binutils-gdb/opcodes/aarch64-dis.c
Tamar Christina 65a55fbbd9 [AArch64] Add dot product support for AArch64 to binutils
gas/
	* config/tc-aarch64.c (aarch64_reg_parse_32_64): Accept 4B.
	(aarch64_features): Added dotprod.
	* doc/c-aarch64.texi: Added dotprod.
	* testsuite/gas/aarch64/dotproduct.d: New.
	* testsuite/gas/aarch64/dotproduct.s: New.

opcodes/
	* aarch64-asm.c (aarch64_ins_reglane): Added 4B dotprod.
	* aarch64-dis.c (aarch64_ext_reglane): Likewise.
	* aarch64-tbl.h (QL_V3DOT, QL_V2DOT): New.
	(aarch64_feature_dotprod, DOT_INSN): New.
	(udot, sdot): New.
	* aarch64-dis-2.c: Regenerated.

include/
	* opcode/aarch64.h: (AARCH64_FEATURE_DOTPROD): New.
	(aarch64_insn_class): Added dotprod.
2017-06-28 11:09:01 +01:00

3252 lines
95 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* aarch64-dis.c -- AArch64 disassembler.
Copyright (C) 2009-2017 Free Software Foundation, Inc.
Contributed by ARM Ltd.
This file is part of the GNU opcodes library.
This library is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING3. If not,
see <http://www.gnu.org/licenses/>. */
#include "sysdep.h"
#include "bfd_stdint.h"
#include "disassemble.h"
#include "libiberty.h"
#include "opintl.h"
#include "aarch64-dis.h"
#include "elf-bfd.h"
#define ERR_OK 0
#define ERR_UND -1
#define ERR_UNP -3
#define ERR_NYI -5
#define INSNLEN 4
/* Cached mapping symbol state. */
enum map_type
{
MAP_INSN,
MAP_DATA
};
static enum map_type last_type;
static int last_mapping_sym = -1;
static bfd_vma last_mapping_addr = 0;
/* Other options */
static int no_aliases = 0; /* If set disassemble as most general inst. */
static void
set_default_aarch64_dis_options (struct disassemble_info *info ATTRIBUTE_UNUSED)
{
}
static void
parse_aarch64_dis_option (const char *option, unsigned int len ATTRIBUTE_UNUSED)
{
/* Try to match options that are simple flags */
if (CONST_STRNEQ (option, "no-aliases"))
{
no_aliases = 1;
return;
}
if (CONST_STRNEQ (option, "aliases"))
{
no_aliases = 0;
return;
}
#ifdef DEBUG_AARCH64
if (CONST_STRNEQ (option, "debug_dump"))
{
debug_dump = 1;
return;
}
#endif /* DEBUG_AARCH64 */
/* Invalid option. */
fprintf (stderr, _("Unrecognised disassembler option: %s\n"), option);
}
static void
parse_aarch64_dis_options (const char *options)
{
const char *option_end;
if (options == NULL)
return;
while (*options != '\0')
{
/* Skip empty options. */
if (*options == ',')
{
options++;
continue;
}
/* We know that *options is neither NUL or a comma. */
option_end = options + 1;
while (*option_end != ',' && *option_end != '\0')
option_end++;
parse_aarch64_dis_option (options, option_end - options);
/* Go on to the next one. If option_end points to a comma, it
will be skipped above. */
options = option_end;
}
}
/* Functions doing the instruction disassembling. */
/* The unnamed arguments consist of the number of fields and information about
these fields where the VALUE will be extracted from CODE and returned.
MASK can be zero or the base mask of the opcode.
N.B. the fields are required to be in such an order than the most signficant
field for VALUE comes the first, e.g. the <index> in
SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]
is encoded in H:L:M in some cases, the fields H:L:M should be passed in
the order of H, L, M. */
aarch64_insn
extract_fields (aarch64_insn code, aarch64_insn mask, ...)
{
uint32_t num;
const aarch64_field *field;
enum aarch64_field_kind kind;
va_list va;
va_start (va, mask);
num = va_arg (va, uint32_t);
assert (num <= 5);
aarch64_insn value = 0x0;
while (num--)
{
kind = va_arg (va, enum aarch64_field_kind);
field = &fields[kind];
value <<= field->width;
value |= extract_field (kind, code, mask);
}
return value;
}
/* Extract the value of all fields in SELF->fields from instruction CODE.
The least significant bit comes from the final field. */
static aarch64_insn
extract_all_fields (const aarch64_operand *self, aarch64_insn code)
{
aarch64_insn value;
unsigned int i;
enum aarch64_field_kind kind;
value = 0;
for (i = 0; i < ARRAY_SIZE (self->fields) && self->fields[i] != FLD_NIL; ++i)
{
kind = self->fields[i];
value <<= fields[kind].width;
value |= extract_field (kind, code, 0);
}
return value;
}
/* Sign-extend bit I of VALUE. */
static inline int32_t
sign_extend (aarch64_insn value, unsigned i)
{
uint32_t ret = value;
assert (i < 32);
if ((value >> i) & 0x1)
{
uint32_t val = (uint32_t)(-1) << i;
ret = ret | val;
}
return (int32_t) ret;
}
/* N.B. the following inline helpfer functions create a dependency on the
order of operand qualifier enumerators. */
/* Given VALUE, return qualifier for a general purpose register. */
static inline enum aarch64_opnd_qualifier
get_greg_qualifier_from_value (aarch64_insn value)
{
enum aarch64_opnd_qualifier qualifier = AARCH64_OPND_QLF_W + value;
assert (value <= 0x1
&& aarch64_get_qualifier_standard_value (qualifier) == value);
return qualifier;
}
/* Given VALUE, return qualifier for a vector register. This does not support
decoding instructions that accept the 2H vector type. */
static inline enum aarch64_opnd_qualifier
get_vreg_qualifier_from_value (aarch64_insn value)
{
enum aarch64_opnd_qualifier qualifier = AARCH64_OPND_QLF_V_8B + value;
/* Instructions using vector type 2H should not call this function. Skip over
the 2H qualifier. */
if (qualifier >= AARCH64_OPND_QLF_V_2H)
qualifier += 1;
assert (value <= 0x8
&& aarch64_get_qualifier_standard_value (qualifier) == value);
return qualifier;
}
/* Given VALUE, return qualifier for an FP or AdvSIMD scalar register. */
static inline enum aarch64_opnd_qualifier
get_sreg_qualifier_from_value (aarch64_insn value)
{
enum aarch64_opnd_qualifier qualifier = AARCH64_OPND_QLF_S_B + value;
assert (value <= 0x4
&& aarch64_get_qualifier_standard_value (qualifier) == value);
return qualifier;
}
/* Given the instruction in *INST which is probably half way through the
decoding and our caller wants to know the expected qualifier for operand
I. Return such a qualifier if we can establish it; otherwise return
AARCH64_OPND_QLF_NIL. */
static aarch64_opnd_qualifier_t
get_expected_qualifier (const aarch64_inst *inst, int i)
{
aarch64_opnd_qualifier_seq_t qualifiers;
/* Should not be called if the qualifier is known. */
assert (inst->operands[i].qualifier == AARCH64_OPND_QLF_NIL);
if (aarch64_find_best_match (inst, inst->opcode->qualifiers_list,
i, qualifiers))
return qualifiers[i];
else
return AARCH64_OPND_QLF_NIL;
}
/* Operand extractors. */
int
aarch64_ext_regno (const aarch64_operand *self, aarch64_opnd_info *info,
const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
info->reg.regno = extract_field (self->fields[0], code, 0);
return 1;
}
int
aarch64_ext_regno_pair (const aarch64_operand *self ATTRIBUTE_UNUSED, aarch64_opnd_info *info,
const aarch64_insn code ATTRIBUTE_UNUSED,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
assert (info->idx == 1
|| info->idx ==3);
info->reg.regno = inst->operands[info->idx - 1].reg.regno + 1;
return 1;
}
/* e.g. IC <ic_op>{, <Xt>}. */
int
aarch64_ext_regrt_sysins (const aarch64_operand *self, aarch64_opnd_info *info,
const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
info->reg.regno = extract_field (self->fields[0], code, 0);
assert (info->idx == 1
&& (aarch64_get_operand_class (inst->operands[0].type)
== AARCH64_OPND_CLASS_SYSTEM));
/* This will make the constraint checking happy and more importantly will
help the disassembler determine whether this operand is optional or
not. */
info->present = aarch64_sys_ins_reg_has_xt (inst->operands[0].sysins_op);
return 1;
}
/* e.g. SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]. */
int
aarch64_ext_reglane (const aarch64_operand *self, aarch64_opnd_info *info,
const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
/* regno */
info->reglane.regno = extract_field (self->fields[0], code,
inst->opcode->mask);
/* Index and/or type. */
if (inst->opcode->iclass == asisdone
|| inst->opcode->iclass == asimdins)
{
if (info->type == AARCH64_OPND_En
&& inst->opcode->operands[0] == AARCH64_OPND_Ed)
{
unsigned shift;
/* index2 for e.g. INS <Vd>.<Ts>[<index1>], <Vn>.<Ts>[<index2>]. */
assert (info->idx == 1); /* Vn */
aarch64_insn value = extract_field (FLD_imm4, code, 0);
/* Depend on AARCH64_OPND_Ed to determine the qualifier. */
info->qualifier = get_expected_qualifier (inst, info->idx);
shift = get_logsz (aarch64_get_qualifier_esize (info->qualifier));
info->reglane.index = value >> shift;
}
else
{
/* index and type for e.g. DUP <V><d>, <Vn>.<T>[<index>].
imm5<3:0> <V>
0000 RESERVED
xxx1 B
xx10 H
x100 S
1000 D */
int pos = -1;
aarch64_insn value = extract_field (FLD_imm5, code, 0);
while (++pos <= 3 && (value & 0x1) == 0)
value >>= 1;
if (pos > 3)
return 0;
info->qualifier = get_sreg_qualifier_from_value (pos);
info->reglane.index = (unsigned) (value >> 1);
}
}
else if (inst->opcode->iclass == dotproduct)
{
/* Need information in other operand(s) to help decoding. */
info->qualifier = get_expected_qualifier (inst, info->idx);
switch (info->qualifier)
{
case AARCH64_OPND_QLF_S_B:
/* L:H */
info->reglane.index = extract_fields (code, 0, 2, FLD_H, FLD_L);
info->reglane.regno &= 0x1f;
break;
default:
return 0;
}
}
else
{
/* Index only for e.g. SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]
or SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]. */
/* Need information in other operand(s) to help decoding. */
info->qualifier = get_expected_qualifier (inst, info->idx);
switch (info->qualifier)
{
case AARCH64_OPND_QLF_S_H:
/* h:l:m */
info->reglane.index = extract_fields (code, 0, 3, FLD_H, FLD_L,
FLD_M);
info->reglane.regno &= 0xf;
break;
case AARCH64_OPND_QLF_S_S:
/* h:l */
info->reglane.index = extract_fields (code, 0, 2, FLD_H, FLD_L);
break;
case AARCH64_OPND_QLF_S_D:
/* H */
info->reglane.index = extract_field (FLD_H, code, 0);
break;
default:
return 0;
}
if (inst->opcode->op == OP_FCMLA_ELEM)
{
/* Complex operand takes two elements. */
if (info->reglane.index & 1)
return 0;
info->reglane.index /= 2;
}
}
return 1;
}
int
aarch64_ext_reglist (const aarch64_operand *self, aarch64_opnd_info *info,
const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
/* R */
info->reglist.first_regno = extract_field (self->fields[0], code, 0);
/* len */
info->reglist.num_regs = extract_field (FLD_len, code, 0) + 1;
return 1;
}
/* Decode Rt and opcode fields of Vt in AdvSIMD load/store instructions. */
int
aarch64_ext_ldst_reglist (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst)
{
aarch64_insn value;
/* Number of elements in each structure to be loaded/stored. */
unsigned expected_num = get_opcode_dependent_value (inst->opcode);
struct
{
unsigned is_reserved;
unsigned num_regs;
unsigned num_elements;
} data [] =
{ {0, 4, 4},
{1, 4, 4},
{0, 4, 1},
{0, 4, 2},
{0, 3, 3},
{1, 3, 3},
{0, 3, 1},
{0, 1, 1},
{0, 2, 2},
{1, 2, 2},
{0, 2, 1},
};
/* Rt */
info->reglist.first_regno = extract_field (FLD_Rt, code, 0);
/* opcode */
value = extract_field (FLD_opcode, code, 0);
/* PR 21595: Check for a bogus value. */
if (value >= ARRAY_SIZE (data))
return 0;
if (expected_num != data[value].num_elements || data[value].is_reserved)
return 0;
info->reglist.num_regs = data[value].num_regs;
return 1;
}
/* Decode Rt and S fields of Vt in AdvSIMD load single structure to all
lanes instructions. */
int
aarch64_ext_ldst_reglist_r (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst)
{
aarch64_insn value;
/* Rt */
info->reglist.first_regno = extract_field (FLD_Rt, code, 0);
/* S */
value = extract_field (FLD_S, code, 0);
/* Number of registers is equal to the number of elements in
each structure to be loaded/stored. */
info->reglist.num_regs = get_opcode_dependent_value (inst->opcode);
assert (info->reglist.num_regs >= 1 && info->reglist.num_regs <= 4);
/* Except when it is LD1R. */
if (info->reglist.num_regs == 1 && value == (aarch64_insn) 1)
info->reglist.num_regs = 2;
return 1;
}
/* Decode Q, opcode<2:1>, S, size and Rt fields of Vt in AdvSIMD
load/store single element instructions. */
int
aarch64_ext_ldst_elemlist (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
aarch64_field field = {0, 0};
aarch64_insn QSsize; /* fields Q:S:size. */
aarch64_insn opcodeh2; /* opcode<2:1> */
/* Rt */
info->reglist.first_regno = extract_field (FLD_Rt, code, 0);
/* Decode the index, opcode<2:1> and size. */
gen_sub_field (FLD_asisdlso_opcode, 1, 2, &field);
opcodeh2 = extract_field_2 (&field, code, 0);
QSsize = extract_fields (code, 0, 3, FLD_Q, FLD_S, FLD_vldst_size);
switch (opcodeh2)
{
case 0x0:
info->qualifier = AARCH64_OPND_QLF_S_B;
/* Index encoded in "Q:S:size". */
info->reglist.index = QSsize;
break;
case 0x1:
if (QSsize & 0x1)
/* UND. */
return 0;
info->qualifier = AARCH64_OPND_QLF_S_H;
/* Index encoded in "Q:S:size<1>". */
info->reglist.index = QSsize >> 1;
break;
case 0x2:
if ((QSsize >> 1) & 0x1)
/* UND. */
return 0;
if ((QSsize & 0x1) == 0)
{
info->qualifier = AARCH64_OPND_QLF_S_S;
/* Index encoded in "Q:S". */
info->reglist.index = QSsize >> 2;
}
else
{
if (extract_field (FLD_S, code, 0))
/* UND */
return 0;
info->qualifier = AARCH64_OPND_QLF_S_D;
/* Index encoded in "Q". */
info->reglist.index = QSsize >> 3;
}
break;
default:
return 0;
}
info->reglist.has_index = 1;
info->reglist.num_regs = 0;
/* Number of registers is equal to the number of elements in
each structure to be loaded/stored. */
info->reglist.num_regs = get_opcode_dependent_value (inst->opcode);
assert (info->reglist.num_regs >= 1 && info->reglist.num_regs <= 4);
return 1;
}
/* Decode fields immh:immb and/or Q for e.g.
