAD;
s = bfd_make_section_with_flags (abfd, ".iplt", pltflags);
if (s == NULL
|| !bfd_set_section_alignment (s, bed->plt_alignment))
return false;
htab->iplt = s;
s = bfd_make_section_with_flags (abfd, ".rela.iplt",
flags | SEC_READONLY);
if (s == NULL
|| !bfd_set_section_alignment (s, bed->s->log_file_align))
return false;
htab->irelplt = s;
return true;
}
/* Copy the extra info we tack onto an elf_link_hash_entry. */
void
_bfd_sparc_elf_copy_indirect_symbol (struct bfd_link_info *info,
struct elf_link_hash_entry *dir,
struct elf_link_hash_entry *ind)
{
struct _bfd_sparc_elf_link_hash_entry *edir, *eind;
edir = (struct _bfd_sparc_elf_link_hash_entry *) dir;
eind = (struct _bfd_sparc_elf_link_hash_entry *) ind;
if (ind->root.type == bfd_link_hash_indirect && dir->got.refcount <= 0)
{
edir->tls_type = eind->tls_type;
eind->tls_type = GOT_UNKNOWN;
}
/* Copy has_got_reloc and has_non_got_reloc. */
edir->has_got_reloc |= eind->has_got_reloc;
edir->has_non_got_reloc |= eind->has_non_got_reloc;
_bfd_elf_link_hash_copy_indirect (info, dir, ind);
}
static int
sparc_elf_tls_transition (struct bfd_link_info *info, bfd *abfd,
int r_type, int is_local)
{
if (! ABI_64_P (abfd)
&& r_type == R_SPARC_TLS_GD_HI22
&& ! _bfd_sparc_elf_tdata (abfd)->has_tlsgd)
return R_SPARC_REV32;
if (!bfd_link_executable (info))
return r_type;
switch (r_type)
{
case R_SPARC_TLS_GD_HI22:
return is_local ? R_SPARC_TLS_LE_HIX22 : R_SPARC_TLS_IE_HI22;
case R_SPARC_TLS_GD_LO10:
return is_local ? R_SPARC_TLS_LE_LOX10 : R_SPARC_TLS_IE_LO10;
case R_SPARC_TLS_LDM_HI22:
return R_SPARC_TLS_LE_HIX22;
case R_SPARC_TLS_LDM_LO10:
return R_SPARC_TLS_LE_LOX10;
case R_SPARC_TLS_IE_HI22:
return is_local ? R_SPARC_TLS_LE_HIX22 : r_type;
case R_SPARC_TLS_IE_LO10:
return is_local ? R_SPARC_TLS_LE_LOX10 : r_type;
}
return r_type;
}
/* Look through the relocs for a section during the first phase, and
allocate space in the global offset table or procedure linkage
table. */
bool
_bfd_sparc_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
asection *sec, const Elf_Internal_Rela *relocs)
{
struct _bfd_sparc_elf_link_hash_table *htab;
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
const Elf_Internal_Rela *rel;
const Elf_Internal_Rela *rel_end;
asection *sreloc;
int num_relocs;
bool checked_tlsgd = false;
if (bfd_link_relocatable (info))
return true;
htab = _bfd_sparc_elf_hash_table (info);
BFD_ASSERT (htab != NULL);
symtab_hdr = &elf_symtab_hdr (abfd);
sym_hashes = elf_sym_hashes (abfd);
sreloc = NULL;
if (ABI_64_P (abfd))
num_relocs = NUM_SHDR_ENTRIES (_bfd_elf_single_rel_hdr (sec));
else
num_relocs = sec->reloc_count;
BFD_ASSERT (is_sparc_elf (abfd) || num_relocs == 0);
if (htab->elf.dynobj == NULL)
htab->elf.dynobj = abfd;
if (!create_ifunc_sections (htab->elf.dynobj, info))
return false;
rel_end = relocs + num_relocs;
for (rel = relocs; rel < rel_end; rel++)
{
unsigned int r_type;
unsigned int r_symndx;
struct elf_link_hash_entry *h;
struct _bfd_sparc_elf_link_hash_entry *eh;
Elf_Internal_Sym *isym;
r_symndx = SPARC_ELF_R_SYMNDX (htab, rel->r_info);
r_type = SPARC_ELF_R_TYPE (rel->r_info);
if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
{
/* xgettext:c-format */
_bfd_error_handler (_("%pB: bad symbol index: %d"), abfd, r_symndx);
return false;
}
isym = NULL;
if (r_symndx < symtab_hdr->sh_info)
{
/* A local symbol. */
isym = bfd_sym_from_r_symndx (&htab->elf.sym_cache, abfd,
r_symndx);
if (isym == NULL)
return false;
/* Check relocation against local STT_GNU_IFUNC symbol. */
if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
{
h = elf_sparc_get_local_sym_hash (htab, abfd, rel, true);
if (h == NULL)
return false;
/* Fake a STT_GNU_IFUNC symbol. */
h->type = STT_GNU_IFUNC;
h->def_regular = 1;
h->ref_regular = 1;
h->forced_local = 1;
h->root.type = bfd_link_hash_defined;
}
else
h = NULL;
}
else
{
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
}
if (h && h->type == STT_GNU_IFUNC && h->def_regular)
{
h->ref_regular = 1;
h->plt.refcount += 1;
}
/* Compatibility with old R_SPARC_REV32 reloc conflicting
with R_SPARC_TLS_GD_HI22. */
if (! ABI_64_P (abfd) && ! checked_tlsgd)
switch (r_type)
{
case R_SPARC_TLS_GD_HI22:
{
const Elf_Internal_Rela *relt;
for (relt = rel + 1; relt < rel_end; relt++)
if (ELF32_R_TYPE (relt->r_info) == R_SPARC_TLS_GD_LO10
|| ELF32_R_TYPE (relt->r_info) == R_SPARC_TLS_GD_ADD
|| ELF32_R_TYPE (relt->r_info) == R_SPARC_TLS_GD_CALL)
break;
checked_tlsgd = true;
_bfd_sparc_elf_tdata (abfd)->has_tlsgd = relt < rel_end;
}
break;
case R_SPARC_TLS_GD_LO10:
case R_SPARC_TLS_GD_ADD:
case R_SPARC_TLS_GD_CALL:
checked_tlsgd = true;
_bfd_sparc_elf_tdata (abfd)->has_tlsgd = true;
break;
}
r_type = sparc_elf_tls_transition (info, abfd, r_type, h == NULL);
eh = (struct _bfd_sparc_elf_link_hash_entry *) h;
switch (r_type)
{
case R_SPARC_TLS_LDM_HI22:
case R_SPARC_TLS_LDM_LO10:
htab->tls_ldm_got.refcount += 1;
if (eh != NULL)
eh->has_got_reloc = 1;
break;
case R_SPARC_TLS_LE_HIX22:
case R_SPARC_TLS_LE_LOX10:
if (!bfd_link_executable (info))
goto r_sparc_plt32;
break;
case R_SPARC_TLS_IE_HI22:
case R_SPARC_TLS_IE_LO10:
if (!bfd_link_executable (info))
info->flags |= DF_STATIC_TLS;
/* Fall through */
case R_SPARC_GOT10:
case R_SPARC_GOT13:
case R_SPARC_GOT22:
case R_SPARC_GOTDATA_HIX22:
case R_SPARC_GOTDATA_LOX10:
case R_SPARC_GOTDATA_OP_HIX22:
case R_SPARC_GOTDATA_OP_LOX10:
case R_SPARC_TLS_GD_HI22:
case R_SPARC_TLS_GD_LO10:
/* This symbol requires a global offset table entry. */
{
int tls_type, old_tls_type;
switch (r_type)
{
case R_SPARC_TLS_GD_HI22:
case R_SPARC_TLS_GD_LO10:
tls_type = GOT_TLS_GD;
break;
case R_SPARC_TLS_IE_HI22:
case R_SPARC_TLS_IE_LO10:
tls_type = GOT_TLS_IE;
break;
default:
tls_type = GOT_NORMAL;
break;
}
if (h != NULL)
{
h->got.refcount += 1;
old_tls_type = _bfd_sparc_elf_hash_entry(h)->tls_type;
}
else
{
bfd_signed_vma *local_got_refcounts;
/* This is a global offset table entry for a local symbol. */
local_got_refcounts = elf_local_got_refcounts (abfd);
if (local_got_refcounts == NULL)
{
bfd_size_type size;
size = symtab_hdr->sh_info;
size *= (sizeof (bfd_signed_vma) + sizeof(char));
local_got_refcounts = ((bfd_signed_vma *)
bfd_zalloc (abfd, size));
if (local_got_refcounts == NULL)
return false;
elf_local_got_refcounts (abfd) = local_got_refcounts;
_bfd_sparc_elf_local_got_tls_type (abfd)
= (char *) (local_got_refcounts + symtab_hdr->sh_info);
}
if (r_type != R_SPARC_GOTDATA_OP_HIX22
&& r_type != R_SPARC_GOTDATA_OP_LOX10)
local_got_refcounts[r_symndx] += 1;
old_tls_type
= _bfd_sparc_elf_local_got_tls_type (abfd) [r_symndx];
}
/* If a TLS symbol is accessed using IE at least once, there is no
point in using the dynamic model for it. */
if (old_tls_type != tls_type)
{
if (old_tls_type == GOT_UNKNOWN)
;
else if (old_tls_type == GOT_TLS_GD && tls_type == GOT_TLS_IE)
;
else if (old_tls_type == GOT_TLS_IE && tls_type == GOT_TLS_GD)
tls_type = old_tls_type;
else
{
_bfd_error_handler
/* xgettext:c-format */
(_("%pB: `%s' accessed both as normal and thread local symbol"),
abfd, h ? h->root.root.string : "<local>");
return false;
}
if (h != NULL)
_bfd_sparc_elf_hash_entry (h)->tls_type = tls_type;
else
_bfd_sparc_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
}
}
if (!htab->elf.sgot
&& !_bfd_elf_create_got_section (htab->elf.dynobj, info))
return false;
if (eh != NULL)
{
eh->has_got_reloc = 1;
if (r_type == R_SPARC_GOT10
|| r_type == R_SPARC_GOT13
|| r_type == R_SPARC_GOT22)
eh->has_old_style_got_reloc = 1;
}
break;
case R_SPARC_TLS_GD_CALL:
case R_SPARC_TLS_LDM_CALL:
if (bfd_link_executable (info))
break;
/* Essentially R_SPARC_WPLT30 relocs against __tls_get_addr. */
h = (struct elf_link_hash_entry *)
bfd_link_hash_lookup (info->hash, "__tls_get_addr", false,
false, true);
BFD_ASSERT (h != NULL);
/* Fall through */
case R_SPARC_WPLT30:
case R_SPARC_PLT32:
case R_SPARC_PLT64:
case R_SPARC_HIPLT22:
case R_SPARC_LOPLT10:
case R_SPARC_PCPLT32:
case R_SPARC_PCPLT22:
case R_SPARC_PCPLT10:
/* This symbol requires a procedure linkage table entry.
We actually build the entry in adjust_dynamic_symbol,
because this might be a case of linking PIC code without
linking in any dynamic objects, in which case we don't
need to generate a procedure linkage table after all. */
if (h == NULL)
{
if (! ABI_64_P (abfd))
{
/* The Solaris native assembler will generate a WPLT30
reloc for a local symbol if you assemble a call from
one section to another when using -K pic. We treat
it as WDISP30. */
if (r_type == R_SPARC_PLT32)
goto r_sparc_plt32;
break;
}
/* PR 7027: We need similar behaviour for 64-bit binaries. */
else if (r_type == R_SPARC_WPLT30)
break;
/* It does not make sense to have a procedure linkage
table entry for a local symbol. */
bfd_set_error (bfd_error_bad_value);
return false;
}
h->needs_plt = 1;
if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
goto r_sparc_plt32;
h->plt.refcount += 1;
eh = (struct _bfd_sparc_elf_link_hash_entry *) h;
eh->has_got_reloc = 1;
break;
case R_SPARC_PC10:
case R_SPARC_PC22:
case R_SPARC_PC_HH22:
case R_SPARC_PC_HM10:
case R_SPARC_PC_LM22:
if (h != NULL)
h->non_got_ref = 1;
if (h != NULL
&& strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
break;
/* Fall through. */
case R_SPARC_DISP8:
case R_SPARC_DISP16:
case R_SPARC_DISP32:
case R_SPARC_DISP64:
case R_SPARC_WDISP30:
case R_SPARC_WDISP22:
case R_SPARC_WDISP19:
case R_SPARC_WDISP16:
case R_SPARC_WDISP10:
case R_SPARC_8:
case R_SPARC_16:
case R_SPARC_32:
case R_SPARC_HI22:
case R_SPARC_22:
case R_SPARC_13:
case R_SPARC_LO10:
case R_SPARC_UA16:
case R_SPARC_UA32:
case R_SPARC_10:
case R_SPARC_11:
case R_SPARC_64:
case R_SPARC_OLO10:
case R_SPARC_HH22:
case R_SPARC_HM10:
case R_SPARC_LM22:
case R_SPARC_7:
case R_SPARC_5:
case R_SPARC_6:
case R_SPARC_HIX22:
case R_SPARC_LOX10:
case R_SPARC_H44:
case R_SPARC_M44:
case R_SPARC_L44:
case R_SPARC_H34:
case R_SPARC_UA64:
if (h != NULL)
h->non_got_ref = 1;
if (eh != NULL && (sec->flags & SEC_CODE) != 0)
eh->has_non_got_reloc = 1;
r_sparc_plt32:
if (h != NULL && !bfd_link_pic (info))
{
/* We may need a .plt entry if the function this reloc
refers to is in a shared lib. */
h->plt.refcount += 1;
}
/* If we are creating a shared library, and this is a reloc
against a global symbol, or a non PC relative reloc
against a local symbol, then we need to copy the reloc
into the shared library. However, if we are linking with
-Bsymbolic, we do not need to copy a reloc against a
global symbol which is defined in an object we are
including in the link (i.e., DEF_REGULAR is set). At
this point we have not seen all the input files, so it is
possible that DEF_REGULAR is not set now but will be set
later (it is never cleared). In case of a weak definition,
DEF_REGULAR may be cleared later by a strong definition in
a shared library. We account for that possibility below by
storing information in the relocs_copied field of the hash
table entry. A similar situation occurs when creating
shared libraries and symbol visibility changes render the
symbol local.
