mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-30 13:33:53 +08:00
0672875f3c
gdb/ChangeLog: * gdbtypes.h (TYPE_FLAG_ENUM): Remove, replace all uses with type::is_flag_enum. Change-Id: I74e23893066eecd6df641045b859a6d6ebb13dd0
3209 lines
91 KiB
C
3209 lines
91 KiB
C
/* Print values for GDB, the GNU debugger.
|
||
|
||
Copyright (C) 1986-2021 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "value.h"
|
||
#include "gdbcore.h"
|
||
#include "gdbcmd.h"
|
||
#include "target.h"
|
||
#include "language.h"
|
||
#include "annotate.h"
|
||
#include "valprint.h"
|
||
#include "target-float.h"
|
||
#include "extension.h"
|
||
#include "ada-lang.h"
|
||
#include "gdb_obstack.h"
|
||
#include "charset.h"
|
||
#include "typeprint.h"
|
||
#include <ctype.h>
|
||
#include <algorithm>
|
||
#include "gdbsupport/byte-vector.h"
|
||
#include "cli/cli-option.h"
|
||
#include "gdbarch.h"
|
||
#include "cli/cli-style.h"
|
||
#include "count-one-bits.h"
|
||
#include "c-lang.h"
|
||
#include "cp-abi.h"
|
||
#include "inferior.h"
|
||
|
||
/* Maximum number of wchars returned from wchar_iterate. */
|
||
#define MAX_WCHARS 4
|
||
|
||
/* A convenience macro to compute the size of a wchar_t buffer containing X
|
||
characters. */
|
||
#define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
|
||
|
||
/* Character buffer size saved while iterating over wchars. */
|
||
#define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
|
||
|
||
/* A structure to encapsulate state information from iterated
|
||
character conversions. */
|
||
struct converted_character
|
||
{
|
||
/* The number of characters converted. */
|
||
int num_chars;
|
||
|
||
/* The result of the conversion. See charset.h for more. */
|
||
enum wchar_iterate_result result;
|
||
|
||
/* The (saved) converted character(s). */
|
||
gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
|
||
|
||
/* The first converted target byte. */
|
||
const gdb_byte *buf;
|
||
|
||
/* The number of bytes converted. */
|
||
size_t buflen;
|
||
|
||
/* How many times this character(s) is repeated. */
|
||
int repeat_count;
|
||
};
|
||
|
||
/* Command lists for set/show print raw. */
|
||
struct cmd_list_element *setprintrawlist;
|
||
struct cmd_list_element *showprintrawlist;
|
||
|
||
/* Prototypes for local functions */
|
||
|
||
static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
|
||
int len, int *errptr);
|
||
|
||
static void set_input_radix_1 (int, unsigned);
|
||
|
||
static void set_output_radix_1 (int, unsigned);
|
||
|
||
static void val_print_type_code_flags (struct type *type,
|
||
struct value *original_value,
|
||
int embedded_offset,
|
||
struct ui_file *stream);
|
||
|
||
#define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
|
||
#define PRINT_MAX_DEPTH_DEFAULT 20 /* Start print_max_depth off at this value. */
|
||
|
||
struct value_print_options user_print_options =
|
||
{
|
||
Val_prettyformat_default, /* prettyformat */
|
||
0, /* prettyformat_arrays */
|
||
0, /* prettyformat_structs */
|
||
0, /* vtblprint */
|
||
1, /* unionprint */
|
||
1, /* addressprint */
|
||
0, /* objectprint */
|
||
PRINT_MAX_DEFAULT, /* print_max */
|
||
10, /* repeat_count_threshold */
|
||
0, /* output_format */
|
||
0, /* format */
|
||
1, /* memory_tag_violations */
|
||
0, /* stop_print_at_null */
|
||
0, /* print_array_indexes */
|
||
0, /* deref_ref */
|
||
1, /* static_field_print */
|
||
1, /* pascal_static_field_print */
|
||
0, /* raw */
|
||
0, /* summary */
|
||
1, /* symbol_print */
|
||
PRINT_MAX_DEPTH_DEFAULT, /* max_depth */
|
||
1 /* finish_print */
|
||
};
|
||
|
||
/* Initialize *OPTS to be a copy of the user print options. */
|
||
void
|
||
get_user_print_options (struct value_print_options *opts)
|
||
{
|
||
*opts = user_print_options;
|
||
}
|
||
|
||
/* Initialize *OPTS to be a copy of the user print options, but with
|
||
pretty-formatting disabled. */
|
||
void
|
||
get_no_prettyformat_print_options (struct value_print_options *opts)
|
||
{
|
||
*opts = user_print_options;
|
||
opts->prettyformat = Val_no_prettyformat;
|
||
}
|
||
|
||
/* Initialize *OPTS to be a copy of the user print options, but using
|
||
FORMAT as the formatting option. */
|
||
void
|
||
get_formatted_print_options (struct value_print_options *opts,
|
||
char format)
|
||
{
|
||
*opts = user_print_options;
|
||
opts->format = format;
|
||
}
|
||
|
||
static void
|
||
show_print_max (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Limit on string chars or array "
|
||
"elements to print is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
|
||
/* Default input and output radixes, and output format letter. */
|
||
|
||
unsigned input_radix = 10;
|
||
static void
|
||
show_input_radix (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Default input radix for entering numbers is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
unsigned output_radix = 10;
|
||
static void
|
||
show_output_radix (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Default output radix for printing of values is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* By default we print arrays without printing the index of each element in
|
||
the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
|
||
|
||
static void
|
||
show_print_array_indexes (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
|
||
}
|
||
|
||
/* Print repeat counts if there are more than this many repetitions of an
|
||
element in an array. Referenced by the low level language dependent
|
||
print routines. */
|
||
|
||
static void
|
||
show_repeat_count_threshold (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* If nonzero, prints memory tag violations for pointers. */
|
||
|
||
static void
|
||
show_memory_tag_violations (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Printing of memory tag violations is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* If nonzero, stops printing of char arrays at first null. */
|
||
|
||
static void
|
||
show_stop_print_at_null (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Printing of char arrays to stop "
|
||
"at first null char is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* Controls pretty printing of structures. */
|
||
|
||
static void
|
||
show_prettyformat_structs (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
|
||
}
|
||
|
||
/* Controls pretty printing of arrays. */
|
||
|
||
static void
|
||
show_prettyformat_arrays (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
|
||
}
|
||
|
||
/* If nonzero, causes unions inside structures or other unions to be
|
||
printed. */
|
||
|
||
static void
|
||
show_unionprint (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Printing of unions interior to structures is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* If nonzero, causes machine addresses to be printed in certain contexts. */
|
||
|
||
static void
|
||
show_addressprint (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
|
||
}
|
||
|
||
static void
|
||
show_symbol_print (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Printing of symbols when printing pointers is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
|
||
|
||
/* A helper function for val_print. When printing in "summary" mode,
|
||
we want to print scalar arguments, but not aggregate arguments.
|
||
This function distinguishes between the two. */
|
||
|
||
int
|
||
val_print_scalar_type_p (struct type *type)
|
||
{
|
||
type = check_typedef (type);
|
||
while (TYPE_IS_REFERENCE (type))
|
||
{
|
||
type = TYPE_TARGET_TYPE (type);
|
||
type = check_typedef (type);
|
||
}
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_ARRAY:
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
case TYPE_CODE_SET:
|
||
case TYPE_CODE_STRING:
|
||
return 0;
|
||
default:
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* A helper function for val_print. When printing with limited depth we
|
||
want to print string and scalar arguments, but not aggregate arguments.
|
||
This function distinguishes between the two. */
|
||
|
||
static bool
|
||
val_print_scalar_or_string_type_p (struct type *type,
|
||
const struct language_defn *language)
|
||
{
|
||
return (val_print_scalar_type_p (type)
|
||
|| language->is_string_type_p (type));
|
||
}
|
||
|
||
/* See valprint.h. */
|
||
|
||
int
|
||
valprint_check_validity (struct ui_file *stream,
|
||
struct type *type,
|
||
LONGEST embedded_offset,
|
||
const struct value *val)
|
||
{
|
||
type = check_typedef (type);
|
||
|
||
if (type_not_associated (type))
|
||
{
|
||
val_print_not_associated (stream);
|
||
return 0;
|
||
}
|
||
|
||
if (type_not_allocated (type))
|
||
{
|
||
val_print_not_allocated (stream);
|
||
return 0;
|
||
}
|
||
|
||
if (type->code () != TYPE_CODE_UNION
|
||
&& type->code () != TYPE_CODE_STRUCT
|
||
&& type->code () != TYPE_CODE_ARRAY)
|
||
{
|
||
if (value_bits_any_optimized_out (val,
|
||
TARGET_CHAR_BIT * embedded_offset,
|
||
TARGET_CHAR_BIT * TYPE_LENGTH (type)))
|
||
{
|
||
val_print_optimized_out (val, stream);
|
||
return 0;
|
||
}
|
||
|
||
if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
|
||
TARGET_CHAR_BIT * TYPE_LENGTH (type)))
|
||
{
|
||
const int is_ref = type->code () == TYPE_CODE_REF;
|
||
int ref_is_addressable = 0;
|
||
|
||
if (is_ref)
|
||
{
|
||
const struct value *deref_val = coerce_ref_if_computed (val);
|
||
|
||
if (deref_val != NULL)
|
||
ref_is_addressable = value_lval_const (deref_val) == lval_memory;
|
||
}
|
||
|
||
if (!is_ref || !ref_is_addressable)
|
||
fputs_styled (_("<synthetic pointer>"), metadata_style.style (),
|
||
stream);
|
||
|
||
/* C++ references should be valid even if they're synthetic. */
|
||
return is_ref;
|
||
}
|
||
|
||
if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
|
||
{
|
||
val_print_unavailable (stream);
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
void
|
||
val_print_optimized_out (const struct value *val, struct ui_file *stream)
|
||
{
|
||
if (val != NULL && value_lval_const (val) == lval_register)
|
||
val_print_not_saved (stream);
|
||
else
|
||
fprintf_styled (stream, metadata_style.style (), _("<optimized out>"));
|
||
}
|
||
|
||
void
|
||
val_print_not_saved (struct ui_file *stream)
|
||
{
|
||
fprintf_styled (stream, metadata_style.style (), _("<not saved>"));
|
||
}
|
||
|
||
void
|
||
val_print_unavailable (struct ui_file *stream)
|
||
{
|
||
fprintf_styled (stream, metadata_style.style (), _("<unavailable>"));
|
||
}
|
||
|
||
void
|
||
val_print_invalid_address (struct ui_file *stream)
|
||
{
|
||
fprintf_styled (stream, metadata_style.style (), _("<invalid address>"));
|
||
}
|
||
|
||
/* Print a pointer based on the type of its target.