SSHR <Vd>.<T>, <Vn>.<T>, #<shift>
or SSHR <V><d>, <V><n>, #<shift>. */
int
aarch64_ext_advsimd_imm_shift (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst)
{
int pos;
aarch64_insn Q, imm, immh;
enum aarch64_insn_class iclass = inst->opcode->iclass;
immh = extract_field (FLD_immh, code, 0);
if (immh == 0)
return 0;
imm = extract_fields (code, 0, 2, FLD_immh, FLD_immb);
pos = 4;
/* Get highest set bit in immh. */
while (--pos >= 0 && (immh & 0x8) == 0)
immh <<= 1;
assert ((iclass == asimdshf || iclass == asisdshf)
&& (info->type == AARCH64_OPND_IMM_VLSR
|| info->type == AARCH64_OPND_IMM_VLSL));
if (iclass == asimdshf)
{
Q = extract_field (FLD_Q, code, 0);
/* immh Q <T>
0000 x SEE AdvSIMD modified immediate
0001 0 8B
0001 1 16B
001x 0 4H
001x 1 8H
01xx 0 2S
01xx 1 4S
1xxx 0 RESERVED
1xxx 1 2D */
info->qualifier =
get_vreg_qualifier_from_value ((pos << 1) | (int) Q);
}
else
info->qualifier = get_sreg_qualifier_from_value (pos);
if (info->type == AARCH64_OPND_IMM_VLSR)
/* immh <shift>
0000 SEE AdvSIMD modified immediate
0001 (16-UInt(immh:immb))
001x (32-UInt(immh:immb))
01xx (64-UInt(immh:immb))
1xxx (128-UInt(immh:immb)) */
info->imm.value = (16 << pos) - imm;
else
/* immh:immb
immh <shift>
0000 SEE AdvSIMD modified immediate
0001 (UInt(immh:immb)-8)
001x (UInt(immh:immb)-16)
01xx (UInt(immh:immb)-32)
1xxx (UInt(immh:immb)-64) */
info->imm.value = imm - (8 << pos);
return 1;
}
/* Decode shift immediate for e.g. sshr (imm). */
int
aarch64_ext_shll_imm (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
int64_t imm;
aarch64_insn val;
val = extract_field (FLD_size, code, 0);
switch (val)
{
case 0: imm = 8; break;
case 1: imm = 16; break;
case 2: imm = 32; break;
default: return 0;
}
info->imm.value = imm;
return 1;
}
/* Decode imm for e.g. BFM <Wd>, <Wn>, #<immr>, #<imms>.
value in the field(s) will be extracted as unsigned immediate value. */
int
aarch64_ext_imm (const aarch64_operand *self, aarch64_opnd_info *info,
const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
int64_t imm;
imm = extract_all_fields (self, code);
if (operand_need_sign_extension (self))
imm = sign_extend (imm, get_operand_fields_width (self) - 1);
if (operand_need_shift_by_two (self))
imm <<= 2;
if (info->type == AARCH64_OPND_ADDR_ADRP)
imm <<= 12;
info->imm.value = imm;
return 1;
}
/* Decode imm and its shifter for e.g. MOVZ <Wd>, #<imm16>{, LSL #<shift>}. */
int
aarch64_ext_imm_half (const aarch64_operand *self, aarch64_opnd_info *info,
const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
aarch64_ext_imm (self, info, code, inst);
info->shifter.kind = AARCH64_MOD_LSL;
info->shifter.amount = extract_field (FLD_hw, code, 0) << 4;
return 1;
}
/* Decode cmode and "a:b:c:d:e:f:g:h" for e.g.
MOVI <Vd>.<T>, #<imm8> {, LSL #<amount>}. */
int
aarch64_ext_advsimd_imm_modified (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info,
const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
uint64_t imm;
enum aarch64_opnd_qualifier opnd0_qualifier = inst->operands[0].qualifier;
aarch64_field field = {0, 0};
assert (info->idx == 1);
if (info->type == AARCH64_OPND_SIMD_FPIMM)
info->imm.is_fp = 1;
/* a:b:c:d:e:f:g:h */
imm = extract_fields (code, 0, 2, FLD_abc, FLD_defgh);
if (!info->imm.is_fp && aarch64_get_qualifier_esize (opnd0_qualifier) == 8)
{
/* Either MOVI <Dd>, #<imm>
or MOVI <Vd>.2D, #<imm>.
<imm> is a 64-bit immediate
'aaaaaaaabbbbbbbbccccccccddddddddeeeeeeeeffffffffgggggggghhhhhhhh',
encoded in "a:b:c:d:e:f:g:h". */
int i;
unsigned abcdefgh = imm;
for (imm = 0ull, i = 0; i < 8; i++)
if (((abcdefgh >> i) & 0x1) != 0)
imm |= 0xffull << (8 * i);
}
info->imm.value = imm;
/* cmode */
info->qualifier = get_expected_qualifier (inst, info->idx);
switch (info->qualifier)
{
case AARCH64_OPND_QLF_NIL:
/* no shift */
info->shifter.kind = AARCH64_MOD_NONE;
return 1;
case AARCH64_OPND_QLF_LSL:
/* shift zeros */
info->shifter.kind = AARCH64_MOD_LSL;
switch (aarch64_get_qualifier_esize (opnd0_qualifier))
{
case 4: gen_sub_field (FLD_cmode, 1, 2, &field); break; /* per word */
case 2: gen_sub_field (FLD_cmode, 1, 1, &field); break; /* per half */
case 1: gen_sub_field (FLD_cmode, 1, 0, &field); break; /* per byte */
default: assert (0); return 0;
}
/* 00: 0; 01: 8; 10:16; 11:24. */
info->shifter.amount = extract_field_2 (&field, code, 0) << 3;
break;
case AARCH64_OPND_QLF_MSL:
/* shift ones */
info->shifter.kind = AARCH64_MOD_MSL;
gen_sub_field (FLD_cmode, 0, 1, &field); /* per word */
info->shifter.amount = extract_field_2 (&field, code, 0) ? 16 : 8;
break;
default:
assert (0);
return 0;
}
return 1;
}
/* Decode an 8-bit floating-point immediate. */
int
aarch64_ext_fpimm (const aarch64_operand *self, aarch64_opnd_info *info,
const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
info->imm.value = extract_all_fields (self, code);
info->imm.is_fp = 1;
return 1;
}
/* Decode a 1-bit rotate immediate (#90 or #270). */
int
aarch64_ext_imm_rotate1 (const aarch64_operand *self, aarch64_opnd_info *info,
const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
uint64_t rot = extract_field (self->fields[0], code, 0);
assert (rot < 2U);
info->imm.value = rot * 180 + 90;
return 1;
}
/* Decode a 2-bit rotate immediate (#0, #90, #180 or #270). */
int
aarch64_ext_imm_rotate2 (const aarch64_operand *self, aarch64_opnd_info *info,
const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
uint64_t rot = extract_field (self->fields[0], code, 0);
assert (rot < 4U);
info->imm.value = rot * 90;
return 1;
}
/* Decode scale for e.g. SCVTF <Dd>, <Wn>, #<fbits>. */
int
aarch64_ext_fbits (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
info->imm.value = 64- extract_field (FLD_scale, code, 0);
return 1;
}
/* Decode arithmetic immediate for e.g.