If on the other hand, we are creating an executable, we
may need to keep relocations for symbols satisfied by a
dynamic library if we manage to avoid copy relocs for the
symbol. */
if ((bfd_link_pic (info)
&& (sec->flags & SEC_ALLOC) != 0
&& (! _bfd_sparc_elf_howto_table[r_type].pc_relative
|| (h != NULL
&& (! SYMBOLIC_BIND (info, h)
|| h->root.type == bfd_link_hash_defweak
|| !h->def_regular))))
|| (!bfd_link_pic (info)
&& (sec->flags & SEC_ALLOC) != 0
&& h != NULL
&& (h->root.type == bfd_link_hash_defweak
|| !h->def_regular))
|| (!bfd_link_pic (info)
&& h != NULL
&& h->type == STT_GNU_IFUNC))
{
struct elf_dyn_relocs *p;
struct elf_dyn_relocs **head;
/* When creating a shared object, we must copy these
relocs into the output file. We create a reloc
section in dynobj and make room for the reloc. */
if (sreloc == NULL)
{
sreloc = _bfd_elf_make_dynamic_reloc_section
(sec, htab->elf.dynobj, htab->word_align_power,
abfd, /*rela?*/ true);
if (sreloc == NULL)
return false;
}
/* If this is a global symbol, we count the number of
relocations we need for this symbol. */
if (h != NULL)
head = &h->dyn_relocs;
else
{
/* Track dynamic relocs needed for local syms too.
We really need local syms available to do this
easily. Oh well. */
asection *s;
void *vpp;
BFD_ASSERT (isym != NULL);
s = bfd_section_from_elf_index (abfd, isym->st_shndx);
if (s == NULL)
s = sec;
vpp = &elf_section_data (s)->local_dynrel;
head = (struct elf_dyn_relocs **) vpp;
}
p = *head;
if (p == NULL || p->sec != sec)
{
size_t amt = sizeof *p;
p = ((struct elf_dyn_relocs *)
bfd_alloc (htab->elf.dynobj, amt));
if (p == NULL)
return false;
p->next = *head;
*head = p;
p->sec = sec;
p->count = 0;
p->pc_count = 0;
}
p->count += 1;
if (_bfd_sparc_elf_howto_table[r_type].pc_relative)
p->pc_count += 1;
}
break;
case R_SPARC_GNU_VTINHERIT:
if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
return false;
break;
case R_SPARC_GNU_VTENTRY:
if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
return false;
break;
case R_SPARC_REGISTER:
/* Nothing to do. */
break;
default:
break;
}
}
return true;
}
asection *
_bfd_sparc_elf_gc_mark_hook (asection *sec,
struct bfd_link_info *info,
Elf_Internal_Rela *rel,
struct elf_link_hash_entry *h,
Elf_Internal_Sym *sym)
{
if (h != NULL)
switch (SPARC_ELF_R_TYPE (rel->r_info))
{
case R_SPARC_GNU_VTINHERIT:
case R_SPARC_GNU_VTENTRY:
return NULL;
}
if (!bfd_link_executable (info))
{
switch (SPARC_ELF_R_TYPE (rel->r_info))
{
case R_SPARC_TLS_GD_CALL:
case R_SPARC_TLS_LDM_CALL:
/* This reloc implicitly references __tls_get_addr. We know
another reloc will reference the same symbol as the one
on this reloc, so the real symbol and section will be
gc marked when processing the other reloc. That lets
us handle __tls_get_addr here. */
h = elf_link_hash_lookup (elf_hash_table (info), "__tls_get_addr",
false, false, true);
BFD_ASSERT (h != NULL);
h->mark = 1;
if (h->is_weakalias)
weakdef (h)->mark = 1;
sym = NULL;
}
}
return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
}
static Elf_Internal_Rela *
sparc_elf_find_reloc_at_ofs (Elf_Internal_Rela *rel,
Elf_Internal_Rela *relend,
bfd_vma offset)
{
while (rel < relend)
{
if (rel->r_offset == offset)
return rel;
rel++;
}
return NULL;
}
/* Remove undefined weak symbol from the dynamic symbol table if it
is resolved to 0. */
bool
_bfd_sparc_elf_fixup_symbol (struct bfd_link_info *info,
struct elf_link_hash_entry *h)
{
if (h->dynindx != -1
&& UNDEFINED_WEAK_RESOLVED_TO_ZERO (info,
_bfd_sparc_elf_hash_entry (h)))
{
h->dynindx = -1;
_bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
h->dynstr_index);
}
return true;
}
/* Adjust a symbol defined by a dynamic object and referenced by a
regular object. The current definition is in some section of the
dynamic object, but we're not including those sections. We have to
change the definition to something the rest of the link can
understand. */
bool
_bfd_sparc_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
struct elf_link_hash_entry *h)
{
struct _bfd_sparc_elf_link_hash_table *htab;
asection *s, *srel;
htab = _bfd_sparc_elf_hash_table (info);
BFD_ASSERT (htab != NULL);
/* Make sure we know what is going on here. */
BFD_ASSERT (htab->elf.dynobj != NULL
&& (h->needs_plt
|| h->type == STT_GNU_IFUNC
|| h->is_weakalias
|| (h->def_dynamic
&& h->ref_regular
&& !h->def_regular)));
/* If this is a function, put it in the procedure linkage table. We
will fill in the contents of the procedure linkage table later
(although we could actually do it here). The STT_NOTYPE
condition is a hack specifically for the Oracle libraries
delivered for Solaris; for some inexplicable reason, they define
some of their functions as STT_NOTYPE when they really should be
STT_FUNC. */
if (h->type == STT_FUNC
|| h->type == STT_GNU_IFUNC
|| h->needs_plt
|| (h->type == STT_NOTYPE
&& (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
&& (h->root.u.def.section->flags & SEC_CODE) != 0))
{
if (h->plt.refcount <= 0
|| (h->type != STT_GNU_IFUNC
&& (SYMBOL_CALLS_LOCAL (info, h)
|| (h->root.type == bfd_link_hash_undefweak
&& ELF_ST_VISIBILITY (h->other) != STV_DEFAULT))))
{
/* This case can occur if we saw a WPLT30 reloc in an input
file, but the symbol was never referred to by a dynamic
object, or if all references were garbage collected. In
such a case, we don't actually need to build a procedure
linkage table, and we can just do a WDISP30 reloc instead. */
h->plt.offset = (bfd_vma) -1;
h->needs_plt = 0;
}
return true;
}
else
h->plt.offset = (bfd_vma) -1;
/* If this is a weak symbol, and there is a real definition, the
processor independent code will have arranged for us to see the
real definition first, and we can just use the same value. */
if (h->is_weakalias)
{
struct elf_link_hash_entry *def = weakdef (h);
BFD_ASSERT (def->root.type == bfd_link_hash_defined);
h->root.u.def.section = def->root.u.def.section;
h->root.u.def.value = def->root.u.def.value;
return true;
}
/* This is a reference to a symbol defined by a dynamic object which
is not a function. */
/* If we are creating a shared library, we must presume that the
only references to the symbol are via the global offset table.
For such cases we need not do anything here; the relocations will
be handled correctly by relocate_section. */
if (bfd_link_pic (info))
return true;
/* If there are no references to this symbol that do not use the
GOT, we don't need to generate a copy reloc. */
if (!h->non_got_ref)
return true;
/* If -z nocopyreloc was given, we won't generate them either. */
if (info->nocopyreloc)
{
h->non_got_ref = 0;
return true;
}
/* If we don't find any dynamic relocs in read-only sections, then
we'll be keeping the dynamic relocs and avoiding the copy reloc. */
if (!_bfd_elf_readonly_dynrelocs (h))
{
h->non_got_ref = 0;
return true;
}
/* We must allocate the symbol in our .dynbss section, which will
become part of the .bss section of the executable. There will be
an entry for this symbol in the .dynsym section. The dynamic
object will contain position independent code, so all references
from the dynamic object to this symbol will go through the global
offset table. The dynamic linker will use the .dynsym entry to
determine the address it must put in the global offset table, so
both the dynamic object and the regular object will refer to the
same memory location for the variable. */
/* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
to copy the initial value out of the dynamic object and into the
runtime process image. We need to remember the offset into the
.rel.bss section we are going to use. */
if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
{
s = htab->elf.sdynrelro;
srel = htab->elf.sreldynrelro;
}
else
{
s = htab->elf.sdynbss;
srel = htab->elf.srelbss;
}
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
{
srel->size += SPARC_ELF_RELA_BYTES (htab);
h->needs_copy = 1;
}
return _bfd_elf_adjust_dynamic_copy (info, h, s);
}
/* Allocate space in .plt, .got and associated reloc sections for
dynamic relocs. */
static bool
allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
{
struct bfd_link_info *info;
struct _bfd_sparc_elf_link_hash_table *htab;
struct _bfd_sparc_elf_link_hash_entry *eh;
struct elf_dyn_relocs *p;
bool resolved_to_zero;
if (h->root.type == bfd_link_hash_indirect)
return true;
info = (struct bfd_link_info *) inf;
htab = _bfd_sparc_elf_hash_table (info);
BFD_ASSERT (htab != NULL);
eh = (struct _bfd_sparc_elf_link_hash_entry *) h;
resolved_to_zero = UNDEFINED_WEAK_RESOLVED_TO_ZERO (info, eh);
if ((htab->elf.dynamic_sections_created
&& h->plt.refcount > 0)
|| (h->type == STT_GNU_IFUNC
&& h->def_regular
&& h->ref_regular))
{
/* Undefined weak syms won't yet be marked as dynamic. */
if (h->root.type == bfd_link_hash_undefweak
&& !resolved_to_zero
&& h->dynindx == -1
&& !h->forced_local)
{
if (! bfd_elf_link_record_dynamic_symbol (info, h))
return false;
}
if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h)
|| (h->type == STT_GNU_IFUNC
&& h->def_regular))
{
asection *s = htab->elf.splt;
if (s == NULL)
s = htab->elf.iplt;
/* Allocate room for the header. */
if (s->size == 0)
{
s->size = htab->plt_header_size;
/* Allocate space for the .rela.plt.unloaded relocations. */
if (htab->elf.target_os == is_vxworks
&& !bfd_link_pic (info))
htab->srelplt2->size = sizeof (Elf32_External_Rela) * 2;
}
/* The procedure linkage table size is bounded by the magnitude
of the offset we can describe in the entry. */
if (s->size >= (SPARC_ELF_WORD_BYTES(htab) == 8 ?