|
||
|
||
Arguments to this functions are roughly the same as those in
|
||
generic_val_print. A difference is that ADDRESS is the address to print,
|
||
with embedded_offset already added. ELTTYPE represents
|
||
the pointed type after check_typedef. */
|
||
|
||
static void
|
||
print_unpacked_pointer (struct type *type, struct type *elttype,
|
||
CORE_ADDR address, struct ui_file *stream,
|
||
const struct value_print_options *options)
|
||
{
|
||
struct gdbarch *gdbarch = type->arch ();
|
||
|
||
if (elttype->code () == TYPE_CODE_FUNC)
|
||
{
|
||
/* Try to print what function it points to. */
|
||
print_function_pointer_address (options, gdbarch, address, stream);
|
||
return;
|
||
}
|
||
|
||
if (options->symbol_print)
|
||
print_address_demangle (options, gdbarch, address, stream, demangle);
|
||
else if (options->addressprint)
|
||
fputs_filtered (paddress (gdbarch, address), stream);
|
||
}
|
||
|
||
/* generic_val_print helper for TYPE_CODE_ARRAY. */
|
||
|
||
static void
|
||
generic_val_print_array (struct value *val,
|
||
struct ui_file *stream, int recurse,
|
||
const struct value_print_options *options,
|
||
const struct
|
||
generic_val_print_decorations *decorations)
|
||
{
|
||
struct type *type = check_typedef (value_type (val));
|
||
struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
|
||
struct type *elttype = check_typedef (unresolved_elttype);
|
||
|
||
if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
|
||
{
|
||
LONGEST low_bound, high_bound;
|
||
|
||
if (!get_array_bounds (type, &low_bound, &high_bound))
|
||
error (_("Could not determine the array high bound"));
|
||
|
||
fputs_filtered (decorations->array_start, stream);
|
||
value_print_array_elements (val, stream, recurse, options, 0);
|
||
fputs_filtered (decorations->array_end, stream);
|
||
}
|
||
else
|
||
{
|
||
/* Array of unspecified length: treat like pointer to first elt. */
|
||
print_unpacked_pointer (type, elttype, value_address (val),
|
||
stream, options);
|
||
}
|
||
|
||
}
|
||
|
||
/* generic_value_print helper for TYPE_CODE_PTR. */
|
||
|
||
static void
|
||
generic_value_print_ptr (struct value *val, struct ui_file *stream,
|
||
const struct value_print_options *options)
|
||
{
|
||
|
||
if (options->format && options->format != 's')
|
||
value_print_scalar_formatted (val, options, 0, stream);
|
||
else
|
||
{
|
||
struct type *type = check_typedef (value_type (val));
|
||
struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
|
||
const gdb_byte *valaddr = value_contents_for_printing (val);
|
||
CORE_ADDR addr = unpack_pointer (type, valaddr);
|
||
|
||
print_unpacked_pointer (type, elttype, addr, stream, options);
|
||
}
|
||
}
|
||
|
||
|
||
/* Print '@' followed by the address contained in ADDRESS_BUFFER. */
|
||
|
||
static void
|
||
print_ref_address (struct type *type, const gdb_byte *address_buffer,
|
||
int embedded_offset, struct ui_file *stream)
|
||
{
|
||
struct gdbarch *gdbarch = type->arch ();
|
||
|
||
if (address_buffer != NULL)
|
||
{
|
||
CORE_ADDR address
|
||
= extract_typed_address (address_buffer + embedded_offset, type);
|
||
|
||
fprintf_filtered (stream, "@");
|
||
fputs_filtered (paddress (gdbarch, address), stream);
|
||
}
|
||
/* Else: we have a non-addressable value, such as a DW_AT_const_value. */
|
||
}
|
||
|
||
/* If VAL is addressable, return the value contents buffer of a value that
|
||
represents a pointer to VAL. Otherwise return NULL. */
|
||
|
||
static const gdb_byte *
|
||
get_value_addr_contents (struct value *deref_val)
|
||
{
|
||
gdb_assert (deref_val != NULL);
|
||
|
||
if (value_lval_const (deref_val) == lval_memory)
|
||
return value_contents_for_printing_const (value_addr (deref_val));
|
||
else
|
||
{
|
||
/* We have a non-addressable value, such as a DW_AT_const_value. */
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
/* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
|
||
|
||
static void
|
||
generic_val_print_ref (struct type *type,
|
||
int embedded_offset, struct ui_file *stream, int recurse,
|
||
struct value *original_value,
|
||
const struct value_print_options *options)
|
||
{
|
||
struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
|
||
struct value *deref_val = NULL;
|
||
const int value_is_synthetic
|
||
= value_bits_synthetic_pointer (original_value,
|
||
TARGET_CHAR_BIT * embedded_offset,
|
||
TARGET_CHAR_BIT * TYPE_LENGTH (type));
|
||
const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
|
||
|| options->deref_ref);
|
||
const int type_is_defined = elttype->code () != TYPE_CODE_UNDEF;
|
||
const gdb_byte *valaddr = value_contents_for_printing (original_value);
|
||
|
||
if (must_coerce_ref && type_is_defined)
|
||
{
|
||
deref_val = coerce_ref_if_computed (original_value);
|
||
|
||
if (deref_val != NULL)
|
||
{
|
||
/* More complicated computed references are not supported. */
|
||
gdb_assert (embedded_offset == 0);
|
||
}
|
||
else
|
||
deref_val = value_at (TYPE_TARGET_TYPE (type),
|
||
unpack_pointer (type, valaddr + embedded_offset));
|
||
}
|
||
/* Else, original_value isn't a synthetic reference or we don't have to print
|
||
the reference's contents.
|
||
|
||
Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
|
||
cause original_value to be a not_lval instead of an lval_computed,
|
||
which will make value_bits_synthetic_pointer return false.
|
||
This happens because if options->objectprint is true, c_value_print will
|
||
overwrite original_value's contents with the result of coercing
|
||
the reference through value_addr, and then set its type back to
|
||
TYPE_CODE_REF. In that case we don't have to coerce the reference again;
|
||
we can simply treat it as non-synthetic and move on. */
|
||
|
||
if (options->addressprint)
|
||
{
|
||
const gdb_byte *address = (value_is_synthetic && type_is_defined
|
||
? get_value_addr_contents (deref_val)
|
||
: valaddr);
|
||
|
||
print_ref_address (type, address, embedded_offset, stream);
|
||
|
||
if (options->deref_ref)
|
||
fputs_filtered (": ", stream);
|
||
}
|
||
|
||
if (options->deref_ref)
|
||
{
|
||
if (type_is_defined)
|
||
common_val_print (deref_val, stream, recurse, options,
|
||
current_language);
|
||
else
|
||
fputs_filtered ("???", stream);
|
||
}
|
||
}
|
||
|
||
/* Helper function for generic_val_print_enum.
|
||
This is also used to print enums in TYPE_CODE_FLAGS values. */
|
||
|
||
static void
|
||
generic_val_print_enum_1 (struct type *type, LONGEST val,
|
||
struct ui_file *stream)
|
||
{
|
||
unsigned int i;
|
||
unsigned int len;
|
||
|
||
len = type->num_fields ();
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
QUIT;
|
||
if (val == TYPE_FIELD_ENUMVAL (type, i))
|
||
{
|
||
break;
|
||
}
|
||
}
|
||
if (i < len)
|
||
{
|
||
fputs_styled (TYPE_FIELD_NAME (type, i), variable_name_style.style (),
|
||
stream);
|
||
}
|
||
else if (type->is_flag_enum ())
|
||
{
|
||
int first = 1;
|
||
|
||
/* We have a "flag" enum, so we try to decompose it into pieces as
|
||
appropriate. The enum may have multiple enumerators representing
|
||
the same bit, in which case we choose to only print the first one
|
||
we find. */
|
||
for (i = 0; i < len; ++i)
|
||
{
|
||
QUIT;
|
||
|
||
ULONGEST enumval = TYPE_FIELD_ENUMVAL (type, i);
|
||
int nbits = count_one_bits_ll (enumval);
|
||
|
||
gdb_assert (nbits == 0 || nbits == 1);
|
||
|
||
if ((val & enumval) != 0)
|
||
{
|
||
if (first)
|
||
{
|
||
fputs_filtered ("(", stream);
|
||
first = 0;
|
||
}
|
||
else
|
||
fputs_filtered (" | ", stream);
|
||
|
||
val &= ~TYPE_FIELD_ENUMVAL (type, i);
|
||
fputs_styled (TYPE_FIELD_NAME (type, i),
|
||
variable_name_style.style (), stream);
|
||
}
|
||
}
|
||
|
||
if (val != 0)
|
||
{
|
||
/* There are leftover bits, print them. */
|
||
if (first)
|
||
fputs_filtered ("(", stream);
|
||
else
|
||
fputs_filtered (" | ", stream);
|
||
|
||
fputs_filtered ("unknown: 0x", stream);
|
||
print_longest (stream, 'x', 0, val);
|
||
fputs_filtered (")", stream);
|
||
}
|
||
else if (first)
|
||
{
|
||
/* Nothing has been printed and the value is 0, the enum value must
|
||
have been 0. */
|
||
fputs_filtered ("0", stream);
|
||
}
|
||
else
|
||
{
|
||
/* Something has been printed, close the parenthesis. */
|
||
fputs_filtered (")", stream);
|
||
}
|
||
}
|
||
else
|
||
print_longest (stream, 'd', 0, val);
|
||
}
|
||
|
||
/* generic_val_print helper for TYPE_CODE_ENUM. */
|
||
|
||
static void
|
||
generic_val_print_enum (struct type *type,
|
||
int embedded_offset, struct ui_file *stream,
|
||
struct value *original_value,
|
||
const struct value_print_options *options)
|
||
{
|
||
LONGEST val;
|
||
struct gdbarch *gdbarch = type->arch ();
|
||
int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
|
||
|
||
gdb_assert (!options->format);
|
||
|
||
const gdb_byte *valaddr = value_contents_for_printing (original_value);
|
||
|
||
val = unpack_long (type, valaddr + embedded_offset * unit_size);
|
||
|
||
generic_val_print_enum_1 (type, val, stream);
|
||
}
|
||
|
||
/* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
|
||
|
||
static void
|
||
generic_val_print_func (struct type *type,
|
||
int embedded_offset, CORE_ADDR address,
|
||
struct ui_file *stream,
|
||
struct value *original_value,
|
||
const struct value_print_options *options)
|
||
{
|
||
struct gdbarch *gdbarch = type->arch ();
|
||
|
||
gdb_assert (!options->format);
|
||
|
||
/* FIXME, we should consider, at least for ANSI C language,
|
||
eliminating the distinction made between FUNCs and POINTERs to
|
||
FUNCs. */
|
||
fprintf_filtered (stream, "{");
|
||
type_print (type, "", stream, -1);
|
||
fprintf_filtered (stream, "} ");
|
||
/* Try to print what function it points to, and its address. */
|
||
print_address_demangle (options, gdbarch, address, stream, demangle);
|
||
}
|
||
|
||
/* generic_value_print helper for TYPE_CODE_BOOL. */
|
||
|
||
static void
|
||
generic_value_print_bool
|
||
(struct value *value, struct ui_file *stream,
|
||
const struct value_print_options *options,
|
||
const struct generic_val_print_decorations *decorations)
|
||
{
|
||
if (options->format || options->output_format)
|
||
{
|
||
struct value_print_options opts = *options;
|
||
opts.format = (options->format ? options->format
|
||
: options->output_format);
|
||
value_print_scalar_formatted (value, &opts, 0, stream);
|
||
}
|
||
else
|
||
{
|
||
const gdb_byte *valaddr = value_contents_for_printing (value);
|
||
struct type *type = check_typedef (value_type (value));
|
||
LONGEST val = unpack_long (type, valaddr);
|
||
if (val == 0)
|
||
fputs_filtered (decorations->false_name, stream);
|
||
else if (val == 1)
|
||
fputs_filtered (decorations->true_name, stream);
|
||
else
|
||
print_longest (stream, 'd', 0, val);
|
||
}
|
||
}
|
||
|
||
/* generic_value_print helper for TYPE_CODE_INT. */
|
||
|
||
static void
|
||
generic_value_print_int (struct value *val, struct ui_file *stream,
|
||
const struct value_print_options *options)
|
||
{
|
||
struct value_print_options opts = *options;
|
||
|
||
opts.format = (options->format ? options->format
|
||
: options->output_format);
|
||
value_print_scalar_formatted (val, &opts, 0, stream);
|
||
}
|
||
|
||
/* generic_value_print helper for TYPE_CODE_CHAR. */
|
||
|
||
static void
|
||
generic_value_print_char (struct value *value, struct ui_file *stream,
|
||
const struct value_print_options *options)
|
||
{
|
||
if (options->format || options->output_format)
|
||
{
|
||
struct value_print_options opts = *options;
|
||
|
||
opts.format = (options->format ? options->format
|
||
: options->output_format);
|
||
value_print_scalar_formatted (value, &opts, 0, stream);
|
||
}
|
||
else
|
||
{
|
||
struct type *unresolved_type = value_type (value);
|
||
struct type *type = check_typedef (unresolved_type);
|
||
const gdb_byte *valaddr = value_contents_for_printing (value);
|
||
|
||
LONGEST val = unpack_long (type, valaddr);
|
||
if (type->is_unsigned ())
|
||
fprintf_filtered (stream, "%u", (unsigned int) val);
|
||
else
|
||
fprintf_filtered (stream, "%d", (int) val);
|
||
fputs_filtered (" ", stream);
|
||
LA_PRINT_CHAR (val, unresolved_type, stream);
|
||
}
|
||
}
|
||
|
||
/* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
|
||
|
||
static void
|
||
generic_val_print_float (struct type *type, struct ui_file *stream,
|
||
struct value *original_value,
|
||
const struct value_print_options *options)
|
||
{
|
||
gdb_assert (!options->format);
|
||
|
||
const gdb_byte *valaddr = value_contents_for_printing (original_value);
|
||
|
||
print_floating (valaddr, type, stream);
|
||
}
|
||
|
||
/* generic_val_print helper for TYPE_CODE_FIXED_POINT. */
|
||
|
||
static void
|
||
generic_val_print_fixed_point (struct value *val, struct ui_file *stream,
|
||
const struct value_print_options *options)
|
||
{
|
||
if (options->format)
|
||
value_print_scalar_formatted (val, options, 0, stream);
|
||
else
|
||
{
|
||
struct type *type = value_type (val);
|
||
|
||
const gdb_byte *valaddr = value_contents_for_printing (val);
|
||
gdb_mpf f;
|
||
|
||
f.read_fixed_point (gdb::make_array_view (valaddr, TYPE_LENGTH (type)),
|
||
type_byte_order (type), type->is_unsigned (),
|
||
type->fixed_point_scaling_factor ());
|
||
|
||
const char *fmt = TYPE_LENGTH (type) < 4 ? "%.11Fg" : "%.17Fg";
|
||
std::string str = gmp_string_printf (fmt, f.val);
|
||
fprintf_filtered (stream, "%s", str.c_str ());
|
||
}
|
||
}
|
||
|
||
/* generic_value_print helper for TYPE_CODE_COMPLEX. */
|
||
|
||
static void
|
||
generic_value_print_complex (struct value *val, struct ui_file *stream,
|
||
const struct value_print_options *options,
|
||
const struct generic_val_print_decorations
|
||
*decorations)