SUBS <Wd>, <Wn|WSP>, #<imm> {, <shift>}. */
int
aarch64_ext_aimm (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
aarch64_insn value;
info->shifter.kind = AARCH64_MOD_LSL;
/* shift */
value = extract_field (FLD_shift, code, 0);
if (value >= 2)
return 0;
info->shifter.amount = value ? 12 : 0;
/* imm12 (unsigned) */
info->imm.value = extract_field (FLD_imm12, code, 0);
return 1;
}
/* Return true if VALUE is a valid logical immediate encoding, storing the
decoded value in *RESULT if so. ESIZE is the number of bytes in the
decoded immediate. */
static int
decode_limm (uint32_t esize, aarch64_insn value, int64_t *result)
{
uint64_t imm, mask;
uint32_t N, R, S;
unsigned simd_size;
/* value is N:immr:imms. */
S = value & 0x3f;
R = (value >> 6) & 0x3f;
N = (value >> 12) & 0x1;
/* The immediate value is S+1 bits to 1, left rotated by SIMDsize - R
(in other words, right rotated by R), then replicated. */
if (N != 0)
{
simd_size = 64;
mask = 0xffffffffffffffffull;
}
else
{
switch (S)
{
case 0x00 ... 0x1f: /* 0xxxxx */ simd_size = 32; break;
case 0x20 ... 0x2f: /* 10xxxx */ simd_size = 16; S &= 0xf; break;
case 0x30 ... 0x37: /* 110xxx */ simd_size = 8; S &= 0x7; break;
case 0x38 ... 0x3b: /* 1110xx */ simd_size = 4; S &= 0x3; break;
case 0x3c ... 0x3d: /* 11110x */ simd_size = 2; S &= 0x1; break;
default: return 0;
}
mask = (1ull << simd_size) - 1;
/* Top bits are IGNORED. */
R &= simd_size - 1;
}
if (simd_size > esize * 8)
return 0;
/* NOTE: if S = simd_size - 1 we get 0xf..f which is rejected. */
if (S == simd_size - 1)
return 0;
/* S+1 consecutive bits to 1. */
/* NOTE: S can't be 63 due to detection above. */
imm = (1ull << (S + 1)) - 1;
/* Rotate to the left by simd_size - R. */
if (R != 0)
imm = ((imm << (simd_size - R)) & mask) | (imm >> R);
/* Replicate the value according to SIMD size. */
switch (simd_size)
{
case 2: imm = (imm << 2) | imm;
/* Fall through. */
case 4: imm = (imm << 4) | imm;
/* Fall through. */
case 8: imm = (imm << 8) | imm;
/* Fall through. */
case 16: imm = (imm << 16) | imm;
/* Fall through. */
case 32: imm = (imm << 32) | imm;
/* Fall through. */
case 64: break;
default: assert (0); return 0;
}
*result = imm & ~((uint64_t) -1 << (esize * 4) << (esize * 4));
return 1;
}
/* Decode a logical immediate for e.g. ORR <Wd|WSP>, <Wn>, #<imm>. */
int
aarch64_ext_limm (const aarch64_operand *self,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst)
{
uint32_t esize;
aarch64_insn value;
value = extract_fields (code, 0, 3, self->fields[0], self->fields[1],
self->fields[2]);
esize = aarch64_get_qualifier_esize (inst->operands[0].qualifier);
return decode_limm (esize, value, &info->imm.value);
}
/* Decode a logical immediate for the BIC alias of AND (etc.). */
int
aarch64_ext_inv_limm (const aarch64_operand *self,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst)
{
if (!aarch64_ext_limm (self, info, code, inst))
return 0;
info->imm.value = ~info->imm.value;
return 1;
}
/* Decode Ft for e.g. STR <Qt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]
or LDP <Qt1>, <Qt2>, [<Xn|SP>], #<imm>. */
int
aarch64_ext_ft (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info,
const aarch64_insn code, const aarch64_inst *inst)
{
aarch64_insn value;
/* Rt */
info->reg.regno = extract_field (FLD_Rt, code, 0);
/* size */
value = extract_field (FLD_ldst_size, code, 0);
if (inst->opcode->iclass == ldstpair_indexed
|| inst->opcode->iclass == ldstnapair_offs
|| inst->opcode->iclass == ldstpair_off
|| inst->opcode->iclass == loadlit)
{
enum aarch64_opnd_qualifier qualifier;
switch (value)
{
case 0: qualifier = AARCH64_OPND_QLF_S_S; break;
case 1: qualifier = AARCH64_OPND_QLF_S_D; break;
case 2: qualifier = AARCH64_OPND_QLF_S_Q; break;
default: return 0;
}
info->qualifier = qualifier;
}
else
{
/* opc1:size */
value = extract_fields (code, 0, 2, FLD_opc1, FLD_ldst_size);
if (value > 0x4)
return 0;
info->qualifier = get_sreg_qualifier_from_value (value);
}
return 1;
}
/* Decode the address operand for e.g. STXRB <Ws>, <Wt>, [<Xn|SP>{,#0}]. */
int
aarch64_ext_addr_simple (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info,
aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
/* Rn */
info->addr.base_regno = extract_field (FLD_Rn, code, 0);
return 1;
}
/* Decode the address operand for e.g.
STR <Qt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
int
aarch64_ext_addr_regoff (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info,
aarch64_insn code, const aarch64_inst *inst)
{
aarch64_insn S, value;
/* Rn */
info->addr.base_regno = extract_field (FLD_Rn, code, 0);
/* Rm */
info->addr.offset.regno = extract_field (FLD_Rm, code, 0);
/* option */
value = extract_field (FLD_option, code, 0);
info->shifter.kind =
aarch64_get_operand_modifier_from_value (value, TRUE /* extend_p */);
/* Fix-up the shifter kind; although the table-driven approach is
efficient, it is slightly inflexible, thus needing this fix-up. */
if (info->shifter.kind == AARCH64_MOD_UXTX)
info->shifter.kind = AARCH64_MOD_LSL;
/* S */
S = extract_field (FLD_S, code, 0);
if (S == 0)
{
info->shifter.amount = 0;
info->shifter.amount_present = 0;
}
else
{
int size;
/* Need information in other operand(s) to help achieve the decoding
from 'S' field. */
info->qualifier = get_expected_qualifier (inst, info->idx);
/* Get the size of the data element that is accessed, which may be
different from that of the source register size, e.g. in strb/ldrb. */
size = aarch64_get_qualifier_esize (info->qualifier);
info->shifter.amount = get_logsz (size);
info->shifter.amount_present = 1;
}
return 1;
}
/* Decode the address operand for e.g. LDRSW <Xt>, [<Xn|SP>], #<simm>. */
int
aarch64_ext_addr_simm (const aarch64_operand *self, aarch64_opnd_info *info,
aarch64_insn code, const aarch64_inst *inst)
{
aarch64_insn imm;
info->qualifier = get_expected_qualifier (inst, info->idx);
/* Rn */
info->addr.base_regno = extract_field (FLD_Rn, code, 0);
/* simm (imm9 or imm7) */
imm = extract_field (self->fields[0], code, 0);
info->addr.offset.imm = sign_extend (imm, fields[self->fields[0]].width - 1);
if (self->fields[0] == FLD_imm7)
/* scaled immediate in ld/st pair instructions. */
info->addr.offset.imm *= aarch64_get_qualifier_esize (info->qualifier);
/* qualifier */
if (inst->opcode->iclass == ldst_unscaled
|| inst->opcode->iclass == ldstnapair_offs
|| inst->opcode->iclass == ldstpair_off
|| inst->opcode->iclass == ldst_unpriv)
info->addr.writeback = 0;
else
{
/* pre/post- index */
info->addr.writeback = 1;
if (extract_field (self->fields[1], code, 0) == 1)
info->addr.preind = 1;
else
info->addr.postind = 1;
}
return 1;
}
/* Decode the address operand for e.g. LDRSW <Xt>, [<Xn|SP>{, #<simm>}]. */
int
aarch64_ext_addr_uimm12 (const aarch64_operand *self, aarch64_opnd_info *info,
aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
int shift;
info->qualifier = get_expected_qualifier (inst, info->idx);
shift = get_logsz (aarch64_get_qualifier_esize (info->qualifier));
/* Rn */
info->addr.base_regno = extract_field (self->fields[0], code, 0);
/* uimm12 */
info->addr.offset.imm = extract_field (self->fields[1], code, 0) << shift;
return 1;
}
/* Decode the address operand for e.g. LDRAA <Xt>, [<Xn|SP>{, #<simm>}]. */
int
aarch64_ext_addr_simm10 (const aarch64_operand *self, aarch64_opnd_info *info,
aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
aarch64_insn imm;
info->qualifier = get_expected_qualifier (inst, info->idx);
/* Rn */
info->addr.base_regno = extract_field (self->fields[0], code, 0);
/* simm10 */
imm = extract_fields (code, 0, 2, self->fields[1], self->fields[2]);
info->addr.offset.imm = sign_extend (imm, 9) << 3;
if (extract_field (self->fields[3], code, 0) == 1) {
info->addr.writeback = 1;
info->addr.preind = 1;
}
return 1;
}
/* Decode the address operand for e.g.
LD1 {<Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Xn|SP>], <Xm|#<amount>>. */
int
aarch64_ext_simd_addr_post (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info,
aarch64_insn code, const aarch64_inst *inst)
{
/* The opcode dependent area stores the number of elements in
each structure to be loaded/stored. */
int is_ld1r = get_opcode_dependent_value (inst->opcode) == 1;
/* Rn */
info->addr.base_regno = extract_field (FLD_Rn, code, 0);
/* Rm | #<amount> */
info->addr.offset.regno = extract_field (FLD_Rm, code, 0);
if (info->addr.offset.regno == 31)
{
if (inst->opcode->operands[0] == AARCH64_OPND_LVt_AL)
/* Special handling of loading single structure to all lane. */
info->addr.offset.imm = (is_ld1r ? 1
: inst->operands[0].reglist.num_regs)
* aarch64_get_qualifier_esize (inst->operands[0].qualifier);
else
info->addr.offset.imm = inst->operands[0].reglist.num_regs
* aarch64_get_qualifier_esize (inst->operands[0].qualifier)
* aarch64_get_qualifier_nelem (inst->operands[0].qualifier);
}
else
info->addr.offset.is_reg = 1;
info->addr.writeback = 1;
return 1;
}
/* Decode the condition operand for e.g. CSEL <Xd>, <Xn>, <Xm>, <cond>. */
int
aarch64_ext_cond (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info,
aarch64_insn code, const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
aarch64_insn value;
/* cond */
value = extract_field (FLD_cond, code, 0);
info->cond = get_cond_from_value (value);
return 1;
}
/* Decode the system register operand for e.g. MRS <Xt>, <systemreg>. */
int
aarch64_ext_sysreg (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info,
aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
/* op0:op1:CRn:CRm:op2 */
info->sysreg = extract_fields (code, 0, 5, FLD_op0, FLD_op1, FLD_CRn,
FLD_CRm, FLD_op2);
return 1;
}
/* Decode the PSTATE field operand for e.g. MSR <pstatefield>, #<imm>. */
int
aarch64_ext_pstatefield (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
int i;
/* op1:op2 */
info->pstatefield = extract_fields (code, 0, 2, FLD_op1, FLD_op2);
for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
if (aarch64_pstatefields[i].value == (aarch64_insn)info->pstatefield)
return 1;
/* Reserved value in <pstatefield>. */
return 0;
}
/* Decode the system instruction op operand for e.g. AT <at_op>, <Xt>. */
int
aarch64_ext_sysins_op (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info,
aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
int i;
aarch64_insn value;
const aarch64_sys_ins_reg *sysins_ops;
/* op0:op1:CRn:CRm:op2 */
value = extract_fields (code, 0, 5,
FLD_op0, FLD_op1, FLD_CRn,
FLD_CRm, FLD_op2);
switch (info->type)
{
case AARCH64_OPND_SYSREG_AT: sysins_ops = aarch64_sys_regs_at; break;
case AARCH64_OPND_SYSREG_DC: sysins_ops = aarch64_sys_regs_dc; break;
case AARCH64_OPND_SYSREG_IC: sysins_ops = aarch64_sys_regs_ic; break;
case AARCH64_OPND_SYSREG_TLBI: sysins_ops = aarch64_sys_regs_tlbi; break;
default: assert (0); return 0;
}
for (i = 0; sysins_ops[i].name != NULL; ++i)
if (sysins_ops[i].value == value)
{
info->sysins_op = sysins_ops + i;
DEBUG_TRACE ("%s found value: %x, has_xt: %d, i: %d.",
info->sysins_op->name,
(unsigned)info->sysins_op->value,
aarch64_sys_ins_reg_has_xt (info->sysins_op), i);
return 1;
}
return 0;
}
/* Decode the memory barrier option operand for e.g. DMB <option>|#<imm>. */
int
aarch64_ext_barrier (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info,
aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
/* CRm */
info->barrier = aarch64_barrier_options + extract_field (FLD_CRm, code, 0);
return 1;
}
/* Decode the prefetch operation option operand for e.g.
PRFM <prfop>, [<Xn|SP>{, #<pimm>}]. */
int
aarch64_ext_prfop (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info,
aarch64_insn code, const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
/* prfop in Rt */
info->prfop = aarch64_prfops + extract_field (FLD_Rt, code, 0);
return 1;
}
/* Decode the hint number for an alias taking an operand. Set info->hint_option
to the matching name/value pair in aarch64_hint_options. */
int
aarch64_ext_hint (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info,
aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
/* CRm:op2. */
unsigned hint_number;
int i;
hint_number = extract_fields (code, 0, 2, FLD_CRm, FLD_op2);
for (i = 0; aarch64_hint_options[i].name != NULL; i++)
{
if (hint_number == aarch64_hint_options[i].value)
{
info->hint_option = &(aarch64_hint_options[i]);
return 1;
}
}
return 0;
}
/* Decode the extended register operand for e.g.
STR <Qt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
int
aarch64_ext_reg_extended (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info,
aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
aarch64_insn value;
/* Rm */
info->reg.regno = extract_field (FLD_Rm, code, 0);
/* option */
value = extract_field (FLD_option, code, 0);
info->shifter.kind =
aarch64_get_operand_modifier_from_value (value, TRUE /* extend_p */);
/* imm3 */
info->shifter.amount = extract_field (FLD_imm3, code, 0);
/* This makes the constraint checking happy. */
info->shifter.operator_present = 1;
/* Assume inst->operands[0].qualifier has been resolved. */
assert (inst->operands[0].qualifier != AARCH64_OPND_QLF_NIL);
info->qualifier = AARCH64_OPND_QLF_W;
if (inst->operands[0].qualifier == AARCH64_OPND_QLF_X
&& (info->shifter.kind == AARCH64_MOD_UXTX
|| info->shifter.kind == AARCH64_MOD_SXTX))
info->qualifier = AARCH64_OPND_QLF_X;
return 1;
}
/* Decode the shifted register operand for e.g.