(((bfd_vma)1 << 31) << 1) : 0x400000))
{
bfd_set_error (bfd_error_bad_value);
return false;
}
if (SPARC_ELF_WORD_BYTES(htab) == 8
&& s->size >= PLT64_LARGE_THRESHOLD * PLT64_ENTRY_SIZE)
{
bfd_vma off = s->size - PLT64_LARGE_THRESHOLD * PLT64_ENTRY_SIZE;
off = (off % (160 * PLT64_ENTRY_SIZE)) / PLT64_ENTRY_SIZE;
h->plt.offset = (s->size - (off * 8));
}
else
h->plt.offset = s->size;
/* If this symbol is not defined in a regular file, and we are
not generating a shared library, then set the symbol to this
location in the .plt. This is required to make function
pointers compare as equal between the normal executable and
the shared library. */
if (! bfd_link_pic (info)
&& !h->def_regular)
{
h->root.u.def.section = s;
h->root.u.def.value = h->plt.offset;
}
/* Make room for this entry. */
s->size += htab->plt_entry_size;
/* There should be no PLT relocations against resolved undefined
weak symbols in the executable. */
if (!resolved_to_zero)
{
/* We also need to make an entry in the .rela.plt section. */
if (s == htab->elf.splt)
htab->elf.srelplt->size += SPARC_ELF_RELA_BYTES (htab);
else
htab->elf.irelplt->size += SPARC_ELF_RELA_BYTES (htab);
}
if (htab->elf.target_os == is_vxworks)
{
/* Allocate space for the .got.plt entry. */
htab->elf.sgotplt->size += 4;
/* ...and for the .rela.plt.unloaded relocations. */
if (!bfd_link_pic (info))
htab->srelplt2->size += sizeof (Elf32_External_Rela) * 3;
}
}
else
{
h->plt.offset = (bfd_vma) -1;
h->needs_plt = 0;
}
}
else
{
h->plt.offset = (bfd_vma) -1;
h->needs_plt = 0;
}
/* If R_SPARC_TLS_IE_{HI22,LO10} symbol is now local to the binary,
make it a R_SPARC_TLS_LE_{HI22,LO10} requiring no TLS entry. */
if (h->got.refcount > 0
&& bfd_link_executable (info)
&& h->dynindx == -1
&& _bfd_sparc_elf_hash_entry(h)->tls_type == GOT_TLS_IE)
h->got.offset = (bfd_vma) -1;
else if (h->got.refcount > 0)
{
asection *s;
bool dyn;
int tls_type = _bfd_sparc_elf_hash_entry(h)->tls_type;
/* Undefined weak syms won't yet be marked as dynamic. */
if (h->root.type == bfd_link_hash_undefweak
&& !resolved_to_zero
&& h->dynindx == -1
&& !h->forced_local)
{
if (! bfd_elf_link_record_dynamic_symbol (info, h))
return false;
}
s = htab->elf.sgot;
h->got.offset = s->size;
s->size += SPARC_ELF_WORD_BYTES (htab);
/* R_SPARC_TLS_GD_HI{22,LO10} needs 2 consecutive GOT slots. */
if (tls_type == GOT_TLS_GD)
s->size += SPARC_ELF_WORD_BYTES (htab);
dyn = htab->elf.dynamic_sections_created;
/* R_SPARC_TLS_IE_{HI22,LO10} needs one dynamic relocation,
R_SPARC_TLS_GD_{HI22,LO10} needs one if local and two if global. */
if ((tls_type == GOT_TLS_GD && h->dynindx == -1)
|| tls_type == GOT_TLS_IE
|| h->type == STT_GNU_IFUNC)
htab->elf.srelgot->size += SPARC_ELF_RELA_BYTES (htab);
else if (tls_type == GOT_TLS_GD)
htab->elf.srelgot->size += 2 * SPARC_ELF_RELA_BYTES (htab);
else if ((WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
/* Even if the symbol isn't dynamic, we may generate a
reloc for the dynamic linker in PIC mode. */
|| (h->dynindx == -1
&& !h->forced_local
&& h->root.type != bfd_link_hash_undefweak
&& bfd_link_pic (info)))
/* No dynamic relocations are needed against resolved
undefined weak symbols in an executable. */
&& !(h->root.type == bfd_link_hash_undefweak
&& (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
|| resolved_to_zero)))
htab->elf.srelgot->size += SPARC_ELF_RELA_BYTES (htab);
}
else
h->got.offset = (bfd_vma) -1;
if (h->dyn_relocs == NULL)
return true;
/* In the shared -Bsymbolic case, discard space allocated for
dynamic pc-relative relocs against symbols which turn out to be
defined in regular objects. For the normal shared case, discard
space for pc-relative relocs that have become local due to symbol
visibility changes. */
if (bfd_link_pic (info))
{
if (SYMBOL_CALLS_LOCAL (info, h))
{
struct elf_dyn_relocs **pp;
for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
{
p->count -= p->pc_count;
p->pc_count = 0;
if (p->count == 0)
*pp = p->next;
else
pp = &p->next;
}
}
if (htab->elf.target_os == is_vxworks)
{
struct elf_dyn_relocs **pp;
for (pp = &h->dyn_relocs; (p = *pp) != NULL; )
{
if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
*pp = p->next;
else
pp = &p->next;
}
}
/* Also discard relocs on undefined weak syms with non-default
visibility or in PIE. */
if (h->dyn_relocs != NULL
&& h->root.type == bfd_link_hash_undefweak)
{
/* An undefined weak symbol is never
bound locally in a shared library. */
if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
|| resolved_to_zero)
{
if (h->non_got_ref)
{
/* Keep dynamic non-GOT/non-PLT relocation so that we
can branch to 0 without PLT. */
struct elf_dyn_relocs **pp;
for (pp = &h->dyn_relocs; (p = *pp) != NULL;)
if (p->pc_count == 0)
*pp = p->next;
else
{
/* Remove other relocations. */
p->count = p->pc_count;
pp = &p->next;
}
if (h->dyn_relocs != NULL)
{
/* Make sure undefined weak symbols are output
as dynamic symbols in PIEs for dynamic non-GOT
non-PLT reloations. */
if (! bfd_elf_link_record_dynamic_symbol (info, h))
return false;
}
}
else
h->dyn_relocs = NULL;
}
/* Make sure undefined weak symbols are output as a dynamic
symbol in PIEs. */
else if (h->dynindx == -1
&& !h->forced_local)
{
if (! bfd_elf_link_record_dynamic_symbol (info, h))
return false;
}
}
}
else
{
/* For the non-shared case, discard space for relocs against
symbols which turn out to need copy relocs or are not
dynamic. */
if ((!h->non_got_ref
|| (h->root.type == bfd_link_hash_undefweak
&& !resolved_to_zero))
&& ((h->def_dynamic
&& !h->def_regular)
|| (htab->elf.dynamic_sections_created
&& (h->root.type == bfd_link_hash_undefweak
|| h->root.type == bfd_link_hash_undefined))))
{
/* Undefined weak syms won't yet be marked as dynamic. */
if (h->root.type == bfd_link_hash_undefweak
&& !resolved_to_zero
&& h->dynindx == -1
&& !h->forced_local)
{
if (! bfd_elf_link_record_dynamic_symbol (info, h))
return false;
}
/* If that succeeded, we know we'll be keeping all the
relocs. */
if (h->dynindx != -1)
goto keep;
}
h->dyn_relocs = NULL;
keep: ;
}
/* Finally, allocate space. */
for (p = h->dyn_relocs; p != NULL; p = p->next)
{
asection *sreloc = elf_section_data (p->sec)->sreloc;
sreloc->size += p->count * SPARC_ELF_RELA_BYTES (htab);
}
return true;
}
/* Allocate space in .plt, .got and associated reloc sections for
local dynamic relocs. */
static int
allocate_local_dynrelocs (void **slot, void *inf)
{
struct elf_link_hash_entry *h
= (struct elf_link_hash_entry *) *slot;
if (h->type != STT_GNU_IFUNC
|| !h->def_regular
|| !h->ref_regular
|| !h->forced_local
|| h->root.type != bfd_link_hash_defined)
abort ();
return allocate_dynrelocs (h, inf);
}
/* Return true if the dynamic symbol for a given section should be
omitted when creating a shared library. */
bool
_bfd_sparc_elf_omit_section_dynsym (bfd *output_bfd,
struct bfd_link_info *info,
asection *p)
{
/* We keep the .got section symbol so that explicit relocations
against the _GLOBAL_OFFSET_TABLE_ symbol emitted in PIC mode
can be turned into relocations against the .got symbol. */
if (strcmp (p->name, ".got") == 0)
return false;
return _bfd_elf_omit_section_dynsym_default (output_bfd, info, p);
}
/* Set the sizes of the dynamic sections. */
bool
_bfd_sparc_elf_size_dynamic_sections (bfd *output_bfd,
struct bfd_link_info *info)
{
struct _bfd_sparc_elf_link_hash_table *htab;
bfd *dynobj;
asection *s;
bfd *ibfd;
htab = _bfd_sparc_elf_hash_table (info);
BFD_ASSERT (htab != NULL);
dynobj = htab->elf.dynobj;
BFD_ASSERT (dynobj != NULL);
if (elf_hash_table (info)->dynamic_sections_created)
{
/* Set the contents of the .interp section to the interpreter. */
if (bfd_link_executable (info) && !info->nointerp)
{
s = bfd_get_linker_section (dynobj, ".interp");
BFD_ASSERT (s != NULL);
s->size = htab->dynamic_interpreter_size;
s->contents = (unsigned char *) htab->dynamic_interpreter;
htab->interp = s;
}
}
/* Set up .got offsets for local syms, and space for local dynamic
relocs. */
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
{
bfd_signed_vma *local_got;
bfd_signed_vma *end_local_got;
char *local_tls_type;
bfd_size_type locsymcount;
Elf_Internal_Shdr *symtab_hdr;
asection *srel;
if (! is_sparc_elf (ibfd))
continue;
for (s = ibfd->sections; s != NULL; s = s->next)
{
struct elf_dyn_relocs *p;
for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
{
if (!bfd_is_abs_section (p->sec)
&& bfd_is_abs_section (p->sec->output_section))
{
/* Input section has been discarded, either because
it is a copy of a linkonce section or due to
linker script /DISCARD/, so we'll be discarding
the relocs too. */
}
else if (htab->elf.target_os == is_vxworks
&& strcmp (p->sec->output_section->name,
".tls_vars") == 0)
{
/* Relocations in vxworks .tls_vars sections are
handled specially by the loader. */
}
else if (p->count != 0)
{
srel = elf_section_data (p->sec)->sreloc;
if (!htab->elf.dynamic_sections_created)
srel = htab->elf.irelplt;
srel->size += p->count * SPARC_ELF_RELA_BYTES (htab);
if ((p->sec->output_section->flags & SEC_READONLY) != 0)
{
info->flags |= DF_TEXTREL;
info->callbacks->minfo (_("%pB: dynamic relocation in read-only section `%pA'\n"),
p->sec->owner, p->sec);
}
}
}
}
local_got = elf_local_got_refcounts (ibfd);
if (!local_got)
continue;
symtab_hdr = &elf_symtab_hdr (ibfd);
locsymcount = symtab_hdr->sh_info;
end_local_got = local_got + locsymcount;
local_tls_type = _bfd_sparc_elf_local_got_tls_type (ibfd);
s = htab->elf.sgot;
srel = htab->elf.srelgot;
for (; local_got < end_local_got; ++local_got, ++local_tls_type)
{
if (*local_got > 0)
{
*local_got = s->size;
s->size += SPARC_ELF_WORD_BYTES (htab);
if (*local_tls_type == GOT_TLS_GD)
s->size += SPARC_ELF_WORD_BYTES (htab);
if (bfd_link_pic (info)
|| *local_tls_type == GOT_TLS_GD
|| *local_tls_type == GOT_TLS_IE)
srel->size += SPARC_ELF_RELA_BYTES (htab);
}
else
*local_got = (bfd_vma) -1;
}
}
if (htab->tls_ldm_got.refcount > 0)
{
/* Allocate 2 got entries and 1 dynamic reloc for
R_SPARC_TLS_LDM_{HI22,LO10} relocs. */
htab->tls_ldm_got.offset = htab->elf.sgot->size;
htab->elf.sgot->size += (2 * SPARC_ELF_WORD_BYTES (htab));
htab->elf.srelgot->size += SPARC_ELF_RELA_BYTES (htab);
}
else
htab->tls_ldm_got.offset = -1;
/* Allocate global sym .plt and .got entries, and space for global
sym dynamic relocs. */
elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
/* Allocate .plt and .got entries, and space for local symbols. */
htab_traverse (htab->loc_hash_table, allocate_local_dynrelocs, info);
if (! ABI_64_P (output_bfd)
&& htab->elf.target_os != is_vxworks
&& elf_hash_table (info)->dynamic_sections_created)
{
/* Make space for the trailing nop in .plt. */
if (htab->elf.splt->size > 0)
htab->elf.splt->size += 1 * SPARC_INSN_BYTES;
/* If the .got section is more than 0x1000 bytes, we add
0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
bit relocations have a greater chance of working.
FIXME: Make this optimization work for 64-bit too. */
if (htab->elf.sgot->size >= 0x1000
&& elf_hash_table (info)->hgot->root.u.def.value == 0)
elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
}
/* The check_relocs and adjust_dynamic_symbol entry points have
determined the sizes of the various dynamic sections. Allocate
memory for them. */
for (s = dynobj->sections; s != NULL; s = s->next)
{
if ((s->flags & SEC_LINKER_CREATED) == 0)
continue;
if (s == htab->elf.splt
|| s == htab->elf.sgot
|| s == htab->elf.sdynbss
|| s == htab->elf.sdynrelro
|| s == htab->elf.iplt
|| s == htab->elf.sgotplt)
{
/* Strip this section if we don't need it; see the
comment below. */
}
else if (startswith (s->name, ".rela"))
{
if (s->size != 0)
{
/* We use the reloc_count field as a counter if we need
to copy relocs into the output file. */
s->reloc_count = 0;
}
}
else
{
/* It's not one of our sections. */
continue;
}
if (s->size == 0)
{
/* If we don't need this section, strip it from the
output file. This is mostly to handle .rela.bss and
.rela.plt. We must create both sections in
create_dynamic_sections, because they must be created
before the linker maps input sections to output
sections. The linker does that before
adjust_dynamic_symbol is called, and it is that
function which decides whether anything needs to go
into these sections. */
s->flags |= SEC_EXCLUDE;
continue;
}
if ((s->flags & SEC_HAS_CONTENTS) == 0)
continue;
/* Allocate memory for the section contents. Zero the memory
for the benefit of .rela.plt, which has 4 unused entries
at the beginning, and we don't want garbage. */
s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
if (s->contents == NULL)
return false;
}
if (elf_hash_table (info)->dynamic_sections_created)
{
/* Add some entries to the .dynamic section. We fill in the
values later, in _bfd_sparc_elf_finish_dynamic_sections, but we
must add the entries now so that we get the correct size for
the .dynamic section. The DT_DEBUG entry is filled in by the
dynamic linker and used by the debugger. */
#define add_dynamic_entry(TAG, VAL) \
_bfd_elf_add_dynamic_entry (info, TAG, VAL)
if (!_bfd_elf_maybe_vxworks_add_dynamic_tags (output_bfd, info,
true))
return false;
if (ABI_64_P (output_bfd))
{
int reg;
struct _bfd_sparc_elf_app_reg * app_regs;
struct elf_strtab_hash *dynstr;
struct elf_link_hash_table *eht = elf_hash_table (info);
/* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
entries if needed. */
app_regs = _bfd_sparc_elf_hash_table (info)->app_regs;
dynstr = eht->dynstr;
for (reg = 0; reg < 4; reg++)
if (app_regs [reg].name != NULL)
{
struct elf_link_local_dynamic_entry *entry, *e;
if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
return false;
entry = (struct elf_link_local_dynamic_entry *)
bfd_hash_allocate (&info->hash->table, sizeof (*entry));
if (entry == NULL)
return false;
/* We cheat here a little bit: the symbol will not be local, so we
put it at the end of the dynlocal linked list. We will fix it
later on, as we have to fix other fields anyway. */
entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
entry->isym.st_size = 0;
if (*app_regs [reg].name != '\0')
entry->isym.st_name
= _bfd_elf_strtab_add (dynstr, app_regs[reg].name, false);
else
entry->isym.st_name = 0;
entry->isym.st_other = 0;
entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
STT_REGISTER);
entry->isym.st_shndx = app_regs [reg].shndx;
entry->isym.st_target_internal = 0;
entry->next = NULL;
entry->input_bfd = output_bfd;
entry->input_indx = -1;
if (eht->dynlocal == NULL)
eht->dynlocal = entry;
else
{
for (e = eht->dynlocal; e->next; e = e->next)
;
e->next = entry;
}
eht->dynsymcount++;
}
}
}
#undef add_dynamic_entry
return true;
}
bool
_bfd_sparc_elf_new_section_hook (bfd *abfd, asection *sec)
{
if (!sec->used_by_bfd)
{
struct _bfd_sparc_elf_section_data *sdata;
size_t amt = sizeof (*sdata);
sdata = bfd_zalloc (abfd, amt);
if (sdata == NULL)
return false;
sec->used_by_bfd = sdata;
}
return _bfd_elf_new_section_hook (abfd, sec);
}
bool
_bfd_sparc_elf_relax_section (bfd *abfd ATTRIBUTE_UNUSED,
struct bfd_section *section,
struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
bool *again)
{
if (bfd_link_relocatable (link_info))
(*link_info->callbacks->einfo)
(_("%P%F: --relax and -r may not be used together\n"));
*again = false;
sec_do_relax (section) = 1;
return true;
}
/* Return the base VMA address which should be subtracted from real addresses
when resolving @dtpoff relocation.