|
||
{
|
||
fprintf_filtered (stream, "%s", decorations->complex_prefix);
|
||
|
||
struct value *real_part = value_real_part (val);
|
||
value_print_scalar_formatted (real_part, options, 0, stream);
|
||
fprintf_filtered (stream, "%s", decorations->complex_infix);
|
||
|
||
struct value *imag_part = value_imaginary_part (val);
|
||
value_print_scalar_formatted (imag_part, options, 0, stream);
|
||
fprintf_filtered (stream, "%s", decorations->complex_suffix);
|
||
}
|
||
|
||
/* generic_value_print helper for TYPE_CODE_MEMBERPTR. */
|
||
|
||
static void
|
||
generic_value_print_memberptr
|
||
(struct value *val, struct ui_file *stream,
|
||
int recurse,
|
||
const struct value_print_options *options,
|
||
const struct generic_val_print_decorations *decorations)
|
||
{
|
||
if (!options->format)
|
||
{
|
||
/* Member pointers are essentially specific to C++, and so if we
|
||
encounter one, we should print it according to C++ rules. */
|
||
struct type *type = check_typedef (value_type (val));
|
||
const gdb_byte *valaddr = value_contents_for_printing (val);
|
||
cp_print_class_member (valaddr, type, stream, "&");
|
||
}
|
||
else
|
||
generic_value_print (val, stream, recurse, options, decorations);
|
||
}
|
||
|
||
/* See valprint.h. */
|
||
|
||
void
|
||
generic_value_print (struct value *val, struct ui_file *stream, int recurse,
|
||
const struct value_print_options *options,
|
||
const struct generic_val_print_decorations *decorations)
|
||
{
|
||
struct type *type = value_type (val);
|
||
|
||
type = check_typedef (type);
|
||
|
||
if (is_fixed_point_type (type))
|
||
type = type->fixed_point_type_base_type ();
|
||
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_ARRAY:
|
||
generic_val_print_array (val, stream, recurse, options, decorations);
|
||
break;
|
||
|
||
case TYPE_CODE_MEMBERPTR:
|
||
generic_value_print_memberptr (val, stream, recurse, options,
|
||
decorations);
|
||
break;
|
||
|
||
case TYPE_CODE_PTR:
|
||
generic_value_print_ptr (val, stream, options);
|
||
break;
|
||
|
||
case TYPE_CODE_REF:
|
||
case TYPE_CODE_RVALUE_REF:
|
||
generic_val_print_ref (type, 0, stream, recurse,
|
||
val, options);
|
||
break;
|
||
|
||
case TYPE_CODE_ENUM:
|
||
if (options->format)
|
||
value_print_scalar_formatted (val, options, 0, stream);
|
||
else
|
||
generic_val_print_enum (type, 0, stream, val, options);
|
||
break;
|
||
|
||
case TYPE_CODE_FLAGS:
|
||
if (options->format)
|
||
value_print_scalar_formatted (val, options, 0, stream);
|
||
else
|
||
val_print_type_code_flags (type, val, 0, stream);
|
||
break;
|
||
|
||
case TYPE_CODE_FUNC:
|
||
case TYPE_CODE_METHOD:
|
||
if (options->format)
|
||
value_print_scalar_formatted (val, options, 0, stream);
|
||
else
|
||
generic_val_print_func (type, 0, value_address (val), stream,
|
||
val, options);
|
||
break;
|
||
|
||
case TYPE_CODE_BOOL:
|
||
generic_value_print_bool (val, stream, options, decorations);
|
||
break;
|
||
|
||
case TYPE_CODE_RANGE:
|
||
case TYPE_CODE_INT:
|
||
generic_value_print_int (val, stream, options);
|
||
break;
|
||
|
||
case TYPE_CODE_CHAR:
|
||
generic_value_print_char (val, stream, options);
|
||
break;
|
||
|
||
case TYPE_CODE_FLT:
|
||
case TYPE_CODE_DECFLOAT:
|
||
if (options->format)
|
||
value_print_scalar_formatted (val, options, 0, stream);
|
||
else
|
||
generic_val_print_float (type, stream, val, options);
|
||
break;
|
||
|
||
case TYPE_CODE_FIXED_POINT:
|
||
generic_val_print_fixed_point (val, stream, options);
|
||
break;
|
||
|
||
case TYPE_CODE_VOID:
|
||
fputs_filtered (decorations->void_name, stream);
|
||
break;
|
||
|
||
case TYPE_CODE_ERROR:
|
||
fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
|
||
break;
|
||
|
||
case TYPE_CODE_UNDEF:
|
||
/* This happens (without TYPE_STUB set) on systems which don't use
|
||
dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
|
||
and no complete type for struct foo in that file. */
|
||
fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
|
||
break;
|
||
|
||
case TYPE_CODE_COMPLEX:
|
||
generic_value_print_complex (val, stream, options, decorations);
|
||
break;
|
||
|
||
case TYPE_CODE_METHODPTR:
|
||
cplus_print_method_ptr (value_contents_for_printing (val), type,
|
||
stream);
|
||
break;
|
||
|
||
case TYPE_CODE_UNION:
|
||
case TYPE_CODE_STRUCT:
|
||
default:
|
||
error (_("Unhandled type code %d in symbol table."),
|
||
type->code ());
|
||
}
|
||
}
|
||
|
||
/* Helper function for val_print and common_val_print that does the
|
||
work. Arguments are as to val_print, but FULL_VALUE, if given, is
|
||
the value to be printed. */
|
||
|
||
static void
|
||
do_val_print (struct value *value, struct ui_file *stream, int recurse,
|
||
const struct value_print_options *options,
|
||
const struct language_defn *language)
|
||
{
|
||
int ret = 0;
|
||
struct value_print_options local_opts = *options;
|
||
struct type *type = value_type (value);
|
||
struct type *real_type = check_typedef (type);
|
||
|
||
if (local_opts.prettyformat == Val_prettyformat_default)
|
||
local_opts.prettyformat = (local_opts.prettyformat_structs
|
||
? Val_prettyformat : Val_no_prettyformat);
|
||
|
||
QUIT;
|
||
|
||
/* Ensure that the type is complete and not just a stub. If the type is
|
||
only a stub and we can't find and substitute its complete type, then
|
||
print appropriate string and return. */
|
||
|
||
if (real_type->is_stub ())
|
||
{
|
||
fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
|
||
return;
|
||
}
|
||
|
||
if (!valprint_check_validity (stream, real_type, 0, value))
|
||
return;
|
||
|
||
if (!options->raw)
|
||
{
|
||
ret = apply_ext_lang_val_pretty_printer (value, stream, recurse, options,
|
||
language);
|
||
if (ret)
|
||
return;
|
||
}
|
||
|
||
/* Handle summary mode. If the value is a scalar, print it;
|
||
otherwise, print an ellipsis. */
|
||
if (options->summary && !val_print_scalar_type_p (type))
|
||
{
|
||
fprintf_filtered (stream, "...");
|
||
return;
|
||
}
|
||
|
||
/* If this value is too deep then don't print it. */
|
||
if (!val_print_scalar_or_string_type_p (type, language)
|
||
&& val_print_check_max_depth (stream, recurse, options, language))
|
||
return;
|
||
|
||
try
|
||
{
|
||
language->value_print_inner (value, stream, recurse, &local_opts);
|
||
}
|
||
catch (const gdb_exception_error &except)
|
||
{
|
||
fprintf_styled (stream, metadata_style.style (),
|
||
_("<error reading variable>"));
|
||
}
|
||
}
|
||
|
||
/* See valprint.h. */
|
||
|
||
bool
|
||
val_print_check_max_depth (struct ui_file *stream, int recurse,
|
||
const struct value_print_options *options,
|
||
const struct language_defn *language)
|
||
{
|
||
if (options->max_depth > -1 && recurse >= options->max_depth)
|
||
{
|
||
gdb_assert (language->struct_too_deep_ellipsis () != NULL);
|
||
fputs_filtered (language->struct_too_deep_ellipsis (), stream);
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Check whether the value VAL is printable. Return 1 if it is;
|
||
return 0 and print an appropriate error message to STREAM according to
|
||
OPTIONS if it is not. */
|
||
|
||
static int
|
||
value_check_printable (struct value *val, struct ui_file *stream,
|
||
const struct value_print_options *options)
|
||
{
|
||
if (val == 0)
|
||
{
|
||
fprintf_styled (stream, metadata_style.style (),
|
||
_("<address of value unknown>"));
|
||
return 0;
|
||
}
|
||
|
||
if (value_entirely_optimized_out (val))
|
||
{
|
||
if (options->summary && !val_print_scalar_type_p (value_type (val)))
|
||
fprintf_filtered (stream, "...");
|
||
else
|
||
val_print_optimized_out (val, stream);
|
||
return 0;
|
||
}
|
||
|
||
if (value_entirely_unavailable (val))
|
||
{
|
||
if (options->summary && !val_print_scalar_type_p (value_type (val)))
|
||
fprintf_filtered (stream, "...");
|
||
else
|
||
val_print_unavailable (stream);
|
||
return 0;
|
||
}
|
||
|
||
if (value_type (val)->code () == TYPE_CODE_INTERNAL_FUNCTION)
|
||
{
|
||
fprintf_styled (stream, metadata_style.style (),
|
||
_("<internal function %s>"),
|
||
value_internal_function_name (val));
|
||
return 0;
|
||
}
|
||
|
||
if (type_not_associated (value_type (val)))
|
||
{
|
||
val_print_not_associated (stream);
|
||
return 0;
|
||
}
|
||
|
||
if (type_not_allocated (value_type (val)))
|
||
{
|
||
val_print_not_allocated (stream);
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Print using the given LANGUAGE the value VAL onto stream STREAM according
|
||
to OPTIONS.
|
||
|
||
This is a preferable interface to val_print, above, because it uses
|
||
GDB's value mechanism. */
|
||
|
||
void
|
||
common_val_print (struct value *val, struct ui_file *stream, int recurse,
|
||
const struct value_print_options *options,
|
||
const struct language_defn *language)
|
||
{
|
||
if (language->la_language == language_ada)
|
||
/* The value might have a dynamic type, which would cause trouble
|
||
below when trying to extract the value contents (since the value
|
||
size is determined from the type size which is unknown). So
|
||
get a fixed representation of our value. */
|
||
val = ada_to_fixed_value (val);
|
||
|
||
if (value_lazy (val))
|
||
value_fetch_lazy (val);
|
||
|
||
do_val_print (val, stream, recurse, options, language);
|
||
}
|
||
|
||
/* See valprint.h. */
|
||
|
||
void
|
||
common_val_print_checked (struct value *val, struct ui_file *stream,
|
||
int recurse,
|
||
const struct value_print_options *options,
|
||
const struct language_defn *language)
|
||
{
|
||
if (!value_check_printable (val, stream, options))
|
||
return;
|
||
common_val_print (val, stream, recurse, options, language);
|
||
}
|
||
|
||
/* Print on stream STREAM the value VAL according to OPTIONS. The value
|
||
is printed using the current_language syntax. */
|
||
|
||
void
|
||
value_print (struct value *val, struct ui_file *stream,
|
||
const struct value_print_options *options)
|
||
{
|
||
scoped_value_mark free_values;
|
||
|
||
if (!value_check_printable (val, stream, options))
|
||
return;
|
||
|
||
if (!options->raw)
|
||
{
|
||
int r
|
||
= apply_ext_lang_val_pretty_printer (val, stream, 0, options,
|
||
current_language);
|
||
|
||
if (r)
|
||
return;
|
||
}
|
||
|
||
current_language->value_print (val, stream, options);
|
||
}
|
||
|
||
static void
|
||
val_print_type_code_flags (struct type *type, struct value *original_value,
|
||
int embedded_offset, struct ui_file *stream)
|
||
{
|
||
const gdb_byte *valaddr = (value_contents_for_printing (original_value)
|
||
+ embedded_offset);
|
||
ULONGEST val = unpack_long (type, valaddr);
|
||
int field, nfields = type->num_fields ();
|
||
struct gdbarch *gdbarch = type->arch ();
|
||
struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
|
||
|
||
fputs_filtered ("[", stream);
|
||
for (field = 0; field < nfields; field++)
|
||
{
|
||
if (TYPE_FIELD_NAME (type, field)[0] != '\0')
|
||
{
|
||
struct type *field_type = type->field (field).type ();
|
||
|
||
if (field_type == bool_type
|
||
/* We require boolean types here to be one bit wide. This is a
|
||
problematic place to notify the user of an internal error
|
||
though. Instead just fall through and print the field as an
|
||
int. */
|
||
&& TYPE_FIELD_BITSIZE (type, field) == 1)
|
||
{
|
||
if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
|
||
fprintf_filtered
|
||
(stream, " %ps",
|
||
styled_string (variable_name_style.style (),
|
||
TYPE_FIELD_NAME (type, field)));
|
||
}
|
||
else
|
||
{
|
||
unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
|
||
ULONGEST field_val
|
||
= val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
|
||
|
||
if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
|
||
field_val &= ((ULONGEST) 1 << field_len) - 1;
|
||
fprintf_filtered (stream, " %ps=",
|
||
styled_string (variable_name_style.style (),
|
||
TYPE_FIELD_NAME (type, field)));
|
||
if (field_type->code () == TYPE_CODE_ENUM)
|
||
generic_val_print_enum_1 (field_type, field_val, stream);
|
||
else
|
||
print_longest (stream, 'd', 0, field_val);
|
||
}
|
||
}
|
||
}
|
||
fputs_filtered (" ]", stream);
|
||
}
|
||
|
||
/* See valprint.h. */
|
||
|
||
void
|
||
value_print_scalar_formatted (struct value *val,
|
||
const struct value_print_options *options,
|
||
int size,
|
||
struct ui_file *stream)
|
||
{
|
||
struct type *type = check_typedef (value_type (val));
|
||
|
||
gdb_assert (val != NULL);
|
||
|
||
/* If we get here with a string format, try again without it. Go
|
||
all the way back to the language printers, which may call us
|
||
again. */
|
||
if (options->format == 's')
|
||
{
|
||
struct value_print_options opts = *options;
|
||
opts.format = 0;
|
||
opts.deref_ref = 0;
|
||
common_val_print (val, stream, 0, &opts, current_language);
|
||
return;
|
||
}
|
||
|
||
/* value_contents_for_printing fetches all VAL's contents. They are
|
||
needed to check whether VAL is optimized-out or unavailable
|
||
below. */
|
||
const gdb_byte *valaddr = value_contents_for_printing (val);
|
||
|
||
/* A scalar object that does not have all bits available can't be
|
||
printed, because all bits contribute to its representation. */
|
||
if (value_bits_any_optimized_out (val, 0,
|
||
TARGET_CHAR_BIT * TYPE_LENGTH (type)))
|
||
val_print_optimized_out (val, stream);
|
||
else if (!value_bytes_available (val, 0, TYPE_LENGTH (type)))
|
||
val_print_unavailable (stream);
|
||
else
|
||
print_scalar_formatted (valaddr, type, options, size, stream);
|
||
}
|
||
|
||
/* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
|
||
The raison d'etre of this function is to consolidate printing of
|
||
LONG_LONG's into this one function. The format chars b,h,w,g are
|
||
from print_scalar_formatted(). Numbers are printed using C
|
||
format.