SUBS <Xd>, <Xn>, <Xm> {, <shift> #<amount>}. */
int
aarch64_ext_reg_shifted (const aarch64_operand *self ATTRIBUTE_UNUSED,
aarch64_opnd_info *info,
aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
aarch64_insn value;
/* Rm */
info->reg.regno = extract_field (FLD_Rm, code, 0);
/* shift */
value = extract_field (FLD_shift, code, 0);
info->shifter.kind =
aarch64_get_operand_modifier_from_value (value, FALSE /* extend_p */);
if (info->shifter.kind == AARCH64_MOD_ROR
&& inst->opcode->iclass != log_shift)
/* ROR is not available for the shifted register operand in arithmetic
instructions. */
return 0;
/* imm6 */
info->shifter.amount = extract_field (FLD_imm6, code, 0);
/* This makes the constraint checking happy. */
info->shifter.operator_present = 1;
return 1;
}
/* Decode an SVE address [<base>, #<offset>*<factor>, MUL VL],
where <offset> is given by the OFFSET parameter and where <factor> is
1 plus SELF's operand-dependent value. fields[0] specifies the field
that holds <base>. */
static int
aarch64_ext_sve_addr_reg_mul_vl (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
int64_t offset)
{
info->addr.base_regno = extract_field (self->fields[0], code, 0);
info->addr.offset.imm = offset * (1 + get_operand_specific_data (self));
info->addr.offset.is_reg = FALSE;
info->addr.writeback = FALSE;
info->addr.preind = TRUE;
if (offset != 0)
info->shifter.kind = AARCH64_MOD_MUL_VL;
info->shifter.amount = 1;
info->shifter.operator_present = (info->addr.offset.imm != 0);
info->shifter.amount_present = FALSE;
return 1;
}
/* Decode an SVE address [<base>, #<simm4>*<factor>, MUL VL],
where <simm4> is a 4-bit signed value and where <factor> is 1 plus
SELF's operand-dependent value. fields[0] specifies the field that
holds <base>. <simm4> is encoded in the SVE_imm4 field. */
int
aarch64_ext_sve_addr_ri_s4xvl (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
int offset;
offset = extract_field (FLD_SVE_imm4, code, 0);
offset = ((offset + 8) & 15) - 8;
return aarch64_ext_sve_addr_reg_mul_vl (self, info, code, offset);
}
/* Decode an SVE address [<base>, #<simm6>*<factor>, MUL VL],
where <simm6> is a 6-bit signed value and where <factor> is 1 plus
SELF's operand-dependent value. fields[0] specifies the field that
holds <base>. <simm6> is encoded in the SVE_imm6 field. */
int
aarch64_ext_sve_addr_ri_s6xvl (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
int offset;
offset = extract_field (FLD_SVE_imm6, code, 0);
offset = (((offset + 32) & 63) - 32);
return aarch64_ext_sve_addr_reg_mul_vl (self, info, code, offset);
}
/* Decode an SVE address [<base>, #<simm9>*<factor>, MUL VL],
where <simm9> is a 9-bit signed value and where <factor> is 1 plus
SELF's operand-dependent value. fields[0] specifies the field that
holds <base>. <simm9> is encoded in the concatenation of the SVE_imm6
and imm3 fields, with imm3 being the less-significant part. */
int
aarch64_ext_sve_addr_ri_s9xvl (const aarch64_operand *self,
aarch64_opnd_info *info,
aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
int offset;
offset = extract_fields (code, 0, 2, FLD_SVE_imm6, FLD_imm3);
offset = (((offset + 256) & 511) - 256);
return aarch64_ext_sve_addr_reg_mul_vl (self, info, code, offset);
}
/* Decode an SVE address [<base>, #<offset> << <shift>], where <offset>
is given by the OFFSET parameter and where <shift> is SELF's operand-
dependent value. fields[0] specifies the base register field <base>. */
static int
aarch64_ext_sve_addr_reg_imm (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
int64_t offset)
{
info->addr.base_regno = extract_field (self->fields[0], code, 0);
info->addr.offset.imm = offset * (1 << get_operand_specific_data (self));
info->addr.offset.is_reg = FALSE;
info->addr.writeback = FALSE;
info->addr.preind = TRUE;
info->shifter.operator_present = FALSE;
info->shifter.amount_present = FALSE;
return 1;
}
/* Decode an SVE address [X<n>, #<SVE_imm4> << <shift>], where <SVE_imm4>
is a 4-bit signed number and where <shift> is SELF's operand-dependent
value. fields[0] specifies the base register field. */
int
aarch64_ext_sve_addr_ri_s4 (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
int offset = sign_extend (extract_field (FLD_SVE_imm4, code, 0), 3);
return aarch64_ext_sve_addr_reg_imm (self, info, code, offset);
}
/* Decode an SVE address [X<n>, #<SVE_imm6> << <shift>], where <SVE_imm6>
is a 6-bit unsigned number and where <shift> is SELF's operand-dependent
value. fields[0] specifies the base register field. */
int
aarch64_ext_sve_addr_ri_u6 (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
int offset = extract_field (FLD_SVE_imm6, code, 0);
return aarch64_ext_sve_addr_reg_imm (self, info, code, offset);
}
/* Decode an SVE address [X<n>, X<m>{, LSL #<shift>}], where <shift>
is SELF's operand-dependent value. fields[0] specifies the base
register field and fields[1] specifies the offset register field. */
int
aarch64_ext_sve_addr_rr_lsl (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
int index_regno;
index_regno = extract_field (self->fields[1], code, 0);
if (index_regno == 31 && (self->flags & OPD_F_NO_ZR) != 0)
return 0;
info->addr.base_regno = extract_field (self->fields[0], code, 0);
info->addr.offset.regno = index_regno;
info->addr.offset.is_reg = TRUE;
info->addr.writeback = FALSE;
info->addr.preind = TRUE;
info->shifter.kind = AARCH64_MOD_LSL;
info->shifter.amount = get_operand_specific_data (self);
info->shifter.operator_present = (info->shifter.amount != 0);
info->shifter.amount_present = (info->shifter.amount != 0);
return 1;
}
/* Decode an SVE address [X<n>, Z<m>.<T>, (S|U)XTW {#<shift>}], where
<shift> is SELF's operand-dependent value. fields[0] specifies the
base register field, fields[1] specifies the offset register field and
fields[2] is a single-bit field that selects SXTW over UXTW. */
int
aarch64_ext_sve_addr_rz_xtw (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
info->addr.base_regno = extract_field (self->fields[0], code, 0);
info->addr.offset.regno = extract_field (self->fields[1], code, 0);
info->addr.offset.is_reg = TRUE;
info->addr.writeback = FALSE;
info->addr.preind = TRUE;
if (extract_field (self->fields[2], code, 0))
info->shifter.kind = AARCH64_MOD_SXTW;
else
info->shifter.kind = AARCH64_MOD_UXTW;
info->shifter.amount = get_operand_specific_data (self);
info->shifter.operator_present = TRUE;
info->shifter.amount_present = (info->shifter.amount != 0);
return 1;
}
/* Decode an SVE address [Z<n>.<T>, #<imm5> << <shift>], where <imm5> is a
5-bit unsigned number and where <shift> is SELF's operand-dependent value.
fields[0] specifies the base register field. */
int
aarch64_ext_sve_addr_zi_u5 (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
int offset = extract_field (FLD_imm5, code, 0);
return aarch64_ext_sve_addr_reg_imm (self, info, code, offset);
}
/* Decode an SVE address [Z<n>.<T>, Z<m>.<T>{, <modifier> {#<msz>}}],
where <modifier> is given by KIND and where <msz> is a 2-bit unsigned
number. fields[0] specifies the base register field and fields[1]
specifies the offset register field. */
static int
aarch64_ext_sve_addr_zz (const aarch64_operand *self, aarch64_opnd_info *info,
aarch64_insn code, enum aarch64_modifier_kind kind)
{
info->addr.base_regno = extract_field (self->fields[0], code, 0);
info->addr.offset.regno = extract_field (self->fields[1], code, 0);
info->addr.offset.is_reg = TRUE;
info->addr.writeback = FALSE;
info->addr.preind = TRUE;
info->shifter.kind = kind;
info->shifter.amount = extract_field (FLD_SVE_msz, code, 0);
info->shifter.operator_present = (kind != AARCH64_MOD_LSL
|| info->shifter.amount != 0);
info->shifter.amount_present = (info->shifter.amount != 0);
return 1;
}
/* Decode an SVE address [Z<n>.<T>, Z<m>.<T>{, LSL #<msz>}], where
<msz> is a 2-bit unsigned number. fields[0] specifies the base register
field and fields[1] specifies the offset register field. */
int
aarch64_ext_sve_addr_zz_lsl (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
return aarch64_ext_sve_addr_zz (self, info, code, AARCH64_MOD_LSL);
}
/* Decode an SVE address [Z<n>.<T>, Z<m>.<T>, SXTW {#<msz>}], where
<msz> is a 2-bit unsigned number. fields[0] specifies the base register
field and fields[1] specifies the offset register field. */
int
aarch64_ext_sve_addr_zz_sxtw (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
return aarch64_ext_sve_addr_zz (self, info, code, AARCH64_MOD_SXTW);
}
/* Decode an SVE address [Z<n>.<T>, Z<m>.<T>, UXTW {#<msz>}], where
<msz> is a 2-bit unsigned number. fields[0] specifies the base register
field and fields[1] specifies the offset register field. */
int
aarch64_ext_sve_addr_zz_uxtw (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
return aarch64_ext_sve_addr_zz (self, info, code, AARCH64_MOD_UXTW);
}
/* Finish decoding an SVE arithmetic immediate, given that INFO already
has the raw field value and that the low 8 bits decode to VALUE. */
static int
decode_sve_aimm (aarch64_opnd_info *info, int64_t value)
{
info->shifter.kind = AARCH64_MOD_LSL;
info->shifter.amount = 0;
if (info->imm.value & 0x100)
{
if (value == 0)
/* Decode 0x100 as #0, LSL #8. */
info->shifter.amount = 8;
else
value *= 256;
}
info->shifter.operator_present = (info->shifter.amount != 0);
info->shifter.amount_present = (info->shifter.amount != 0);
info->imm.value = value;
return 1;
}
/* Decode an SVE ADD/SUB immediate. */
int
aarch64_ext_sve_aimm (const aarch64_operand *self,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst)
{
return (aarch64_ext_imm (self, info, code, inst)
&& decode_sve_aimm (info, (uint8_t) info->imm.value));
}
/* Decode an SVE CPY/DUP immediate. */
int
aarch64_ext_sve_asimm (const aarch64_operand *self,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst)
{
return (aarch64_ext_imm (self, info, code, inst)
&& decode_sve_aimm (info, (int8_t) info->imm.value));
}
/* Decode a single-bit immediate that selects between #0.5 and #1.0.
The fields array specifies which field to use. */
int
aarch64_ext_sve_float_half_one (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
if (extract_field (self->fields[0], code, 0))
info->imm.value = 0x3f800000;
else
info->imm.value = 0x3f000000;
info->imm.is_fp = TRUE;
return 1;
}
/* Decode a single-bit immediate that selects between #0.5 and #2.0.
The fields array specifies which field to use. */
int
aarch64_ext_sve_float_half_two (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
if (extract_field (self->fields[0], code, 0))
info->imm.value = 0x40000000;
else
info->imm.value = 0x3f000000;
info->imm.is_fp = TRUE;
return 1;
}
/* Decode a single-bit immediate that selects between #0.0 and #1.0.
