binutils-gdb/gdb/arch-utils.c
Mark Kettenis 4c8c40e6cb * gdbarch.sh (skip_solib_resolver): Change into a multi-arch
function.
* gdbarch.c, gdbarch.h: Regenerate.
* infrun.c (handle_inferior_event): Call
gdbarch_skip_solib_resolver instead of SKIP_SOLIB_RESOLVER.
* arch-utils.c (generic_in_solib_call_trampoline): Adjust function
definition.
* arch-utils.h (generic_in_solib_call_trampoline): Adjust function
prototype.
2003-11-14 21:22:42 +00:00

773 lines
20 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Dynamic architecture support for GDB, the GNU debugger.
Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation,
Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "arch-utils.h"
#include "buildsym.h"
#include "gdbcmd.h"
#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
#include "gdb_string.h"
#include "regcache.h"
#include "gdb_assert.h"
#include "sim-regno.h"
#include "osabi.h"
#include "version.h"
#include "floatformat.h"
/* Implementation of extract return value that grubs around in the
register cache. */
void
legacy_extract_return_value (struct type *type, struct regcache *regcache,
void *valbuf)
{
char *registers = deprecated_grub_regcache_for_registers (regcache);
bfd_byte *buf = valbuf;
DEPRECATED_EXTRACT_RETURN_VALUE (type, registers, buf); /* OK */
}
/* Implementation of store return value that grubs the register cache.
Takes a local copy of the buffer to avoid const problems. */
void
legacy_store_return_value (struct type *type, struct regcache *regcache,
const void *buf)
{
bfd_byte *b = alloca (TYPE_LENGTH (type));
gdb_assert (regcache == current_regcache);
memcpy (b, buf, TYPE_LENGTH (type));
DEPRECATED_STORE_RETURN_VALUE (type, b);
}
int
always_use_struct_convention (int gcc_p, struct type *value_type)
{
return 1;
}
int
legacy_register_sim_regno (int regnum)
{
/* Only makes sense to supply raw registers. */
gdb_assert (regnum >= 0 && regnum < NUM_REGS);
/* NOTE: cagney/2002-05-13: The old code did it this way and it is
suspected that some GDB/SIM combinations may rely on this
behavour. The default should be one2one_register_sim_regno
(below). */
if (REGISTER_NAME (regnum) != NULL
&& REGISTER_NAME (regnum)[0] != '\0')
return regnum;
else
return LEGACY_SIM_REGNO_IGNORE;
}
int
generic_frameless_function_invocation_not (struct frame_info *fi)
{
return 0;
}
int
generic_return_value_on_stack_not (struct type *type)
{
return 0;
}
CORE_ADDR
generic_skip_trampoline_code (CORE_ADDR pc)
{
return 0;
}
CORE_ADDR
generic_skip_solib_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
{
return 0;
}
int
generic_in_solib_call_trampoline (CORE_ADDR pc, char *name)
{
return 0;
}
int
generic_in_solib_return_trampoline (CORE_ADDR pc, char *name)
{
return 0;
}
int
generic_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
return 0;
}
#if defined (CALL_DUMMY)
LONGEST legacy_call_dummy_words[] = CALL_DUMMY;
#else
LONGEST legacy_call_dummy_words[1];
#endif
int legacy_sizeof_call_dummy_words = sizeof (legacy_call_dummy_words);
void
generic_remote_translate_xfer_address (struct gdbarch *gdbarch,
struct regcache *regcache,
CORE_ADDR gdb_addr, int gdb_len,
CORE_ADDR * rem_addr, int *rem_len)
{
*rem_addr = gdb_addr;
*rem_len = gdb_len;
}
int
generic_prologue_frameless_p (CORE_ADDR ip)
{
return ip == SKIP_PROLOGUE (ip);
}
/* Helper functions for INNER_THAN */
int
core_addr_lessthan (CORE_ADDR lhs, CORE_ADDR rhs)
{
return (lhs < rhs);
}
int
core_addr_greaterthan (CORE_ADDR lhs, CORE_ADDR rhs)
{
return (lhs > rhs);
}
/* Helper functions for TARGET_{FLOAT,DOUBLE}_FORMAT */
const struct floatformat *
default_float_format (struct gdbarch *gdbarch)
{
int byte_order = gdbarch_byte_order (gdbarch);
switch (byte_order)
{
case BFD_ENDIAN_BIG:
return &floatformat_ieee_single_big;
case BFD_ENDIAN_LITTLE:
return &floatformat_ieee_single_little;
default:
internal_error (__FILE__, __LINE__,
"default_float_format: bad byte order");
}
}
const struct floatformat *
default_double_format (struct gdbarch *gdbarch)
{
int byte_order = gdbarch_byte_order (gdbarch);
switch (byte_order)
{
case BFD_ENDIAN_BIG:
return &floatformat_ieee_double_big;
case BFD_ENDIAN_LITTLE:
return &floatformat_ieee_double_little;
default:
internal_error (__FILE__, __LINE__,
"default_double_format: bad byte order");
}
}
/* Misc helper functions for targets. */
int
deprecated_register_convertible_not (int num)
{
return 0;
}
CORE_ADDR
core_addr_identity (CORE_ADDR addr)
{
return addr;
}
CORE_ADDR
convert_from_func_ptr_addr_identity (struct gdbarch *gdbarch, CORE_ADDR addr,
struct target_ops *targ)
{
return addr;
}
int
no_op_reg_to_regnum (int reg)
{
return reg;
}
CORE_ADDR
deprecated_init_frame_pc_default (int fromleaf, struct frame_info *prev)
{
if (fromleaf && DEPRECATED_SAVED_PC_AFTER_CALL_P ())
return DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev));
else if (get_next_frame (prev) != NULL)
return DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev));
else
return read_pc ();
}
void
default_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
{
return;
}
void
default_coff_make_msymbol_special (int val, struct minimal_symbol *msym)
{
return;
}
int
cannot_register_not (int regnum)
{
return 0;
}
/* Legacy version of target_virtual_frame_pointer(). Assumes that
there is an DEPRECATED_FP_REGNUM and that it is the same, cooked or
raw. */
void
legacy_virtual_frame_pointer (CORE_ADDR pc,
int *frame_regnum,
LONGEST *frame_offset)
{
/* FIXME: cagney/2002-09-13: This code is used when identifying the
frame pointer of the current PC. It is assuming that a single
register and an offset can determine this. I think it should
instead generate a byte code expression as that would work better
with things like Dwarf2's CFI. */
if (DEPRECATED_FP_REGNUM >= 0 && DEPRECATED_FP_REGNUM < NUM_REGS)
*frame_regnum = DEPRECATED_FP_REGNUM;
else if (SP_REGNUM >= 0 && SP_REGNUM < NUM_REGS)
*frame_regnum = SP_REGNUM;
else
/* Should this be an internal error? I guess so, it is reflecting
an architectural limitation in the current design. */
internal_error (__FILE__, __LINE__, "No virtual frame pointer available");
*frame_offset = 0;
}
/* Assume the world is sane, every register's virtual and real size
is identical. */
int
generic_register_size (int regnum)
{
gdb_assert (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS);
if (gdbarch_register_type_p (current_gdbarch))
return TYPE_LENGTH (gdbarch_register_type (current_gdbarch, regnum));
else
/* FIXME: cagney/2003-03-01: Once all architectures implement
gdbarch_register_type(), this entire function can go away. It
is made obsolete by register_size(). */
return TYPE_LENGTH (DEPRECATED_REGISTER_VIRTUAL_TYPE (regnum)); /* OK */
}
/* Assume all registers are adjacent. */
int
generic_register_byte (int regnum)
{
int byte;
int i;
gdb_assert (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS);
byte = 0;
for (i = 0; i < regnum; i++)
{
byte += generic_register_size (i);
}
return byte;
}
int
legacy_pc_in_sigtramp (CORE_ADDR pc, char *name)
{
#if !defined (IN_SIGTRAMP)
if (SIGTRAMP_START_P ())
return (pc) >= SIGTRAMP_START (pc) && (pc) < SIGTRAMP_END (pc);
else
return name && strcmp ("_sigtramp", name) == 0;
#else
return IN_SIGTRAMP (pc, name);
#endif
}
int
legacy_convert_register_p (int regnum, struct type *type)
{
return DEPRECATED_REGISTER_CONVERTIBLE (regnum);
}
void
legacy_register_to_value (struct frame_info *frame, int regnum,
struct type *type, void *to)
{
char from[MAX_REGISTER_SIZE];
get_frame_register (frame, regnum, from);
DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL (regnum, type, from, to);
}
void
legacy_value_to_register (struct frame_info *frame, int regnum,
struct type *type, const void *tmp)
{
char to[MAX_REGISTER_SIZE];
char *from = alloca (TYPE_LENGTH (type));
memcpy (from, from, TYPE_LENGTH (type));
DEPRECATED_REGISTER_CONVERT_TO_RAW (type, regnum, from, to);
put_frame_register (frame, regnum, to);
}
int
default_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
{
if (DEPRECATED_REG_STRUCT_HAS_ADDR_P ()
&& DEPRECATED_REG_STRUCT_HAS_ADDR (processing_gcc_compilation, type))
{
CHECK_TYPEDEF (type);
return (TYPE_CODE (type) == TYPE_CODE_STRUCT
|| TYPE_CODE (type) == TYPE_CODE_UNION
|| TYPE_CODE (type) == TYPE_CODE_SET
|| TYPE_CODE (type) == TYPE_CODE_BITSTRING);
}
return 0;
}
/* Functions to manipulate the endianness of the target. */
/* ``target_byte_order'' is only used when non- multi-arch.