|
||
|
||
USE_C_FORMAT means to use C format in all cases. Without it,
|
||
'o' and 'x' format do not include the standard C radix prefix
|
||
(leading 0 or 0x).
|
||
|
||
Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
|
||
and was intended to request formatting according to the current
|
||
language and would be used for most integers that GDB prints. The
|
||
exceptional cases were things like protocols where the format of
|
||
the integer is a protocol thing, not a user-visible thing). The
|
||
parameter remains to preserve the information of what things might
|
||
be printed with language-specific format, should we ever resurrect
|
||
that capability. */
|
||
|
||
void
|
||
print_longest (struct ui_file *stream, int format, int use_c_format,
|
||
LONGEST val_long)
|
||
{
|
||
const char *val;
|
||
|
||
switch (format)
|
||
{
|
||
case 'd':
|
||
val = int_string (val_long, 10, 1, 0, 1); break;
|
||
case 'u':
|
||
val = int_string (val_long, 10, 0, 0, 1); break;
|
||
case 'x':
|
||
val = int_string (val_long, 16, 0, 0, use_c_format); break;
|
||
case 'b':
|
||
val = int_string (val_long, 16, 0, 2, 1); break;
|
||
case 'h':
|
||
val = int_string (val_long, 16, 0, 4, 1); break;
|
||
case 'w':
|
||
val = int_string (val_long, 16, 0, 8, 1); break;
|
||
case 'g':
|
||
val = int_string (val_long, 16, 0, 16, 1); break;
|
||
break;
|
||
case 'o':
|
||
val = int_string (val_long, 8, 0, 0, use_c_format); break;
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
_("failed internal consistency check"));
|
||
}
|
||
fputs_filtered (val, stream);
|
||
}
|
||
|
||
/* This used to be a macro, but I don't think it is called often enough
|
||
to merit such treatment. */
|
||
/* Convert a LONGEST to an int. This is used in contexts (e.g. number of
|
||
arguments to a function, number in a value history, register number, etc.)
|
||
where the value must not be larger than can fit in an int. */
|
||
|
||
int
|
||
longest_to_int (LONGEST arg)
|
||
{
|
||
/* Let the compiler do the work. */
|
||
int rtnval = (int) arg;
|
||
|
||
/* Check for overflows or underflows. */
|
||
if (sizeof (LONGEST) > sizeof (int))
|
||
{
|
||
if (rtnval != arg)
|
||
{
|
||
error (_("Value out of range."));
|
||
}
|
||
}
|
||
return (rtnval);
|
||
}
|
||
|
||
/* Print a floating point value of floating-point type TYPE,
|
||
pointed to in GDB by VALADDR, on STREAM. */
|
||
|
||
void
|
||
print_floating (const gdb_byte *valaddr, struct type *type,
|
||
struct ui_file *stream)
|
||
{
|
||
std::string str = target_float_to_string (valaddr, type);
|
||
fputs_filtered (str.c_str (), stream);
|
||
}
|
||
|
||
void
|
||
print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
|
||
unsigned len, enum bfd_endian byte_order, bool zero_pad)
|
||
{
|
||
const gdb_byte *p;
|
||
unsigned int i;
|
||
int b;
|
||
bool seen_a_one = false;
|
||
|
||
/* Declared "int" so it will be signed.
|
||
This ensures that right shift will shift in zeros. */
|
||
|
||
const int mask = 0x080;
|
||
|
||
if (byte_order == BFD_ENDIAN_BIG)
|
||
{
|
||
for (p = valaddr;
|
||
p < valaddr + len;
|
||
p++)
|
||
{
|
||
/* Every byte has 8 binary characters; peel off
|
||
and print from the MSB end. */
|
||
|
||
for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
|
||
{
|
||
if (*p & (mask >> i))
|
||
b = '1';
|
||
else
|
||
b = '0';
|
||
|
||
if (zero_pad || seen_a_one || b == '1')
|
||
fputc_filtered (b, stream);
|
||
if (b == '1')
|
||
seen_a_one = true;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (p = valaddr + len - 1;
|
||
p >= valaddr;
|
||
p--)
|
||
{
|
||
for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
|
||
{
|
||
if (*p & (mask >> i))
|
||
b = '1';
|
||
else
|
||
b = '0';
|
||
|
||
if (zero_pad || seen_a_one || b == '1')
|
||
fputc_filtered (b, stream);
|
||
if (b == '1')
|
||
seen_a_one = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* When not zero-padding, ensure that something is printed when the
|
||
input is 0. */
|
||
if (!zero_pad && !seen_a_one)
|
||
fputc_filtered ('0', stream);
|
||
}
|
||
|
||
/* A helper for print_octal_chars that emits a single octal digit,
|
||
optionally suppressing it if is zero and updating SEEN_A_ONE. */
|
||
|
||
static void
|
||
emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
|
||
{
|
||
if (*seen_a_one || digit != 0)
|
||
fprintf_filtered (stream, "%o", digit);
|
||
if (digit != 0)
|
||
*seen_a_one = true;
|
||
}
|
||
|
||
/* VALADDR points to an integer of LEN bytes.
|
||
Print it in octal on stream or format it in buf. */
|
||
|
||
void
|
||
print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
|
||
unsigned len, enum bfd_endian byte_order)
|
||
{
|
||
const gdb_byte *p;
|
||
unsigned char octa1, octa2, octa3, carry;
|
||
int cycle;
|
||
|
||
/* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
|
||
* the extra bits, which cycle every three bytes:
|
||
*
|
||
* Byte side: 0 1 2 3
|
||
* | | | |
|
||
* bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
|
||
*
|
||
* Octal side: 0 1 carry 3 4 carry ...
|
||
*
|
||
* Cycle number: 0 1 2
|
||
*
|
||
* But of course we are printing from the high side, so we have to
|
||
* figure out where in the cycle we are so that we end up with no
|
||
* left over bits at the end.
|
||
*/
|
||
#define BITS_IN_OCTAL 3
|
||
#define HIGH_ZERO 0340
|
||
#define LOW_ZERO 0034
|
||
#define CARRY_ZERO 0003
|
||
static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
|
||
"cycle zero constants are wrong");
|
||
#define HIGH_ONE 0200
|
||
#define MID_ONE 0160
|
||
#define LOW_ONE 0016
|
||
#define CARRY_ONE 0001
|
||
static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
|
||
"cycle one constants are wrong");
|
||
#define HIGH_TWO 0300
|
||
#define MID_TWO 0070
|
||
#define LOW_TWO 0007
|
||
static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
|
||
"cycle two constants are wrong");
|
||
|
||
/* For 32 we start in cycle 2, with two bits and one bit carry;
|
||
for 64 in cycle in cycle 1, with one bit and a two bit carry. */
|
||
|
||
cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
|
||
carry = 0;
|
||
|
||
fputs_filtered ("0", stream);
|
||
bool seen_a_one = false;
|
||
if (byte_order == BFD_ENDIAN_BIG)
|
||
{
|
||
for (p = valaddr;
|
||
p < valaddr + len;
|
||
p++)
|
||
{
|
||
switch (cycle)
|
||
{
|
||
case 0:
|
||
/* No carry in, carry out two bits. */
|
||
|
||
octa1 = (HIGH_ZERO & *p) >> 5;
|
||
octa2 = (LOW_ZERO & *p) >> 2;
|
||
carry = (CARRY_ZERO & *p);
|
||
emit_octal_digit (stream, &seen_a_one, octa1);
|
||
emit_octal_digit (stream, &seen_a_one, octa2);
|
||
break;
|
||
|
||
case 1:
|
||
/* Carry in two bits, carry out one bit. */
|
||
|
||
octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
|
||
octa2 = (MID_ONE & *p) >> 4;
|
||
octa3 = (LOW_ONE & *p) >> 1;
|
||
carry = (CARRY_ONE & *p);
|
||
emit_octal_digit (stream, &seen_a_one, octa1);
|
||
emit_octal_digit (stream, &seen_a_one, octa2);
|
||
emit_octal_digit (stream, &seen_a_one, octa3);
|
||
break;
|
||
|
||
case 2:
|
||
/* Carry in one bit, no carry out. */
|
||
|
||
octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
|
||
octa2 = (MID_TWO & *p) >> 3;
|
||
octa3 = (LOW_TWO & *p);
|
||
carry = 0;
|
||
emit_octal_digit (stream, &seen_a_one, octa1);
|
||
emit_octal_digit (stream, &seen_a_one, octa2);
|
||
emit_octal_digit (stream, &seen_a_one, octa3);
|
||
break;
|
||
|
||
default:
|
||
error (_("Internal error in octal conversion;"));
|
||
}
|
||
|
||
cycle++;
|
||
cycle = cycle % BITS_IN_OCTAL;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (p = valaddr + len - 1;
|
||
p >= valaddr;
|
||
p--)
|
||
{
|
||
switch (cycle)
|
||
{
|
||
case 0:
|
||
/* Carry out, no carry in */
|
||
|
||
octa1 = (HIGH_ZERO & *p) >> 5;
|
||
octa2 = (LOW_ZERO & *p) >> 2;
|
||
carry = (CARRY_ZERO & *p);
|
||
emit_octal_digit (stream, &seen_a_one, octa1);
|
||
emit_octal_digit (stream, &seen_a_one, octa2);
|
||
break;
|
||
|
||
case 1:
|
||
/* Carry in, carry out */
|
||
|
||
octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
|
||
octa2 = (MID_ONE & *p) >> 4;
|
||
octa3 = (LOW_ONE & *p) >> 1;
|
||
carry = (CARRY_ONE & *p);
|
||
emit_octal_digit (stream, &seen_a_one, octa1);
|
||
emit_octal_digit (stream, &seen_a_one, octa2);
|
||
emit_octal_digit (stream, &seen_a_one, octa3);
|
||
break;
|
||
|
||
case 2:
|
||
/* Carry in, no carry out */
|
||
|
||
octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
|
||
octa2 = (MID_TWO & *p) >> 3;
|
||
octa3 = (LOW_TWO & *p);
|
||
carry = 0;
|
||
emit_octal_digit (stream, &seen_a_one, octa1);
|
||
emit_octal_digit (stream, &seen_a_one, octa2);
|
||
emit_octal_digit (stream, &seen_a_one, octa3);
|
||
break;
|
||
|
||
default:
|
||
error (_("Internal error in octal conversion;"));
|
||
}
|
||
|
||
cycle++;
|
||
cycle = cycle % BITS_IN_OCTAL;
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
/* Possibly negate the integer represented by BYTES. It contains LEN
|
||
bytes in the specified byte order. If the integer is negative,
|
||
copy it into OUT_VEC, negate it, and return true. Otherwise, do
|
||
nothing and return false. */
|
||
|
||
static bool
|
||
maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
|
||
enum bfd_endian byte_order,
|
||
gdb::byte_vector *out_vec)
|
||
{
|
||
gdb_byte sign_byte;
|
||
gdb_assert (len > 0);
|
||
if (byte_order == BFD_ENDIAN_BIG)
|
||
sign_byte = bytes[0];
|
||
else
|
||
sign_byte = bytes[len - 1];
|
||
if ((sign_byte & 0x80) == 0)
|
||
return false;
|
||
|
||
out_vec->resize (len);
|
||
|
||
/* Compute -x == 1 + ~x. */
|
||
if (byte_order == BFD_ENDIAN_LITTLE)
|
||
{
|
||
unsigned carry = 1;
|
||
for (unsigned i = 0; i < len; ++i)
|
||
{
|
||
unsigned tem = (0xff & ~bytes[i]) + carry;
|
||
(*out_vec)[i] = tem & 0xff;
|
||
carry = tem / 256;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
unsigned carry = 1;
|
||
for (unsigned i = len; i > 0; --i)
|
||
{
|
||
unsigned tem = (0xff & ~bytes[i - 1]) + carry;
|
||
(*out_vec)[i - 1] = tem & 0xff;
|
||
carry = tem / 256;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* VALADDR points to an integer of LEN bytes.