The fields array specifies which field to use. */
int
aarch64_ext_sve_float_zero_one (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
if (extract_field (self->fields[0], code, 0))
info->imm.value = 0x3f800000;
else
info->imm.value = 0x0;
info->imm.is_fp = TRUE;
return 1;
}
/* Decode Zn[MM], where MM has a 7-bit triangular encoding. The fields
array specifies which field to use for Zn. MM is encoded in the
concatenation of imm5 and SVE_tszh, with imm5 being the less
significant part. */
int
aarch64_ext_sve_index (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
int val;
info->reglane.regno = extract_field (self->fields[0], code, 0);
val = extract_fields (code, 0, 2, FLD_SVE_tszh, FLD_imm5);
if ((val & 31) == 0)
return 0;
while ((val & 1) == 0)
val /= 2;
info->reglane.index = val / 2;
return 1;
}
/* Decode a logical immediate for the MOV alias of SVE DUPM. */
int
aarch64_ext_sve_limm_mov (const aarch64_operand *self,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst)
{
int esize = aarch64_get_qualifier_esize (inst->operands[0].qualifier);
return (aarch64_ext_limm (self, info, code, inst)
&& aarch64_sve_dupm_mov_immediate_p (info->imm.value, esize));
}
/* Decode Zn[MM], where Zn occupies the least-significant part of the field
and where MM occupies the most-significant part. The operand-dependent
value specifies the number of bits in Zn. */
int
aarch64_ext_sve_quad_index (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
unsigned int reg_bits = get_operand_specific_data (self);
unsigned int val = extract_all_fields (self, code);
info->reglane.regno = val & ((1 << reg_bits) - 1);
info->reglane.index = val >> reg_bits;
return 1;
}
/* Decode {Zn.<T> - Zm.<T>}. The fields array specifies which field
to use for Zn. The opcode-dependent value specifies the number
of registers in the list. */
int
aarch64_ext_sve_reglist (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst ATTRIBUTE_UNUSED)
{
info->reglist.first_regno = extract_field (self->fields[0], code, 0);
info->reglist.num_regs = get_opcode_dependent_value (inst->opcode);
return 1;
}
/* Decode <pattern>{, MUL #<amount>}. The fields array specifies which
fields to use for <pattern>. <amount> - 1 is encoded in the SVE_imm4
field. */
int
aarch64_ext_sve_scale (const aarch64_operand *self,
aarch64_opnd_info *info, aarch64_insn code,
const aarch64_inst *inst)
{
int val;
if (!aarch64_ext_imm (self, info, code, inst))
return 0;
val = extract_field (FLD_SVE_imm4, code, 0);
info->shifter.kind = AARCH64_MOD_MUL;
info->shifter.amount = val + 1;
info->shifter.operator_present = (val != 0);
info->shifter.amount_present = (val != 0);
return 1;
}
/* Return the top set bit in VALUE, which is expected to be relatively
small. */
static uint64_t
get_top_bit (uint64_t value)
{
while ((value & -value) != value)
value -= value & -value;
return value;
}
/* Decode an SVE shift-left immediate. */
int
aarch64_ext_sve_shlimm (const aarch64_operand *self,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst)
{
if (!aarch64_ext_imm (self, info, code, inst)
|| info->imm.value == 0)
return 0;
info->imm.value -= get_top_bit (info->imm.value);
return 1;
}
/* Decode an SVE shift-right immediate. */
int
aarch64_ext_sve_shrimm (const aarch64_operand *self,
aarch64_opnd_info *info, const aarch64_insn code,
const aarch64_inst *inst)
{
if (!aarch64_ext_imm (self, info, code, inst)
|| info->imm.value == 0)
return 0;
info->imm.value = get_top_bit (info->imm.value) * 2 - info->imm.value;
return 1;
}
/* Bitfields that are commonly used to encode certain operands' information
may be partially used as part of the base opcode in some instructions.
For example, the bit 1 of the field 'size' in
FCVTXN <Vb><d>, <Va><n>
is actually part of the base opcode, while only size<0> is available
for encoding the register type. Another example is the AdvSIMD
instruction ORR (register), in which the field 'size' is also used for
the base opcode, leaving only the field 'Q' available to encode the
vector register arrangement specifier '8B' or '16B'.
This function tries to deduce the qualifier from the value of partially
constrained field(s). Given the VALUE of such a field or fields, the
qualifiers CANDIDATES and the MASK (indicating which bits are valid for
operand encoding), the function returns the matching qualifier or
AARCH64_OPND_QLF_NIL if nothing matches.
N.B. CANDIDATES is a group of possible qualifiers that are valid for
one operand; it has a maximum of AARCH64_MAX_QLF_SEQ_NUM qualifiers and
may end with AARCH64_OPND_QLF_NIL. */
static enum aarch64_opnd_qualifier
get_qualifier_from_partial_encoding (aarch64_insn value,
const enum aarch64_opnd_qualifier* \
candidates,
aarch64_insn mask)
{
int i;
DEBUG_TRACE ("enter with value: %d, mask: %d", (int)value, (int)mask);
for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i)
{
aarch64_insn standard_value;
if (candidates[i] == AARCH64_OPND_QLF_NIL)
break;
standard_value = aarch64_get_qualifier_standard_value (candidates[i]);
if ((standard_value & mask) == (value & mask))
return candidates[i];
}
return AARCH64_OPND_QLF_NIL;
}
/* Given a list of qualifier sequences, return all possible valid qualifiers
for operand IDX in QUALIFIERS.
Assume QUALIFIERS is an array whose length is large enough. */
static void
get_operand_possible_qualifiers (int idx,
const aarch64_opnd_qualifier_seq_t *list,
enum aarch64_opnd_qualifier *qualifiers)
{
int i;
for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i)
if ((qualifiers[i] = list[i][idx]) == AARCH64_OPND_QLF_NIL)
break;
}
/* Decode the size Q field for e.g. SHADD.
We tag one operand with the qualifer according to the code;
whether the qualifier is valid for this opcode or not, it is the
duty of the semantic checking. */
static int
decode_sizeq (aarch64_inst *inst)
{
int idx;
enum aarch64_opnd_qualifier qualifier;
aarch64_insn code;
aarch64_insn value, mask;
enum aarch64_field_kind fld_sz;
enum aarch64_opnd_qualifier candidates[AARCH64_MAX_QLF_SEQ_NUM];
if (inst->opcode->iclass == asisdlse
|| inst->opcode->iclass == asisdlsep
|| inst->opcode->iclass == asisdlso
|| inst->opcode->iclass == asisdlsop)
fld_sz = FLD_vldst_size;
else
fld_sz = FLD_size;
code = inst->value;
value = extract_fields (code, inst->opcode->mask, 2, fld_sz, FLD_Q);
/* Obtain the info that which bits of fields Q and size are actually
available for operand encoding. Opcodes like FMAXNM and FMLA have
size[1] unavailable. */
mask = extract_fields (~inst->opcode->mask, 0, 2, fld_sz, FLD_Q);
/* The index of the operand we are going to tag a qualifier and the qualifer
itself are reasoned from the value of the size and Q fields and the
possible valid qualifier lists. */
idx = aarch64_select_operand_for_sizeq_field_coding (inst->opcode);
DEBUG_TRACE ("key idx: %d", idx);
/* For most related instruciton, size:Q are fully available for operand
encoding. */
if (mask == 0x7)
{
inst->operands[idx].qualifier = get_vreg_qualifier_from_value (value);
return 1;
}
get_operand_possible_qualifiers (idx, inst->opcode->qualifiers_list,
candidates);
#ifdef DEBUG_AARCH64
if (debug_dump)
{
int i;
for (i = 0; candidates[i] != AARCH64_OPND_QLF_NIL
&& i < AARCH64_MAX_QLF_SEQ_NUM; ++i)
DEBUG_TRACE ("qualifier %d: %s", i,
aarch64_get_qualifier_name(candidates[i]));
DEBUG_TRACE ("%d, %d", (int)value, (int)mask);
}
#endif /* DEBUG_AARCH64 */
qualifier = get_qualifier_from_partial_encoding (value, candidates, mask);
if (qualifier == AARCH64_OPND_QLF_NIL)
return 0;
inst->operands[idx].qualifier = qualifier;
return 1;
}
/* Decode size[0]:Q, i.e. bit 22 and bit 30, for
e.g. FCVTN<Q> <Vd>.<Tb>, <Vn>.<Ta>. */
static int
decode_asimd_fcvt (aarch64_inst *inst)
{
aarch64_field field = {0, 0};
aarch64_insn value;
enum aarch64_opnd_qualifier qualifier;
gen_sub_field (FLD_size, 0, 1, &field);
value = extract_field_2 (&field, inst->value, 0);
qualifier = value == 0 ? AARCH64_OPND_QLF_V_4S
: AARCH64_OPND_QLF_V_2D;
switch (inst->opcode->op)
{
case OP_FCVTN:
case OP_FCVTN2:
/* FCVTN<Q> <Vd>.<Tb>, <Vn>.<Ta>. */
inst->operands[1].qualifier = qualifier;
break;
case OP_FCVTL:
case OP_FCVTL2:
/* FCVTL<Q> <Vd>.<Ta>, <Vn>.<Tb>. */
inst->operands[0].qualifier = qualifier;
break;
default:
assert (0);
return 0;
}
return 1;
}
/* Decode size[0], i.e. bit 22, for
e.g. FCVTXN <Vb><d>, <Va><n>. */
static int
decode_asisd_fcvtxn (aarch64_inst *inst)
{
aarch64_field field = {0, 0};
gen_sub_field (FLD_size, 0, 1, &field);
if (!extract_field_2 (&field, inst->value, 0))
return 0;
inst->operands[0].qualifier = AARCH64_OPND_QLF_S_S;
return 1;
}
/* Decode the 'opc' field for e.g. FCVT <Dd>, <Sn>. */
static int
decode_fcvt (aarch64_inst *inst)
{
enum aarch64_opnd_qualifier qualifier;
aarch64_insn value;
const aarch64_field field = {15, 2};
/* opc dstsize */
value = extract_field_2 (&field, inst->value, 0);
switch (value)
{
case 0: qualifier = AARCH64_OPND_QLF_S_S; break;
case 1: qualifier = AARCH64_OPND_QLF_S_D; break;
case 3: qualifier = AARCH64_OPND_QLF_S_H; break;
default: return 0;
}
inst->operands[0].qualifier = qualifier;
return 1;
}
/* Do miscellaneous decodings that are not common enough to be driven by
flags. */
static int
do_misc_decoding (aarch64_inst *inst)
{
unsigned int value;
switch (inst->opcode->op)
{
case OP_FCVT:
return decode_fcvt (inst);
case OP_FCVTN:
case OP_FCVTN2:
case OP_FCVTL:
case OP_FCVTL2:
return decode_asimd_fcvt (inst);
case OP_FCVTXN_S:
return decode_asisd_fcvtxn (inst);
case OP_MOV_P_P:
case OP_MOVS_P_P:
value = extract_field (FLD_SVE_Pn, inst->value, 0);
return (value == extract_field (FLD_SVE_Pm, inst->value, 0)
&& value == extract_field (FLD_SVE_Pg4_10, inst->value, 0));
case OP_MOV_Z_P_Z:
return (extract_field (FLD_SVE_Zd, inst->value, 0)
== extract_field (FLD_SVE_Zm_16, inst->value, 0));
case OP_MOV_Z_V:
/* Index must be zero. */
value = extract_fields (inst->value, 0, 2, FLD_SVE_tszh, FLD_imm5);
return value > 0 && value <= 16 && value == (value & -value);
case OP_MOV_Z_Z:
return (extract_field (FLD_SVE_Zn, inst->value, 0)
== extract_field (FLD_SVE_Zm_16, inst->value, 0));
case OP_MOV_Z_Zi:
/* Index must be nonzero. */
value = extract_fields (inst->value, 0, 2, FLD_SVE_tszh, FLD_imm5);
return value > 0 && value != (value & -value);
case OP_MOVM_P_P_P:
return (extract_field (FLD_SVE_Pd, inst->value, 0)
== extract_field (FLD_SVE_Pm, inst->value, 0));
case OP_MOVZS_P_P_P:
case OP_MOVZ_P_P_P:
return (extract_field (FLD_SVE_Pn, inst->value, 0)
== extract_field (FLD_SVE_Pm, inst->value, 0));
case OP_NOTS_P_P_P_Z:
case OP_NOT_P_P_P_Z:
return (extract_field (FLD_SVE_Pm, inst->value, 0)
== extract_field (FLD_SVE_Pg4_10, inst->value, 0));
default:
return 0;
}
}
/* Opcodes that have fields shared by multiple operands are usually flagged
with flags. In this function, we detect such flags, decode the related
field(s) and store the information in one of the related operands. The
'one' operand is not any operand but one of the operands that can
accommadate all the information that has been decoded. */
static int
do_special_decoding (aarch64_inst *inst)
{
int idx;
aarch64_insn value;
/* Condition for truly conditional executed instructions, e.g. b.cond. */
if (inst->opcode->flags & F_COND)
{
value = extract_field (FLD_cond2, inst->value, 0);
inst->cond = get_cond_from_value (value);
}
/* 'sf' field. */
if (inst->opcode->flags & F_SF)
{
idx = select_operand_for_sf_field_coding (inst->opcode);
value = extract_field (FLD_sf, inst->value, 0);
inst->operands[idx].qualifier = get_greg_qualifier_from_value (value);
if ((inst->opcode->flags & F_N)
&& extract_field (FLD_N, inst->value, 0) != value)
return 0;
}
/* 'sf' field. */
if (inst->opcode->flags & F_LSE_SZ)
{
idx = select_operand_for_sf_field_coding (inst->opcode);
value = extract_field (FLD_lse_sz, inst->value, 0);
inst->operands[idx].qualifier = get_greg_qualifier_from_value (value);
}
/* size:Q fields. */
if (inst->opcode->flags & F_SIZEQ)
return decode_sizeq (inst);
if (inst->opcode->flags & F_FPTYPE)
{
idx = select_operand_for_fptype_field_coding (inst->opcode);
value = extract_field (FLD_type, inst->value, 0);
switch (value)
{
case 0: inst->operands[idx].qualifier = AARCH64_OPND_QLF_S_S; break;
case 1: inst->operands[idx].qualifier = AARCH64_OPND_QLF_S_D; break;
case 3: inst->operands[idx].qualifier = AARCH64_OPND_QLF_S_H; break;
default: return 0;
}
}
if (inst->opcode->flags & F_SSIZE)
{
/* N.B. some opcodes like FCMGT <V><d>, <V><n>, #0 have the size[1] as part
of the base opcode. */
aarch64_insn mask;
enum aarch64_opnd_qualifier candidates[AARCH64_MAX_QLF_SEQ_NUM];
idx = select_operand_for_scalar_size_field_coding (inst->opcode);
value = extract_field (FLD_size, inst->value, inst->opcode->mask);
mask = extract_field (FLD_size, ~inst->opcode->mask, 0);
/* For most related instruciton, the 'size' field is fully available for
operand encoding. */
if (mask == 0x3)
inst->operands[idx].qualifier = get_sreg_qualifier_from_value (value);
else
{
get_operand_possible_qualifiers (idx, inst->opcode->qualifiers_list,
candidates);
inst->operands[idx].qualifier
= get_qualifier_from_partial_encoding (value, candidates, mask);
}
}
if (inst->opcode->flags & F_T)
{
/* Num of consecutive '0's on the right side of imm5<3:0>. */
int num = 0;
unsigned val, Q;
assert (aarch64_get_operand_class (inst->opcode->operands[0])
== AARCH64_OPND_CLASS_SIMD_REG);
/* imm5<3:0> q <t>
0000 x reserved
xxx1 0 8b
xxx1 1 16b
xx10 0 4h
xx10 1 8h
x100 0 2s
x100 1 4s
1000 0 reserved
1000 1 2d */
val = extract_field (FLD_imm5, inst->value, 0);
while ((val & 0x1) == 0 && ++num <= 3)
val >>= 1;
if (num > 3)
return 0;
Q = (unsigned) extract_field (FLD_Q, inst->value, inst->opcode->mask);
inst->operands[0].qualifier =
get_vreg_qualifier_from_value ((num << 1) | Q);
}
if (inst->opcode->flags & F_GPRSIZE_IN_Q)
{
/* Use Rt to encode in the case of e.g.
