mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-24 10:35:12 +08:00
00878c6e41
*minsyms.c (lookup_minimal_symbol_by_pc_section_1): Assert non-NULL section. (lookup_minimal_symbol_by_pc_section): Check for NULL section. (lookup_minimal_symbol_by_pc): Adjust.
1206 lines
39 KiB
C
1206 lines
39 KiB
C
/* GDB routines for manipulating the minimal symbol tables.
|
||
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
|
||
2002, 2003, 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
|
||
Contributed by Cygnus Support, using pieces from other GDB modules.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
|
||
/* This file contains support routines for creating, manipulating, and
|
||
destroying minimal symbol tables.
|
||
|
||
Minimal symbol tables are used to hold some very basic information about
|
||
all defined global symbols (text, data, bss, abs, etc). The only two
|
||
required pieces of information are the symbol's name and the address
|
||
associated with that symbol.
|
||
|
||
In many cases, even if a file was compiled with no special options for
|
||
debugging at all, as long as was not stripped it will contain sufficient
|
||
information to build useful minimal symbol tables using this structure.
|
||
|
||
Even when a file contains enough debugging information to build a full
|
||
symbol table, these minimal symbols are still useful for quickly mapping
|
||
between names and addresses, and vice versa. They are also sometimes used
|
||
to figure out what full symbol table entries need to be read in. */
|
||
|
||
|
||
#include "defs.h"
|
||
#include <ctype.h>
|
||
#include "gdb_string.h"
|
||
#include "symtab.h"
|
||
#include "bfd.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "demangle.h"
|
||
#include "value.h"
|
||
#include "cp-abi.h"
|
||
#include "target.h"
|
||
#include "cp-support.h"
|
||
#include "language.h"
|
||
|
||
/* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
|
||
At the end, copy them all into one newly allocated location on an objfile's
|
||
symbol obstack. */
|
||
|
||
#define BUNCH_SIZE 127
|
||
|
||
struct msym_bunch
|
||
{
|
||
struct msym_bunch *next;
|
||
struct minimal_symbol contents[BUNCH_SIZE];
|
||
};
|
||
|
||
/* Bunch currently being filled up.
|
||
The next field points to chain of filled bunches. */
|
||
|
||
static struct msym_bunch *msym_bunch;
|
||
|
||
/* Number of slots filled in current bunch. */
|
||
|
||
static int msym_bunch_index;
|
||
|
||
/* Total number of minimal symbols recorded so far for the objfile. */
|
||
|
||
static int msym_count;
|
||
|
||
/* Compute a hash code based using the same criteria as `strcmp_iw'. */
|
||
|
||
unsigned int
|
||
msymbol_hash_iw (const char *string)
|
||
{
|
||
unsigned int hash = 0;
|
||
while (*string && *string != '(')
|
||
{
|
||
while (isspace (*string))
|
||
++string;
|
||
if (*string && *string != '(')
|
||
{
|
||
hash = hash * 67 + *string - 113;
|
||
++string;
|
||
}
|
||
}
|
||
return hash;
|
||
}
|
||
|
||
/* Compute a hash code for a string. */
|
||
|
||
unsigned int
|
||
msymbol_hash (const char *string)
|
||
{
|
||
unsigned int hash = 0;
|
||
for (; *string; ++string)
|
||
hash = hash * 67 + *string - 113;
|
||
return hash;
|
||
}
|
||
|
||
/* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
|
||
void
|
||
add_minsym_to_hash_table (struct minimal_symbol *sym,
|
||
struct minimal_symbol **table)
|
||
{
|
||
if (sym->hash_next == NULL)
|
||
{
|
||
unsigned int hash
|
||
= msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
|
||
sym->hash_next = table[hash];
|
||
table[hash] = sym;
|
||
}
|
||
}
|
||
|
||
/* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
|
||
TABLE. */
|
||
static void
|
||
add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
|
||
struct minimal_symbol **table)
|
||
{
|
||
if (sym->demangled_hash_next == NULL)
|
||
{
|
||
unsigned int hash
|
||
= msymbol_hash_iw (SYMBOL_SEARCH_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
|
||
sym->demangled_hash_next = table[hash];
|
||
table[hash] = sym;
|
||
}
|
||
}
|
||
|
||
|
||
/* Return OBJFILE where minimal symbol SYM is defined. */
|
||
struct objfile *
|
||
msymbol_objfile (struct minimal_symbol *sym)
|
||
{
|
||
struct objfile *objf;
|
||
struct minimal_symbol *tsym;
|
||
|
||
unsigned int hash
|
||
= msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
|
||
|
||
for (objf = object_files; objf; objf = objf->next)
|
||
for (tsym = objf->msymbol_hash[hash]; tsym; tsym = tsym->hash_next)
|
||
if (tsym == sym)
|
||
return objf;
|
||
|
||
/* We should always be able to find the objfile ... */
|
||
internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
|
||
}
|
||
|
||
|
||
/* Look through all the current minimal symbol tables and find the
|
||
first minimal symbol that matches NAME. If OBJF is non-NULL, limit
|
||
the search to that objfile. If SFILE is non-NULL, the only file-scope
|
||
symbols considered will be from that source file (global symbols are
|
||
still preferred). Returns a pointer to the minimal symbol that
|
||
matches, or NULL if no match is found.
|
||
|
||
Note: One instance where there may be duplicate minimal symbols with
|
||
the same name is when the symbol tables for a shared library and the
|
||
symbol tables for an executable contain global symbols with the same
|
||
names (the dynamic linker deals with the duplication).
