mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-10 01:53:42 +08:00
550 lines
17 KiB
C
550 lines
17 KiB
C
/* atof_generic.c - turn a string of digits into a Flonum
|
||
Copyright (C) 1987, 1990, 1991 Free Software Foundation, Inc.
|
||
|
||
This file is part of GAS, the GNU Assembler.
|
||
|
||
GAS is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 1, or (at your option)
|
||
any later version.
|
||
|
||
GAS is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GAS; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
/* static const char rcsid[] = "$Id$"; */
|
||
|
||
#include <ctype.h>
|
||
#include <string.h>
|
||
|
||
#include "as.h"
|
||
|
||
#ifdef __GNUC__
|
||
#define alloca __builtin_alloca
|
||
#else
|
||
#ifdef sparc
|
||
#include <alloca.h>
|
||
#endif
|
||
#endif
|
||
|
||
#ifdef USG
|
||
#define bzero(s,n) memset(s,0,n)
|
||
#endif
|
||
|
||
/* #define FALSE (0) */
|
||
/* #define TRUE (1) */
|
||
|
||
/***********************************************************************\
|
||
* *
|
||
* Given a string of decimal digits , with optional decimal *
|
||
* mark and optional decimal exponent (place value) of the *
|
||
* lowest_order decimal digit: produce a floating point *
|
||
* number. The number is 'generic' floating point: our *
|
||
* caller will encode it for a specific machine architecture. *
|
||
* *
|
||
* Assumptions *
|
||
* uses base (radix) 2 *
|
||
* this machine uses 2's complement binary integers *
|
||
* target flonums use " " " " *
|
||
* target flonums exponents fit in a long *
|
||
* *
|
||
\***********************************************************************/
|
||
|
||
/*
|
||
|
||
Syntax:
|
||
|
||
<flonum> ::= <optional-sign> <decimal-number> <optional-exponent>
|
||
<optional-sign> ::= '+' | '-' | {empty}
|
||
<decimal-number> ::= <integer>
|
||
| <integer> <radix-character>
|
||
| <integer> <radix-character> <integer>
|
||
| <radix-character> <integer>
|
||
<optional-exponent> ::= {empty} | <exponent-character> <optional-sign> <integer>
|
||
<integer> ::= <digit> | <digit> <integer>
|
||
<digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
|
||
<exponent-character> ::= {one character from "string_of_decimal_exponent_marks"}
|
||
<radix-character> ::= {one character from "string_of_decimal_marks"}
|
||
|
||
*/
|
||
|
||
int /* 0 if OK */
|
||
atof_generic (
|
||
address_of_string_pointer, /* return pointer to just AFTER number we read. */
|
||
string_of_decimal_marks, /* At most one per number. */
|
||
string_of_decimal_exponent_marks,
|
||
address_of_generic_floating_point_number)
|
||
|
||
char * * address_of_string_pointer;
|
||
const char * string_of_decimal_marks;
|
||
const char * string_of_decimal_exponent_marks;
|
||
FLONUM_TYPE * address_of_generic_floating_point_number;
|
||
|
||
{
|
||
|
||
int return_value; /* 0 means OK. */
|
||
char * first_digit;
|
||
/* char * last_digit; JF unused */
|
||
int number_of_digits_before_decimal;
|
||
int number_of_digits_after_decimal;
|
||
long decimal_exponent;
|
||
int number_of_digits_available;
|
||
char digits_sign_char;
|
||
|
||
{
|
||
/*
|
||
* Scan the input string, abstracting (1)digits (2)decimal mark (3) exponent.
|
||
* It would be simpler to modify the string, but we don't; just to be nice
|
||
* to caller.
|
||
* We need to know how many digits we have, so we can allocate space for
|
||
* the digits' value.