STXP <Ws>, <Xt1>, <Xt2>, [<Xn|SP>{,#0}]. */
idx = aarch64_operand_index (inst->opcode->operands, AARCH64_OPND_Rt);
if (idx == -1)
{
/* Otherwise use the result operand, which has to be a integer
register. */
assert (aarch64_get_operand_class (inst->opcode->operands[0])
== AARCH64_OPND_CLASS_INT_REG);
idx = 0;
}
assert (idx == 0 || idx == 1);
value = extract_field (FLD_Q, inst->value, 0);
inst->operands[idx].qualifier = get_greg_qualifier_from_value (value);
}
if (inst->opcode->flags & F_LDS_SIZE)
{
aarch64_field field = {0, 0};
assert (aarch64_get_operand_class (inst->opcode->operands[0])
== AARCH64_OPND_CLASS_INT_REG);
gen_sub_field (FLD_opc, 0, 1, &field);
value = extract_field_2 (&field, inst->value, 0);
inst->operands[0].qualifier
= value ? AARCH64_OPND_QLF_W : AARCH64_OPND_QLF_X;
}
/* Miscellaneous decoding; done as the last step. */
if (inst->opcode->flags & F_MISC)
return do_misc_decoding (inst);
return 1;
}
/* Converters converting a real opcode instruction to its alias form. */
/* ROR <Wd>, <Ws>, #<shift>
is equivalent to:
EXTR <Wd>, <Ws>, <Ws>, #<shift>. */
static int
convert_extr_to_ror (aarch64_inst *inst)
{
if (inst->operands[1].reg.regno == inst->operands[2].reg.regno)
{
copy_operand_info (inst, 2, 3);
inst->operands[3].type = AARCH64_OPND_NIL;
return 1;
}
return 0;
}
/* UXTL<Q> <Vd>.<Ta>, <Vn>.<Tb>
is equivalent to:
USHLL<Q> <Vd>.<Ta>, <Vn>.<Tb>, #0. */
static int
convert_shll_to_xtl (aarch64_inst *inst)
{
if (inst->operands[2].imm.value == 0)
{
inst->operands[2].type = AARCH64_OPND_NIL;
return 1;
}
return 0;
}
/* Convert
UBFM <Xd>, <Xn>, #<shift>, #63.
to
LSR <Xd>, <Xn>, #<shift>. */
static int
convert_bfm_to_sr (aarch64_inst *inst)
{
int64_t imms, val;
imms = inst->operands[3].imm.value;
val = inst->operands[2].qualifier == AARCH64_OPND_QLF_imm_0_31 ? 31 : 63;
if (imms == val)
{
inst->operands[3].type = AARCH64_OPND_NIL;
return 1;
}
return 0;
}
/* Convert MOV to ORR. */
static int
convert_orr_to_mov (aarch64_inst *inst)
{
/* MOV <Vd>.<T>, <Vn>.<T>
is equivalent to:
ORR <Vd>.<T>, <Vn>.<T>, <Vn>.<T>. */
if (inst->operands[1].reg.regno == inst->operands[2].reg.regno)
{
inst->operands[2].type = AARCH64_OPND_NIL;
return 1;
}
return 0;
}
/* When <imms> >= <immr>, the instruction written:
SBFX <Xd>, <Xn>, #<lsb>, #<width>
is equivalent to:
SBFM <Xd>, <Xn>, #<lsb>, #(<lsb>+<width>-1). */
static int
convert_bfm_to_bfx (aarch64_inst *inst)
{
int64_t immr, imms;
immr = inst->operands[2].imm.value;
imms = inst->operands[3].imm.value;
if (imms >= immr)
{
int64_t lsb = immr;
inst->operands[2].imm.value = lsb;
inst->operands[3].imm.value = imms + 1 - lsb;
/* The two opcodes have different qualifiers for
the immediate operands; reset to help the checking. */
reset_operand_qualifier (inst, 2);
reset_operand_qualifier (inst, 3);
return 1;
}
return 0;
}
/* When <imms> < <immr>, the instruction written:
SBFIZ <Xd>, <Xn>, #<lsb>, #<width>
is equivalent to:
SBFM <Xd>, <Xn>, #((64-<lsb>)&0x3f), #(<width>-1). */
static int
convert_bfm_to_bfi (aarch64_inst *inst)
{
int64_t immr, imms, val;
immr = inst->operands[2].imm.value;
imms = inst->operands[3].imm.value;
val = inst->operands[2].qualifier == AARCH64_OPND_QLF_imm_0_31 ? 32 : 64;
if (imms < immr)
{
inst->operands[2].imm.value = (val - immr) & (val - 1);
inst->operands[3].imm.value = imms + 1;
/* The two opcodes have different qualifiers for
the immediate operands; reset to help the checking. */
reset_operand_qualifier (inst, 2);
reset_operand_qualifier (inst, 3);
return 1;
}
return 0;
}
/* The instruction written:
BFC <Xd>, #<lsb>, #<width>
is equivalent to:
BFM <Xd>, XZR, #((64-<lsb>)&0x3f), #(<width>-1). */
static int
convert_bfm_to_bfc (aarch64_inst *inst)
{
int64_t immr, imms, val;
/* Should have been assured by the base opcode value. */
assert (inst->operands[1].reg.regno == 0x1f);
immr = inst->operands[2].imm.value;
imms = inst->operands[3].imm.value;
val = inst->operands[2].qualifier == AARCH64_OPND_QLF_imm_0_31 ? 32 : 64;
if (imms < immr)
{
/* Drop XZR from the second operand. */
copy_operand_info (inst, 1, 2);
copy_operand_info (inst, 2, 3);
inst->operands[3].type = AARCH64_OPND_NIL;
/* Recalculate the immediates. */
inst->operands[1].imm.value = (val - immr) & (val - 1);
inst->operands[2].imm.value = imms + 1;
/* The two opcodes have different qualifiers for the operands; reset to
help the checking. */
reset_operand_qualifier (inst, 1);
reset_operand_qualifier (inst, 2);
reset_operand_qualifier (inst, 3);
return 1;
}
return 0;
}
/* The instruction written:
LSL <Xd>, <Xn>, #<shift>
is equivalent to:
UBFM <Xd>, <Xn>, #((64-<shift>)&0x3f), #(63-<shift>). */
static int
convert_ubfm_to_lsl (aarch64_inst *inst)
{
int64_t immr = inst->operands[2].imm.value;
int64_t imms = inst->operands[3].imm.value;
int64_t val
= inst->operands[2].qualifier == AARCH64_OPND_QLF_imm_0_31 ? 31 : 63;
if ((immr == 0 && imms == val) || immr == imms + 1)
{
inst->operands[3].type = AARCH64_OPND_NIL;
inst->operands[2].imm.value = val - imms;
return 1;
}
return 0;
}
/* CINC <Wd>, <Wn>, <cond>
is equivalent to:
CSINC <Wd>, <Wn>, <Wn>, invert(<cond>)
where <cond> is not AL or NV. */
static int
convert_from_csel (aarch64_inst *inst)
{
if (inst->operands[1].reg.regno == inst->operands[2].reg.regno
&& (inst->operands[3].cond->value & 0xe) != 0xe)
{
copy_operand_info (inst, 2, 3);
inst->operands[2].cond = get_inverted_cond (inst->operands[3].cond);
inst->operands[3].type = AARCH64_OPND_NIL;
return 1;
}
return 0;
}
/* CSET <Wd>, <cond>
is equivalent to:
CSINC <Wd>, WZR, WZR, invert(<cond>)
where <cond> is not AL or NV. */
static int
convert_csinc_to_cset (aarch64_inst *inst)
{
if (inst->operands[1].reg.regno == 0x1f
&& inst->operands[2].reg.regno == 0x1f
&& (inst->operands[3].cond->value & 0xe) != 0xe)
{
copy_operand_info (inst, 1, 3);
inst->operands[1].cond = get_inverted_cond (inst->operands[3].cond);
inst->operands[3].type = AARCH64_OPND_NIL;
inst->operands[2].type = AARCH64_OPND_NIL;
return 1;
}
return 0;
}
/* MOV <Wd>, #<imm>
is equivalent to:
MOVZ <Wd>, #<imm16>, LSL #<shift>.
A disassembler may output ORR, MOVZ and MOVN as a MOV mnemonic, except when
ORR has an immediate that could be generated by a MOVZ or MOVN instruction,
or where a MOVN has an immediate that could be encoded by MOVZ, or where
MOVZ/MOVN #0 have a shift amount other than LSL #0, in which case the
machine-instruction mnemonic must be used. */
static int
convert_movewide_to_mov (aarch64_inst *inst)
{
uint64_t value = inst->operands[1].imm.value;
/* MOVZ/MOVN #0 have a shift amount other than LSL #0. */
if (value == 0 && inst->operands[1].shifter.amount != 0)
return 0;
inst->operands[1].type = AARCH64_OPND_IMM_MOV;
inst->operands[1].shifter.kind = AARCH64_MOD_NONE;
value <<= inst->operands[1].shifter.amount;
/* As an alias convertor, it has to be clear that the INST->OPCODE
is the opcode of the real instruction. */
if (inst->opcode->op == OP_MOVN)
{
int is32 = inst->operands[0].qualifier == AARCH64_OPND_QLF_W;
value = ~value;
/* A MOVN has an immediate that could be encoded by MOVZ. */
if (aarch64_wide_constant_p (value, is32, NULL))
return 0;
}
inst->operands[1].imm.value = value;
inst->operands[1].shifter.amount = 0;
return 1;
}
/* MOV <Wd>, #<imm>
is equivalent to:
ORR <Wd>, WZR, #<imm>.