|
||
|
||
It's also possible to have minimal symbols with different mangled
|
||
names, but identical demangled names. For example, the GNU C++ v3
|
||
ABI requires the generation of two (or perhaps three) copies of
|
||
constructor functions --- "in-charge", "not-in-charge", and
|
||
"allocate" copies; destructors may be duplicated as well.
|
||
Obviously, there must be distinct mangled names for each of these,
|
||
but the demangled names are all the same: S::S or S::~S. */
|
||
|
||
struct minimal_symbol *
|
||
lookup_minimal_symbol (const char *name, const char *sfile,
|
||
struct objfile *objf)
|
||
{
|
||
struct objfile *objfile;
|
||
struct minimal_symbol *msymbol;
|
||
struct minimal_symbol *found_symbol = NULL;
|
||
struct minimal_symbol *found_file_symbol = NULL;
|
||
struct minimal_symbol *trampoline_symbol = NULL;
|
||
|
||
unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
|
||
unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
|
||
|
||
int needtofreename = 0;
|
||
const char *modified_name;
|
||
|
||
if (sfile != NULL)
|
||
{
|
||
char *p = strrchr (sfile, '/');
|
||
if (p != NULL)
|
||
sfile = p + 1;
|
||
}
|
||
|
||
/* For C++, canonicalize the input name. */
|
||
modified_name = name;
|
||
if (current_language->la_language == language_cplus)
|
||
{
|
||
char *cname = cp_canonicalize_string (name);
|
||
if (cname)
|
||
{
|
||
modified_name = cname;
|
||
needtofreename = 1;
|
||
}
|
||
}
|
||
|
||
for (objfile = object_files;
|
||
objfile != NULL && found_symbol == NULL;
|
||
objfile = objfile->next)
|
||
{
|
||
if (objf == NULL || objf == objfile
|
||
|| objf->separate_debug_objfile == objfile)
|
||
{
|
||
/* Do two passes: the first over the ordinary hash table,
|
||
and the second over the demangled hash table. */
|
||
int pass;
|
||
|
||
for (pass = 1; pass <= 2 && found_symbol == NULL; pass++)
|
||
{
|
||
/* Select hash list according to pass. */
|
||
if (pass == 1)
|
||
msymbol = objfile->msymbol_hash[hash];
|
||
else
|
||
msymbol = objfile->msymbol_demangled_hash[dem_hash];
|
||
|
||
while (msymbol != NULL && found_symbol == NULL)
|
||
{
|
||
int match;
|
||
|
||
if (pass == 1)
|
||
{
|
||
match = strcmp (SYMBOL_LINKAGE_NAME (msymbol),
|
||
modified_name) == 0;
|
||
}
|
||
else
|
||
{
|
||
match = SYMBOL_MATCHES_SEARCH_NAME (msymbol,
|
||
modified_name);
|
||
}
|
||
|
||
if (match)
|
||
{
|
||
switch (MSYMBOL_TYPE (msymbol))
|
||
{
|
||
case mst_file_text:
|
||
case mst_file_data:
|
||
case mst_file_bss:
|
||
if (sfile == NULL
|
||
|| strcmp (msymbol->filename, sfile) == 0)
|
||
found_file_symbol = msymbol;
|
||
break;
|
||
|
||
case mst_solib_trampoline:
|
||
|
||
/* If a trampoline symbol is found, we prefer to
|
||
keep looking for the *real* symbol. If the
|
||
actual symbol is not found, then we'll use the
|
||
trampoline entry. */
|
||
if (trampoline_symbol == NULL)
|
||
trampoline_symbol = msymbol;
|
||
break;
|
||
|
||
case mst_unknown:
|
||
default:
|
||
found_symbol = msymbol;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Find the next symbol on the hash chain. */
|
||
if (pass == 1)
|
||
msymbol = msymbol->hash_next;
|
||
else
|
||
msymbol = msymbol->demangled_hash_next;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (needtofreename)
|
||
xfree ((void *) modified_name);
|
||
|
||
/* External symbols are best. */
|
||
if (found_symbol)
|
||
return found_symbol;
|
||
|
||
/* File-local symbols are next best. */
|
||
if (found_file_symbol)
|
||
return found_file_symbol;
|
||
|
||
/* Symbols for shared library trampolines are next best. */
|
||
if (trampoline_symbol)
|
||
return trampoline_symbol;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Look through all the current minimal symbol tables and find the
|
||
first minimal symbol that matches NAME and has text type. If OBJF
|
||
is non-NULL, limit the search to that objfile. Returns a pointer
|
||
to the minimal symbol that matches, or NULL if no match is found.