|
||
*/
|
||
|
||
char * p;
|
||
char c;
|
||
int seen_significant_digit;
|
||
|
||
first_digit = * address_of_string_pointer;
|
||
c= *first_digit;
|
||
if (c=='-' || c=='+')
|
||
{
|
||
digits_sign_char = c;
|
||
first_digit ++;
|
||
}
|
||
else
|
||
digits_sign_char = '+';
|
||
|
||
if( (first_digit[0]=='n' || first_digit[0]=='N')
|
||
&& (first_digit[1]=='a' || first_digit[1]=='A')
|
||
&& (first_digit[2]=='n' || first_digit[2]=='N')) {
|
||
address_of_generic_floating_point_number->sign=0;
|
||
address_of_generic_floating_point_number->exponent=0;
|
||
address_of_generic_floating_point_number->leader=address_of_generic_floating_point_number->low;
|
||
(*address_of_string_pointer)=first_digit+3;
|
||
return 0;
|
||
}
|
||
if( (first_digit[0]=='i' || first_digit[0]=='I')
|
||
&& (first_digit[1]=='n' || first_digit[1]=='N')
|
||
&& (first_digit[2]=='f' || first_digit[2]=='F')) {
|
||
address_of_generic_floating_point_number->sign= digits_sign_char=='+' ? 'P' : 'N';
|
||
address_of_generic_floating_point_number->exponent=0;
|
||
address_of_generic_floating_point_number->leader=address_of_generic_floating_point_number->low;
|
||
if( (first_digit[3]=='i' || first_digit[3]=='I')
|
||
&& (first_digit[4]=='n' || first_digit[4]=='N')
|
||
&& (first_digit[5]=='i' || first_digit[5]=='I')
|
||
&& (first_digit[6]=='t' || first_digit[6]=='T')
|
||
&& (first_digit[7]=='y' || first_digit[7]=='Y'))
|
||
(*address_of_string_pointer)=first_digit+8;
|
||
else
|
||
(*address_of_string_pointer)=first_digit+3;
|
||
return 0;
|
||
}
|
||
|
||
number_of_digits_before_decimal = 0;
|
||
number_of_digits_after_decimal = 0;
|
||
decimal_exponent = 0;
|
||
seen_significant_digit = 0;
|
||
for (p = first_digit;
|
||
((c = * p) != '\0')
|
||
&& (!c || ! strchr (string_of_decimal_marks, c) )
|
||
&& (!c || ! strchr (string_of_decimal_exponent_marks, c) );
|
||
p ++)
|
||
{
|
||
if (isdigit(c))
|
||
{
|
||
if (seen_significant_digit || c > '0')
|
||
{
|
||
number_of_digits_before_decimal ++;
|
||
seen_significant_digit = 1;
|
||
}
|
||
else
|
||
{
|
||
first_digit++;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
break; /* p -> char after pre-decimal digits. */
|
||
}
|
||
} /* For each digit before decimal mark. */
|
||
|
||
#ifndef OLD_FLOAT_READS
|
||
/* Ignore trailing 0's after the decimal point. The original code here
|
||
* (ifdef'd out) does not do this, and numbers like
|
||
* 4.29496729600000000000e+09 (2**31)
|
||
* come out inexact for some reason related to length of the digit
|
||
* string.