A disassembler may output ORR, MOVZ and MOVN as a MOV mnemonic, except when
ORR has an immediate that could be generated by a MOVZ or MOVN instruction,
or where a MOVN has an immediate that could be encoded by MOVZ, or where
MOVZ/MOVN #0 have a shift amount other than LSL #0, in which case the
machine-instruction mnemonic must be used. */
static int
convert_movebitmask_to_mov (aarch64_inst *inst)
{
int is32;
uint64_t value;
/* Should have been assured by the base opcode value. */
assert (inst->operands[1].reg.regno == 0x1f);
copy_operand_info (inst, 1, 2);
is32 = inst->operands[0].qualifier == AARCH64_OPND_QLF_W;
inst->operands[1].type = AARCH64_OPND_IMM_MOV;
value = inst->operands[1].imm.value;
/* ORR has an immediate that could be generated by a MOVZ or MOVN
instruction. */
if (inst->operands[0].reg.regno != 0x1f
&& (aarch64_wide_constant_p (value, is32, NULL)
|| aarch64_wide_constant_p (~value, is32, NULL)))
return 0;
inst->operands[2].type = AARCH64_OPND_NIL;
return 1;
}
/* Some alias opcodes are disassembled by being converted from their real-form.
N.B. INST->OPCODE is the real opcode rather than the alias. */
static int
convert_to_alias (aarch64_inst *inst, const aarch64_opcode *alias)
{
switch (alias->op)
{
case OP_ASR_IMM:
case OP_LSR_IMM:
return convert_bfm_to_sr (inst);
case OP_LSL_IMM:
return convert_ubfm_to_lsl (inst);
case OP_CINC:
case OP_CINV:
case OP_CNEG:
return convert_from_csel (inst);
case OP_CSET:
case OP_CSETM:
return convert_csinc_to_cset (inst);
case OP_UBFX:
case OP_BFXIL:
case OP_SBFX:
return convert_bfm_to_bfx (inst);
case OP_SBFIZ:
case OP_BFI:
case OP_UBFIZ:
return convert_bfm_to_bfi (inst);
case OP_BFC:
return convert_bfm_to_bfc (inst);
case OP_MOV_V:
return convert_orr_to_mov (inst);
case OP_MOV_IMM_WIDE:
case OP_MOV_IMM_WIDEN:
return convert_movewide_to_mov (inst);
case OP_MOV_IMM_LOG:
return convert_movebitmask_to_mov (inst);
case OP_ROR_IMM:
return convert_extr_to_ror (inst);
case OP_SXTL:
case OP_SXTL2:
case OP_UXTL:
case OP_UXTL2:
return convert_shll_to_xtl (inst);
default:
return 0;
}
}
static int aarch64_opcode_decode (const aarch64_opcode *, const aarch64_insn,
aarch64_inst *, int);
/* Given the instruction information in *INST, check if the instruction has
any alias form that can be used to represent *INST. If the answer is yes,
update *INST to be in the form of the determined alias. */
/* In the opcode description table, the following flags are used in opcode
entries to help establish the relations between the real and alias opcodes:
F_ALIAS: opcode is an alias
F_HAS_ALIAS: opcode has alias(es)
F_P1
F_P2
F_P3: Disassembly preference priority 1-3 (the larger the
higher). If nothing is specified, it is the priority
0 by default, i.e. the lowest priority.
Although the relation between the machine and the alias instructions are not
explicitly described, it can be easily determined from the base opcode
values, masks and the flags F_ALIAS and F_HAS_ALIAS in their opcode
description entries:
The mask of an alias opcode must be equal to or a super-set (i.e. more
constrained) of that of the aliased opcode; so is the base opcode value.
if (opcode_has_alias (real) && alias_opcode_p (opcode)
&& (opcode->mask & real->mask) == real->mask
&& (real->mask & opcode->opcode) == (real->mask & real->opcode))
then OPCODE is an alias of, and only of, the REAL instruction
The alias relationship is forced flat-structured to keep related algorithm
simple; an opcode entry cannot be flagged with both F_ALIAS and F_HAS_ALIAS.
During the disassembling, the decoding decision tree (in
opcodes/aarch64-dis-2.c) always returns an machine instruction opcode entry;
if the decoding of such a machine instruction succeeds (and -Mno-aliases is
not specified), the disassembler will check whether there is any alias
instruction exists for this real instruction. If there is, the disassembler
will try to disassemble the 32-bit binary again using the alias's rule, or
try to convert the IR to the form of the alias. In the case of the multiple
aliases, the aliases are tried one by one from the highest priority
(currently the flag F_P3) to the lowest priority (no priority flag), and the
first succeeds first adopted.
You may ask why there is a need for the conversion of IR from one form to
another in handling certain aliases. This is because on one hand it avoids
adding more operand code to handle unusual encoding/decoding; on other
hand, during the disassembling, the conversion is an effective approach to
check the condition of an alias (as an alias may be adopted only if certain
conditions are met).
In order to speed up the alias opcode lookup, aarch64-gen has preprocessed
aarch64_opcode_table and generated aarch64_find_alias_opcode and
aarch64_find_next_alias_opcode (in opcodes/aarch64-dis-2.c) to help. */
static void
determine_disassembling_preference (struct aarch64_inst *inst)
{
const aarch64_opcode *opcode;
const aarch64_opcode *alias;
opcode = inst->opcode;
/* This opcode does not have an alias, so use itself. */
if (!opcode_has_alias (opcode))
return;
alias = aarch64_find_alias_opcode (opcode);
assert (alias);
#ifdef DEBUG_AARCH64
if (debug_dump)
{
const aarch64_opcode *tmp = alias;
printf ("#### LIST orderd: ");
while (tmp)
{
printf ("%s, ", tmp->name);
tmp = aarch64_find_next_alias_opcode (tmp);
}
printf ("\n");
}
#endif /* DEBUG_AARCH64 */
for (; alias; alias = aarch64_find_next_alias_opcode (alias))
{
DEBUG_TRACE ("try %s", alias->name);
assert (alias_opcode_p (alias) || opcode_has_alias (opcode));
/* An alias can be a pseudo opcode which will never be used in the
disassembly, e.g. BIC logical immediate is such a pseudo opcode
aliasing AND. */
if (pseudo_opcode_p (alias))
{
DEBUG_TRACE ("skip pseudo %s", alias->name);
continue;
}
if ((inst->value & alias->mask) != alias->opcode)
{
DEBUG_TRACE ("skip %s as base opcode not match", alias->name);
continue;
}
/* No need to do any complicated transformation on operands, if the alias
opcode does not have any operand. */
if (aarch64_num_of_operands (alias) == 0 && alias->opcode == inst->value)
{
DEBUG_TRACE ("succeed with 0-operand opcode %s", alias->name);
aarch64_replace_opcode (inst, alias);
return;
}
if (alias->flags & F_CONV)
{
aarch64_inst copy;
memcpy (&copy, inst, sizeof (aarch64_inst));
/* ALIAS is the preference as long as the instruction can be
successfully converted to the form of ALIAS. */
if (convert_to_alias (&copy, alias) == 1)
{
aarch64_replace_opcode (&copy, alias);
assert (aarch64_match_operands_constraint (&copy, NULL));
DEBUG_TRACE ("succeed with %s via conversion", alias->name);
memcpy (inst, &copy, sizeof (aarch64_inst));
return;
}
}
else
{
/* Directly decode the alias opcode. */
aarch64_inst temp;
memset (&temp, '\0', sizeof (aarch64_inst));
if (aarch64_opcode_decode (alias, inst->value, &temp, 1) == 1)
{
DEBUG_TRACE ("succeed with %s via direct decoding", alias->name);
memcpy (inst, &temp, sizeof (aarch64_inst));
return;
}
}
}
}
/* Some instructions (including all SVE ones) use the instruction class
to describe how a qualifiers_list index is represented in the instruction
encoding. If INST is such an instruction, decode the appropriate fields
and fill in the operand qualifiers accordingly. Return true if no
problems are found. */
static bfd_boolean
aarch64_decode_variant_using_iclass (aarch64_inst *inst)
{
int i, variant;
variant = 0;
switch (inst->opcode->iclass)
{
case sve_cpy:
variant = extract_fields (inst->value, 0, 2, FLD_size, FLD_SVE_M_14);
break;
case sve_index:
i = extract_fields (inst->value, 0, 2, FLD_SVE_tszh, FLD_imm5);
if ((i & 31) == 0)
return FALSE;
while ((i & 1) == 0)
{
i >>= 1;
variant += 1;
}
break;
case sve_limm:
/* Pick the smallest applicable element size. */
if ((inst->value & 0x20600) == 0x600)
variant = 0;
else if ((inst->value & 0x20400) == 0x400)
variant = 1;
else if ((inst->value & 0x20000) == 0)
variant = 2;
else
variant = 3;
break;
case sve_misc:
/* sve_misc instructions have only a single variant. */
break;
case sve_movprfx:
variant = extract_fields (inst->value, 0, 2, FLD_size, FLD_SVE_M_16);
break;
case sve_pred_zm:
variant = extract_field (FLD_SVE_M_4, inst->value, 0);
break;
case sve_shift_pred:
i = extract_fields (inst->value, 0, 2, FLD_SVE_tszh, FLD_SVE_tszl_8);
sve_shift:
if (i == 0)
return FALSE;
while (i != 1)
{
i >>= 1;
variant += 1;
}
break;
case sve_shift_unpred:
i = extract_fields (inst->value, 0, 2, FLD_SVE_tszh, FLD_SVE_tszl_19);
goto sve_shift;
case sve_size_bhs:
variant = extract_field (FLD_size, inst->value, 0);
if (variant >= 3)
return FALSE;
break;
case sve_size_bhsd:
variant = extract_field (FLD_size, inst->value, 0);
break;
case sve_size_hsd:
i = extract_field (FLD_size, inst->value, 0);
if (i < 1)
return FALSE;
variant = i - 1;
break;
case sve_size_sd:
variant = extract_field (FLD_SVE_sz, inst->value, 0);
break;
default:
/* No mapping between instruction class and qualifiers. */
return TRUE;
}
for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
inst->operands[i].qualifier = inst->opcode->qualifiers_list[variant][i];
return TRUE;
}
/* Decode the CODE according to OPCODE; fill INST. Return 0 if the decoding
fails, which meanes that CODE is not an instruction of OPCODE; otherwise
return 1.
If OPCODE has alias(es) and NOALIASES_P is 0, an alias opcode may be
determined and used to disassemble CODE; this is done just before the
return. */
static int
aarch64_opcode_decode (const aarch64_opcode *opcode, const aarch64_insn code,
aarch64_inst *inst, int noaliases_p)
{
int i;
DEBUG_TRACE ("enter with %s", opcode->name);
assert (opcode && inst);
/* Check the base opcode. */
if ((code & opcode->mask) != (opcode->opcode & opcode->mask))
{
DEBUG_TRACE ("base opcode match FAIL");
goto decode_fail;
}
/* Clear inst. */
memset (inst, '\0', sizeof (aarch64_inst));
inst->opcode = opcode;
inst->value = code;
/* Assign operand codes and indexes. */
for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
{
if (opcode->operands[i] == AARCH64_OPND_NIL)
break;
inst->operands[i].type = opcode->operands[i];
inst->operands[i].idx = i;
}
/* Call the opcode decoder indicated by flags. */
if (opcode_has_special_coder (opcode) && do_special_decoding (inst) == 0)
{
DEBUG_TRACE ("opcode flag-based decoder FAIL");
goto decode_fail;
}
/* Possibly use the instruction class to determine the correct
qualifier. */
if (!aarch64_decode_variant_using_iclass (inst))
{
DEBUG_TRACE ("iclass-based decoder FAIL");
goto decode_fail;
}
/* Call operand decoders. */
for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
{
const aarch64_operand *opnd;
enum aarch64_opnd type;
type = opcode->operands[i];
if (type == AARCH64_OPND_NIL)
break;
opnd = &aarch64_operands[type];
if (operand_has_extractor (opnd)
&& (! aarch64_extract_operand (opnd, &inst->operands[i], code, inst)))
{
DEBUG_TRACE ("operand decoder FAIL at operand %d", i);
goto decode_fail;
}
}
/* If the opcode has a verifier, then check it now. */
if (opcode->verifier && ! opcode->verifier (opcode, code))
{
DEBUG_TRACE ("operand verifier FAIL");
goto decode_fail;
}
/* Match the qualifiers. */
if (aarch64_match_operands_constraint (inst, NULL) == 1)
{
/* Arriving here, the CODE has been determined as a valid instruction
of OPCODE and *INST has been filled with information of this OPCODE
instruction. Before the return, check if the instruction has any
alias and should be disassembled in the form of its alias instead.