Multi-arch targets obtain the current byte order using the
TARGET_BYTE_ORDER gdbarch method.
The choice of initial value is entirely arbitrary. During startup,
the function initialize_current_architecture() updates this value
based on default byte-order information extracted from BFD. */
static int target_byte_order = BFD_ENDIAN_BIG;
static int target_byte_order_auto = 1;
enum bfd_endian
selected_byte_order (void)
{
if (target_byte_order_auto)
return BFD_ENDIAN_UNKNOWN;
else
return target_byte_order;
}
static const char endian_big[] = "big";
static const char endian_little[] = "little";
static const char endian_auto[] = "auto";
static const char *endian_enum[] =
{
endian_big,
endian_little,
endian_auto,
NULL,
};
static const char *set_endian_string;
/* Called by ``show endian''. */
static void
show_endian (char *args, int from_tty)
{
if (target_byte_order_auto)
printf_unfiltered ("The target endianness is set automatically (currently %s endian)\n",
(TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little"));
else
printf_unfiltered ("The target is assumed to be %s endian\n",
(TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little"));
}
static void
set_endian (char *ignore_args, int from_tty, struct cmd_list_element *c)
{
if (set_endian_string == endian_auto)
{
target_byte_order_auto = 1;
}
else if (set_endian_string == endian_little)
{
struct gdbarch_info info;
target_byte_order_auto = 0;
gdbarch_info_init (&info);
info.byte_order = BFD_ENDIAN_LITTLE;
if (! gdbarch_update_p (info))
printf_unfiltered ("Little endian target not supported by GDB\n");
}
else if (set_endian_string == endian_big)
{
struct gdbarch_info info;
target_byte_order_auto = 0;
gdbarch_info_init (&info);
info.byte_order = BFD_ENDIAN_BIG;
if (! gdbarch_update_p (info))
printf_unfiltered ("Big endian target not supported by GDB\n");
}
else
internal_error (__FILE__, __LINE__,
"set_endian: bad value");
show_endian (NULL, from_tty);
}
/* Functions to manipulate the architecture of the target */
enum set_arch { set_arch_auto, set_arch_manual };
static int target_architecture_auto = 1;
static const char *set_architecture_string;
const char *
selected_architecture_name (void)
{
if (target_architecture_auto)
return NULL;
else
return set_architecture_string;
}
/* Called if the user enters ``show architecture'' without an
argument. */
static void
show_architecture (char *args, int from_tty)
{
const char *arch;
arch = TARGET_ARCHITECTURE->printable_name;
if (target_architecture_auto)
printf_filtered ("The target architecture is set automatically (currently %s)\n", arch);
else
printf_filtered ("The target architecture is assumed to be %s\n", arch);
}
/* Called if the user enters ``set architecture'' with or without an
argument. */
static void
set_architecture (char *ignore_args, int from_tty, struct cmd_list_element *c)
{
if (strcmp (set_architecture_string, "auto") == 0)
{
target_architecture_auto = 1;
}
else
{
struct gdbarch_info info;
gdbarch_info_init (&info);
info.bfd_arch_info = bfd_scan_arch (set_architecture_string);
if (info.bfd_arch_info == NULL)
internal_error (__FILE__, __LINE__,
"set_architecture: bfd_scan_arch failed");
if (gdbarch_update_p (info))
target_architecture_auto = 0;
else
printf_unfiltered ("Architecture `%s' not recognized.\n",
set_architecture_string);
}
show_architecture (NULL, from_tty);
}
/* Try to select a global architecture that matches "info". Return
non-zero if the attempt succeds. */
int
gdbarch_update_p (struct gdbarch_info info)
{
struct gdbarch *new_gdbarch = gdbarch_find_by_info (info);
/* If there no architecture by that name, reject the request. */