|
||
|
||
This function only searches the mangled (linkage) names. */
|
||
|
||
struct minimal_symbol *
|
||
lookup_minimal_symbol_text (const char *name, struct objfile *objf)
|
||
{
|
||
struct objfile *objfile;
|
||
struct minimal_symbol *msymbol;
|
||
struct minimal_symbol *found_symbol = NULL;
|
||
struct minimal_symbol *found_file_symbol = NULL;
|
||
|
||
unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
|
||
|
||
for (objfile = object_files;
|
||
objfile != NULL && found_symbol == NULL;
|
||
objfile = objfile->next)
|
||
{
|
||
if (objf == NULL || objf == objfile
|
||
|| objf->separate_debug_objfile == objfile)
|
||
{
|
||
for (msymbol = objfile->msymbol_hash[hash];
|
||
msymbol != NULL && found_symbol == NULL;
|
||
msymbol = msymbol->hash_next)
|
||
{
|
||
if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
|
||
(MSYMBOL_TYPE (msymbol) == mst_text ||
|
||
MSYMBOL_TYPE (msymbol) == mst_file_text))
|
||
{
|
||
switch (MSYMBOL_TYPE (msymbol))
|
||
{
|
||
case mst_file_text:
|
||
found_file_symbol = msymbol;
|
||
break;
|
||
default:
|
||
found_symbol = msymbol;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
/* External symbols are best. */
|
||
if (found_symbol)
|
||
return found_symbol;
|
||
|
||
/* File-local symbols are next best. */
|
||
if (found_file_symbol)
|
||
return found_file_symbol;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Look through all the current minimal symbol tables and find the
|
||
first minimal symbol that matches NAME and PC. If OBJF is non-NULL,
|
||
limit the search to that objfile. Returns a pointer to the minimal
|
||
symbol that matches, or NULL if no match is found. */
|
||
|
||
struct minimal_symbol *
|
||
lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
|
||
struct objfile *objf)
|
||
{
|
||
struct objfile *objfile;
|
||
struct minimal_symbol *msymbol;
|
||
|
||
unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
|
||
|
||
for (objfile = object_files;
|
||
objfile != NULL;
|
||
objfile = objfile->next)
|
||
{
|
||
if (objf == NULL || objf == objfile
|
||
|| objf->separate_debug_objfile == objfile)
|
||
{
|
||
for (msymbol = objfile->msymbol_hash[hash];
|
||
msymbol != NULL;
|
||
msymbol = msymbol->hash_next)
|
||
{
|
||
if (SYMBOL_VALUE_ADDRESS (msymbol) == pc
|
||
&& strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0)
|
||
return msymbol;
|
||
}
|
||
}
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Look through all the current minimal symbol tables and find the
|
||
first minimal symbol that matches NAME and is a solib trampoline.
|
||
If OBJF is non-NULL, limit the search to that objfile. Returns a
|
||
pointer to the minimal symbol that matches, or NULL if no match is
|
||
found.
|
||
|
||
This function only searches the mangled (linkage) names. */
|
||
|
||
struct minimal_symbol *
|
||
lookup_minimal_symbol_solib_trampoline (const char *name,
|
||
struct objfile *objf)
|
||
{
|
||
struct objfile *objfile;
|
||
struct minimal_symbol *msymbol;
|
||
struct minimal_symbol *found_symbol = NULL;
|
||
|
||
unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
|
||
|
||
for (objfile = object_files;
|
||
objfile != NULL && found_symbol == NULL;
|
||
objfile = objfile->next)
|
||
{
|
||
if (objf == NULL || objf == objfile
|
||
|| objf->separate_debug_objfile == objfile)
|
||
{
|
||
for (msymbol = objfile->msymbol_hash[hash];
|
||
msymbol != NULL && found_symbol == NULL;
|
||
msymbol = msymbol->hash_next)
|
||
{
|
||
if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
|
||
MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
|
||
return msymbol;
|
||
}
|
||
}
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Search through the minimal symbol table for each objfile and find
|
||
the symbol whose address is the largest address that is still less
|
||
than or equal to PC, and matches SECTION (which is not NULL).
|
||
Returns a pointer to the minimal symbol if such a symbol is found,
|
||
or NULL if PC is not in a suitable range.
|
||
Note that we need to look through ALL the minimal symbol tables
|
||
before deciding on the symbol that comes closest to the specified PC.
|
||
This is because objfiles can overlap, for example objfile A has .text
|
||
at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
|
||
.data at 0x40048.
|
||
|
||
If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
|
||
there are text and trampoline symbols at the same address.
|
||
Otherwise prefer mst_text symbols. */
|
||
|
||
static struct minimal_symbol *
|
||
lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc,
|
||
struct obj_section *section,
|
||
int want_trampoline)
|
||
{
|
||
int lo;
|
||
int hi;
|
||
int new;
|
||
struct objfile *objfile;
|
||
struct minimal_symbol *msymbol;
|
||
struct minimal_symbol *best_symbol = NULL;
|
||
enum minimal_symbol_type want_type, other_type;
|
||
|
||
want_type = want_trampoline ? mst_solib_trampoline : mst_text;
|
||
other_type = want_trampoline ? mst_text : mst_solib_trampoline;
|
||
|
||
/* We can not require the symbol found to be in section, because
|
||
e.g. IRIX 6.5 mdebug relies on this code returning an absolute
|
||
symbol - but find_pc_section won't return an absolute section and
|
||
hence the code below would skip over absolute symbols. We can
|
||
still take advantage of the call to find_pc_section, though - the
|
||
object file still must match. In case we have separate debug
|
||
files, search both the file and its separate debug file. There's
|
||
no telling which one will have the minimal symbols. */
|
||
|
||
gdb_assert (section != NULL);
|
||
objfile = section->objfile;
|
||
if (objfile->separate_debug_objfile)
|
||
objfile = objfile->separate_debug_objfile;
|
||
|
||
for (; objfile != NULL; objfile = objfile->separate_debug_objfile_backlink)
|
||
{
|
||
/* If this objfile has a minimal symbol table, go search it using
|
||
a binary search. Note that a minimal symbol table always consists
|
||
of at least two symbols, a "real" symbol and the terminating
|
||
"null symbol". If there are no real symbols, then there is no
|
||
minimal symbol table at all. */
|
||
|
||
if (objfile->minimal_symbol_count > 0)
|
||
{
|
||
int best_zero_sized = -1;
|
||
|
||
msymbol = objfile->msymbols;
|
||
lo = 0;
|
||
hi = objfile->minimal_symbol_count - 1;
|
||
|
||
/* This code assumes that the minimal symbols are sorted by
|
||
ascending address values. If the pc value is greater than or
|
||
equal to the first symbol's address, then some symbol in this
|
||
minimal symbol table is a suitable candidate for being the
|
||
"best" symbol. This includes the last real symbol, for cases
|
||
where the pc value is larger than any address in this vector.