|
||
Print it in decimal on stream or format it in buf. */
|
||
|
||
void
|
||
print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
|
||
unsigned len, bool is_signed,
|
||
enum bfd_endian byte_order)
|
||
{
|
||
#define TEN 10
|
||
#define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
|
||
#define CARRY_LEFT( x ) ((x) % TEN)
|
||
#define SHIFT( x ) ((x) << 4)
|
||
#define LOW_NIBBLE( x ) ( (x) & 0x00F)
|
||
#define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
|
||
|
||
const gdb_byte *p;
|
||
int carry;
|
||
int decimal_len;
|
||
int i, j, decimal_digits;
|
||
int dummy;
|
||
int flip;
|
||
|
||
gdb::byte_vector negated_bytes;
|
||
if (is_signed
|
||
&& maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
|
||
{
|
||
fputs_filtered ("-", stream);
|
||
valaddr = negated_bytes.data ();
|
||
}
|
||
|
||
/* Base-ten number is less than twice as many digits
|
||
as the base 16 number, which is 2 digits per byte. */
|
||
|
||
decimal_len = len * 2 * 2;
|
||
std::vector<unsigned char> digits (decimal_len, 0);
|
||
|
||
/* Ok, we have an unknown number of bytes of data to be printed in
|
||
* decimal.
|
||
*
|
||
* Given a hex number (in nibbles) as XYZ, we start by taking X and
|
||
* decimalizing it as "x1 x2" in two decimal nibbles. Then we multiply
|
||
* the nibbles by 16, add Y and re-decimalize. Repeat with Z.
|
||
*
|
||
* The trick is that "digits" holds a base-10 number, but sometimes
|
||
* the individual digits are > 10.
|
||
*
|
||
* Outer loop is per nibble (hex digit) of input, from MSD end to
|
||
* LSD end.
|
||
*/
|
||
decimal_digits = 0; /* Number of decimal digits so far */
|
||
p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
|
||
flip = 0;
|
||
while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
|
||
{
|
||
/*
|
||
* Multiply current base-ten number by 16 in place.
|
||
* Each digit was between 0 and 9, now is between
|
||
* 0 and 144.
|
||
*/
|
||
for (j = 0; j < decimal_digits; j++)
|
||
{
|
||
digits[j] = SHIFT (digits[j]);
|
||
}
|
||
|
||
/* Take the next nibble off the input and add it to what
|
||
* we've got in the LSB position. Bottom 'digit' is now
|
||
* between 0 and 159.
|
||
*
|
||
* "flip" is used to run this loop twice for each byte.
|
||
*/
|
||
if (flip == 0)
|
||
{
|
||
/* Take top nibble. */
|
||
|
||
digits[0] += HIGH_NIBBLE (*p);
|
||
flip = 1;
|
||
}
|
||
else
|
||
{
|
||
/* Take low nibble and bump our pointer "p". */
|
||
|
||
digits[0] += LOW_NIBBLE (*p);
|
||
if (byte_order == BFD_ENDIAN_BIG)
|
||
p++;
|
||
else
|
||
p--;
|
||
flip = 0;
|
||
}
|
||
|
||
/* Re-decimalize. We have to do this often enough
|
||
* that we don't overflow, but once per nibble is
|
||
* overkill. Easier this way, though. Note that the
|
||
* carry is often larger than 10 (e.g. max initial
|
||
* carry out of lowest nibble is 15, could bubble all
|
||
* the way up greater than 10). So we have to do
|
||
* the carrying beyond the last current digit.
|
||
*/
|
||
carry = 0;
|
||
for (j = 0; j < decimal_len - 1; j++)
|
||
{
|
||
digits[j] += carry;
|
||
|
||
/* "/" won't handle an unsigned char with
|
||
* a value that if signed would be negative.
|
||
* So extend to longword int via "dummy".
|
||
*/
|
||
dummy = digits[j];
|
||
carry = CARRY_OUT (dummy);
|
||
digits[j] = CARRY_LEFT (dummy);
|
||
|
||
if (j >= decimal_digits && carry == 0)
|
||
{
|
||
/*
|
||
* All higher digits are 0 and we
|
||
* no longer have a carry.
|
||
*
|
||
* Note: "j" is 0-based, "decimal_digits" is
|
||
* 1-based.
|
||
*/
|
||
decimal_digits = j + 1;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Ok, now "digits" is the decimal representation, with
|
||
the "decimal_digits" actual digits. Print! */
|
||
|
||
for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
|
||
;
|
||
|
||
for (; i >= 0; i--)
|
||
{
|
||
fprintf_filtered (stream, "%1d", digits[i]);
|
||
}
|
||
}
|
||
|
||
/* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
|
||
|
||
void
|
||
print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
|
||
unsigned len, enum bfd_endian byte_order,
|
||
bool zero_pad)
|
||
{
|
||
const gdb_byte *p;
|
||
|
||
fputs_filtered ("0x", stream);
|
||
if (byte_order == BFD_ENDIAN_BIG)
|
||
{
|
||
p = valaddr;
|
||
|
||
if (!zero_pad)
|
||
{
|
||
/* Strip leading 0 bytes, but be sure to leave at least a
|
||
single byte at the end. */
|
||
for (; p < valaddr + len - 1 && !*p; ++p)
|
||
;
|
||
}
|
||
|
||
const gdb_byte *first = p;
|
||
for (;
|
||
p < valaddr + len;
|
||
p++)
|
||
{
|
||
/* When not zero-padding, use a different format for the
|
||
very first byte printed. */
|
||
if (!zero_pad && p == first)
|
||
fprintf_filtered (stream, "%x", *p);
|
||
else
|
||
fprintf_filtered (stream, "%02x", *p);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
p = valaddr + len - 1;
|
||
|
||
if (!zero_pad)
|
||
{
|
||
/* Strip leading 0 bytes, but be sure to leave at least a
|
||
single byte at the end. */
|
||
for (; p >= valaddr + 1 && !*p; --p)
|
||
;
|
||
}
|
||
|
||
const gdb_byte *first = p;
|
||
for (;
|
||
p >= valaddr;
|
||
p--)
|
||
{
|
||
/* When not zero-padding, use a different format for the
|
||
very first byte printed. */
|
||
if (!zero_pad && p == first)
|
||
fprintf_filtered (stream, "%x", *p);
|
||
else
|
||
fprintf_filtered (stream, "%02x", *p);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Print function pointer with inferior address ADDRESS onto stdio
|
||
stream STREAM. */
|
||
|
||
void
|
||
print_function_pointer_address (const struct value_print_options *options,
|
||
struct gdbarch *gdbarch,
|
||
CORE_ADDR address,
|
||
struct ui_file *stream)
|
||
{
|
||
CORE_ADDR func_addr = gdbarch_convert_from_func_ptr_addr
|
||
(gdbarch, address, current_inferior ()->top_target ());
|
||
|
||
/* If the function pointer is represented by a description, print
|
||
the address of the description. */
|
||
if (options->addressprint && func_addr != address)
|
||
{
|
||
fputs_filtered ("@", stream);
|
||
fputs_filtered (paddress (gdbarch, address), stream);
|
||
fputs_filtered (": ", stream);
|
||
}
|
||
print_address_demangle (options, gdbarch, func_addr, stream, demangle);
|
||
}
|
||
|
||
|
||
/* Print on STREAM using the given OPTIONS the index for the element
|
||
at INDEX of an array whose index type is INDEX_TYPE. */
|
||
|
||
void
|
||
maybe_print_array_index (struct type *index_type, LONGEST index,
|
||
struct ui_file *stream,
|
||
const struct value_print_options *options)
|
||
{
|
||
if (!options->print_array_indexes)
|
||
return;
|
||
|
||
current_language->print_array_index (index_type, index, stream, options);
|
||
}
|
||
|
||
/* See valprint.h. */
|
||
|
||
void
|
||
value_print_array_elements (struct value *val, struct ui_file *stream,
|
||
int recurse,
|
||
const struct value_print_options *options,
|
||
unsigned int i)
|
||
{
|
||
unsigned int things_printed = 0;
|
||
unsigned len;
|
||
struct type *elttype, *index_type;
|
||
unsigned eltlen;
|
||
/* Position of the array element we are examining to see
|
||
whether it is repeated. */
|
||
unsigned int rep1;
|
||
/* Number of repetitions we have detected so far. */
|
||
unsigned int reps;
|
||
LONGEST low_bound, high_bound;
|
||
|
||
struct type *type = check_typedef (value_type (val));
|
||
|
||
elttype = TYPE_TARGET_TYPE (type);
|
||
eltlen = type_length_units (check_typedef (elttype));
|
||
index_type = type->index_type ();
|
||
if (index_type->code () == TYPE_CODE_RANGE)
|
||
index_type = TYPE_TARGET_TYPE (index_type);
|
||
|
||
if (get_array_bounds (type, &low_bound, &high_bound))
|
||
{
|
||
/* The array length should normally be HIGH_BOUND - LOW_BOUND +
|
||
1. But we have to be a little extra careful, because some
|
||
languages such as Ada allow LOW_BOUND to be greater than
|
||
HIGH_BOUND for empty arrays. In that situation, the array
|
||
length is just zero, not negative! */
|
||
if (low_bound > high_bound)
|
||
len = 0;
|
||
else
|
||
len = high_bound - low_bound + 1;
|
||
}
|
||
else
|
||
{
|
||
warning (_("unable to get bounds of array, assuming null array"));
|
||
low_bound = 0;
|
||
len = 0;
|
||
}
|
||
|
||
annotate_array_section_begin (i, elttype);
|
||
|
||
for (; i < len && things_printed < options->print_max; i++)
|
||
{
|
||
scoped_value_mark free_values;
|
||
|
||
if (i != 0)
|
||
{
|
||
if (options->prettyformat_arrays)
|
||
{
|
||
fprintf_filtered (stream, ",\n");
|
||
print_spaces_filtered (2 + 2 * recurse, stream);
|
||
}
|
||
else
|
||
fprintf_filtered (stream, ", ");
|
||
}
|
||
else if (options->prettyformat_arrays)
|
||
{
|
||
fprintf_filtered (stream, "\n");
|
||
print_spaces_filtered (2 + 2 * recurse, stream);
|
||
}
|
||
wrap_here (n_spaces (2 + 2 * recurse));
|
||
maybe_print_array_index (index_type, i + low_bound,
|
||
stream, options);
|
||
|
||
rep1 = i + 1;
|
||
reps = 1;
|
||
/* Only check for reps if repeat_count_threshold is not set to
|
||
UINT_MAX (unlimited). */
|
||
if (options->repeat_count_threshold < UINT_MAX)
|
||
{
|
||
while (rep1 < len
|
||
&& value_contents_eq (val, i * eltlen,
|
||
val, rep1 * eltlen,
|
||
eltlen))
|
||
{
|
||
++reps;
|
||
++rep1;
|
||
}
|
||
}
|
||
|
||
struct value *element = value_from_component (val, elttype, eltlen * i);
|
||
common_val_print (element, stream, recurse + 1, options,
|
||
current_language);
|
||
|
||
if (reps > options->repeat_count_threshold)
|
||
{
|
||
annotate_elt_rep (reps);
|
||
fprintf_filtered (stream, " %p[<repeats %u times>%p]",
|
||
metadata_style.style ().ptr (), reps, nullptr);
|
||
annotate_elt_rep_end ();
|
||
|
||
i = rep1 - 1;
|
||
things_printed += options->repeat_count_threshold;
|
||
}
|
||
else
|
||
{
|
||
annotate_elt ();
|
||
things_printed++;
|
||
}
|
||
}
|
||
annotate_array_section_end ();
|
||
if (i < len)
|
||
fprintf_filtered (stream, "...");
|
||
if (options->prettyformat_arrays)
|
||
{
|
||
fprintf_filtered (stream, "\n");
|
||
print_spaces_filtered (2 * recurse, stream);
|
||
}
|
||
}
|
||
|
||
/* Read LEN bytes of target memory at address MEMADDR, placing the
|
||
results in GDB's memory at MYADDR. Returns a count of the bytes
|
||
actually read, and optionally a target_xfer_status value in the
|
||
location pointed to by ERRPTR if ERRPTR is non-null. */
|
||
|
||
/* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
|
||
function be eliminated. */
|
||
|
||
static int
|
||
partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
|
||
int len, int *errptr)
|
||
{
|
||
int nread; /* Number of bytes actually read. */
|
||
int errcode; /* Error from last read. */
|
||
|
||
/* First try a complete read. */
|
||
errcode = target_read_memory (memaddr, myaddr, len);
|
||
if (errcode == 0)
|
||
{
|
||
/* Got it all. */
|
||
nread = len;
|
||
}
|
||
else
|
||
{
|
||
/* Loop, reading one byte at a time until we get as much as we can. */
|
||
for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
|
||
{
|
||
errcode = target_read_memory (memaddr++, myaddr++, 1);
|
||
}
|
||
/* If an error, the last read was unsuccessful, so adjust count. */
|
||
if (errcode != 0)
|
||
{
|
||
nread--;
|
||
}
|
||
}
|
||
if (errptr != NULL)
|
||
{
|
||
*errptr = errcode;
|
||
}
|
||
return (nread);
|
||
}
|
||
|
||
/* Read a string from the inferior, at ADDR, with LEN characters of
|
||
WIDTH bytes each. Fetch at most FETCHLIMIT characters. BUFFER
|
||
will be set to a newly allocated buffer containing the string, and
|
||
BYTES_READ will be set to the number of bytes read. Returns 0 on
|
||
success, or a target_xfer_status on failure.
|
||
|
||
If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
|
||
(including eventual NULs in the middle or end of the string).
|
||
|
||
If LEN is -1, stops at the first null character (not necessarily
|
||
the first null byte) up to a maximum of FETCHLIMIT characters. Set
|
||
FETCHLIMIT to UINT_MAX to read as many characters as possible from
|
||
the string.