if (new_gdbarch == NULL)
{
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
"Architecture not found\n");
return 0;
}
/* If it is the same old architecture, accept the request (but don't
swap anything). */
if (new_gdbarch == current_gdbarch)
{
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
"Architecture 0x%08lx (%s) unchanged\n",
(long) new_gdbarch,
gdbarch_bfd_arch_info (new_gdbarch)->printable_name);
return 1;
}
/* It's a new architecture, swap it in. */
if (gdbarch_debug)
fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
"New architecture 0x%08lx (%s) selected\n",
(long) new_gdbarch,
gdbarch_bfd_arch_info (new_gdbarch)->printable_name);
deprecated_current_gdbarch_select_hack (new_gdbarch);
return 1;
}
/* Return the architecture for ABFD. If no suitable architecture
could be find, return NULL. */
struct gdbarch *
gdbarch_from_bfd (bfd *abfd)
{
struct gdbarch *old_gdbarch = current_gdbarch;
struct gdbarch *new_gdbarch;
struct gdbarch_info info;
gdbarch_info_init (&info);
info.abfd = abfd;
return gdbarch_find_by_info (info);
}
/* Set the dynamic target-system-dependent parameters (architecture,
byte-order) using information found in the BFD */
void
set_gdbarch_from_file (bfd *abfd)
{
struct gdbarch *gdbarch;
gdbarch = gdbarch_from_bfd (abfd);
if (gdbarch == NULL)
error ("Architecture of file not recognized.\n");
deprecated_current_gdbarch_select_hack (gdbarch);
}
/* Initialize the current architecture. Update the ``set
architecture'' command so that it specifies a list of valid
architectures. */
#ifdef DEFAULT_BFD_ARCH
extern const bfd_arch_info_type DEFAULT_BFD_ARCH;
static const bfd_arch_info_type *default_bfd_arch = &DEFAULT_BFD_ARCH;
#else
static const bfd_arch_info_type *default_bfd_arch;
#endif
#ifdef DEFAULT_BFD_VEC
extern const bfd_target DEFAULT_BFD_VEC;
static const bfd_target *default_bfd_vec = &DEFAULT_BFD_VEC;
#else
static const bfd_target *default_bfd_vec;
#endif
void
initialize_current_architecture (void)
{
const char **arches = gdbarch_printable_names ();
/* determine a default architecture and byte order. */
struct gdbarch_info info;
gdbarch_info_init (&info);
/* Find a default architecture. */
if (info.bfd_arch_info == NULL
&& default_bfd_arch != NULL)
info.bfd_arch_info = default_bfd_arch;
if (info.bfd_arch_info == NULL)
{
/* Choose the architecture by taking the first one
alphabetically. */
const char *chosen = arches[0];
const char **arch;
for (arch = arches; *arch != NULL; arch++)
{
if (strcmp (*arch, chosen) < 0)
chosen = *arch;
}
if (chosen == NULL)
internal_error (__FILE__, __LINE__,
"initialize_current_architecture: No arch");
info.bfd_arch_info = bfd_scan_arch (chosen);
if (info.bfd_arch_info == NULL)
internal_error (__FILE__, __LINE__,
"initialize_current_architecture: Arch not found");
}
/* Take several guesses at a byte order. */
if (info.byte_order == BFD_ENDIAN_UNKNOWN
&& default_bfd_vec != NULL)
{
/* Extract BFD's default vector's byte order. */
switch (default_bfd_vec->byteorder)
{
case BFD_ENDIAN_BIG:
info.byte_order = BFD_ENDIAN_BIG;
break;
case BFD_ENDIAN_LITTLE:
info.byte_order = BFD_ENDIAN_LITTLE;
break;
default:
break;
}
}
if (info.byte_order == BFD_ENDIAN_UNKNOWN)
{
/* look for ``*el-*'' in the target name. */
const char *chp;
chp = strchr (target_name, '-');
if (chp != NULL
&& chp - 2 >= target_name
&& strncmp (chp - 2, "el", 2) == 0)
info.byte_order = BFD_ENDIAN_LITTLE;
}
if (info.byte_order == BFD_ENDIAN_UNKNOWN)
{
/* Wire it to big-endian!!! */
info.byte_order = BFD_ENDIAN_BIG;
}
if (! gdbarch_update_p (info))
internal_error (__FILE__, __LINE__,