|
||
|
||
By iterating until the address associated with the current
|
||
hi index (the endpoint of the test interval) is less than
|
||
or equal to the desired pc value, we accomplish two things:
|
||
(1) the case where the pc value is larger than any minimal
|
||
symbol address is trivially solved, (2) the address associated
|
||
with the hi index is always the one we want when the interation
|
||
terminates. In essence, we are iterating the test interval
|
||
down until the pc value is pushed out of it from the high end.
|
||
|
||
Warning: this code is trickier than it would appear at first. */
|
||
|
||
/* Should also require that pc is <= end of objfile. FIXME! */
|
||
if (pc >= SYMBOL_VALUE_ADDRESS (&msymbol[lo]))
|
||
{
|
||
while (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) > pc)
|
||
{
|
||
/* pc is still strictly less than highest address */
|
||
/* Note "new" will always be >= lo */
|
||
new = (lo + hi) / 2;
|
||
if ((SYMBOL_VALUE_ADDRESS (&msymbol[new]) >= pc) ||
|
||
(lo == new))
|
||
{
|
||
hi = new;
|
||
}
|
||
else
|
||
{
|
||
lo = new;
|
||
}
|
||
}
|
||
|
||
/* If we have multiple symbols at the same address, we want
|
||
hi to point to the last one. That way we can find the
|
||
right symbol if it has an index greater than hi. */
|
||
while (hi < objfile->minimal_symbol_count - 1
|
||
&& (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
|
||
== SYMBOL_VALUE_ADDRESS (&msymbol[hi + 1])))
|
||
hi++;
|
||
|
||
/* Skip various undesirable symbols. */
|
||
while (hi >= 0)
|
||
{
|
||
/* Skip any absolute symbols. This is apparently
|
||
what adb and dbx do, and is needed for the CM-5.
|
||
There are two known possible problems: (1) on
|
||
ELF, apparently end, edata, etc. are absolute.
|
||
Not sure ignoring them here is a big deal, but if
|
||
we want to use them, the fix would go in
|
||
elfread.c. (2) I think shared library entry
|
||
points on the NeXT are absolute. If we want
|
||
special handling for this it probably should be
|
||
triggered by a special mst_abs_or_lib or some
|
||
such. */
|
||
|
||
if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
|
||
{
|
||
hi--;
|
||
continue;
|
||
}
|
||
|
||
/* If SECTION was specified, skip any symbol from
|
||
wrong section. */
|
||
if (section
|
||
/* Some types of debug info, such as COFF,
|
||
don't fill the bfd_section member, so don't
|
||
throw away symbols on those platforms. */
|
||
&& SYMBOL_OBJ_SECTION (&msymbol[hi]) != NULL
|
||
&& (!matching_obj_sections
|
||
(SYMBOL_OBJ_SECTION (&msymbol[hi]), section)))
|
||
{
|
||
hi--;
|
||
continue;
|
||
}
|
||
|
||
/* If we are looking for a trampoline and this is a
|
||
text symbol, or the other way around, check the
|
||
preceeding symbol too. If they are otherwise
|
||
identical prefer that one. */
|
||
if (hi > 0
|
||
&& MSYMBOL_TYPE (&msymbol[hi]) == other_type
|
||
&& MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
|
||
&& (MSYMBOL_SIZE (&msymbol[hi])
|
||
== MSYMBOL_SIZE (&msymbol[hi - 1]))
|
||
&& (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
|
||
== SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1]))
|
||
&& (SYMBOL_OBJ_SECTION (&msymbol[hi])
|
||
== SYMBOL_OBJ_SECTION (&msymbol[hi - 1])))
|
||
{
|
||
hi--;
|
||
continue;
|
||
}
|
||
|
||
/* If the minimal symbol has a zero size, save it
|
||
but keep scanning backwards looking for one with
|
||
a non-zero size. A zero size may mean that the
|
||
symbol isn't an object or function (e.g. a
|
||
label), or it may just mean that the size was not
|
||
specified. */
|
||
if (MSYMBOL_SIZE (&msymbol[hi]) == 0
|
||
&& best_zero_sized == -1)
|
||
{
|
||
best_zero_sized = hi;
|
||
hi--;
|
||
continue;
|
||
}
|
||
|
||
/* If we are past the end of the current symbol, try
|
||
the previous symbol if it has a larger overlapping
|
||
size. This happens on i686-pc-linux-gnu with glibc;
|
||
the nocancel variants of system calls are inside
|
||
the cancellable variants, but both have sizes. */
|
||
if (hi > 0
|
||
&& MSYMBOL_SIZE (&msymbol[hi]) != 0
|
||
&& pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
|
||
+ MSYMBOL_SIZE (&msymbol[hi]))
|
||
&& pc < (SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1])
|
||
+ MSYMBOL_SIZE (&msymbol[hi - 1])))
|
||
{
|
||
hi--;
|
||
continue;
|
||
}
|
||
|
||
/* Otherwise, this symbol must be as good as we're going
|
||
to get. */
|
||
break;
|
||
}
|
||
|
||
/* If HI has a zero size, and best_zero_sized is set,
|
||
then we had two or more zero-sized symbols; prefer
|
||
the first one we found (which may have a higher
|
||
address). Also, if we ran off the end, be sure
|
||
to back up. */
|
||
if (best_zero_sized != -1
|
||
&& (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
|
||
hi = best_zero_sized;
|
||
|
||
/* If the minimal symbol has a non-zero size, and this
|
||
PC appears to be outside the symbol's contents, then
|
||
refuse to use this symbol. If we found a zero-sized
|
||
symbol with an address greater than this symbol's,
|
||
use that instead. We assume that if symbols have
|
||
specified sizes, they do not overlap. */
|
||
|
||
if (hi >= 0
|
||
&& MSYMBOL_SIZE (&msymbol[hi]) != 0
|
||
&& pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
|
||
+ MSYMBOL_SIZE (&msymbol[hi])))
|
||
{
|
||
if (best_zero_sized != -1)
|
||
hi = best_zero_sized;
|
||
else
|
||
/* Go on to the next object file. */
|
||
continue;
|
||
}
|
||
|
||