|
||
|
||
Unless an exception is thrown, BUFFER will always be allocated, even on
|
||
failure. In this case, some characters might have been read before the
|
||
failure happened. Check BYTES_READ to recognize this situation. */
|
||
|
||
int
|
||
read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
|
||
enum bfd_endian byte_order, gdb::unique_xmalloc_ptr<gdb_byte> *buffer,
|
||
int *bytes_read)
|
||
{
|
||
int errcode; /* Errno returned from bad reads. */
|
||
unsigned int nfetch; /* Chars to fetch / chars fetched. */
|
||
gdb_byte *bufptr; /* Pointer to next available byte in
|
||
buffer. */
|
||
|
||
/* Loop until we either have all the characters, or we encounter
|
||
some error, such as bumping into the end of the address space. */
|
||
|
||
buffer->reset (nullptr);
|
||
|
||
if (len > 0)
|
||
{
|
||
/* We want fetchlimit chars, so we might as well read them all in
|
||
one operation. */
|
||
unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
|
||
|
||
buffer->reset ((gdb_byte *) xmalloc (fetchlen * width));
|
||
bufptr = buffer->get ();
|
||
|
||
nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
|
||
/ width;
|
||
addr += nfetch * width;
|
||
bufptr += nfetch * width;
|
||
}
|
||
else if (len == -1)
|
||
{
|
||
unsigned long bufsize = 0;
|
||
unsigned int chunksize; /* Size of each fetch, in chars. */
|
||
int found_nul; /* Non-zero if we found the nul char. */
|
||
gdb_byte *limit; /* First location past end of fetch buffer. */
|
||
|
||
found_nul = 0;
|
||
/* We are looking for a NUL terminator to end the fetching, so we
|
||
might as well read in blocks that are large enough to be efficient,
|
||
but not so large as to be slow if fetchlimit happens to be large.
|
||
So we choose the minimum of 8 and fetchlimit. We used to use 200
|
||
instead of 8 but 200 is way too big for remote debugging over a
|
||
serial line. */
|
||
chunksize = std::min (8u, fetchlimit);
|
||
|
||
do
|
||
{
|
||
QUIT;
|
||
nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
|
||
|
||
if (*buffer == NULL)
|
||
buffer->reset ((gdb_byte *) xmalloc (nfetch * width));
|
||
else
|
||
buffer->reset ((gdb_byte *) xrealloc (buffer->release (),
|
||
(nfetch + bufsize) * width));
|
||
|
||
bufptr = buffer->get () + bufsize * width;
|
||
bufsize += nfetch;
|
||
|
||
/* Read as much as we can. */
|
||
nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
|
||
/ width;
|
||
|
||
/* Scan this chunk for the null character that terminates the string
|
||
to print. If found, we don't need to fetch any more. Note
|
||
that bufptr is explicitly left pointing at the next character
|
||
after the null character, or at the next character after the end
|
||
of the buffer. */
|
||
|
||
limit = bufptr + nfetch * width;
|
||
while (bufptr < limit)
|
||
{
|
||
unsigned long c;
|
||
|
||
c = extract_unsigned_integer (bufptr, width, byte_order);
|
||
addr += width;
|
||
bufptr += width;
|
||
if (c == 0)
|
||
{
|
||
/* We don't care about any error which happened after
|
||
the NUL terminator. */
|
||
errcode = 0;
|
||
found_nul = 1;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
while (errcode == 0 /* no error */
|
||
&& bufptr - buffer->get () < fetchlimit * width /* no overrun */
|
||
&& !found_nul); /* haven't found NUL yet */
|
||
}
|
||
else
|
||
{ /* Length of string is really 0! */
|
||
/* We always allocate *buffer. */
|
||
buffer->reset ((gdb_byte *) xmalloc (1));
|
||
bufptr = buffer->get ();
|
||
errcode = 0;
|
||
}
|
||
|
||
/* bufptr and addr now point immediately beyond the last byte which we
|
||
consider part of the string (including a '\0' which ends the string). */
|
||
*bytes_read = bufptr - buffer->get ();
|
||
|
||
QUIT;
|
||
|
||
return errcode;
|
||
}
|
||
|
||
/* Return true if print_wchar can display W without resorting to a
|
||
numeric escape, false otherwise. */
|
||
|
||
static int
|
||
wchar_printable (gdb_wchar_t w)
|
||
{
|
||
return (gdb_iswprint (w)
|
||
|| w == LCST ('\a') || w == LCST ('\b')
|
||
|| w == LCST ('\f') || w == LCST ('\n')
|
||
|| w == LCST ('\r') || w == LCST ('\t')
|
||
|| w == LCST ('\v'));
|
||
}
|
||
|
||
/* A helper function that converts the contents of STRING to wide
|
||
characters and then appends them to OUTPUT. */
|
||
|
||
static void
|
||
append_string_as_wide (const char *string,
|
||
struct obstack *output)
|
||
{
|
||
for (; *string; ++string)
|
||
{
|
||
gdb_wchar_t w = gdb_btowc (*string);
|
||
obstack_grow (output, &w, sizeof (gdb_wchar_t));
|
||
}
|
||
}
|
||
|
||
/* Print a wide character W to OUTPUT. ORIG is a pointer to the
|
||
original (target) bytes representing the character, ORIG_LEN is the
|
||
number of valid bytes. WIDTH is the number of bytes in a base
|
||
characters of the type. OUTPUT is an obstack to which wide
|
||
characters are emitted. QUOTER is a (narrow) character indicating
|
||
the style of quotes surrounding the character to be printed.
|
||
NEED_ESCAPE is an in/out flag which is used to track numeric
|
||
escapes across calls. */
|
||
|
||
static void
|
||
print_wchar (gdb_wint_t w, const gdb_byte *orig,
|
||
int orig_len, int width,
|
||
enum bfd_endian byte_order,
|
||
struct obstack *output,
|
||
int quoter, int *need_escapep)
|
||
{
|
||
int need_escape = *need_escapep;
|
||
|
||
*need_escapep = 0;
|
||
|
||
/* iswprint implementation on Windows returns 1 for tab character.
|
||
In order to avoid different printout on this host, we explicitly
|
||
use wchar_printable function. */
|
||
switch (w)
|
||
{
|
||
case LCST ('\a'):
|
||
obstack_grow_wstr (output, LCST ("\\a"));
|
||
break;
|
||
case LCST ('\b'):
|
||
obstack_grow_wstr (output, LCST ("\\b"));
|
||
break;
|
||
case LCST ('\f'):
|
||
obstack_grow_wstr (output, LCST ("\\f"));
|
||
break;
|
||
case LCST ('\n'):
|
||
obstack_grow_wstr (output, LCST ("\\n"));
|
||
break;
|
||
case LCST ('\r'):
|
||
obstack_grow_wstr (output, LCST ("\\r"));
|
||
break;
|
||
case LCST ('\t'):
|
||
obstack_grow_wstr (output, LCST ("\\t"));
|
||
break;
|
||
case LCST ('\v'):
|
||
obstack_grow_wstr (output, LCST ("\\v"));
|
||
break;
|
||
default:
|
||
{
|
||
if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
|
||
&& w != LCST ('8')
|
||
&& w != LCST ('9'))))
|
||
{
|
||
gdb_wchar_t wchar = w;
|
||
|
||
if (w == gdb_btowc (quoter) || w == LCST ('\\'))
|
||
obstack_grow_wstr (output, LCST ("\\"));
|
||
obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
|
||
}
|
||
else
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i + width <= orig_len; i += width)
|
||
{
|
||
char octal[30];
|
||
ULONGEST value;
|
||
|
||
value = extract_unsigned_integer (&orig[i], width,
|
||
byte_order);
|
||
/* If the value fits in 3 octal digits, print it that
|
||
way. Otherwise, print it as a hex escape. */
|
||
if (value <= 0777)
|
||
xsnprintf (octal, sizeof (octal), "\\%.3o",
|
||
(int) (value & 0777));
|
||
else
|
||
xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
|
||
append_string_as_wide (octal, output);
|
||
}
|
||
/* If we somehow have extra bytes, print them now. */
|
||
while (i < orig_len)
|
||
{
|
||
char octal[5];
|
||
|
||
xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
|
||
append_string_as_wide (octal, output);
|
||
++i;
|
||
}
|
||
|
||
*need_escapep = 1;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Print the character C on STREAM as part of the contents of a
|
||
literal string whose delimiter is QUOTER. ENCODING names the
|
||
encoding of C. */
|
||
|
||
void
|
||
generic_emit_char (int c, struct type *type, struct ui_file *stream,
|
||
int quoter, const char *encoding)
|
||
{
|
||
enum bfd_endian byte_order
|
||
= type_byte_order (type);
|
||
gdb_byte *c_buf;
|
||
int need_escape = 0;
|
||
|
||
c_buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
|
||
pack_long (c_buf, type, c);
|
||
|
||
wchar_iterator iter (c_buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
|
||
|
||
/* This holds the printable form of the wchar_t data. */
|
||
auto_obstack wchar_buf;
|
||
|
||
while (1)
|
||
{
|
||
int num_chars;
|
||
gdb_wchar_t *chars;
|
||
const gdb_byte *buf;
|
||
size_t buflen;
|
||
int print_escape = 1;
|
||
enum wchar_iterate_result result;
|
||
|
||
num_chars = iter.iterate (&result, &chars, &buf, &buflen);
|
||
if (num_chars < 0)
|
||
break;
|
||
if (num_chars > 0)
|
||
{
|
||
/* If all characters are printable, print them. Otherwise,
|
||
we're going to have to print an escape sequence. We
|
||
check all characters because we want to print the target
|
||
bytes in the escape sequence, and we don't know character
|
||
boundaries there. */
|
||
int i;
|
||
|
||
print_escape = 0;
|
||
for (i = 0; i < num_chars; ++i)
|
||
if (!wchar_printable (chars[i]))
|
||
{
|
||
print_escape = 1;
|
||
break;
|
||
}
|
||
|
||
if (!print_escape)
|
||
{
|
||
for (i = 0; i < num_chars; ++i)
|
||
print_wchar (chars[i], buf, buflen,
|
||
TYPE_LENGTH (type), byte_order,
|
||
&wchar_buf, quoter, &need_escape);
|
||
}
|
||
}
|
||
|
||
/* This handles the NUM_CHARS == 0 case as well. */
|
||
if (print_escape)
|
||
print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
|
||
byte_order, &wchar_buf, quoter, &need_escape);
|
||
}
|
||
|
||
/* The output in the host encoding. */
|
||
auto_obstack output;
|
||
|
||
convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
|
||
(gdb_byte *) obstack_base (&wchar_buf),
|
||
obstack_object_size (&wchar_buf),
|
||
sizeof (gdb_wchar_t), &output, translit_char);
|
||
obstack_1grow (&output, '\0');
|
||
|
||
fputs_filtered ((const char *) obstack_base (&output), stream);
|
||
}
|
||
|
||
/* Return the repeat count of the next character/byte in ITER,
|
||
storing the result in VEC. */
|
||
|
||
static int
|
||
count_next_character (wchar_iterator *iter,
|
||
std::vector<converted_character> *vec)
|
||
{
|
||
struct converted_character *current;
|
||
|
||
if (vec->empty ())
|
||
{
|
||
struct converted_character tmp;
|
||
gdb_wchar_t *chars;
|
||
|
||
tmp.num_chars
|
||
= iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
|
||
if (tmp.num_chars > 0)
|
||
{
|
||
gdb_assert (tmp.num_chars < MAX_WCHARS);
|
||
memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
|
||
}
|
||
vec->push_back (tmp);
|
||
}
|
||
|
||
current = &vec->back ();
|
||
|
||
/* Count repeated characters or bytes. */
|
||
current->repeat_count = 1;
|
||
if (current->num_chars == -1)
|
||
{
|
||
/* EOF */
|
||
return -1;
|
||
}
|
||
else
|
||
{
|
||
gdb_wchar_t *chars;
|
||
struct converted_character d;
|
||
int repeat;
|
||
|
||
d.repeat_count = 0;
|
||
|
||
while (1)
|
||
{
|
||
/* Get the next character. */
|
||
d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
|
||
|
||
/* If a character was successfully converted, save the character
|
||
into the converted character. */
|
||
if (d.num_chars > 0)
|
||
{
|
||
gdb_assert (d.num_chars < MAX_WCHARS);
|
||
memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
|
||
}
|
||
|
||
/* Determine if the current character is the same as this
|
||
new character. */
|
||
if (d.num_chars == current->num_chars && d.result == current->result)
|
||
{
|
||
/* There are two cases to consider:
|
||
|
||
1) Equality of converted character (num_chars > 0)
|
||
2) Equality of non-converted character (num_chars == 0) */
|
||
if ((current->num_chars > 0
|
||
&& memcmp (current->chars, d.chars,
|
||
WCHAR_BUFLEN (current->num_chars)) == 0)
|
||
|| (current->num_chars == 0
|
||
&& current->buflen == d.buflen
|
||
&& memcmp (current->buf, d.buf, current->buflen) == 0))
|
||
++current->repeat_count;
|
||
else
|
||
break;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
|
||
/* Push this next converted character onto the result vector. */
|
||
repeat = current->repeat_count;
|
||
vec->push_back (d);
|
||
return repeat;
|
||
}
|
||
}
|
||
|
||
/* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
|
||
character to use with string output. WIDTH is the size of the output
|
||
character type. BYTE_ORDER is the target byte order. OPTIONS
|
||
is the user's print options. */
|
||
|
||
static void
|
||
print_converted_chars_to_obstack (struct obstack *obstack,
|
||
const std::vector<converted_character> &chars,
|
||
int quote_char, int width,
|
||
enum bfd_endian byte_order,
|
||
const struct value_print_options *options)
|
||
{
|
||
unsigned int idx;
|
||
const converted_character *elem;
|
||
enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
|
||
gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
|
||
int need_escape = 0;
|
||
|
||
/* Set the start state. */
|