If the answer is yes, *INST will be updated. */
if (!noaliases_p)
determine_disassembling_preference (inst);
DEBUG_TRACE ("SUCCESS");
return 1;
}
else
{
DEBUG_TRACE ("constraint matching FAIL");
}
decode_fail:
return 0;
}
/* This does some user-friendly fix-up to *INST. It is currently focus on
the adjustment of qualifiers to help the printed instruction
recognized/understood more easily. */
static void
user_friendly_fixup (aarch64_inst *inst)
{
switch (inst->opcode->iclass)
{
case testbranch:
/* TBNZ Xn|Wn, #uimm6, label
Test and Branch Not Zero: conditionally jumps to label if bit number
uimm6 in register Xn is not zero. The bit number implies the width of
the register, which may be written and should be disassembled as Wn if
uimm is less than 32. Limited to a branch offset range of +/- 32KiB.
*/
if (inst->operands[1].imm.value < 32)
inst->operands[0].qualifier = AARCH64_OPND_QLF_W;
break;
default: break;
}
}
/* Decode INSN and fill in *INST the instruction information. An alias
opcode may be filled in *INSN if NOALIASES_P is FALSE. Return zero on
success. */
int
aarch64_decode_insn (aarch64_insn insn, aarch64_inst *inst,
bfd_boolean noaliases_p)
{
const aarch64_opcode *opcode = aarch64_opcode_lookup (insn);
#ifdef DEBUG_AARCH64
if (debug_dump)
{
const aarch64_opcode *tmp = opcode;
printf ("\n");
DEBUG_TRACE ("opcode lookup:");
while (tmp != NULL)
{
aarch64_verbose (" %s", tmp->name);
tmp = aarch64_find_next_opcode (tmp);
}
}
#endif /* DEBUG_AARCH64 */
/* A list of opcodes may have been found, as aarch64_opcode_lookup cannot
distinguish some opcodes, e.g. SSHR and MOVI, which almost share the same
opcode field and value, apart from the difference that one of them has an
extra field as part of the opcode, but such a field is used for operand
encoding in other opcode(s) ('immh' in the case of the example). */
while (opcode != NULL)
{
/* But only one opcode can be decoded successfully for, as the
decoding routine will check the constraint carefully. */
if (aarch64_opcode_decode (opcode, insn, inst, noaliases_p) == 1)
return ERR_OK;
opcode = aarch64_find_next_opcode (opcode);
}
return ERR_UND;
}
/* Print operands. */
static void
print_operands (bfd_vma pc, const aarch64_opcode *opcode,
const aarch64_opnd_info *opnds, struct disassemble_info *info)
{
int i, pcrel_p, num_printed;
for (i = 0, num_printed = 0; i < AARCH64_MAX_OPND_NUM; ++i)
{
char str[128];
/* We regard the opcode operand info more, however we also look into
the inst->operands to support the disassembling of the optional
operand.
The two operand code should be the same in all cases, apart from
when the operand can be optional. */
if (opcode->operands[i] == AARCH64_OPND_NIL
|| opnds[i].type == AARCH64_OPND_NIL)
break;
/* Generate the operand string in STR. */
aarch64_print_operand (str, sizeof (str), pc, opcode, opnds, i, &pcrel_p,
&info->target);
/* Print the delimiter (taking account of omitted operand(s)). */
if (str[0] != '\0')
(*info->fprintf_func) (info->stream, "%s",
num_printed++ == 0 ? "\t" : ", ");
/* Print the operand. */
if (pcrel_p)
(*info->print_address_func) (info->target, info);
else
(*info->fprintf_func) (info->stream, "%s", str);
}
}
/* Set NAME to a copy of INST's mnemonic with the "." suffix removed. */
static void
remove_dot_suffix (char *name, const aarch64_inst *inst)
{
char *ptr;
size_t len;
ptr = strchr (inst->opcode->name, '.');
assert (ptr && inst->cond);
len = ptr - inst->opcode->name;
assert (len < 8);
strncpy (name, inst->opcode->name, len);
name[len] = '\0';
}
/* Print the instruction mnemonic name. */
static void
print_mnemonic_name (const aarch64_inst *inst, struct disassemble_info *info)
{
if (inst->opcode->flags & F_COND)
{
/* For instructions that are truly conditionally executed, e.g. b.cond,
prepare the full mnemonic name with the corresponding condition
suffix. */
char name[8];
remove_dot_suffix (name, inst);
(*info->fprintf_func) (info->stream, "%s.%s", name, inst->cond->names[0]);
}
else
(*info->fprintf_func) (info->stream, "%s", inst->opcode->name);
}
/* Decide whether we need to print a comment after the operands of
instruction INST. */
static void
print_comment (const aarch64_inst *inst, struct disassemble_info *info)
{
if (inst->opcode->flags & F_COND)
{
char name[8];
unsigned int i, num_conds;
remove_dot_suffix (name, inst);
num_conds = ARRAY_SIZE (inst->cond->names);
for (i = 1; i < num_conds && inst->cond->names[i]; ++i)
(*info->fprintf_func) (info->stream, "%s %s.%s",
i == 1 ? " //" : ",",
name, inst->cond->names[i]);
}
}
/* Print the instruction according to *INST. */
static void
print_aarch64_insn (bfd_vma pc, const aarch64_inst *inst,
struct disassemble_info *info)
{
print_mnemonic_name (inst, info);
print_operands (pc, inst->opcode, inst->operands, info);
print_comment (inst, info);
}
/* Entry-point of the instruction disassembler and printer. */
static void
print_insn_aarch64_word (bfd_vma pc,
uint32_t word,
struct disassemble_info *info)
{
static const char *err_msg[6] =
{
[ERR_OK] = "_",
[-ERR_UND] = "undefined",
[-ERR_UNP] = "unpredictable",
[-ERR_NYI] = "NYI"
};
int ret;
aarch64_inst inst;
info->insn_info_valid = 1;
info->branch_delay_insns = 0;
info->data_size = 0;
info->target = 0;
info->target2 = 0;
if (info->flags & INSN_HAS_RELOC)
/* If the instruction has a reloc associated with it, then
the offset field in the instruction will actually be the
addend for the reloc. (If we are using REL type relocs).
In such cases, we can ignore the pc when computing
addresses, since the addend is not currently pc-relative. */
pc = 0;
ret = aarch64_decode_insn (word, &inst, no_aliases);
if (((word >> 21) & 0x3ff) == 1)
{
/* RESERVED for ALES. */
assert (ret != ERR_OK);
ret = ERR_NYI;
}
switch (ret)
{
case ERR_UND:
case ERR_UNP:
case ERR_NYI:
/* Handle undefined instructions. */
info->insn_type = dis_noninsn;
(*info->fprintf_func) (info->stream,".inst\t0x%08x ; %s",
word, err_msg[-ret]);
break;
case ERR_OK:
user_friendly_fixup (&inst);
print_aarch64_insn (pc, &inst, info);
break;
default:
abort ();
}
}
/* Disallow mapping symbols ($x, $d etc) from
being displayed in symbol relative addresses. */
bfd_boolean
aarch64_symbol_is_valid (asymbol * sym,
struct disassemble_info * info ATTRIBUTE_UNUSED)
{
const char * name;
if (sym == NULL)
return FALSE;
name = bfd_asymbol_name (sym);
return name
&& (name[0] != '$'
|| (name[1] != 'x' && name[1] != 'd')
|| (name[2] != '\0' && name[2] != '.'));
}
/* Print data bytes on INFO->STREAM. */
static void
print_insn_data (bfd_vma pc ATTRIBUTE_UNUSED,
uint32_t word,
struct disassemble_info *info)
{
switch (info->bytes_per_chunk)
{
case 1:
info->fprintf_func (info->stream, ".byte\t0x%02x", word);
break;
case 2:
info->fprintf_func (info->stream, ".short\t0x%04x", word);
break;
case 4:
info->fprintf_func (info->stream, ".word\t0x%08x", word);
break;
default:
abort ();
}
}
/* Try to infer the code or data type from a symbol.
Returns nonzero if *MAP_TYPE was set. */
static int
get_sym_code_type (struct disassemble_info *info, int n,
enum map_type *map_type)
{
elf_symbol_type *es;
unsigned int type;
const char *name;
es = *(elf_symbol_type **)(info->symtab + n);
type = ELF_ST_TYPE (es->internal_elf_sym.st_info);
/* If the symbol has function type then use that. */
if (type == STT_FUNC)
{
*map_type = MAP_INSN;
return TRUE;
}
/* Check for mapping symbols. */
name = bfd_asymbol_name(info->symtab[n]);
if (name[0] == '$'
&& (name[1] == 'x' || name[1] == 'd')
&& (name[2] == '\0' || name[2] == '.'))
{
*map_type = (name[1] == 'x' ? MAP_INSN : MAP_DATA);
return TRUE;
}
return FALSE;
}
/* Entry-point of the AArch64 disassembler. */
int
print_insn_aarch64 (bfd_vma pc,
struct disassemble_info *info)
{
bfd_byte buffer[INSNLEN];
int status;
void (*printer) (bfd_vma, uint32_t, struct disassemble_info *);
bfd_boolean found = FALSE;
unsigned int size = 4;
unsigned long data;
if (info->disassembler_options)
{
set_default_aarch64_dis_options (info);
parse_aarch64_dis_options (info->disassembler_options);
/* To avoid repeated parsing of these options, we remove them here. */
info->disassembler_options = NULL;
}
/* Aarch64 instructions are always little-endian */
info->endian_code = BFD_ENDIAN_LITTLE;
/* First check the full symtab for a mapping symbol, even if there
are no usable non-mapping symbols for this address. */
if (info->symtab_size != 0
&& bfd_asymbol_flavour (*info->symtab) == bfd_target_elf_flavour)
{
enum map_type type = MAP_INSN;
int last_sym = -1;
bfd_vma addr;
int n;
if (pc <= last_mapping_addr)
last_mapping_sym = -1;
/* Start scanning at the start of the function, or wherever
we finished last time. */
n = info->symtab_pos + 1;
if (n < last_mapping_sym)
n = last_mapping_sym;
/* Scan up to the location being disassembled. */
for (; n < info->symtab_size; n++)
{
addr = bfd_asymbol_value (info->symtab[n]);
if (addr > pc)
break;
if ((info->section == NULL
|| info->section == info->symtab[n]->section)
&& get_sym_code_type (info, n, &type))
{
last_sym = n;
found = TRUE;
}
}
if (!found)
{
n = info->symtab_pos;
if (n < last_mapping_sym)
n = last_mapping_sym;
/* No mapping symbol found at this address. Look backwards
for a preceeding one. */
for (; n >= 0; n--)
{
if (get_sym_code_type (info, n, &type))
{
last_sym = n;
found = TRUE;
break;
}
}
}
last_mapping_sym = last_sym;
last_type = type;
/* Look a little bit ahead to see if we should print out
less than four bytes of data. If there's a symbol,
mapping or otherwise, after two bytes then don't
print more. */
if (last_type == MAP_DATA)
{
size = 4 - (pc & 3);
for (n = last_sym + 1; n < info->symtab_size; n++)
{
addr = bfd_asymbol_value (info->symtab[n]);
if (addr > pc)
{
if (addr - pc < size)
size = addr - pc;
break;
}
}
/* If the next symbol is after three bytes, we need to
print only part of the data, so that we can use either
.byte or .short. */
if (size == 3)
size = (pc & 1) ? 1 : 2;
}
}
if (last_type == MAP_DATA)
{
/* size was set above. */
info->bytes_per_chunk = size;
info->display_endian = info->endian;
printer = print_insn_data;
}
else
{
info->bytes_per_chunk = size = INSNLEN;
info->display_endian = info->endian_code;
printer = print_insn_aarch64_word;
}
status = (*info->read_memory_func) (pc, buffer, size, info);
if (status != 0)
{
(*info->memory_error_func) (status, pc, info);
return -1;
}
data = bfd_get_bits (buffer, size * 8,
info->display_endian == BFD_ENDIAN_BIG);
(*printer) (pc, data, info);
return size;
}
void
print_aarch64_disassembler_options (FILE *stream)
{
fprintf (stream, _("\n\
The following AARCH64 specific disassembler options are supported for use\n\
with the -M switch (multiple options should be separated by commas):\n"));
fprintf (stream, _("\n\
no-aliases Don't print instruction aliases.\n"));
fprintf (stream, _("\n\
aliases Do print instruction aliases.\n"));
#ifdef DEBUG_AARCH64
fprintf (stream, _("\n\
debug_dump Temp switch for debug trace.\n"));
#endif /* DEBUG_AARCH64 */
fprintf (stream, _("\n"));
}