/* The minimal symbol indexed by hi now is the best one in this
|
||
objfile's minimal symbol table. See if it is the best one
|
||
overall. */
|
||
|
||
if (hi >= 0
|
||
&& ((best_symbol == NULL) ||
|
||
(SYMBOL_VALUE_ADDRESS (best_symbol) <
|
||
SYMBOL_VALUE_ADDRESS (&msymbol[hi]))))
|
||
{
|
||
best_symbol = &msymbol[hi];
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return (best_symbol);
|
||
}
|
||
|
||
struct minimal_symbol *
|
||
lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section)
|
||
{
|
||
if (section == NULL)
|
||
{
|
||
/* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to
|
||
force the section but that (well unless you're doing overlay
|
||
debugging) always returns NULL making the call somewhat useless. */
|
||
section = find_pc_section (pc);
|
||
if (section == NULL)
|
||
return NULL;
|
||
}
|
||
return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
|
||
}
|
||
|
||
/* Backward compatibility: search through the minimal symbol table
|
||
for a matching PC (no section given) */
|
||
|
||
struct minimal_symbol *
|
||
lookup_minimal_symbol_by_pc (CORE_ADDR pc)
|
||
{
|
||
return lookup_minimal_symbol_by_pc_section (pc, NULL);
|
||
}
|
||
|
||
|
||
/* Return leading symbol character for a BFD. If BFD is NULL,
|
||
return the leading symbol character from the main objfile. */
|
||
|
||
static int get_symbol_leading_char (bfd *);
|
||
|
||
static int
|
||
get_symbol_leading_char (bfd *abfd)
|
||
{
|
||
if (abfd != NULL)
|
||
return bfd_get_symbol_leading_char (abfd);
|
||
if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
|
||
return bfd_get_symbol_leading_char (symfile_objfile->obfd);
|
||
return 0;
|
||
}
|
||
|
||
/* Prepare to start collecting minimal symbols. Note that presetting
|
||
msym_bunch_index to BUNCH_SIZE causes the first call to save a minimal
|
||
symbol to allocate the memory for the first bunch. */
|
||
|
||
void
|
||
init_minimal_symbol_collection (void)
|
||
{
|
||
msym_count = 0;
|
||
msym_bunch = NULL;
|
||
msym_bunch_index = BUNCH_SIZE;
|
||
}
|
||
|
||
void
|
||
prim_record_minimal_symbol (const char *name, CORE_ADDR address,
|
||
enum minimal_symbol_type ms_type,
|
||
struct objfile *objfile)
|
||
{
|
||
int section;
|
||
|
||
switch (ms_type)
|
||
{
|
||
case mst_text:
|
||
case mst_file_text:
|
||
case mst_solib_trampoline:
|
||
section = SECT_OFF_TEXT (objfile);
|
||
break;
|
||
case mst_data:
|
||
case mst_file_data:
|
||
section = SECT_OFF_DATA (objfile);
|
||
break;
|
||
case mst_bss:
|
||
case mst_file_bss:
|
||
section = SECT_OFF_BSS (objfile);
|
||
break;
|
||
default:
|
||
section = -1;
|
||
}
|
||
|
||
prim_record_minimal_symbol_and_info (name, address, ms_type,
|
||
section, NULL, objfile);
|
||
}
|
||
|
||
/* Record a minimal symbol in the msym bunches. Returns the symbol
|
||
newly created. */
|
||
|
||
struct minimal_symbol *
|
||
prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address,
|
||
enum minimal_symbol_type ms_type,
|
||
int section,
|
||
asection *bfd_section,
|
||
struct objfile *objfile)
|
||
{
|
||
struct obj_section *obj_section;
|
||
struct msym_bunch *new;
|
||
struct minimal_symbol *msymbol;
|
||
|
||
/* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
|
||
the minimal symbols, because if there is also another symbol
|
||
at the same address (e.g. the first function of the file),
|
||
lookup_minimal_symbol_by_pc would have no way of getting the
|
||
right one. */
|
||
if (ms_type == mst_file_text && name[0] == 'g'
|
||
&& (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
|
||
|| strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
|
||
return (NULL);
|
||
|
||
/* It's safe to strip the leading char here once, since the name
|
||
is also stored stripped in the minimal symbol table. */
|
||
if (name[0] == get_symbol_leading_char (objfile->obfd))
|
||
++name;
|
||
|
||
if (ms_type == mst_file_text && strncmp (name, "__gnu_compiled", 14) == 0)
|
||
return (NULL);
|
||
|
||
if (msym_bunch_index == BUNCH_SIZE)
|
||
{
|
||
new = XCALLOC (1, struct msym_bunch);
|
||
msym_bunch_index = 0;
|
||
new->next = msym_bunch;
|
||
msym_bunch = new;
|
||
}
|
||
msymbol = &msym_bunch->contents[msym_bunch_index];
|
||
SYMBOL_INIT_LANGUAGE_SPECIFIC (msymbol, language_unknown);
|
||
SYMBOL_LANGUAGE (msymbol) = language_auto;
|
||
SYMBOL_SET_NAMES (msymbol, (char *)name, strlen (name), objfile);
|
||
|
||
SYMBOL_VALUE_ADDRESS (msymbol) = address;
|
||
SYMBOL_SECTION (msymbol) = section;
|
||
SYMBOL_OBJ_SECTION (msymbol) = NULL;
|
||
|
||
/* Find obj_section corresponding to bfd_section. */
|
||
if (bfd_section)
|
||
ALL_OBJFILE_OSECTIONS (objfile, obj_section)
|
||
{
|
||
if (obj_section->the_bfd_section == bfd_section)
|
||
{
|
||
SYMBOL_OBJ_SECTION (msymbol) = obj_section;
|
||
break;
|
||
}
|
||
}
|
||
|
||
MSYMBOL_TYPE (msymbol) = ms_type;
|
||
MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
|
||
MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
|
||
MSYMBOL_SIZE (msymbol) = 0;
|
||
|
||
/* The hash pointers must be cleared! If they're not,
|
||
add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
|
||
msymbol->hash_next = NULL;
|
||
msymbol->demangled_hash_next = NULL;
|
||
|
||
msym_bunch_index++;
|
||
msym_count++;
|
||
OBJSTAT (objfile, n_minsyms++);
|
||
return msymbol;
|
||
}
|
||
|
||
/* Compare two minimal symbols by address and return a signed result based
|
||
on unsigned comparisons, so that we sort into unsigned numeric order.