This is PT_TLS segment p_vaddr. */
static bfd_vma
dtpoff_base (struct bfd_link_info *info)
{
/* If tls_sec is NULL, we should have signalled an error already. */
if (elf_hash_table (info)->tls_sec == NULL)
return 0;
return elf_hash_table (info)->tls_sec->vma;
}
/* Return the relocation value for @tpoff relocation
if STT_TLS virtual address is ADDRESS. */
static bfd_vma
tpoff (struct bfd_link_info *info, bfd_vma address)
{
struct elf_link_hash_table *htab = elf_hash_table (info);
const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
bfd_vma static_tls_size;
/* If tls_sec is NULL, we should have signalled an error already. */
if (htab->tls_sec == NULL)
return 0;
/* Consider special static TLS alignment requirements. */
static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
return address - static_tls_size - htab->tls_sec->vma;
}
/* Return the relocation value for a %gdop relocation. */
static bfd_vma
gdopoff (struct bfd_link_info *info, bfd_vma address)
{
struct elf_link_hash_table *htab = elf_hash_table (info);
bfd_vma got_base;
got_base = (htab->hgot->root.u.def.value
+ htab->hgot->root.u.def.section->output_offset
+ htab->hgot->root.u.def.section->output_section->vma);
return address - got_base;
}
/* Return whether H is local and its ADDRESS is within 4G of
_GLOBAL_OFFSET_TABLE_ and thus the offset may be calculated by a
sethi, xor sequence. */
static bool
gdop_relative_offset_ok (struct bfd_link_info *info,
struct elf_link_hash_entry *h,
bfd_vma address ATTRIBUTE_UNUSED)
{
if (!SYMBOL_REFERENCES_LOCAL (info, h))
return false;
/* If H is undefined, ADDRESS will be zero. We can't allow a
relative offset to "zero" when producing PIEs or shared libs.
Note that to get here with an undefined symbol it must also be
hidden or internal visibility. */
if (bfd_link_pic (info)
&& h != NULL
&& (h->root.type == bfd_link_hash_undefweak
|| h->root.type == bfd_link_hash_undefined))
return false;
#ifdef BFD64
return gdopoff (info, address) + ((bfd_vma) 1 << 32) < (bfd_vma) 2 << 32;
#else
return true;
#endif
}
/* Relocate a SPARC ELF section. */
int
_bfd_sparc_elf_relocate_section (bfd *output_bfd,
struct bfd_link_info *info,
bfd *input_bfd,
asection *input_section,
bfd_byte *contents,
Elf_Internal_Rela *relocs,
Elf_Internal_Sym *local_syms,
asection **local_sections)
{
struct _bfd_sparc_elf_link_hash_table *htab;
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
bfd_vma *local_got_offsets;
bfd_vma got_base;
asection *sreloc;
Elf_Internal_Rela *rel;
Elf_Internal_Rela *relend;
int num_relocs;
bool is_vxworks_tls;
htab = _bfd_sparc_elf_hash_table (info);
BFD_ASSERT (htab != NULL);
symtab_hdr = &elf_symtab_hdr (input_bfd);
sym_hashes = elf_sym_hashes (input_bfd);
local_got_offsets = elf_local_got_offsets (input_bfd);
if (elf_hash_table (info)->hgot == NULL)
got_base = 0;
else
got_base = elf_hash_table (info)->hgot->root.u.def.value;
sreloc = elf_section_data (input_section)->sreloc;
/* We have to handle relocations in vxworks .tls_vars sections
specially, because the dynamic loader is 'weird'. */
is_vxworks_tls = (htab->elf.target_os == is_vxworks
&& bfd_link_pic (info)
&& !strcmp (input_section->output_section->name,
".tls_vars"));
rel = relocs;
if (ABI_64_P (output_bfd))
num_relocs = NUM_SHDR_ENTRIES (_bfd_elf_single_rel_hdr (input_section));
else
num_relocs = input_section->reloc_count;
relend = relocs + num_relocs;
for (; rel < relend; rel++)
{
int r_type, tls_type;
reloc_howto_type *howto;
unsigned long r_symndx;
struct elf_link_hash_entry *h;
struct _bfd_sparc_elf_link_hash_entry *eh;
Elf_Internal_Sym *sym;
asection *sec;
bfd_vma relocation, off;
bfd_reloc_status_type r;
bool is_plt = false;
bool unresolved_reloc;
bool resolved_to_zero;
bool relative_reloc;
r_type = SPARC_ELF_R_TYPE (rel->r_info);
if (r_type == R_SPARC_GNU_VTINHERIT
|| r_type == R_SPARC_GNU_VTENTRY)
continue;
if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
{
bfd_set_error (bfd_error_bad_value);
return false;
}
howto = _bfd_sparc_elf_howto_table + r_type;
r_symndx = SPARC_ELF_R_SYMNDX (htab, rel->r_info);
h = NULL;
sym = NULL;
sec = NULL;
unresolved_reloc = false;
if (r_symndx < symtab_hdr->sh_info)
{
sym = local_syms + r_symndx;
sec = local_sections[r_symndx];
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
if (!bfd_link_relocatable (info)
&& ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
{
/* Relocate against local STT_GNU_IFUNC symbol. */
h = elf_sparc_get_local_sym_hash (htab, input_bfd,
rel, false);
if (h == NULL)
abort ();
/* Set STT_GNU_IFUNC symbol value. */
h->root.u.def.value = sym->st_value;
h->root.u.def.section = sec;
}
}
else
{
bool warned, ignored;
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
r_symndx, symtab_hdr, sym_hashes,
h, sec, relocation,
unresolved_reloc, warned, ignored);
if (warned)
{
/* To avoid generating warning messages about truncated
relocations, set the relocation's address to be the same as
the start of this section. */
if (input_section->output_section != NULL)
relocation = input_section->output_section->vma;
else
relocation = 0;
}
}
if (sec != NULL && discarded_section (sec))
RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
rel, 1, relend, howto, 0, contents);
if (bfd_link_relocatable (info))
continue;
if (h != NULL
&& h->type == STT_GNU_IFUNC
&& h->def_regular)
{
asection *plt_sec;
const char *name;
if ((input_section->flags & SEC_ALLOC) == 0
|| h->plt.offset == (bfd_vma) -1)
{
/* If this is a SHT_NOTE section without SHF_ALLOC, treat
STT_GNU_IFUNC symbol as STT_FUNC. */
if (elf_section_type (input_section) == SHT_NOTE)
goto skip_ifunc;
/* Dynamic relocs are not propagated for SEC_DEBUGGING
sections because such sections are not SEC_ALLOC and
thus ld.so will not process them. */
if ((input_section->flags & SEC_ALLOC) == 0
&& (input_section->flags & SEC_DEBUGGING) != 0)
continue;
_bfd_error_handler
/* xgettext:c-format */
(_("%pB(%pA+%#" PRIx64 "): "
"unresolvable %s relocation against symbol `%s'"),
input_bfd,
input_section,
(uint64_t) rel->r_offset,
howto->name,
h->root.root.string);
bfd_set_error (bfd_error_bad_value);
return false;
}
plt_sec = htab->elf.splt;
if (! plt_sec)
plt_sec =htab->elf.iplt;
switch (r_type)
{
case R_SPARC_GOTDATA_OP:
continue;
case R_SPARC_GOTDATA_OP_HIX22:
case R_SPARC_GOTDATA_OP_LOX10:
r_type = (r_type == R_SPARC_GOTDATA_OP_HIX22
? R_SPARC_GOT22
: R_SPARC_GOT10);
howto = _bfd_sparc_elf_howto_table + r_type;
/* Fall through. */
case R_SPARC_GOT10:
case R_SPARC_GOT13:
case R_SPARC_GOT22:
if (htab->elf.sgot == NULL)
abort ();
off = h->got.offset;
if (off == (bfd_vma) -1)
abort();
relocation = htab->elf.sgot->output_offset + off - got_base;
goto do_relocation;
case R_SPARC_WPLT30:
case R_SPARC_WDISP30:
relocation = (plt_sec->output_section->vma
+ plt_sec->output_offset + h->plt.offset);
goto do_relocation;
case R_SPARC_32:
case R_SPARC_64:
if (bfd_link_pic (info) && h->non_got_ref)
{
Elf_Internal_Rela outrel;
bfd_vma offset;
offset = _bfd_elf_section_offset (output_bfd, info,
input_section,
rel->r_offset);
if (offset == (bfd_vma) -1
|| offset == (bfd_vma) -2)
abort();
outrel.r_offset = (input_section->output_section->vma
+ input_section->output_offset
+ offset);
if (h->dynindx == -1
|| h->forced_local
|| bfd_link_executable (info))
{
outrel.r_info = SPARC_ELF_R_INFO (htab, NULL,
0, R_SPARC_IRELATIVE);
outrel.r_addend = relocation + rel->r_addend;
}
else
{
if (h->dynindx == -1)
abort();
outrel.r_info = SPARC_ELF_R_INFO (htab, rel, h->dynindx, r_type);
outrel.r_addend = rel->r_addend;
}
sparc_elf_append_rela (output_bfd, sreloc, &outrel);
continue;
}
relocation = (plt_sec->output_section->vma
+ plt_sec->output_offset + h->plt.offset);
goto do_relocation;
case R_SPARC_HI22:
case R_SPARC_LO10:
/* We should only see such relocs in static links. */
if (bfd_link_pic (info))
abort();
relocation = (plt_sec->output_section->vma
+ plt_sec->output_offset + h->plt.offset);
goto do_relocation;
default:
if (h->root.root.string)
name = h->root.root.string;
else
name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
NULL);
_bfd_error_handler
/* xgettext:c-format */
(_("%pB: relocation %s against STT_GNU_IFUNC "
"symbol `%s' isn't handled by %s"), input_bfd,
_bfd_sparc_elf_howto_table[r_type].name,
name, __FUNCTION__);
bfd_set_error (bfd_error_bad_value);
return false;
}
}
skip_ifunc:
eh = (struct _bfd_sparc_elf_link_hash_entry *) h;
resolved_to_zero = eh && UNDEFINED_WEAK_RESOLVED_TO_ZERO (info, eh);
switch (r_type)
{
case R_SPARC_GOTDATA_OP_HIX22:
case R_SPARC_GOTDATA_OP_LOX10:
if (gdop_relative_offset_ok (info, h, relocation))
{
r_type = (r_type == R_SPARC_GOTDATA_OP_HIX22
? R_SPARC_GOTDATA_HIX22
: R_SPARC_GOTDATA_LOX10);
howto = _bfd_sparc_elf_howto_table + r_type;
}
break;
case R_SPARC_GOTDATA_OP:
if (gdop_relative_offset_ok (info, h, relocation))
{
bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
/* {ld,ldx} [%rs1 + %rs2], %rd --> add %rs1, %rs2, %rd */
relocation = 0x80000000 | (insn & 0x3e07c01f);
bfd_put_32 (output_bfd, relocation, contents + rel->r_offset);
/* If the symbol is global but not dynamic, an .rela.* slot has
been allocated for it in the GOT so output R_SPARC_NONE here,
if it isn't also subject to another, old-style GOT relocation.
See also the handling of these GOT relocations just below. */
if (h != NULL
&& h->dynindx == -1
&& !h->forced_local
&& h->root.type != bfd_link_hash_undefweak
&& !eh->has_old_style_got_reloc
&& (h->got.offset & 1) == 0
&& bfd_link_pic (info))
{
asection *s = htab->elf.srelgot;
Elf_Internal_Rela outrel;
BFD_ASSERT (s != NULL);
memset (&outrel, 0, sizeof outrel);
sparc_elf_append_rela (output_bfd, s, &outrel);
h->got.offset |= 1;
}
}
continue;
}
switch (r_type)
{
case R_SPARC_GOTDATA_HIX22:
case R_SPARC_GOTDATA_LOX10:
relocation = gdopoff (info, relocation);
break;
case R_SPARC_GOTDATA_OP_HIX22:
case R_SPARC_GOTDATA_OP_LOX10:
case R_SPARC_GOT10:
case R_SPARC_GOT13:
case R_SPARC_GOT22:
/* Relocation is to the entry for this symbol in the global
offset table. */
if (htab->elf.sgot == NULL)
abort ();
relative_reloc = false;
if (h != NULL)
{
bool dyn;
off = h->got.offset;
BFD_ASSERT (off != (bfd_vma) -1);
dyn = elf_hash_table (info)->dynamic_sections_created;
if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
bfd_link_pic (info),
h)
|| (bfd_link_pic (info)
&& SYMBOL_REFERENCES_LOCAL (info, h)))
{
/* This is actually a static link, or it is a
-Bsymbolic link and the symbol is defined
locally, or the symbol was forced to be local
because of a version file. We must initialize
this entry in the global offset table. Since the
offset must always be a multiple of 8 for 64-bit
and 4 for 32-bit, we use the least significant bit
to record whether we have initialized it already.