|
||
*/
|
||
if ( c && strchr(string_of_decimal_marks,c) ){
|
||
int zeros = 0; /* Length of current string of zeros */
|
||
|
||
for ( p++; (c = *p) && isdigit(c); p++ ){
|
||
if ( c == '0'){
|
||
zeros++;
|
||
} else {
|
||
number_of_digits_after_decimal += 1 + zeros;
|
||
zeros = 0;
|
||
}
|
||
}
|
||
}
|
||
#else
|
||
if (c && strchr (string_of_decimal_marks, c))
|
||
{
|
||
for (p ++;
|
||
((c = * p) != '\0')
|
||
&& (!c || ! strchr (string_of_decimal_exponent_marks, c) );
|
||
p ++)
|
||
{
|
||
if (isdigit(c))
|
||
{
|
||
number_of_digits_after_decimal ++; /* This may be retracted below. */
|
||
if (/* seen_significant_digit || */ c > '0')
|
||
{
|
||
seen_significant_digit = TRUE;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if ( ! seen_significant_digit)
|
||
{
|
||
number_of_digits_after_decimal = 0;
|
||
}
|
||
break;
|
||
}
|
||
} /* For each digit after decimal mark. */
|
||
}
|
||
while(number_of_digits_after_decimal && first_digit[number_of_digits_before_decimal+number_of_digits_after_decimal]=='0')
|
||
--number_of_digits_after_decimal;
|
||
/* last_digit = p; JF unused */
|
||
#endif
|
||
|
||
if (c && strchr (string_of_decimal_exponent_marks, c) )
|
||
{
|
||
char digits_exponent_sign_char;
|
||
|
||
c = * ++ p;
|
||
if (c && strchr ("+-",c))
|
||
{
|
||
digits_exponent_sign_char = c;
|
||
c = * ++ p;
|
||
}
|
||
else
|
||
{
|
||
digits_exponent_sign_char = '+';
|
||
}
|
||
for (;
|
||
(c);
|
||
c = * ++ p)
|
||
{
|
||
if (isdigit(c))
|
||
{
|
||
decimal_exponent = decimal_exponent * 10 + c - '0';
|
||
/*
|
||
* BUG! If we overflow here, we lose!
|
||
*/
|
||
}
|
||
else
|
||
{
|
||
break;
|
||
}
|
||
}
|
||
if (digits_exponent_sign_char == '-')
|
||
{
|
||
decimal_exponent = - decimal_exponent;
|
||
}
|
||
}
|
||
* address_of_string_pointer = p;
|
||
}
|
||
|
||
number_of_digits_available =
|
||
number_of_digits_before_decimal
|
||
+ number_of_digits_after_decimal;
|
||
return_value = 0;
|
||
if (number_of_digits_available == 0)
|
||
{
|
||
address_of_generic_floating_point_number -> exponent = 0; /* Not strictly necessary */
|
||
address_of_generic_floating_point_number -> leader
|
||
= -1 + address_of_generic_floating_point_number -> low;
|
||
address_of_generic_floating_point_number -> sign = digits_sign_char;
|
||
/* We have just concocted (+/-)0.0E0 */
|
||
}
|
||
else
|
||
{
|
||
LITTLENUM_TYPE * digits_binary_low;
|
||
int precision;
|
||
int maximum_useful_digits;
|
||
int number_of_digits_to_use;
|
||
int more_than_enough_bits_for_digits;
|
||
int more_than_enough_littlenums_for_digits;
|
||
int size_of_digits_in_littlenums;
|
||
int size_of_digits_in_chars;
|
||
FLONUM_TYPE power_of_10_flonum;
|
||
FLONUM_TYPE digits_flonum;
|
||
|
||
|
||
precision = (address_of_generic_floating_point_number -> high
|
||
- address_of_generic_floating_point_number -> low
|
||
+ 1
|
||
); /* Number of destination littlenums. */
|
||
/* Includes guard bits (two littlenums worth) */
|
||
maximum_useful_digits = ( ((double) (precision - 2))
|
||
* ((double) (LITTLENUM_NUMBER_OF_BITS))
|
||
/ (LOG_TO_BASE_2_OF_10)
|
||
)
|
||
+ 2; /* 2 :: guard digits. */
|
||
if (number_of_digits_available > maximum_useful_digits)
|
||
{
|
||
number_of_digits_to_use = maximum_useful_digits;
|
||
}
|
||
else
|
||
{
|
||
number_of_digits_to_use = number_of_digits_available;
|
||
}
|
||
decimal_exponent += number_of_digits_before_decimal - number_of_digits_to_use;
|
||
|
||
more_than_enough_bits_for_digits
|
||
= ((((double)number_of_digits_to_use) * LOG_TO_BASE_2_OF_10) + 1);
|
||
more_than_enough_littlenums_for_digits
|
||
= ( more_than_enough_bits_for_digits
|
||
/ LITTLENUM_NUMBER_OF_BITS
|
||
)
|
||
+ 2;
|
||
|
||
/*
|
||
* Compute (digits) part. In "12.34E56" this is the "1234" part.