|
||
Within groups with the same address, sort by name. */
|
||
|
||
static int
|
||
compare_minimal_symbols (const void *fn1p, const void *fn2p)
|
||
{
|
||
const struct minimal_symbol *fn1;
|
||
const struct minimal_symbol *fn2;
|
||
|
||
fn1 = (const struct minimal_symbol *) fn1p;
|
||
fn2 = (const struct minimal_symbol *) fn2p;
|
||
|
||
if (SYMBOL_VALUE_ADDRESS (fn1) < SYMBOL_VALUE_ADDRESS (fn2))
|
||
{
|
||
return (-1); /* addr 1 is less than addr 2 */
|
||
}
|
||
else if (SYMBOL_VALUE_ADDRESS (fn1) > SYMBOL_VALUE_ADDRESS (fn2))
|
||
{
|
||
return (1); /* addr 1 is greater than addr 2 */
|
||
}
|
||
else
|
||
/* addrs are equal: sort by name */
|
||
{
|
||
char *name1 = SYMBOL_LINKAGE_NAME (fn1);
|
||
char *name2 = SYMBOL_LINKAGE_NAME (fn2);
|
||
|
||
if (name1 && name2) /* both have names */
|
||
return strcmp (name1, name2);
|
||
else if (name2)
|
||
return 1; /* fn1 has no name, so it is "less" */
|
||
else if (name1) /* fn2 has no name, so it is "less" */
|
||
return -1;
|
||
else
|
||
return (0); /* neither has a name, so they're equal. */
|
||
}
|
||
}
|
||
|
||
/* Discard the currently collected minimal symbols, if any. If we wish
|
||
to save them for later use, we must have already copied them somewhere
|
||
else before calling this function.
|
||
|
||
FIXME: We could allocate the minimal symbol bunches on their own
|
||
obstack and then simply blow the obstack away when we are done with
|
||
it. Is it worth the extra trouble though? */
|
||
|
||
static void
|
||
do_discard_minimal_symbols_cleanup (void *arg)
|
||
{
|
||
struct msym_bunch *next;
|
||
|
||
while (msym_bunch != NULL)
|
||
{
|
||
next = msym_bunch->next;
|
||
xfree (msym_bunch);
|
||
msym_bunch = next;
|
||
}
|
||
}
|
||
|
||
struct cleanup *
|
||
make_cleanup_discard_minimal_symbols (void)
|
||
{
|
||
return make_cleanup (do_discard_minimal_symbols_cleanup, 0);
|
||
}
|
||
|
||
|
||
|
||
/* Compact duplicate entries out of a minimal symbol table by walking
|
||
through the table and compacting out entries with duplicate addresses
|
||
and matching names. Return the number of entries remaining.
|
||
|
||
On entry, the table resides between msymbol[0] and msymbol[mcount].
|
||
On exit, it resides between msymbol[0] and msymbol[result_count].
|
||
|
||
When files contain multiple sources of symbol information, it is
|
||
possible for the minimal symbol table to contain many duplicate entries.
|
||
As an example, SVR4 systems use ELF formatted object files, which
|
||
usually contain at least two different types of symbol tables (a
|
||
standard ELF one and a smaller dynamic linking table), as well as
|
||
DWARF debugging information for files compiled with -g.
|
||
|
||
Without compacting, the minimal symbol table for gdb itself contains
|
||
over a 1000 duplicates, about a third of the total table size. Aside
|
||
from the potential trap of not noticing that two successive entries
|
||
identify the same location, this duplication impacts the time required
|
||
to linearly scan the table, which is done in a number of places. So we
|
||
just do one linear scan here and toss out the duplicates.
|
||
|
||
Note that we are not concerned here about recovering the space that
|
||
is potentially freed up, because the strings themselves are allocated
|
||
on the objfile_obstack, and will get automatically freed when the symbol
|
||
table is freed. The caller can free up the unused minimal symbols at
|
||
the end of the compacted region if their allocation strategy allows it.
|
||
|
||
Also note we only go up to the next to last entry within the loop
|
||
and then copy the last entry explicitly after the loop terminates.