When doing a dynamic link, we create a .rela.got
relocation entry to initialize the value. This
is done in the finish_dynamic_symbol routine. */
if ((off & 1) != 0)
off &= ~1;
else
{
/* If this symbol isn't dynamic in PIC mode, treat it
like a local symbol in PIC mode below. */
if (h->dynindx == -1
&& !h->forced_local
&& h->root.type != bfd_link_hash_undefweak
&& bfd_link_pic (info))
relative_reloc = true;
else
SPARC_ELF_PUT_WORD (htab, output_bfd, relocation,
htab->elf.sgot->contents + off);
h->got.offset |= 1;
}
}
else
unresolved_reloc = false;
}
else
{
BFD_ASSERT (local_got_offsets != NULL
&& local_got_offsets[r_symndx] != (bfd_vma) -1);
off = local_got_offsets[r_symndx];
/* The offset must always be a multiple of 8 on 64-bit and
4 on 32-bit. We use the least significant bit to record
whether we have already processed this entry. */
if ((off & 1) != 0)
off &= ~1;
else
{
/* For a local symbol in PIC mode, we need to generate a
R_SPARC_RELATIVE reloc for the dynamic linker. */
if (bfd_link_pic (info))
relative_reloc = true;
else
SPARC_ELF_PUT_WORD (htab, output_bfd, relocation,
htab->elf.sgot->contents + off);
local_got_offsets[r_symndx] |= 1;
}
}
if (relative_reloc)
{
asection *s = htab->elf.srelgot;
Elf_Internal_Rela outrel;
BFD_ASSERT (s != NULL);
outrel.r_offset = (htab->elf.sgot->output_section->vma
+ htab->elf.sgot->output_offset
+ off);
outrel.r_info = SPARC_ELF_R_INFO (htab, NULL,
0, R_SPARC_RELATIVE);
outrel.r_addend = relocation;
sparc_elf_append_rela (output_bfd, s, &outrel);
/* Versions of glibc ld.so at least up to 2.26 wrongly
add the section contents to the value calculated for
a RELATIVE reloc. Zero the contents to work around
this bug. */
relocation = 0;
SPARC_ELF_PUT_WORD (htab, output_bfd, relocation,
htab->elf.sgot->contents + off);
}
relocation = htab->elf.sgot->output_offset + off - got_base;
break;
case R_SPARC_PLT32:
case R_SPARC_PLT64:
if (h == NULL || h->plt.offset == (bfd_vma) -1)
{
r_type = (r_type == R_SPARC_PLT32) ? R_SPARC_32 : R_SPARC_64;
goto r_sparc_plt32;
}
/* Fall through. */
case R_SPARC_WPLT30:
case R_SPARC_HIPLT22:
case R_SPARC_LOPLT10:
case R_SPARC_PCPLT32:
case R_SPARC_PCPLT22:
case R_SPARC_PCPLT10:
r_sparc_wplt30:
/* Relocation is to the entry for this symbol in the
procedure linkage table. */
if (! ABI_64_P (output_bfd))
{
/* The Solaris native assembler will generate a WPLT30 reloc
for a local symbol if you assemble a call from one
section to another when using -K pic. We treat it as
WDISP30. */
if (h == NULL)
break;
}
/* PR 7027: We need similar behaviour for 64-bit binaries. */
else if (r_type == R_SPARC_WPLT30 && h == NULL)
break;
else
{
BFD_ASSERT (h != NULL);
}
if (h->plt.offset == (bfd_vma) -1 || htab->elf.splt == NULL)
{
/* We didn't make a PLT entry for this symbol. This
happens when statically linking PIC code, or when
using -Bsymbolic. */
break;
}
relocation = (htab->elf.splt->output_section->vma
+ htab->elf.splt->output_offset
+ h->plt.offset);
unresolved_reloc = false;
if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
{
r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
is_plt = true;
goto r_sparc_plt32;
}
break;
case R_SPARC_PC10:
case R_SPARC_PC22:
case R_SPARC_PC_HH22:
case R_SPARC_PC_HM10:
case R_SPARC_PC_LM22:
if (h != NULL
&& strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
break;
/* Fall through. */
case R_SPARC_DISP8:
case R_SPARC_DISP16:
case R_SPARC_DISP32:
case R_SPARC_DISP64:
case R_SPARC_WDISP30:
case R_SPARC_WDISP22:
case R_SPARC_WDISP19:
case R_SPARC_WDISP16:
case R_SPARC_WDISP10:
case R_SPARC_8:
case R_SPARC_16:
case R_SPARC_32:
case R_SPARC_HI22:
case R_SPARC_22:
case R_SPARC_13:
case R_SPARC_LO10:
case R_SPARC_UA16:
case R_SPARC_UA32:
case R_SPARC_10:
case R_SPARC_11:
case R_SPARC_64:
case R_SPARC_OLO10:
case R_SPARC_HH22:
case R_SPARC_HM10:
case R_SPARC_LM22:
case R_SPARC_7:
case R_SPARC_5:
case R_SPARC_6:
case R_SPARC_HIX22:
case R_SPARC_LOX10:
case R_SPARC_H44:
case R_SPARC_M44:
case R_SPARC_L44:
case R_SPARC_H34:
case R_SPARC_UA64:
r_sparc_plt32:
if ((input_section->flags & SEC_ALLOC) == 0 || is_vxworks_tls)
break;
/* Copy dynamic function pointer relocations. Don't generate
dynamic relocations against resolved undefined weak symbols
in PIE. */
if ((bfd_link_pic (info)
&& (h == NULL
|| !(h->root.type == bfd_link_hash_undefweak
&& (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
|| resolved_to_zero)))
&& (! howto->pc_relative
|| !SYMBOL_CALLS_LOCAL (info, h)))
|| (!bfd_link_pic (info)
&& h != NULL
&& h->dynindx != -1
&& !h->non_got_ref
&& ((h->def_dynamic
&& !h->def_regular)
|| (h->root.type == bfd_link_hash_undefweak
&& !resolved_to_zero)
|| h->root.type == bfd_link_hash_undefined)))
{
Elf_Internal_Rela outrel;
bool skip, relocate = false;
/* When generating a shared object, these relocations
are copied into the output file to be resolved at run
time. */
BFD_ASSERT (sreloc != NULL);
skip = false;
outrel.r_offset =
_bfd_elf_section_offset (output_bfd, info, input_section,
rel->r_offset);
if (outrel.r_offset == (bfd_vma) -1)
skip = true;
else if (outrel.r_offset == (bfd_vma) -2)
skip = true, relocate = true;
outrel.r_offset += (input_section->output_section->vma
+ input_section->output_offset);
/* Optimize unaligned reloc usage now that we know where
it finally resides. */
switch (r_type)
{
case R_SPARC_16:
if (outrel.r_offset & 1)
r_type = R_SPARC_UA16;
break;
case R_SPARC_UA16:
if (!(outrel.r_offset & 1))
r_type = R_SPARC_16;
break;
case R_SPARC_32:
if (outrel.r_offset & 3)
r_type = R_SPARC_UA32;
break;
case R_SPARC_UA32:
if (!(outrel.r_offset & 3))
r_type = R_SPARC_32;
break;
case R_SPARC_64:
if (outrel.r_offset & 7)
r_type = R_SPARC_UA64;
break;
case R_SPARC_UA64:
if (!(outrel.r_offset & 7))
r_type = R_SPARC_64;
break;
case R_SPARC_DISP8:
case R_SPARC_DISP16:
case R_SPARC_DISP32:
case R_SPARC_DISP64:
/* If the symbol is not dynamic, we should not keep
a dynamic relocation. But an .rela.* slot has been
allocated for it, output R_SPARC_NONE.
FIXME: Add code tracking needed dynamic relocs as
e.g. i386 has. */
if (h->dynindx == -1)
skip = true, relocate = true;
break;
}
if (skip)
memset (&outrel, 0, sizeof outrel);
/* h->dynindx may be -1 if the symbol was marked to
become local. */
else if (h != NULL
&& h->dynindx != -1
&& (_bfd_sparc_elf_howto_table[r_type].pc_relative
|| !bfd_link_pic (info)
|| !SYMBOLIC_BIND (info, h)
|| !h->def_regular))
{
outrel.r_info = SPARC_ELF_R_INFO (htab, rel, h->dynindx, r_type);
outrel.r_addend = rel->r_addend;
}
else
{
if ( (!ABI_64_P (output_bfd) && r_type == R_SPARC_32)
|| (ABI_64_P (output_bfd) && r_type == R_SPARC_64))
{
outrel.r_info = SPARC_ELF_R_INFO (htab, NULL,
0, R_SPARC_RELATIVE);
outrel.r_addend = relocation + rel->r_addend;
}
else
{
long indx;
outrel.r_addend = relocation + rel->r_addend;
if (is_plt)
sec = htab->elf.splt;
if (bfd_is_abs_section (sec))
indx = 0;
else if (sec == NULL || sec->owner == NULL)
{
bfd_set_error (bfd_error_bad_value);
return false;
}
else
{
asection *osec;
/* We are turning this relocation into one
against a section symbol. It would be
proper to subtract the symbol's value,
osec->vma, from the emitted reloc addend,
but ld.so expects buggy relocs. */
osec = sec->output_section;
indx = elf_section_data (osec)->dynindx;
if (indx == 0)
{
osec = htab->elf.text_index_section;
indx = elf_section_data (osec)->dynindx;
}
/* FIXME: we really should be able to link non-pic
shared libraries. */
if (indx == 0)
{
BFD_FAIL ();
_bfd_error_handler
(_("%pB: probably compiled without -fPIC?"),
input_bfd);
bfd_set_error (bfd_error_bad_value);
return false;
}
}
outrel.r_info = SPARC_ELF_R_INFO (htab, rel, indx,
r_type);
}
}
sparc_elf_append_rela (output_bfd, sreloc, &outrel);
/* This reloc will be computed at runtime, so there's no
need to do anything now. */
if (! relocate)
continue;
}
break;
case R_SPARC_TLS_GD_HI22:
case R_SPARC_TLS_GD_LO10:
case R_SPARC_TLS_IE_HI22:
case R_SPARC_TLS_IE_LO10:
r_type = sparc_elf_tls_transition (info, input_bfd, r_type,
h == NULL || h->dynindx == -1);
if (r_type == R_SPARC_REV32)
break;
if (h != NULL)
tls_type = _bfd_sparc_elf_hash_entry (h)->tls_type;
else if (local_got_offsets)
tls_type = _bfd_sparc_elf_local_got_tls_type (input_bfd) [r_symndx];
else
tls_type = GOT_UNKNOWN;
if (tls_type == GOT_TLS_IE)
switch (r_type)
{
case R_SPARC_TLS_GD_HI22:
r_type = R_SPARC_TLS_IE_HI22;
break;
case R_SPARC_TLS_GD_LO10:
r_type = R_SPARC_TLS_IE_LO10;
break;
}
if (r_type == R_SPARC_TLS_LE_HIX22)
{
relocation = tpoff (info, relocation);
break;
}
if (r_type == R_SPARC_TLS_LE_LOX10)
{
/* Change add into xor. */
relocation = tpoff (info, relocation);
bfd_put_32 (output_bfd, (bfd_get_32 (input_bfd,
contents + rel->r_offset)
| 0x80182000), contents + rel->r_offset);
break;
}
if (h != NULL)
{
off = h->got.offset;
h->got.offset |= 1;
}
else
{
BFD_ASSERT (local_got_offsets != NULL);
off = local_got_offsets[r_symndx];
local_got_offsets[r_symndx] |= 1;
}
r_sparc_tlsldm:
if (htab->elf.sgot == NULL)
abort ();
if ((off & 1) != 0)
off &= ~1;
else
{
Elf_Internal_Rela outrel;
int dr_type, indx;
if (htab->elf.srelgot == NULL)
abort ();
SPARC_ELF_PUT_WORD (htab, output_bfd, 0,
htab->elf.sgot->contents + off);
outrel.r_offset = (htab->elf.sgot->output_section->vma
+ htab->elf.sgot->output_offset + off);
indx = h && h->dynindx != -1 ? h->dynindx : 0;
if (r_type == R_SPARC_TLS_IE_HI22
|| r_type == R_SPARC_TLS_IE_LO10)
dr_type = SPARC_ELF_TPOFF_RELOC (htab);
else
dr_type = SPARC_ELF_DTPMOD_RELOC (htab);
if (dr_type == SPARC_ELF_TPOFF_RELOC (htab) && indx == 0)
outrel.r_addend = relocation - dtpoff_base (info);
else
outrel.r_addend = 0;
outrel.r_info = SPARC_ELF_R_INFO (htab, NULL, indx, dr_type);
sparc_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel);
if (r_type == R_SPARC_TLS_GD_HI22
|| r_type == R_SPARC_TLS_GD_LO10)
{
if (indx == 0)
{
BFD_ASSERT (! unresolved_reloc);
SPARC_ELF_PUT_WORD (htab, output_bfd,
relocation - dtpoff_base (info),
(htab->elf.sgot->contents + off
+ SPARC_ELF_WORD_BYTES (htab)));
}
else
{
SPARC_ELF_PUT_WORD (htab, output_bfd, 0,
(htab->elf.sgot->contents + off
+ SPARC_ELF_WORD_BYTES (htab)));
outrel.r_info = SPARC_ELF_R_INFO (htab, NULL, indx,
SPARC_ELF_DTPOFF_RELOC (htab));
outrel.r_offset += SPARC_ELF_WORD_BYTES (htab);
sparc_elf_append_rela (output_bfd, htab->elf.srelgot,
&outrel);
}
}
else if (dr_type == SPARC_ELF_DTPMOD_RELOC (htab))
{
SPARC_ELF_PUT_WORD (htab, output_bfd, 0,
(htab->elf.sgot->contents + off
+ SPARC_ELF_WORD_BYTES (htab)));
}
}
if (off >= (bfd_vma) -2)
abort ();
relocation = htab->elf.sgot->output_offset + off - got_base;
unresolved_reloc = false;
howto = _bfd_sparc_elf_howto_table + r_type;
break;
case R_SPARC_TLS_LDM_HI22:
case R_SPARC_TLS_LDM_LO10:
/* LD -> LE */
if (bfd_link_executable (info))
{
bfd_put_32 (output_bfd, SPARC_NOP, contents + rel->r_offset);
continue;
}
off = htab->tls_ldm_got.offset;
htab->tls_ldm_got.offset |= 1;
goto r_sparc_tlsldm;
case R_SPARC_TLS_LDO_HIX22:
case R_SPARC_TLS_LDO_LOX10:
/* LD -> LE */
if (bfd_link_executable (info))
{
if (r_type == R_SPARC_TLS_LDO_HIX22)
r_type = R_SPARC_TLS_LE_HIX22;
else
r_type = R_SPARC_TLS_LE_LOX10;
}
else
{
relocation -= dtpoff_base (info);
break;
}
/* Fall through. */
case R_SPARC_TLS_LE_HIX22:
case R_SPARC_TLS_LE_LOX10:
if (!bfd_link_executable (info))
{
Elf_Internal_Rela outrel;
bfd_vma offset
= _bfd_elf_section_offset (output_bfd, info, input_section,
rel->r_offset);
if (offset == (bfd_vma) -1 || offset == (bfd_vma) -2)
memset (&outrel, 0, sizeof outrel);
else
{
outrel.r_offset = offset
+ input_section->output_section->vma
+ input_section->output_offset;
outrel.r_info = SPARC_ELF_R_INFO (htab, NULL, 0, r_type);
outrel.r_addend
= relocation - dtpoff_base (info) + rel->r_addend;
}
BFD_ASSERT (sreloc != NULL);
sparc_elf_append_rela (output_bfd, sreloc, &outrel);
continue;
}
relocation = tpoff (info, relocation);
break;
case R_SPARC_TLS_LDM_CALL:
/* LD -> LE */
if (bfd_link_executable (info))
{
/* mov %g0, %o0 */
bfd_put_32 (output_bfd, 0x90100000, contents + rel->r_offset);
continue;
}
/* Fall through */
case R_SPARC_TLS_GD_CALL:
if (h != NULL)
tls_type = _bfd_sparc_elf_hash_entry (h)->tls_type;
else if (local_got_offsets)
tls_type = _bfd_sparc_elf_local_got_tls_type (input_bfd) [r_symndx];
else
tls_type = GOT_UNKNOWN;
/* GD -> IE or LE */
if (bfd_link_executable (info)
|| (r_type == R_SPARC_TLS_GD_CALL && tls_type == GOT_TLS_IE))
{
Elf_Internal_Rela *rel2;
bfd_vma insn;
/* GD -> LE */
if (bfd_link_executable (info) && (h == NULL || h->dynindx == -1))
{
bfd_put_32 (output_bfd, SPARC_NOP, contents + rel->r_offset);
continue;
}
/* GD -> IE */
if (rel + 1 < relend
&& SPARC_ELF_R_TYPE (rel[1].r_info) == R_SPARC_TLS_GD_ADD
&& rel[1].r_offset == rel->r_offset + 4
&& SPARC_ELF_R_SYMNDX (htab, rel[1].r_info) == r_symndx
&& (((insn = bfd_get_32 (input_bfd,
contents + rel[1].r_offset))
>> 25) & 0x1f) == 8)
{
/* We have
call __tls_get_addr, %tgd_call(foo)
add %reg1, %reg2, %o0, %tgd_add(foo)
and change it into IE:
{ld,ldx} [%reg1 + %reg2], %o0, %tie_ldx(foo)
add %g7, %o0, %o0, %tie_add(foo).