||
idx = 0;
|
||
last = state = START;
|
||
elem = NULL;
|
||
|
||
while (1)
|
||
{
|
||
switch (state)
|
||
{
|
||
case START:
|
||
/* Nothing to do. */
|
||
break;
|
||
|
||
case SINGLE:
|
||
{
|
||
int j;
|
||
|
||
/* We are outputting a single character
|
||
(< options->repeat_count_threshold). */
|
||
|
||
if (last != SINGLE)
|
||
{
|
||
/* We were outputting some other type of content, so we
|
||
must output and a comma and a quote. */
|
||
if (last != START)
|
||
obstack_grow_wstr (obstack, LCST (", "));
|
||
obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
|
||
}
|
||
/* Output the character. */
|
||
for (j = 0; j < elem->repeat_count; ++j)
|
||
{
|
||
if (elem->result == wchar_iterate_ok)
|
||
print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
|
||
byte_order, obstack, quote_char, &need_escape);
|
||
else
|
||
print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
|
||
byte_order, obstack, quote_char, &need_escape);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case REPEAT:
|
||
{
|
||
int j;
|
||
|
||
/* We are outputting a character with a repeat count
|
||
greater than options->repeat_count_threshold. */
|
||
|
||
if (last == SINGLE)
|
||
{
|
||
/* We were outputting a single string. Terminate the
|
||
string. */
|
||
obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
|
||
}
|
||
if (last != START)
|
||
obstack_grow_wstr (obstack, LCST (", "));
|
||
|
||
/* Output the character and repeat string. */
|
||
obstack_grow_wstr (obstack, LCST ("'"));
|
||
if (elem->result == wchar_iterate_ok)
|
||
print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
|
||
byte_order, obstack, quote_char, &need_escape);
|
||
else
|
||
print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
|
||
byte_order, obstack, quote_char, &need_escape);
|
||
obstack_grow_wstr (obstack, LCST ("'"));
|
||
std::string s = string_printf (_(" <repeats %u times>"),
|
||
elem->repeat_count);
|
||
for (j = 0; s[j]; ++j)
|
||
{
|
||
gdb_wchar_t w = gdb_btowc (s[j]);
|
||
obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
|
||
}
|
||
}
|
||
break;
|
||
|
||
case INCOMPLETE:
|
||
/* We are outputting an incomplete sequence. */
|
||
if (last == SINGLE)
|
||
{
|
||
/* If we were outputting a string of SINGLE characters,
|
||
terminate the quote. */
|
||
obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
|
||
}
|
||
if (last != START)
|
||
obstack_grow_wstr (obstack, LCST (", "));
|
||
|
||
/* Output the incomplete sequence string. */
|
||
obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
|
||
print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
|
||
obstack, 0, &need_escape);
|
||
obstack_grow_wstr (obstack, LCST (">"));
|
||
|
||
/* We do not attempt to output anything after this. */
|
||
state = FINISH;
|
||
break;
|
||
|
||
case FINISH:
|
||
/* All done. If we were outputting a string of SINGLE
|
||
characters, the string must be terminated. Otherwise,
|
||
REPEAT and INCOMPLETE are always left properly terminated. */
|
||
if (last == SINGLE)
|
||
obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
|
||
|
||
return;
|
||
}
|
||
|
||
/* Get the next element and state. */
|
||
last = state;
|
||
if (state != FINISH)
|
||
{
|
||
elem = &chars[idx++];
|
||
switch (elem->result)
|
||
{
|
||
case wchar_iterate_ok:
|
||
case wchar_iterate_invalid:
|
||
if (elem->repeat_count > options->repeat_count_threshold)
|
||
state = REPEAT;
|
||
else
|
||
state = SINGLE;
|
||
break;
|
||
|
||
case wchar_iterate_incomplete:
|
||
state = INCOMPLETE;
|
||
break;
|
||
|
||
case wchar_iterate_eof:
|
||
state = FINISH;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Print the character string STRING, printing at most LENGTH
|
||
characters. LENGTH is -1 if the string is nul terminated. TYPE is
|
||
the type of each character. OPTIONS holds the printing options;
|
||
printing stops early if the number hits print_max; repeat counts
|
||
are printed as appropriate. Print ellipses at the end if we had to
|
||
stop before printing LENGTH characters, or if FORCE_ELLIPSES.
|
||
QUOTE_CHAR is the character to print at each end of the string. If
|
||
C_STYLE_TERMINATOR is true, and the last character is 0, then it is
|
||
omitted. */
|
||
|
||
void
|
||
generic_printstr (struct ui_file *stream, struct type *type,
|
||
const gdb_byte *string, unsigned int length,
|
||
const char *encoding, int force_ellipses,
|
||
int quote_char, int c_style_terminator,
|
||
const struct value_print_options *options)
|
||
{
|
||
enum bfd_endian byte_order = type_byte_order (type);
|
||
unsigned int i;
|
||
int width = TYPE_LENGTH (type);
|
||
int finished = 0;
|
||
struct converted_character *last;
|
||
|
||
if (length == -1)
|
||
{
|
||
unsigned long current_char = 1;
|
||
|
||
for (i = 0; current_char; ++i)
|
||
{
|
||
QUIT;
|
||
current_char = extract_unsigned_integer (string + i * width,
|
||
width, byte_order);
|
||
}
|
||
length = i;
|
||
}
|
||
|
||
/* If the string was not truncated due to `set print elements', and
|
||
the last byte of it is a null, we don't print that, in
|
||
traditional C style. */
|
||
if (c_style_terminator
|
||
&& !force_ellipses
|
||
&& length > 0
|
||
&& (extract_unsigned_integer (string + (length - 1) * width,
|
||
width, byte_order) == 0))
|
||
length--;
|
||
|
||
if (length == 0)
|
||
{
|
||
fputs_filtered ("\"\"", stream);
|
||
return;
|
||
}
|
||
|
||
/* Arrange to iterate over the characters, in wchar_t form. */
|
||
wchar_iterator iter (string, length * width, encoding, width);
|
||
std::vector<converted_character> converted_chars;
|
||
|
||
/* Convert characters until the string is over or the maximum
|
||
number of printed characters has been reached. */
|
||
i = 0;
|
||
while (i < options->print_max)
|
||
{
|
||
int r;
|
||
|
||
QUIT;
|
||
|
||
/* Grab the next character and repeat count. */
|
||
r = count_next_character (&iter, &converted_chars);
|
||
|
||
/* If less than zero, the end of the input string was reached. */
|
||
if (r < 0)
|
||
break;
|
||
|
||
/* Otherwise, add the count to the total print count and get
|
||
the next character. */
|
||
i += r;
|
||
}
|
||
|
||
/* Get the last element and determine if the entire string was
|
||
processed. */
|
||
last = &converted_chars.back ();
|
||
finished = (last->result == wchar_iterate_eof);
|
||
|
||
/* Ensure that CONVERTED_CHARS is terminated. */
|
||
last->result = wchar_iterate_eof;
|
||
|
||
/* WCHAR_BUF is the obstack we use to represent the string in
|
||
wchar_t form. */
|
||
auto_obstack wchar_buf;
|
||
|
||
/* Print the output string to the obstack. */
|
||
print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
|
||
width, byte_order, options);
|
||
|
||
if (force_ellipses || !finished)
|
||
obstack_grow_wstr (&wchar_buf, LCST ("..."));
|
||
|
||
/* OUTPUT is where we collect `char's for printing. */
|
||
auto_obstack output;
|
||
|
||
convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
|
||
(gdb_byte *) obstack_base (&wchar_buf),
|
||
obstack_object_size (&wchar_buf),
|
||
sizeof (gdb_wchar_t), &output, translit_char);
|
||
obstack_1grow (&output, '\0');
|
||
|
||
fputs_filtered ((const char *) obstack_base (&output), stream);
|
||
}
|
||
|
||
/* Print a string from the inferior, starting at ADDR and printing up to LEN
|
||
characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
|
||
stops at the first null byte, otherwise printing proceeds (including null
|
||
bytes) until either print_max or LEN characters have been printed,
|
||
whichever is smaller. ENCODING is the name of the string's
|
||
encoding. It can be NULL, in which case the target encoding is
|
||
assumed. */
|
||
|
||
int
|
||
val_print_string (struct type *elttype, const char *encoding,
|
||
CORE_ADDR addr, int len,
|
||
struct ui_file *stream,
|
||
const struct value_print_options *options)
|
||
{
|
||
int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
|
||
int err; /* Non-zero if we got a bad read. */
|
||
int found_nul; /* Non-zero if we found the nul char. */
|
||
unsigned int fetchlimit; /* Maximum number of chars to print. */
|
||
int bytes_read;
|
||
gdb::unique_xmalloc_ptr<gdb_byte> buffer; /* Dynamically growable fetch buffer. */
|
||
struct gdbarch *gdbarch = elttype->arch ();
|
||
enum bfd_endian byte_order = type_byte_order (elttype);
|
||
int width = TYPE_LENGTH (elttype);
|
||
|
||
/* First we need to figure out the limit on the number of characters we are
|
||
going to attempt to fetch and print. This is actually pretty simple. If
|
||
LEN >= zero, then the limit is the minimum of LEN and print_max. If
|
||
LEN is -1, then the limit is print_max. This is true regardless of
|
||
whether print_max is zero, UINT_MAX (unlimited), or something in between,
|
||
because finding the null byte (or available memory) is what actually
|
||
limits the fetch. */
|
||
|
||
fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
|
||
options->print_max));
|
||
|
||
err = read_string (addr, len, width, fetchlimit, byte_order,
|
||
&buffer, &bytes_read);
|
||
|
||
addr += bytes_read;
|
||
|
||
/* We now have either successfully filled the buffer to fetchlimit,
|
||
or terminated early due to an error or finding a null char when
|
||
LEN is -1. */
|
||
|
||
/* Determine found_nul by looking at the last character read. */
|
||
found_nul = 0;
|
||
if (bytes_read >= width)
|
||
found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
|
||
width, byte_order) == 0;
|
||
if (len == -1 && !found_nul)
|
||
{
|
||
gdb_byte *peekbuf;
|
||
|
||
/* We didn't find a NUL terminator we were looking for. Attempt
|
||
to peek at the next character. If not successful, or it is not
|
||
a null byte, then force ellipsis to be printed. */
|
||
|
||
peekbuf = (gdb_byte *) alloca (width);
|
||
|
||
if (target_read_memory (addr, peekbuf, width) == 0
|
||
&& extract_unsigned_integer (peekbuf, width, byte_order) != 0)
|
||
force_ellipsis = 1;
|
||
}
|
||
else if ((len >= 0 && err != 0) || (len > bytes_read / width))
|
||
{
|
||
/* Getting an error when we have a requested length, or fetching less
|
||
than the number of characters actually requested, always make us
|
||
print ellipsis. */
|
||
force_ellipsis = 1;
|
||
}
|
||
|
||
/* If we get an error before fetching anything, don't print a string.
|
||
But if we fetch something and then get an error, print the string
|
||
and then the error message. */
|
||
if (err == 0 || bytes_read > 0)
|
||
{
|
||
LA_PRINT_STRING (stream, elttype, buffer.get (), bytes_read / width,
|
||
encoding, force_ellipsis, options);
|
||
}
|
||
|
||
if (err != 0)
|
||
{
|
||
std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
|
||
|
||
fprintf_filtered (stream, _("<error: %ps>"),
|
||
styled_string (metadata_style.style (),
|
||
str.c_str ()));
|
||
}
|
||
|
||
return (bytes_read / width);
|
||
}
|
||
|
||
/* Handle 'show print max-depth'. */
|
||
|
||
static void
|
||
show_print_max_depth (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Maximum print depth is %s.\n"), value);
|
||
}
|
||
|
||
|
||
/* The 'set input-radix' command writes to this auxiliary variable.
|
||
If the requested radix is valid, INPUT_RADIX is updated; otherwise,
|
||
it is left unchanged. */
|
||
|
||
static unsigned input_radix_1 = 10;
|
||
|
||
/* Validate an input or output radix setting, and make sure the user
|
||
knows what they really did here. Radix setting is confusing, e.g.
|
||
setting the input radix to "10" never changes it! */
|
||
|
||
static void
|
||
set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
|
||
{
|
||
set_input_radix_1 (from_tty, input_radix_1);
|
||
}
|
||
|
||
static void
|
||
set_input_radix_1 (int from_tty, unsigned radix)
|
||
{
|
||
/* We don't currently disallow any input radix except 0 or 1, which don't
|
||
make any mathematical sense. In theory, we can deal with any input
|
||
radix greater than 1, even if we don't have unique digits for every
|
||
value from 0 to radix-1, but in practice we lose on large radix values.
|
||
We should either fix the lossage or restrict the radix range more.
|
||
(FIXME). */
|
||
|
||
if (radix < 2)
|
||
{
|
||
input_radix_1 = input_radix;
|
||
error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
|
||
radix);
|
||
}
|
||
input_radix_1 = input_radix = radix;
|
||
if (from_tty)
|
||
{
|
||
printf_filtered (_("Input radix now set to "
|
||
"decimal %u, hex %x, octal %o.\n"),
|
||
radix, radix, radix);
|
||
}
|
||
}
|
||
|
||
/* The 'set output-radix' command writes to this auxiliary variable.