"initialize_current_architecture: Selection of initial architecture failed");
/* Create the ``set architecture'' command appending ``auto'' to the
list of architectures. */
{
struct cmd_list_element *c;
/* Append ``auto''. */
int nr;
for (nr = 0; arches[nr] != NULL; nr++);
arches = xrealloc (arches, sizeof (char*) * (nr + 2));
arches[nr + 0] = "auto";
arches[nr + 1] = NULL;
/* FIXME: add_set_enum_cmd() uses an array of ``char *'' instead
of ``const char *''. We just happen to know that the casts are
safe. */
c = add_set_enum_cmd ("architecture", class_support,
arches, &set_architecture_string,
"Set architecture of target.",
&setlist);
set_cmd_sfunc (c, set_architecture);
add_alias_cmd ("processor", "architecture", class_support, 1, &setlist);
/* Don't use set_from_show - need to print both auto/manual and
current setting. */
add_cmd ("architecture", class_support, show_architecture,
"Show the current target architecture", &showlist);
}
}
/* Initialize a gdbarch info to values that will be automatically
overridden. Note: Originally, this ``struct info'' was initialized
using memset(0). Unfortunately, that ran into problems, namely
BFD_ENDIAN_BIG is zero. An explicit initialization function that
can explicitly set each field to a well defined value is used. */
void
gdbarch_info_init (struct gdbarch_info *info)
{
memset (info, 0, sizeof (struct gdbarch_info));
info->byte_order = BFD_ENDIAN_UNKNOWN;
info->osabi = GDB_OSABI_UNINITIALIZED;
}
/* Similar to init, but this time fill in the blanks. Information is
obtained from the specified architecture, global "set ..." options,
and explicitly initialized INFO fields. */
void
gdbarch_info_fill (struct gdbarch *gdbarch, struct gdbarch_info *info)
{
/* "(gdb) set architecture ...". */
if (info->bfd_arch_info == NULL
&& !target_architecture_auto
&& gdbarch != NULL)
info->bfd_arch_info = gdbarch_bfd_arch_info (gdbarch);
if (info->bfd_arch_info == NULL
&& info->abfd != NULL
&& bfd_get_arch (info->abfd) != bfd_arch_unknown
&& bfd_get_arch (info->abfd) != bfd_arch_obscure)
info->bfd_arch_info = bfd_get_arch_info (info->abfd);
if (info->bfd_arch_info == NULL
&& gdbarch != NULL)
info->bfd_arch_info = gdbarch_bfd_arch_info (gdbarch);
/* "(gdb) set byte-order ...". */
if (info->byte_order == BFD_ENDIAN_UNKNOWN
&& !target_byte_order_auto
&& gdbarch != NULL)
info->byte_order = gdbarch_byte_order (gdbarch);
/* From the INFO struct. */
if (info->byte_order == BFD_ENDIAN_UNKNOWN
&& info->abfd != NULL)
info->byte_order = (bfd_big_endian (info->abfd) ? BFD_ENDIAN_BIG
: bfd_little_endian (info->abfd) ? BFD_ENDIAN_LITTLE
: BFD_ENDIAN_UNKNOWN);
/* From the current target. */
if (info->byte_order == BFD_ENDIAN_UNKNOWN
&& gdbarch != NULL)
info->byte_order = gdbarch_byte_order (gdbarch);
/* "(gdb) set osabi ...". Handled by gdbarch_lookup_osabi. */
if (info->osabi == GDB_OSABI_UNINITIALIZED)
info->osabi = gdbarch_lookup_osabi (info->abfd);
if (info->osabi == GDB_OSABI_UNINITIALIZED
&& gdbarch != NULL)
info->osabi = gdbarch_osabi (gdbarch);
/* Must have at least filled in the architecture. */
gdb_assert (info->bfd_arch_info != NULL);
}
/* */
extern initialize_file_ftype _initialize_gdbarch_utils; /* -Wmissing-prototypes */
void
_initialize_gdbarch_utils (void)
{
struct cmd_list_element *c;
c = add_set_enum_cmd ("endian", class_support,
endian_enum, &set_endian_string,
"Set endianness of target.",
&setlist);
set_cmd_sfunc (c, set_endian);
/* Don't use set_from_show - need to print both auto/manual and
current setting. */
add_cmd ("endian", class_support, show_endian,
"Show the current byte-order", &showlist);
}