add is 0x80000000 | (rd << 25) | (rs1 << 14) | rs2,
ld is 0xc0000000 | (rd << 25) | (rs1 << 14) | rs2,
ldx is 0xc0580000 | (rd << 25) | (rs1 << 14) | rs2. */
bfd_put_32 (output_bfd, insn | (ABI_64_P (output_bfd) ? 0xc0580000 : 0xc0000000),
contents + rel->r_offset);
bfd_put_32 (output_bfd, 0x9001c008,
contents + rel->r_offset + 4);
rel++;
continue;
}
/* We cannot just overwrite the delay slot instruction,
as it might be what puts the %o0 argument to
__tls_get_addr into place. So we have to transpose
the delay slot with the add we patch in. */
insn = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
bfd_put_32 (output_bfd, insn,
contents + rel->r_offset);
bfd_put_32 (output_bfd, 0x9001c008,
contents + rel->r_offset + 4);
rel2 = rel;
while ((rel2 = sparc_elf_find_reloc_at_ofs (rel2 + 1, relend,
rel->r_offset + 4))
!= NULL)
{
/* If the instruction we moved has a relocation attached to
it, adjust the offset so that it will apply to the correct
instruction. */
rel2->r_offset -= 4;
}
continue;
}
h = (struct elf_link_hash_entry *)
bfd_link_hash_lookup (info->hash, "__tls_get_addr", false,
false, true);
BFD_ASSERT (h != NULL);
r_type = R_SPARC_WPLT30;
howto = _bfd_sparc_elf_howto_table + r_type;
goto r_sparc_wplt30;
case R_SPARC_TLS_GD_ADD:
if (h != NULL)
tls_type = _bfd_sparc_elf_hash_entry (h)->tls_type;
else if (local_got_offsets)
tls_type = _bfd_sparc_elf_local_got_tls_type (input_bfd) [r_symndx];
else
tls_type = GOT_UNKNOWN;
/* GD -> IE or LE */
if (bfd_link_executable (info) || tls_type == GOT_TLS_IE)
{
/* add %reg1, %reg2, %reg3, %tgd_add(foo)
changed into IE:
{ld,ldx} [%reg1 + %reg2], %reg3, %tie_ldx(foo)
or LE:
add %g7, %reg2, %reg3. */
bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
if (bfd_link_executable (info) && (h == NULL || h->dynindx == -1))
relocation = (insn & ~0x7c000) | 0x1c000;
else
relocation = insn | (ABI_64_P (output_bfd) ? 0xc0580000 : 0xc0000000);
bfd_put_32 (output_bfd, relocation, contents + rel->r_offset);
}
continue;
case R_SPARC_TLS_LDM_ADD:
/* LD -> LE */
if (bfd_link_executable (info))
bfd_put_32 (output_bfd, SPARC_NOP, contents + rel->r_offset);
continue;
case R_SPARC_TLS_LDO_ADD:
/* LD -> LE */
if (bfd_link_executable (info))
{
/* Change rs1 into %g7. */
bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
insn = (insn & ~0x7c000) | 0x1c000;
bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
}
continue;
case R_SPARC_TLS_IE_LD:
case R_SPARC_TLS_IE_LDX:
/* IE -> LE */
if (bfd_link_executable (info) && (h == NULL || h->dynindx == -1))
{
bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
int rs2 = insn & 0x1f;
int rd = (insn >> 25) & 0x1f;
if (rs2 == rd)
relocation = SPARC_NOP;
else
relocation = 0x80100000 | (insn & 0x3e00001f);
bfd_put_32 (output_bfd, relocation, contents + rel->r_offset);
}
continue;
case R_SPARC_TLS_IE_ADD:
/* Totally useless relocation. */
continue;
case R_SPARC_TLS_DTPOFF32:
case R_SPARC_TLS_DTPOFF64:
relocation -= dtpoff_base (info);
break;
default:
break;
}
/* Dynamic relocs are not propagated for SEC_DEBUGGING sections
because such sections are not SEC_ALLOC and thus ld.so will
not process them. */
if (unresolved_reloc
&& !((input_section->flags & SEC_DEBUGGING) != 0
&& h->def_dynamic)
&& _bfd_elf_section_offset (output_bfd, info, input_section,
rel->r_offset) != (bfd_vma) -1)
_bfd_error_handler
/* xgettext:c-format */
(_("%pB(%pA+%#" PRIx64 "): "
"unresolvable %s relocation against symbol `%s'"),
input_bfd,
input_section,
(uint64_t) rel->r_offset,
howto->name,
h->root.root.string);
r = bfd_reloc_continue;
if (r_type == R_SPARC_OLO10)
{
bfd_vma x;
if (! ABI_64_P (output_bfd))
abort ();
relocation += rel->r_addend;
relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
x = bfd_get_32 (input_bfd, contents + rel->r_offset);
x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
bfd_put_32 (input_bfd, x, contents + rel->r_offset);
r = bfd_check_overflow (howto->complain_on_overflow,
howto->bitsize, howto->rightshift,
bfd_arch_bits_per_address (input_bfd),
relocation);
}
else if (r_type == R_SPARC_WDISP16)
{
bfd_vma x;
relocation += rel->r_addend;
relocation -= (input_section->output_section->vma
+ input_section->output_offset);
relocation -= rel->r_offset;
x = bfd_get_32 (input_bfd, contents + rel->r_offset);
x |= ((((relocation >> 2) & 0xc000) << 6)
| ((relocation >> 2) & 0x3fff));
bfd_put_32 (input_bfd, x, contents + rel->r_offset);
r = bfd_check_overflow (howto->complain_on_overflow,
howto->bitsize, howto->rightshift,
bfd_arch_bits_per_address (input_bfd),
relocation);
}
else if (r_type == R_SPARC_WDISP10)
{
bfd_vma x;
relocation += rel->r_addend;
relocation -= (input_section->output_section->vma
+ input_section->output_offset);
relocation -= rel->r_offset;
x = bfd_get_32 (input_bfd, contents + rel->r_offset);
x |= ((((relocation >> 2) & 0x300) << 11)
| (((relocation >> 2) & 0xff) << 5));
bfd_put_32 (input_bfd, x, contents + rel->r_offset);
r = bfd_check_overflow (howto->complain_on_overflow,
howto->bitsize, howto->rightshift,
bfd_arch_bits_per_address (input_bfd),
relocation);
}
else if (r_type == R_SPARC_REV32)
{
bfd_vma x;
relocation = relocation + rel->r_addend;
x = bfd_get_32 (input_bfd, contents + rel->r_offset);
x = x + relocation;
bfd_putl32 (/*input_bfd,*/ x, contents + rel->r_offset);
r = bfd_reloc_ok;
}
else if (r_type == R_SPARC_TLS_LDO_HIX22
|| r_type == R_SPARC_TLS_LE_HIX22)
{
bfd_vma x;
relocation += rel->r_addend;
if (r_type == R_SPARC_TLS_LE_HIX22)
relocation ^= MINUS_ONE;
x = bfd_get_32 (input_bfd, contents + rel->r_offset);
x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
bfd_put_32 (input_bfd, x, contents + rel->r_offset);
r = bfd_reloc_ok;
}
else if (r_type == R_SPARC_TLS_LDO_LOX10
|| r_type == R_SPARC_TLS_LE_LOX10)
{
bfd_vma x;
relocation += rel->r_addend;
relocation &= 0x3ff;
if (r_type == R_SPARC_TLS_LE_LOX10)
relocation |= 0x1c00;
x = bfd_get_32 (input_bfd, contents + rel->r_offset);
x = (x & ~(bfd_vma) 0x1fff) | relocation;
bfd_put_32 (input_bfd, x, contents + rel->r_offset);
r = bfd_reloc_ok;
}
else if (r_type == R_SPARC_HIX22
|| r_type == R_SPARC_GOTDATA_HIX22
|| r_type == R_SPARC_GOTDATA_OP_HIX22)
{
bfd_vma x;
relocation += rel->r_addend;
if (r_type == R_SPARC_HIX22
|| (bfd_signed_vma) relocation < 0)
relocation = relocation ^ MINUS_ONE;
x = bfd_get_32 (input_bfd, contents + rel->r_offset);
x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
bfd_put_32 (input_bfd, x, contents + rel->r_offset);
r = bfd_check_overflow (howto->complain_on_overflow,
howto->bitsize, howto->rightshift,
bfd_arch_bits_per_address (input_bfd),
relocation);
}
else if (r_type == R_SPARC_LOX10
|| r_type == R_SPARC_GOTDATA_LOX10
|| r_type == R_SPARC_GOTDATA_OP_LOX10)
{
bfd_vma x;
relocation += rel->r_addend;
if (r_type == R_SPARC_LOX10
|| (bfd_signed_vma) relocation < 0)
relocation = (relocation & 0x3ff) | 0x1c00;
else
relocation = (relocation & 0x3ff);
x = bfd_get_32 (input_bfd, contents + rel->r_offset);
x = (x & ~(bfd_vma) 0x1fff) | relocation;
bfd_put_32 (input_bfd, x, contents + rel->r_offset);
r = bfd_reloc_ok;
}
else if ((r_type == R_SPARC_WDISP30 || r_type == R_SPARC_WPLT30)
&& sec_do_relax (input_section)
&& rel->r_offset + 4 < input_section->size)
{
#define G0 0
#define O7 15
#define XCC (2 << 20)
#define COND(x) (((x)&0xf)<<25)
#define CONDA COND(0x8)
#define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
#define INSN_BA (F2(0,2) | CONDA)
#define INSN_OR F3(2, 0x2, 0)
#define INSN_NOP F2(0,4)
bfd_vma x, y;
/* If the instruction is a call with either:
restore
arithmetic instruction with rd == %o7
where rs1 != %o7 and rs2 if it is register != %o7
then we can optimize if the call destination is near
by changing the call into a branch always. */
x = bfd_get_32 (input_bfd, contents + rel->r_offset);
y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
{
if (((y & OP3(~0)) == OP3(0x3d) /* restore */
|| ((y & OP3(0x28)) == 0 /* arithmetic */
&& (y & RD(~0)) == RD(O7)))
&& (y & RS1(~0)) != RS1(O7)
&& ((y & F3I(~0))
|| (y & RS2(~0)) != RS2(O7)))
{
bfd_vma reloc;
reloc = relocation + rel->r_addend - rel->r_offset;
reloc -= (input_section->output_section->vma
+ input_section->output_offset);
/* Ensure the branch fits into simm22. */
if ((reloc & 3) == 0
&& ((reloc & ~(bfd_vma)0x7fffff) == 0
|| ((reloc | 0x7fffff) == ~(bfd_vma)0)))
{
reloc >>= 2;
/* Check whether it fits into simm19. */
if (((reloc & 0x3c0000) == 0
|| (reloc & 0x3c0000) == 0x3c0000)
&& (ABI_64_P (output_bfd)
|| elf_elfheader (output_bfd)->e_flags & EF_SPARC_32PLUS))
x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
else
x = INSN_BA | (reloc & 0x3fffff); /* ba */
bfd_put_32 (input_bfd, x, contents + rel->r_offset);
r = bfd_reloc_ok;
if (rel->r_offset >= 4
&& (y & (0xffffffff ^ RS1(~0)))
== (INSN_OR | RD(O7) | RS2(G0)))
{
bfd_vma z;
unsigned int reg;
z = bfd_get_32 (input_bfd,
contents + rel->r_offset - 4);
if ((z & (0xffffffff ^ RD(~0)))
!= (INSN_OR | RS1(O7) | RS2(G0)))
continue;
/* The sequence was
or %o7, %g0, %rN
call foo
or %rN, %g0, %o7
If call foo was replaced with ba, replace
or %rN, %g0, %o7 with nop. */
reg = (y & RS1(~0)) >> 14;
if (reg != ((z & RD(~0)) >> 25)
|| reg == G0 || reg == O7)
continue;
bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
contents + rel->r_offset + 4);
}
}
}
}
}
if (r == bfd_reloc_continue)
{
do_relocation:
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
contents, rel->r_offset,
relocation, rel->r_addend);
}
if (r != bfd_reloc_ok)
{
switch (r)
{
default:
case bfd_reloc_outofrange:
abort ();
case bfd_reloc_overflow:
{
const char *name;
/* The Solaris native linker silently disregards overflows.