|
||
|
||
Since the different sources of information for each symbol may
|
||
have different levels of "completeness", we may have duplicates
|
||
that have one entry with type "mst_unknown" and the other with a
|
||
known type. So if the one we are leaving alone has type mst_unknown,
|
||
overwrite its type with the type from the one we are compacting out. */
|
||
|
||
static int
|
||
compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
|
||
struct objfile *objfile)
|
||
{
|
||
struct minimal_symbol *copyfrom;
|
||
struct minimal_symbol *copyto;
|
||
|
||
if (mcount > 0)
|
||
{
|
||
copyfrom = copyto = msymbol;
|
||
while (copyfrom < msymbol + mcount - 1)
|
||
{
|
||
if (SYMBOL_VALUE_ADDRESS (copyfrom)
|
||
== SYMBOL_VALUE_ADDRESS ((copyfrom + 1))
|
||
&& strcmp (SYMBOL_LINKAGE_NAME (copyfrom),
|
||
SYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
|
||
{
|
||
if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
|
||
{
|
||
MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
|
||
}
|
||
copyfrom++;
|
||
}
|
||
else
|
||
*copyto++ = *copyfrom++;
|
||
}
|
||
*copyto++ = *copyfrom++;
|
||
mcount = copyto - msymbol;
|
||
}
|
||
return (mcount);
|
||
}
|
||
|
||
/* Build (or rebuild) the minimal symbol hash tables. This is necessary
|
||
after compacting or sorting the table since the entries move around
|
||
thus causing the internal minimal_symbol pointers to become jumbled. */
|
||
|
||
static void
|
||
build_minimal_symbol_hash_tables (struct objfile *objfile)
|
||
{
|
||
int i;
|
||
struct minimal_symbol *msym;
|
||
|
||
/* Clear the hash tables. */
|
||
for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
|
||
{
|
||
objfile->msymbol_hash[i] = 0;
|
||
objfile->msymbol_demangled_hash[i] = 0;
|
||
}
|
||
|
||
/* Now, (re)insert the actual entries. */
|
||
for (i = objfile->minimal_symbol_count, msym = objfile->msymbols;
|
||
i > 0;
|
||
i--, msym++)
|
||
{
|
||
msym->hash_next = 0;
|
||
add_minsym_to_hash_table (msym, objfile->msymbol_hash);
|
||
|
||
msym->demangled_hash_next = 0;
|
||
if (SYMBOL_SEARCH_NAME (msym) != SYMBOL_LINKAGE_NAME (msym))
|
||
add_minsym_to_demangled_hash_table (msym,
|
||
objfile->msymbol_demangled_hash);
|
||
}
|
||
}
|
||
|
||
/* Add the minimal symbols in the existing bunches to the objfile's official
|
||
minimal symbol table. In most cases there is no minimal symbol table yet
|
||
for this objfile, and the existing bunches are used to create one. Once
|
||
in a while (for shared libraries for example), we add symbols (e.g. common
|
||
symbols) to an existing objfile.
|
||
|
||
Because of the way minimal symbols are collected, we generally have no way
|
||
of knowing what source language applies to any particular minimal symbol.
|
||
Specifically, we have no way of knowing if the minimal symbol comes from a
|
||
C++ compilation unit or not. So for the sake of supporting cached
|
||
demangled C++ names, we have no choice but to try and demangle each new one
|
||
that comes in. If the demangling succeeds, then we assume it is a C++
|
||
symbol and set the symbol's language and demangled name fields
|
||
appropriately. Note that in order to avoid unnecessary demanglings, and
|
||
allocating obstack space that subsequently can't be freed for the demangled
|
||
names, we mark all newly added symbols with language_auto. After
|
||
compaction of the minimal symbols, we go back and scan the entire minimal
|
||
symbol table looking for these new symbols. For each new symbol we attempt
|
||
to demangle it, and if successful, record it as a language_cplus symbol
|
||
and cache the demangled form on the symbol obstack. Symbols which don't
|
||
demangle are marked as language_unknown symbols, which inhibits future
|
||
attempts to demangle them if we later add more minimal symbols. */
|
||
|
||
void
|
||
install_minimal_symbols (struct objfile *objfile)
|
||
{
|
||
int bindex;
|
||
int mcount;
|
||
struct msym_bunch *bunch;
|
||
struct minimal_symbol *msymbols;
|
||
int alloc_count;
|
||
|
||
if (msym_count > 0)
|
||
{
|
||
/* Allocate enough space in the obstack, into which we will gather the
|
||
bunches of new and existing minimal symbols, sort them, and then
|
||
compact out the duplicate entries. Once we have a final table,
|
||
we will give back the excess space. */
|
||
|
||
alloc_count = msym_count + objfile->minimal_symbol_count + 1;
|
||
obstack_blank (&objfile->objfile_obstack,
|
||
alloc_count * sizeof (struct minimal_symbol));
|
||
msymbols = (struct minimal_symbol *)
|
||
obstack_base (&objfile->objfile_obstack);
|
||
|
||
/* Copy in the existing minimal symbols, if there are any. */
|
||
|
||
if (objfile->minimal_symbol_count)
|
||
memcpy ((char *) msymbols, (char *) objfile->msymbols,
|
||
objfile->minimal_symbol_count * sizeof (struct minimal_symbol));
|
||
|
||
/* Walk through the list of minimal symbol bunches, adding each symbol
|
||
to the new contiguous array of symbols. Note that we start with the
|
||
current, possibly partially filled bunch (thus we use the current
|
||
msym_bunch_index for the first bunch we copy over), and thereafter
|
||
each bunch is full. */
|
||
|
||
mcount = objfile->minimal_symbol_count;
|
||
|
||
for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next)
|
||
{
|
||
for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++)
|
||
msymbols[mcount] = bunch->contents[bindex];
|
||
msym_bunch_index = BUNCH_SIZE;
|
||
}
|
||
|
||
/* Sort the minimal symbols by address. */
|
||
|
||
qsort (msymbols, mcount, sizeof (struct minimal_symbol),
|
||
compare_minimal_symbols);
|
||
|
||
/* Compact out any duplicates, and free up whatever space we are
|
||
no longer using. */
|
||
|
||
mcount = compact_minimal_symbols (msymbols, mcount, objfile);
|
||
|
||
obstack_blank (&objfile->objfile_obstack,
|
||
(mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
|
||
msymbols = (struct minimal_symbol *)
|
||
obstack_finish (&objfile->objfile_obstack);
|
||
|
||
/* We also terminate the minimal symbol table with a "null symbol",
|
||
which is *not* included in the size of the table. This makes it
|
||
easier to find the end of the table when we are handed a pointer
|
||
to some symbol in the middle of it. Zero out the fields in the
|
||
"null symbol" allocated at the end of the array. Note that the
|
||
symbol count does *not* include this null symbol, which is why it
|
||
is indexed by mcount and not mcount-1. */
|
||
|
||
SYMBOL_LINKAGE_NAME (&msymbols[mcount]) = NULL;
|
||
SYMBOL_VALUE_ADDRESS (&msymbols[mcount]) = 0;
|
||
MSYMBOL_TARGET_FLAG_1 (&msymbols[mcount]) = 0;
|
||
MSYMBOL_TARGET_FLAG_2 (&msymbols[mcount]) = 0;
|
||
MSYMBOL_SIZE (&msymbols[mcount]) = 0;
|
||
MSYMBOL_TYPE (&msymbols[mcount]) = mst_unknown;
|
||
SYMBOL_INIT_LANGUAGE_SPECIFIC (&msymbols[mcount], language_unknown);
|
||
|
||
/* Attach the minimal symbol table to the specified objfile.