|
||
If the requested radix is valid, OUTPUT_RADIX is updated,
|
||
otherwise, it is left unchanged. */
|
||
|
||
static unsigned output_radix_1 = 10;
|
||
|
||
static void
|
||
set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
|
||
{
|
||
set_output_radix_1 (from_tty, output_radix_1);
|
||
}
|
||
|
||
static void
|
||
set_output_radix_1 (int from_tty, unsigned radix)
|
||
{
|
||
/* Validate the radix and disallow ones that we aren't prepared to
|
||
handle correctly, leaving the radix unchanged. */
|
||
switch (radix)
|
||
{
|
||
case 16:
|
||
user_print_options.output_format = 'x'; /* hex */
|
||
break;
|
||
case 10:
|
||
user_print_options.output_format = 0; /* decimal */
|
||
break;
|
||
case 8:
|
||
user_print_options.output_format = 'o'; /* octal */
|
||
break;
|
||
default:
|
||
output_radix_1 = output_radix;
|
||
error (_("Unsupported output radix ``decimal %u''; "
|
||
"output radix unchanged."),
|
||
radix);
|
||
}
|
||
output_radix_1 = output_radix = radix;
|
||
if (from_tty)
|
||
{
|
||
printf_filtered (_("Output radix now set to "
|
||
"decimal %u, hex %x, octal %o.\n"),
|
||
radix, radix, radix);
|
||
}
|
||
}
|
||
|
||
/* Set both the input and output radix at once. Try to set the output radix
|
||
first, since it has the most restrictive range. An radix that is valid as
|
||
an output radix is also valid as an input radix.
|
||
|
||
It may be useful to have an unusual input radix. If the user wishes to
|
||
set an input radix that is not valid as an output radix, he needs to use
|
||
the 'set input-radix' command. */
|
||
|
||
static void
|
||
set_radix (const char *arg, int from_tty)
|
||
{
|
||
unsigned radix;
|
||
|
||
radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
|
||
set_output_radix_1 (0, radix);
|
||
set_input_radix_1 (0, radix);
|
||
if (from_tty)
|
||
{
|
||
printf_filtered (_("Input and output radices now set to "
|
||
"decimal %u, hex %x, octal %o.\n"),
|
||
radix, radix, radix);
|
||
}
|
||
}
|
||
|
||
/* Show both the input and output radices. */
|
||
|
||
static void
|
||
show_radix (const char *arg, int from_tty)
|
||
{
|
||
if (from_tty)
|
||
{
|
||
if (input_radix == output_radix)
|
||
{
|
||
printf_filtered (_("Input and output radices set to "
|
||
"decimal %u, hex %x, octal %o.\n"),
|
||
input_radix, input_radix, input_radix);
|
||
}
|
||
else
|
||
{
|
||
printf_filtered (_("Input radix set to decimal "
|
||
"%u, hex %x, octal %o.\n"),
|
||
input_radix, input_radix, input_radix);
|
||
printf_filtered (_("Output radix set to decimal "
|
||
"%u, hex %x, octal %o.\n"),
|
||
output_radix, output_radix, output_radix);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Controls printing of vtbl's. */
|
||
static void
|
||
show_vtblprint (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("\
|
||
Printing of C++ virtual function tables is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* Controls looking up an object's derived type using what we find in
|
||
its vtables. */
|
||
static void
|
||
show_objectprint (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c,
|
||
const char *value)
|
||
{
|
||
fprintf_filtered (file, _("\
|
||
Printing of object's derived type based on vtable info is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
static void
|
||
show_static_field_print (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c,
|
||
const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Printing of C++ static members is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
|
||
|
||
/* A couple typedefs to make writing the options a bit more
|
||
convenient. */
|
||
using boolean_option_def
|
||
= gdb::option::boolean_option_def<value_print_options>;
|
||
using uinteger_option_def
|
||
= gdb::option::uinteger_option_def<value_print_options>;
|
||
using zuinteger_unlimited_option_def
|
||
= gdb::option::zuinteger_unlimited_option_def<value_print_options>;
|
||
|
||
/* Definitions of options for the "print" and "compile print"
|
||
commands. */
|
||
static const gdb::option::option_def value_print_option_defs[] = {
|
||
|
||
boolean_option_def {
|
||
"address",
|
||
[] (value_print_options *opt) { return &opt->addressprint; },
|
||
show_addressprint, /* show_cmd_cb */
|
||
N_("Set printing of addresses."),
|
||
N_("Show printing of addresses."),
|
||
NULL, /* help_doc */
|
||
},
|
||
|
||
boolean_option_def {
|
||
"array",
|
||
[] (value_print_options *opt) { return &opt->prettyformat_arrays; },
|
||
show_prettyformat_arrays, /* show_cmd_cb */
|
||
N_("Set pretty formatting of arrays."),
|
||
N_("Show pretty formatting of arrays."),
|
||
NULL, /* help_doc */
|
||
},
|
||
|
||
boolean_option_def {
|
||
"array-indexes",
|
||
[] (value_print_options *opt) { return &opt->print_array_indexes; },
|
||
show_print_array_indexes, /* show_cmd_cb */
|
||
N_("Set printing of array indexes."),
|
||
N_("Show printing of array indexes."),
|
||
NULL, /* help_doc */
|
||
},
|
||
|
||
uinteger_option_def {
|
||
"elements",
|
||
[] (value_print_options *opt) { return &opt->print_max; },
|
||
show_print_max, /* show_cmd_cb */
|
||
N_("Set limit on string chars or array elements to print."),
|
||
N_("Show limit on string chars or array elements to print."),
|
||
N_("\"unlimited\" causes there to be no limit."),
|
||
},
|
||
|
||
zuinteger_unlimited_option_def {
|
||
"max-depth",
|
||
[] (value_print_options *opt) { return &opt->max_depth; },
|
||
show_print_max_depth, /* show_cmd_cb */
|
||
N_("Set maximum print depth for nested structures, unions and arrays."),
|
||
N_("Show maximum print depth for nested structures, unions, and arrays."),
|
||
N_("When structures, unions, or arrays are nested beyond this depth then they\n\
|
||
will be replaced with either '{...}' or '(...)' depending on the language.\n\
|
||
Use \"unlimited\" to print the complete structure.")
|
||
},
|
||
|
||
boolean_option_def {
|
||
"memory-tag-violations",
|
||
[] (value_print_options *opt) { return &opt->memory_tag_violations; },
|
||
show_memory_tag_violations, /* show_cmd_cb */
|
||
N_("Set printing of memory tag violations for pointers."),
|
||
N_("Show printing of memory tag violations for pointers."),
|
||
N_("Issue a warning when the printed value is a pointer\n\
|
||
whose logical tag doesn't match the allocation tag of the memory\n\
|
||
location it points to."),
|
||
},
|
||
|
||
boolean_option_def {
|
||
"null-stop",
|
||
[] (value_print_options *opt) { return &opt->stop_print_at_null; },
|
||
show_stop_print_at_null, /* show_cmd_cb */
|
||
N_("Set printing of char arrays to stop at first null char."),
|
||
N_("Show printing of char arrays to stop at first null char."),
|
||
NULL, /* help_doc */
|
||
},
|
||
|
||
boolean_option_def {
|
||
"object",
|
||
[] (value_print_options *opt) { return &opt->objectprint; },
|
||
show_objectprint, /* show_cmd_cb */
|
||
_("Set printing of C++ virtual function tables."),
|
||
_("Show printing of C++ virtual function tables."),
|
||
NULL, /* help_doc */
|
||
},
|
||
|
||
boolean_option_def {
|
||
"pretty",
|
||
[] (value_print_options *opt) { return &opt->prettyformat_structs; },
|
||
show_prettyformat_structs, /* show_cmd_cb */
|
||
N_("Set pretty formatting of structures."),
|
||
N_("Show pretty formatting of structures."),
|
||
NULL, /* help_doc */
|
||
},
|
||
|
||
boolean_option_def {
|
||
"raw-values",
|
||
[] (value_print_options *opt) { return &opt->raw; },
|
||
NULL, /* show_cmd_cb */
|
||
N_("Set whether to print values in raw form."),
|
||
N_("Show whether to print values in raw form."),
|
||
N_("If set, values are printed in raw form, bypassing any\n\
|
||
pretty-printers for that value.")
|
||
},
|
||
|
||
uinteger_option_def {
|
||
"repeats",
|
||
[] (value_print_options *opt) { return &opt->repeat_count_threshold; },
|
||
show_repeat_count_threshold, /* show_cmd_cb */
|
||
N_("Set threshold for repeated print elements."),
|
||
N_("Show threshold for repeated print elements."),
|
||
N_("\"unlimited\" causes all elements to be individually printed."),
|
||
},
|
||
|
||
boolean_option_def {
|
||
"static-members",
|
||
[] (value_print_options *opt) { return &opt->static_field_print; },
|
||
show_static_field_print, /* show_cmd_cb */
|
||
N_("Set printing of C++ static members."),
|
||
N_("Show printing of C++ static members."),
|
||
NULL, /* help_doc */
|
||
},
|
||
|
||
boolean_option_def {
|
||
"symbol",
|
||
[] (value_print_options *opt) { return &opt->symbol_print; },
|
||
show_symbol_print, /* show_cmd_cb */
|
||
N_("Set printing of symbol names when printing pointers."),
|
||
N_("Show printing of symbol names when printing pointers."),
|
||
NULL, /* help_doc */
|
||
},
|
||
|
||
boolean_option_def {
|
||
"union",
|
||
[] (value_print_options *opt) { return &opt->unionprint; },
|
||
show_unionprint, /* show_cmd_cb */
|
||
N_("Set printing of unions interior to structures."),
|
||
N_("Show printing of unions interior to structures."),
|
||
NULL, /* help_doc */
|
||
},
|
||
|
||
boolean_option_def {
|
||
"vtbl",
|
||
[] (value_print_options *opt) { return &opt->vtblprint; },
|
||
show_vtblprint, /* show_cmd_cb */
|
||
N_("Set printing of C++ virtual function tables."),
|
||
N_("Show printing of C++ virtual function tables."),
|
||
NULL, /* help_doc */
|
||
},
|
||
};
|
||
|
||
/* See valprint.h. */
|
||
|
||
gdb::option::option_def_group
|
||
make_value_print_options_def_group (value_print_options *opts)
|
||
{
|
||
return {{value_print_option_defs}, opts};
|
||
}
|
||
|
||
void _initialize_valprint ();
|
||
void
|
||
_initialize_valprint ()
|
||
{
|
||
cmd_list_element *cmd;
|
||
|
||
add_basic_prefix_cmd ("print", no_class,
|
||
_("Generic command for setting how things print."),
|
||
&setprintlist, "set print ", 0, &setlist);
|
||
add_alias_cmd ("p", "print", no_class, 1, &setlist);
|
||
/* Prefer set print to set prompt. */
|
||
add_alias_cmd ("pr", "print", no_class, 1, &setlist);
|
||
|
||
add_show_prefix_cmd ("print", no_class,
|
||
_("Generic command for showing print settings."),
|
||
&showprintlist, "show print ", 0, &showlist);
|
||
add_alias_cmd ("p", "print", no_class, 1, &showlist);
|
||
add_alias_cmd ("pr", "print", no_class, 1, &showlist);
|
||
|
||
cmd = add_basic_prefix_cmd ("raw", no_class,
|
||
_("\
|
||
Generic command for setting what things to print in \"raw\" mode."),
|
||
&setprintrawlist, "set print raw ", 0,
|
||
&setprintlist);
|
||
deprecate_cmd (cmd, nullptr);
|
||
|
||
cmd = add_show_prefix_cmd ("raw", no_class,
|
||
_("Generic command for showing \"print raw\" settings."),
|
||
&showprintrawlist, "show print raw ", 0,
|
||
&showprintlist);
|
||
deprecate_cmd (cmd, nullptr);
|
||
|
||
gdb::option::add_setshow_cmds_for_options
|
||
(class_support, &user_print_options, value_print_option_defs,
|
||
&setprintlist, &showprintlist);
|
||
|
||
add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
|
||
_("\
|
||
Set default input radix for entering numbers."), _("\
|
||
Show default input radix for entering numbers."), NULL,
|
||
set_input_radix,
|
||
show_input_radix,
|
||
&setlist, &showlist);
|
||
|
||
add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
|
||
_("\
|
||
Set default output radix for printing of values."), _("\
|
||
Show default output radix for printing of values."), NULL,
|
||
set_output_radix,
|
||
show_output_radix,
|
||
&setlist, &showlist);
|
||
|
||
/* The "set radix" and "show radix" commands are special in that
|
||
they are like normal set and show commands but allow two normally
|
||
independent variables to be either set or shown with a single
|
||
command. So the usual deprecated_add_set_cmd() and [deleted]
|
||
add_show_from_set() commands aren't really appropriate. */
|
||
/* FIXME: i18n: With the new add_setshow_integer command, that is no
|
||
longer true - show can display anything. */
|
||
add_cmd ("radix", class_support, set_radix, _("\
|
||
Set default input and output number radices.\n\
|
||
Use 'set input-radix' or 'set output-radix' to independently set each.\n\
|
||
Without an argument, sets both radices back to the default value of 10."),
|
||
&setlist);
|
||
add_cmd ("radix", class_support, show_radix, _("\
|
||
Show the default input and output number radices.\n\
|
||
Use 'show input-radix' or 'show output-radix' to independently show each."),
|
||
&showlist);
|
||
}
|