We don't, but this breaks stabs debugging info, whose
relocations are only 32-bits wide. Ignore overflows in
this case and also for discarded entries. */
if ((r_type == R_SPARC_32
|| r_type == R_SPARC_UA32
|| r_type == R_SPARC_DISP32)
&& (((input_section->flags & SEC_DEBUGGING) != 0
&& strcmp (bfd_section_name (input_section),
".stab") == 0)
|| _bfd_elf_section_offset (output_bfd, info,
input_section,
rel->r_offset)
== (bfd_vma)-1))
break;
if (h != NULL)
{
/* Assume this is a call protected by other code that
detect the symbol is undefined. If this is the case,
we can safely ignore the overflow. If not, the
program is hosed anyway, and a little warning isn't
going to help. */
if (h->root.type == bfd_link_hash_undefweak
&& howto->pc_relative)
break;
name = NULL;
}
else
{
name = bfd_elf_string_from_elf_section (input_bfd,
symtab_hdr->sh_link,
sym->st_name);
if (name == NULL)
return false;
if (*name == '\0')
name = bfd_section_name (sec);
}
(*info->callbacks->reloc_overflow)
(info, (h ? &h->root : NULL), name, howto->name,
(bfd_vma) 0, input_bfd, input_section, rel->r_offset);
}
break;
}
}
}
return true;
}
/* Build a VxWorks PLT entry. PLT_INDEX is the index of the PLT entry
and PLT_OFFSET is the byte offset from the start of .plt. GOT_OFFSET
is the offset of the associated .got.plt entry from
_GLOBAL_OFFSET_TABLE_. */
static void
sparc_vxworks_build_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
bfd_vma plt_offset, bfd_vma plt_index,
bfd_vma got_offset)
{
bfd_vma got_base;
const bfd_vma *plt_entry;
struct _bfd_sparc_elf_link_hash_table *htab;
bfd_byte *loc;
Elf_Internal_Rela rela;
htab = _bfd_sparc_elf_hash_table (info);
BFD_ASSERT (htab != NULL);
if (bfd_link_pic (info))
{
plt_entry = sparc_vxworks_shared_plt_entry;
got_base = 0;
}
else
{
plt_entry = sparc_vxworks_exec_plt_entry;
got_base = (htab->elf.hgot->root.u.def.value
+ htab->elf.hgot->root.u.def.section->output_offset
+ htab->elf.hgot->root.u.def.section->output_section->vma);
}
/* Fill in the entry in the procedure linkage table. */
bfd_put_32 (output_bfd, plt_entry[0] + ((got_base + got_offset) >> 10),
htab->elf.splt->contents + plt_offset);
bfd_put_32 (output_bfd, plt_entry[1] + ((got_base + got_offset) & 0x3ff),
htab->elf.splt->contents + plt_offset + 4);
bfd_put_32 (output_bfd, plt_entry[2],
htab->elf.splt->contents + plt_offset + 8);
bfd_put_32 (output_bfd, plt_entry[3],
htab->elf.splt->contents + plt_offset + 12);
bfd_put_32 (output_bfd, plt_entry[4],
htab->elf.splt->contents + plt_offset + 16);
bfd_put_32 (output_bfd, plt_entry[5] + (plt_index >> 10),
htab->elf.splt->contents + plt_offset + 20);
/* PC-relative displacement for a branch to the start of
the PLT section. */
bfd_put_32 (output_bfd, plt_entry[6] + (((-plt_offset - 24) >> 2)
& 0x003fffff),
htab->elf.splt->contents + plt_offset + 24);
bfd_put_32 (output_bfd, plt_entry[7] + (plt_index & 0x3ff),
htab->elf.splt->contents + plt_offset + 28);
/* Fill in the .got.plt entry, pointing initially at the
second half of the PLT entry. */
BFD_ASSERT (htab->elf.sgotplt != NULL);
bfd_put_32 (output_bfd,
htab->elf.splt->output_section->vma
+ htab->elf.splt->output_offset
+ plt_offset + 20,
htab->elf.sgotplt->contents + got_offset);
/* Add relocations to .rela.plt.unloaded. */
if (!bfd_link_pic (info))
{
loc = (htab->srelplt2->contents
+ (2 + 3 * plt_index) * sizeof (Elf32_External_Rela));
/* Relocate the initial sethi. */
rela.r_offset = (htab->elf.splt->output_section->vma
+ htab->elf.splt->output_offset
+ plt_offset);
rela.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_SPARC_HI22);
rela.r_addend = got_offset;
bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
loc += sizeof (Elf32_External_Rela);
/* Likewise the following or. */
rela.r_offset += 4;
rela.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_SPARC_LO10);
bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
loc += sizeof (Elf32_External_Rela);
/* Relocate the .got.plt entry. */
rela.r_offset = (htab->elf.sgotplt->output_section->vma
+ htab->elf.sgotplt->output_offset
+ got_offset);
rela.r_info = ELF32_R_INFO (htab->elf.hplt->indx, R_SPARC_32);
rela.r_addend = plt_offset + 20;
bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
}
}
/* Finish up dynamic symbol handling. We set the contents of various
dynamic sections here. */
bool
_bfd_sparc_elf_finish_dynamic_symbol (bfd *output_bfd,
struct bfd_link_info *info,
struct elf_link_hash_entry *h,
Elf_Internal_Sym *sym)
{
struct _bfd_sparc_elf_link_hash_table *htab;
const struct elf_backend_data *bed;
struct _bfd_sparc_elf_link_hash_entry *eh;
bool resolved_to_zero;
htab = _bfd_sparc_elf_hash_table (info);
BFD_ASSERT (htab != NULL);
bed = get_elf_backend_data (output_bfd);
eh = (struct _bfd_sparc_elf_link_hash_entry *) h;
/* We keep PLT/GOT entries without dynamic PLT/GOT relocations for
resolved undefined weak symbols in executable so that their
references have value 0 at run-time. */
resolved_to_zero = UNDEFINED_WEAK_RESOLVED_TO_ZERO (info, eh);
if (h->plt.offset != (bfd_vma) -1)
{
asection *splt;
asection *srela;
Elf_Internal_Rela rela;
bfd_byte *loc;
bfd_vma r_offset, got_offset;
int rela_index;
/* When building a static executable, use .iplt and
.rela.iplt sections for STT_GNU_IFUNC symbols. */
if (htab->elf.splt != NULL)
{
splt = htab->elf.splt;
srela = htab->elf.srelplt;
}
else
{
splt = htab->elf.iplt;
srela = htab->elf.irelplt;
}
if (splt == NULL || srela == NULL)
abort ();
/* Fill in the entry in the .rela.plt section. */
if (htab->elf.target_os == is_vxworks)
{
/* Work out the index of this PLT entry. */
rela_index = ((h->plt.offset - htab->plt_header_size)
/ htab->plt_entry_size);
/* Calculate the offset of the associated .got.plt entry.
The first three entries are reserved. */
got_offset = (rela_index + 3) * 4;
sparc_vxworks_build_plt_entry (output_bfd, info, h->plt.offset,
rela_index, got_offset);
/* On VxWorks, the relocation points to the .got.plt entry,
not the .plt entry. */
rela.r_offset = (htab->elf.sgotplt->output_section->vma
+ htab->elf.sgotplt->output_offset
+ got_offset);
rela.r_addend = 0;
rela.r_info = SPARC_ELF_R_INFO (htab, NULL, h->dynindx,
R_SPARC_JMP_SLOT);
}
else
{
bool ifunc = false;
/* Fill in the entry in the procedure linkage table. */
rela_index = SPARC_ELF_BUILD_PLT_ENTRY (htab, output_bfd, splt,
h->plt.offset, splt->size,
&r_offset);
if (h == NULL
|| h->dynindx == -1
|| ((bfd_link_executable (info)
|| ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
&& h->def_regular
&& h->type == STT_GNU_IFUNC))
{
ifunc = true;
BFD_ASSERT (h == NULL
|| (h->type == STT_GNU_IFUNC
&& h->def_regular
&& (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)));
}
rela.r_offset = r_offset
+ (splt->output_section->vma + splt->output_offset);
if (ABI_64_P (output_bfd)
&& h->plt.offset >= (PLT64_LARGE_THRESHOLD * PLT64_ENTRY_SIZE))
{
if (ifunc)
{
rela.r_addend = (h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset
+ h->root.u.def.value);
rela.r_info = SPARC_ELF_R_INFO (htab, NULL, 0,
R_SPARC_IRELATIVE);
}
else
{
rela.r_addend = (-(h->plt.offset + 4)
- splt->output_section->vma
- splt->output_offset);
rela.r_info = SPARC_ELF_R_INFO (htab, NULL, h->dynindx,
R_SPARC_JMP_SLOT);
}
}
else
{
if (ifunc)
{
rela.r_addend = (h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset
+ h->root.u.def.value);
rela.r_info = SPARC_ELF_R_INFO (htab, NULL, 0,
R_SPARC_JMP_IREL);
}
else
{
rela.r_addend = 0;
rela.r_info = SPARC_ELF_R_INFO (htab, NULL, h->dynindx,
R_SPARC_JMP_SLOT);
}
}
}
/* Adjust for the first 4 reserved elements in the .plt section
when setting the offset in the .rela.plt section.
Sun forgot to read their own ABI and copied elf32-sparc behaviour,
thus .plt[4] has corresponding .rela.plt[0] and so on. */
loc = srela->contents;
loc += rela_index * bed->s->sizeof_rela;
bed->s->swap_reloca_out (output_bfd, &rela, loc);
if (!resolved_to_zero && !h->def_regular)
{
/* Mark the symbol as undefined, rather than as defined in
the .plt section. Leave the value alone. */
sym->st_shndx = SHN_UNDEF;
/* If the symbol is weak, we do need to clear the value.
Otherwise, the PLT entry would provide a definition for
the symbol even if the symbol wasn't defined anywhere,
and so the symbol would never be NULL. */
if (!h->ref_regular_nonweak)
sym->st_value = 0;
}
}
/* Don't generate dynamic GOT relocation against resolved undefined weak
symbols in an executable. */
if (h->got.offset != (bfd_vma) -1
&& _bfd_sparc_elf_hash_entry(h)->tls_type != GOT_TLS_GD
&& _bfd_sparc_elf_hash_entry(h)->tls_type != GOT_TLS_IE
&& !(h->root.type == bfd_link_hash_undefweak
&& (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
|| resolved_to_zero)))
{
asection *sgot;
asection *srela;
Elf_Internal_Rela rela;
/* This symbol has an entry in the GOT. Set it up. */
sgot = htab->elf.sgot;
srela = htab->elf.srelgot;
BFD_ASSERT (sgot != NULL && srela != NULL);
rela.r_offset = (sgot->output_section->vma
+ sgot->output_offset
+ (h->got.offset &~ (bfd_vma) 1));
/* If this is a -Bsymbolic link, and the symbol is defined
locally, we just want to emit a RELATIVE reloc. Likewise if
the symbol was forced to be local because of a version file.
The entry in the global offset table will already have been
initialized in the relocate_section function. */
if (! bfd_link_pic (info)
&& h->type == STT_GNU_IFUNC
&& h->def_regular)
{
asection *plt;
/* We load the GOT entry with the PLT entry. */
plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
SPARC_ELF_PUT_WORD (htab, output_bfd,
(plt->output_section->vma
+ plt->output_offset + h->plt.offset),
htab->elf.sgot->contents
+ (h->got.offset & ~(bfd_vma) 1));
return true;
}
if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
{
asection *sec = h->root.u.def.section;
if (h->type == STT_GNU_IFUNC)
rela.r_info = SPARC_ELF_R_INFO (htab, NULL, 0, R_SPARC_IRELATIVE);
else
rela.r_info = SPARC_ELF_R_INFO (htab, NULL, 0, R_SPARC_RELATIVE);
rela.r_addend = (h->root.u.def.value
+ sec->output_section->vma
+ sec->output_offset);
}
else
{
rela.r_info = SPARC_ELF_R_INFO (htab, NULL, h->dynindx, R_SPARC_GLOB_DAT);
rela.r_addend = 0;
}
SPARC_ELF_PUT_WORD (htab, output_bfd, 0,
sgot->contents + (h->got.offset & ~(bfd_vma) 1));
sparc_elf_append_rela (output_bfd, srela, &rela);
}
if (h->needs_copy)
{
asection *s;
Elf_Internal_Rela rela;
/* This symbols needs a copy reloc. Set it up. */
BFD_ASSERT (h->dynindx != -1);
rela.r_offset = (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
rela.r_info = SPARC_ELF_R_INFO (htab, NULL, h->dynindx, R_SPARC_COPY);
rela.r_addend = 0;
if (h->root.u.def.section == htab->elf.sdynrelro)
s = htab->elf.sreldynrelro;
else
s = htab->elf.srelbss;
sparc_elf_append_rela (output_bfd, s, &rela);
}
/* Mark some specially defined symbols as absolute. On VxWorks,
_GLOBAL_OFFSET_TABLE_ is not absolute: it is relative to the
".got" section. Likewise _PROCEDURE_LINKAGE_TABLE_ and ".plt". */
if (sym != NULL
&& (h == htab->elf.hdynamic
|| (htab->elf.target_os != is_vxworks
&& (h == htab->elf.hgot || h == htab->elf.hplt))))
sym->st_shndx = SHN_ABS;
return true;
}
/* Finish up the dynamic sections. */
static bool
sparc_finish_dyn (bfd *output_bfd, struct bfd_link_info *info,
bfd *dynobj, asection *sdyn,
asection *splt ATTRIBUTE_UNUSED)
{
struct _bfd_sparc_elf_link_hash_table *htab;
const struct elf_backend_data *bed;
bfd_byte *dyncon, *dynconend;
size_t dynsize;
int stt_regidx = -1;
bool abi_64_p;
htab = _bfd_sparc_elf_hash_table (info);
BFD_ASSERT (htab != NULL);
bed = get_elf_backend_data (output_bfd);
dynsize = bed->s->sizeof_dyn;
dynconend = sdyn->contents + sdyn->size;
abi_64_p = ABI_64_P (output_bfd);
for (dyncon = sdyn->contents; dyncon < dynconend; dyncon += dynsize)
{
Elf_Internal_Dyn dyn;
bool size;
bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
if (htab->elf.target_os == is_vxworks && dyn.d_tag == DT_PLTGOT)
{
/* On VxWorks, DT_PLTGOT should point to the start of the GOT,
not to the start of the PLT. */
if (htab->elf.sgotplt)
{
dyn.d_un.d_val = (htab->elf.sgotplt->output_section->vma
+ htab->elf.sgotplt->output_offset);
bed->s->swap_dyn_out (output_bfd, &dyn, dyncon);
}
}
else if (htab->elf.target_os == is_vxworks
&& elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
bed->s->swap_dyn_out (output_bfd, &dyn, dyncon);