|
||
The strings themselves are also located in the objfile_obstack
|
||
of this objfile. */
|
||
|
||
objfile->minimal_symbol_count = mcount;
|
||
objfile->msymbols = msymbols;
|
||
|
||
/* Try to guess the appropriate C++ ABI by looking at the names
|
||
of the minimal symbols in the table. */
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < mcount; i++)
|
||
{
|
||
/* If a symbol's name starts with _Z and was successfully
|
||
demangled, then we can assume we've found a GNU v3 symbol.
|
||
For now we set the C++ ABI globally; if the user is
|
||
mixing ABIs then the user will need to "set cp-abi"
|
||
manually. */
|
||
const char *name = SYMBOL_LINKAGE_NAME (&objfile->msymbols[i]);
|
||
if (name[0] == '_' && name[1] == 'Z'
|
||
&& SYMBOL_DEMANGLED_NAME (&objfile->msymbols[i]) != NULL)
|
||
{
|
||
set_cp_abi_as_auto_default ("gnu-v3");
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now build the hash tables; we can't do this incrementally
|
||
at an earlier point since we weren't finished with the obstack
|
||
yet. (And if the msymbol obstack gets moved, all the internal
|
||
pointers to other msymbols need to be adjusted.) */
|
||
build_minimal_symbol_hash_tables (objfile);
|
||
}
|
||
}
|
||
|
||
/* Sort all the minimal symbols in OBJFILE. */
|
||
|
||
void
|
||
msymbols_sort (struct objfile *objfile)
|
||
{
|
||
qsort (objfile->msymbols, objfile->minimal_symbol_count,
|
||
sizeof (struct minimal_symbol), compare_minimal_symbols);
|
||
build_minimal_symbol_hash_tables (objfile);
|
||
}
|
||
|
||
/* Check if PC is in a shared library trampoline code stub.
|
||
Return minimal symbol for the trampoline entry or NULL if PC is not
|
||
in a trampoline code stub. */
|
||
|
||
struct minimal_symbol *
|
||
lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
|
||
{
|
||
struct obj_section *section = find_pc_section (pc);
|
||
struct minimal_symbol *msymbol;
|
||
|
||
if (section == NULL)
|
||
return NULL;
|
||
msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1);
|
||
|
||
if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
|
||
return msymbol;
|
||
return NULL;
|
||
}
|
||
|
||
/* If PC is in a shared library trampoline code stub, return the
|
||
address of the `real' function belonging to the stub.
|
||
Return 0 if PC is not in a trampoline code stub or if the real
|
||
function is not found in the minimal symbol table.
|
||
|
||
We may fail to find the right function if a function with the
|
||
same name is defined in more than one shared library, but this
|
||
is considered bad programming style. We could return 0 if we find
|
||
a duplicate function in case this matters someday. */
|
||
|
||
CORE_ADDR
|
||
find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
|
||
{
|
||
struct objfile *objfile;
|
||
struct minimal_symbol *msymbol;
|
||
struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
|
||
|
||
if (tsymbol != NULL)
|
||
{
|
||
ALL_MSYMBOLS (objfile, msymbol)
|
||
{
|
||
if (MSYMBOL_TYPE (msymbol) == mst_text
|
||
&& strcmp (SYMBOL_LINKAGE_NAME (msymbol),
|
||
SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
|
||
return SYMBOL_VALUE_ADDRESS (msymbol);
|
||
|
||
/* Also handle minimal symbols pointing to function descriptors. */
|
||
if (MSYMBOL_TYPE (msymbol) == mst_data
|
||
&& strcmp (SYMBOL_LINKAGE_NAME (msymbol),
|
||
SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
|
||
{
|
||
CORE_ADDR func;
|
||
func = gdbarch_convert_from_func_ptr_addr
|
||
(get_objfile_arch (objfile),
|
||
SYMBOL_VALUE_ADDRESS (msymbol),
|
||
¤t_target);
|
||
|
||
/* Ignore data symbols that are not function descriptors. */
|
||
if (func != SYMBOL_VALUE_ADDRESS (msymbol))
|
||
return func;
|
||
}
|
||
}
|
||
}
|
||
return 0;
|
||
}
|