|
||
* Arithmetic is exact here. If no digits are supplied then
|
||
* this part is a 0 valued binary integer.
|
||
* Allocate room to build up the binary number as littlenums.
|
||
* We want this memory to disappear when we leave this function.
|
||
* Assume no alignment problems => (room for n objects) ==
|
||
* n * (room for 1 object).
|
||
*/
|
||
|
||
size_of_digits_in_littlenums = more_than_enough_littlenums_for_digits;
|
||
size_of_digits_in_chars = size_of_digits_in_littlenums
|
||
* sizeof( LITTLENUM_TYPE );
|
||
digits_binary_low = (LITTLENUM_TYPE *)
|
||
alloca (size_of_digits_in_chars);
|
||
bzero ((char *)digits_binary_low, size_of_digits_in_chars);
|
||
|
||
/* Digits_binary_low[] is allocated and zeroed. */
|
||
|
||
{
|
||
/*
|
||
* Parse the decimal digits as if * digits_low was in the units position.
|
||
* Emit a binary number into digits_binary_low[].
|
||
*
|
||
* Use a large-precision version of:
|
||
* (((1st-digit) * 10 + 2nd-digit) * 10 + 3rd-digit ...) * 10 + last-digit
|
||
*/
|
||
|
||
char * p;
|
||
char c;
|
||
int count; /* Number of useful digits left to scan. */
|
||
|
||
for (p = first_digit, count = number_of_digits_to_use;
|
||
count;
|
||
p ++, -- count)
|
||
{
|
||
c = * p;
|
||
if (isdigit(c))
|
||
{
|
||
/*
|
||
* Multiply by 10. Assume can never overflow.
|
||
* Add this digit to digits_binary_low[].
|
||
*/
|
||
|
||
long carry;
|
||
LITTLENUM_TYPE * littlenum_pointer;
|
||
LITTLENUM_TYPE * littlenum_limit;
|
||
|
||
littlenum_limit
|
||
= digits_binary_low
|
||
+ more_than_enough_littlenums_for_digits
|
||
- 1;
|
||
carry = c - '0'; /* char -> binary */
|
||
for (littlenum_pointer = digits_binary_low;
|
||
littlenum_pointer <= littlenum_limit;
|
||
littlenum_pointer ++)
|
||
{
|
||
long work;
|
||
|
||
work = carry + 10 * (long)(*littlenum_pointer);
|
||
* littlenum_pointer = work & LITTLENUM_MASK;
|
||
carry = work >> LITTLENUM_NUMBER_OF_BITS;
|
||
}
|
||
if (carry != 0)
|
||
{
|
||
/*
|
||
* We have a GROSS internal error.
|
||
* This should never happen.
|
||
*/
|
||
abort(); /* RMS prefers abort() to any message. */
|
||
}
|
||
}
|
||
else
|
||
{
|
||
++ count; /* '.' doesn't alter digits used count. */
|
||
} /* if valid digit */
|
||
} /* for each digit */
|
||
}
|
||
|
||
/*
|
||
* Digits_binary_low[] properly encodes the value of the digits.
|
||
* Forget about any high-order littlenums that are 0.
|
||
*/
|
||
while (digits_binary_low [size_of_digits_in_littlenums - 1] == 0
|
||
&& size_of_digits_in_littlenums >= 2)
|
||
size_of_digits_in_littlenums --;
|
||
|
||
digits_flonum . low = digits_binary_low;
|
||
digits_flonum . high = digits_binary_low + size_of_digits_in_littlenums - 1;
|
||
digits_flonum . leader = digits_flonum . high;
|
||
digits_flonum . exponent = 0;
|
||
/*
|
||
* The value of digits_flonum . sign should not be important.
|
||
* We have already decided the output's sign.
|
||
* We trust that the sign won't influence the other parts of the number!