else if (abi_64_p && dyn.d_tag == DT_SPARC_REGISTER)
{
if (stt_regidx == -1)
{
stt_regidx =
_bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
if (stt_regidx == -1)
return false;
}
dyn.d_un.d_val = stt_regidx++;
bed->s->swap_dyn_out (output_bfd, &dyn, dyncon);
}
else
{
asection *s;
switch (dyn.d_tag)
{
case DT_PLTGOT:
s = htab->elf.splt;
size = false;
break;
case DT_PLTRELSZ:
s = htab->elf.srelplt;
size = true;
break;
case DT_JMPREL:
s = htab->elf.srelplt;
size = false;
break;
default:
continue;
}
if (s == NULL)
dyn.d_un.d_val = 0;
else
{
if (!size)
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
else
dyn.d_un.d_val = s->size;
}
bed->s->swap_dyn_out (output_bfd, &dyn, dyncon);
}
}
return true;
}
/* Install the first PLT entry in a VxWorks executable and make sure that
.rela.plt.unloaded relocations have the correct symbol indexes. */
static void
sparc_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
{
struct _bfd_sparc_elf_link_hash_table *htab;
Elf_Internal_Rela rela;
bfd_vma got_base;
bfd_byte *loc;
htab = _bfd_sparc_elf_hash_table (info);
BFD_ASSERT (htab != NULL);
/* Calculate the absolute value of _GLOBAL_OFFSET_TABLE_. */
got_base = (htab->elf.hgot->root.u.def.section->output_section->vma
+ htab->elf.hgot->root.u.def.section->output_offset
+ htab->elf.hgot->root.u.def.value);
/* Install the initial PLT entry. */
bfd_put_32 (output_bfd,
sparc_vxworks_exec_plt0_entry[0] + ((got_base + 8) >> 10),
htab->elf.splt->contents);
bfd_put_32 (output_bfd,
sparc_vxworks_exec_plt0_entry[1] + ((got_base + 8) & 0x3ff),
htab->elf.splt->contents + 4);
bfd_put_32 (output_bfd,
sparc_vxworks_exec_plt0_entry[2],
htab->elf.splt->contents + 8);
bfd_put_32 (output_bfd,
sparc_vxworks_exec_plt0_entry[3],
htab->elf.splt->contents + 12);
bfd_put_32 (output_bfd,
sparc_vxworks_exec_plt0_entry[4],
htab->elf.splt->contents + 16);
loc = htab->srelplt2->contents;
/* Add an unloaded relocation for the initial entry's "sethi". */
rela.r_offset = (htab->elf.splt->output_section->vma
+ htab->elf.splt->output_offset);
rela.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_SPARC_HI22);
rela.r_addend = 8;
bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
loc += sizeof (Elf32_External_Rela);
/* Likewise the following "or". */
rela.r_offset += 4;
rela.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_SPARC_LO10);
bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
loc += sizeof (Elf32_External_Rela);
/* Fix up the remaining .rela.plt.unloaded relocations. They may have
the wrong symbol index for _G_O_T_ or _P_L_T_ depending on the order
in which symbols were output. */
while (loc < htab->srelplt2->contents + htab->srelplt2->size)
{
Elf_Internal_Rela rel;
/* The entry's initial "sethi" (against _G_O_T_). */
bfd_elf32_swap_reloc_in (output_bfd, loc, &rel);
rel.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_SPARC_HI22);
bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
loc += sizeof (Elf32_External_Rela);
/* The following "or" (also against _G_O_T_). */
bfd_elf32_swap_reloc_in (output_bfd, loc, &rel);
rel.r_info = ELF32_R_INFO (htab->elf.hgot->indx, R_SPARC_LO10);
bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
loc += sizeof (Elf32_External_Rela);
/* The .got.plt entry (against _P_L_T_). */
bfd_elf32_swap_reloc_in (output_bfd, loc, &rel);
rel.r_info = ELF32_R_INFO (htab->elf.hplt->indx, R_SPARC_32);
bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
loc += sizeof (Elf32_External_Rela);
}
}
/* Install the first PLT entry in a VxWorks shared object. */
static void
sparc_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
{
struct _bfd_sparc_elf_link_hash_table *htab;
unsigned int i;
htab = _bfd_sparc_elf_hash_table (info);
BFD_ASSERT (htab != NULL);
for (i = 0; i < ARRAY_SIZE (sparc_vxworks_shared_plt0_entry); i++)
bfd_put_32 (output_bfd, sparc_vxworks_shared_plt0_entry[i],
htab->elf.splt->contents + i * 4);
}
/* Finish up local dynamic symbol handling. We set the contents of
various dynamic sections here. */
static int
finish_local_dynamic_symbol (void **slot, void *inf)
{
struct elf_link_hash_entry *h
= (struct elf_link_hash_entry *) *slot;
struct bfd_link_info *info
= (struct bfd_link_info *) inf;
return _bfd_sparc_elf_finish_dynamic_symbol (info->output_bfd, info,
h, NULL);
}
/* Finish up undefined weak symbol handling in PIE. Fill its PLT entry
here since undefined weak symbol may not be dynamic and may not be
called for _bfd_sparc_elf_finish_dynamic_symbol. */
static bool
pie_finish_undefweak_symbol (struct bfd_hash_entry *bh,
void *inf)
{
struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
struct bfd_link_info *info = (struct bfd_link_info *) inf;
if (h->root.type != bfd_link_hash_undefweak
|| h->dynindx != -1)
return true;
return _bfd_sparc_elf_finish_dynamic_symbol (info->output_bfd, info,
h, NULL);
}
bool
_bfd_sparc_elf_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
{
bfd *dynobj;
asection *sdyn;
struct _bfd_sparc_elf_link_hash_table *htab;
htab = _bfd_sparc_elf_hash_table (info);
BFD_ASSERT (htab != NULL);
dynobj = htab->elf.dynobj;
/* We arranged in size_dynamic_sections to put the STT_REGISTER
entries at the end of the dynlocal list, so they came at the end
of the local symbols in the symtab. Except that they aren't
STB_LOCAL, so we need to back up symtab->sh_info. */
if (ABI_64_P (output_bfd)
&& elf_hash_table (info)->dynlocal)
{
asection *dynsymsec = bfd_get_linker_section (dynobj, ".dynsym");
struct elf_link_local_dynamic_entry *e;
for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
if (e->input_indx == -1)
break;
if (e)
elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
= e->dynindx;
}
sdyn = bfd_get_linker_section (dynobj, ".dynamic");
if (elf_hash_table (info)->dynamic_sections_created)
{
asection *splt;
splt = htab->elf.splt;
BFD_ASSERT (splt != NULL && sdyn != NULL);
if (!sparc_finish_dyn (output_bfd, info, dynobj, sdyn, splt))
return false;
/* Initialize the contents of the .plt section. */
if (splt->size > 0)
{
if (htab->elf.target_os == is_vxworks)
{
if (bfd_link_pic (info))
sparc_vxworks_finish_shared_plt (output_bfd, info);
else
sparc_vxworks_finish_exec_plt (output_bfd, info);
}
else
{
memset (splt->contents, 0, htab->plt_header_size);
if (!ABI_64_P (output_bfd))
bfd_put_32 (output_bfd, (bfd_vma) SPARC_NOP,
splt->contents + splt->size - 4);
}
}
if (elf_section_data (splt->output_section) != NULL)
elf_section_data (splt->output_section)->this_hdr.sh_entsize
= ((htab->elf.target_os == is_vxworks
|| !ABI_64_P (output_bfd))
? 0 : htab->plt_entry_size);
}
/* Set the first entry in the global offset table to the address of
the dynamic section. */
if (htab->elf.sgot && htab->elf.sgot->size > 0)
{
bfd_vma val = (sdyn ?
sdyn->output_section->vma + sdyn->output_offset :
0);
SPARC_ELF_PUT_WORD (htab, output_bfd, val, htab->elf.sgot->contents);
}
if (htab->elf.sgot)
elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize =
SPARC_ELF_WORD_BYTES (htab);
/* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
htab_traverse (htab->loc_hash_table, finish_local_dynamic_symbol, info);
/* Fill PLT entries for undefined weak symbols in PIE. */
if (bfd_link_pie (info))
bfd_hash_traverse (&info->hash->table,
pie_finish_undefweak_symbol,
info);
return true;
}
/* Set the right machine number for a SPARC ELF file. */
bool
_bfd_sparc_elf_object_p (bfd *abfd)
{
obj_attribute *attrs = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
obj_attribute *hwcaps = &attrs[Tag_GNU_Sparc_HWCAPS];
obj_attribute *hwcaps2 = &attrs[Tag_GNU_Sparc_HWCAPS2];
unsigned int v9c_hwcaps_mask = ELF_SPARC_HWCAP_ASI_BLK_INIT;
unsigned int v9d_hwcaps_mask = (ELF_SPARC_HWCAP_FMAF
| ELF_SPARC_HWCAP_VIS3
| ELF_SPARC_HWCAP_HPC);
unsigned int v9e_hwcaps_mask = (ELF_SPARC_HWCAP_AES
| ELF_SPARC_HWCAP_DES
| ELF_SPARC_HWCAP_KASUMI
| ELF_SPARC_HWCAP_CAMELLIA
| ELF_SPARC_HWCAP_MD5
| ELF_SPARC_HWCAP_SHA1
| ELF_SPARC_HWCAP_SHA256
| ELF_SPARC_HWCAP_SHA512
| ELF_SPARC_HWCAP_MPMUL
| ELF_SPARC_HWCAP_MONT
| ELF_SPARC_HWCAP_CRC32C
| ELF_SPARC_HWCAP_CBCOND
| ELF_SPARC_HWCAP_PAUSE);
unsigned int v9v_hwcaps_mask = (ELF_SPARC_HWCAP_FJFMAU
| ELF_SPARC_HWCAP_IMA);
unsigned int v9m_hwcaps2_mask = (ELF_SPARC_HWCAP2_SPARC5
| ELF_SPARC_HWCAP2_MWAIT
| ELF_SPARC_HWCAP2_XMPMUL
| ELF_SPARC_HWCAP2_XMONT);
unsigned int m8_hwcaps2_mask = (ELF_SPARC_HWCAP2_SPARC6
| ELF_SPARC_HWCAP2_ONADDSUB
| ELF_SPARC_HWCAP2_ONMUL
| ELF_SPARC_HWCAP2_ONDIV
| ELF_SPARC_HWCAP2_DICTUNP
| ELF_SPARC_HWCAP2_FPCMPSHL
| ELF_SPARC_HWCAP2_RLE
| ELF_SPARC_HWCAP2_SHA3);
if (ABI_64_P (abfd))
{
unsigned long mach = bfd_mach_sparc_v9;
if (hwcaps2->i & m8_hwcaps2_mask)
mach = bfd_mach_sparc_v9m8;
else if (hwcaps2->i & v9m_hwcaps2_mask)
mach = bfd_mach_sparc_v9m;
else if (hwcaps->i & v9v_hwcaps_mask)
mach = bfd_mach_sparc_v9v;
else if (hwcaps->i & v9e_hwcaps_mask)
mach = bfd_mach_sparc_v9e;
else if (hwcaps->i & v9d_hwcaps_mask)
mach = bfd_mach_sparc_v9d;
else if (hwcaps->i & v9c_hwcaps_mask)
mach = bfd_mach_sparc_v9c;
else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
mach = bfd_mach_sparc_v9b;
else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
mach = bfd_mach_sparc_v9a;
return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
}
else
{
if (elf_elfheader (abfd)->e_machine == EM_SPARC32PLUS)
{
if (hwcaps2->i & m8_hwcaps2_mask)
return bfd_default_set_arch_mach (abfd, bfd_arch_sparc,
bfd_mach_sparc_v8plusm8);
else if (hwcaps2->i & v9m_hwcaps2_mask)
return bfd_default_set_arch_mach (abfd, bfd_arch_sparc,
bfd_mach_sparc_v8plusm);
else if (hwcaps->i & v9v_hwcaps_mask)
return bfd_default_set_arch_mach (abfd, bfd_arch_sparc,
bfd_mach_sparc_v8plusv);
else if (hwcaps->i & v9e_hwcaps_mask)
return bfd_default_set_arch_mach (abfd, bfd_arch_sparc,
bfd_mach_sparc_v8pluse);
else if (hwcaps->i & v9d_hwcaps_mask)
return bfd_default_set_arch_mach (abfd, bfd_arch_sparc,
bfd_mach_sparc_v8plusd);
else if (hwcaps->i & v9c_hwcaps_mask)
return bfd_default_set_arch_mach (abfd, bfd_arch_sparc,
bfd_mach_sparc_v8plusc);
else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
return bfd_default_set_arch_mach (abfd, bfd_arch_sparc,
bfd_mach_sparc_v8plusb);
else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
return bfd_default_set_arch_mach (abfd, bfd_arch_sparc,
bfd_mach_sparc_v8plusa);
else if (elf_elfheader (abfd)->e_flags & EF_SPARC_32PLUS)
return bfd_default_set_arch_mach (abfd, bfd_arch_sparc,
bfd_mach_sparc_v8plus);
else
return false;
}
else if (elf_elfheader (abfd)->e_flags & EF_SPARC_LEDATA)
return bfd_default_set_arch_mach (abfd, bfd_arch_sparc,
bfd_mach_sparc_sparclite_le);
else
return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, bfd_mach_sparc);
}
}
/* Return address for Ith PLT stub in section PLT, for relocation REL
or (bfd_vma) -1 if it should not be included. */
bfd_vma
_bfd_sparc_elf_plt_sym_val (bfd_vma i, const asection *plt, const arelent *rel)
{
if (ABI_64_P (plt->owner))
{
bfd_vma j;
i += PLT64_HEADER_SIZE / PLT64_ENTRY_SIZE;
if (i < PLT64_LARGE_THRESHOLD)
return plt->vma + i * PLT64_ENTRY_SIZE;
j = (i - PLT64_LARGE_THRESHOLD) % 160;
i -= j;
return plt->vma + i * PLT64_ENTRY_SIZE + j * 4 * 6;
}
else
return rel->address;
}
/* Merge backend specific data from an object file to the output
object file when linking. */
bool
_bfd_sparc_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
{
bfd *obfd = info->output_bfd;
obj_attribute *in_attr, *in_attrs;
obj_attribute *out_attr, *out_attrs;
if (!elf_known_obj_attributes_proc (obfd)[0].i)
{
/* This is the first object. Copy the attributes. */
_bfd_elf_copy_obj_attributes (ibfd, obfd);
/* Use the Tag_null value to indicate the attributes have been
initialized. */
elf_known_obj_attributes_proc (obfd)[0].i = 1;
return true;
}
in_attrs = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
out_attrs = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
in_attr = &in_attrs[Tag_GNU_Sparc_HWCAPS];
out_attr = &out_attrs[Tag_GNU_Sparc_HWCAPS];
out_attr->i |= in_attr->i;
out_attr->type = 1;
in_attr = &in_attrs[Tag_GNU_Sparc_HWCAPS2];
out_attr = &out_attrs[Tag_GNU_Sparc_HWCAPS2];
out_attr->i |= in_attr->i;
out_attr->type = 1;
/* Merge Tag_compatibility attributes and any common GNU ones. */
_bfd_elf_merge_object_attributes (ibfd, info);
return true;
}