|
||
* So we give it a value for these reasons:
|
||
* (1) courtesy to humans reading/debugging
|
||
* these numbers so they don't get excited about strange values
|
||
* (2) in future there may be more meaning attached to sign,
|
||
* and what was
|
||
* harmless noise may become disruptive, ill-conditioned (or worse)
|
||
* input.
|
||
*/
|
||
digits_flonum . sign = '+';
|
||
|
||
{
|
||
/*
|
||
* Compute the mantssa (& exponent) of the power of 10.
|
||
* If sucessful, then multiply the power of 10 by the digits
|
||
* giving return_binary_mantissa and return_binary_exponent.
|
||
*/
|
||
|
||
LITTLENUM_TYPE *power_binary_low;
|
||
int decimal_exponent_is_negative;
|
||
/* This refers to the "-56" in "12.34E-56". */
|
||
/* FALSE: decimal_exponent is positive (or 0) */
|
||
/* TRUE: decimal_exponent is negative */
|
||
FLONUM_TYPE temporary_flonum;
|
||
LITTLENUM_TYPE *temporary_binary_low;
|
||
int size_of_power_in_littlenums;
|
||
int size_of_power_in_chars;
|
||
|
||
size_of_power_in_littlenums = precision;
|
||
/* Precision has a built-in fudge factor so we get a few guard bits. */
|
||
|
||
|
||
decimal_exponent_is_negative = decimal_exponent < 0;
|
||
if (decimal_exponent_is_negative)
|
||
{
|
||
decimal_exponent = - decimal_exponent;
|
||
}
|
||
/* From now on: the decimal exponent is > 0. Its sign is seperate. */
|
||
|
||
size_of_power_in_chars
|
||
= size_of_power_in_littlenums
|
||
* sizeof( LITTLENUM_TYPE ) + 2;
|
||
power_binary_low = (LITTLENUM_TYPE *) alloca ( size_of_power_in_chars );
|
||
temporary_binary_low = (LITTLENUM_TYPE *) alloca ( size_of_power_in_chars );
|
||
bzero ((char *)power_binary_low, size_of_power_in_chars);
|
||
* power_binary_low = 1;
|
||
power_of_10_flonum . exponent = 0;
|
||
power_of_10_flonum . low = power_binary_low;
|
||
power_of_10_flonum . leader = power_binary_low;
|
||
power_of_10_flonum . high = power_binary_low + size_of_power_in_littlenums - 1;
|
||
power_of_10_flonum . sign = '+';
|
||
temporary_flonum . low = temporary_binary_low;
|
||
temporary_flonum . high = temporary_binary_low + size_of_power_in_littlenums - 1;
|
||
/*
|
||
* (power) == 1.
|
||
* Space for temporary_flonum allocated.
|
||
*/
|
||
|
||
/*
|
||
* ...
|
||
*
|
||
* WHILE more bits
|
||
* DO find next bit (with place value)
|
||
* multiply into power mantissa
|
||
* OD
|
||
*/
|
||
{
|
||
int place_number_limit;
|
||
/* Any 10^(2^n) whose "n" exceeds this */
|
||
/* value will fall off the end of */
|
||
/* flonum_XXXX_powers_of_ten[]. */
|
||
int place_number;
|
||
const FLONUM_TYPE * multiplicand; /* -> 10^(2^n) */
|
||
|
||
place_number_limit = table_size_of_flonum_powers_of_ten;
|
||
multiplicand
|
||
= ( decimal_exponent_is_negative
|
||
? flonum_negative_powers_of_ten
|
||
: flonum_positive_powers_of_ten);
|
||
for (place_number = 1; /* Place value of this bit of exponent. */
|
||
decimal_exponent; /* Quit when no more 1 bits in exponent. */
|
||
decimal_exponent >>= 1
|
||
, place_number ++)
|
||
{
|
||
if (decimal_exponent & 1)
|
||
{
|
||
if (place_number > place_number_limit)
|
||
{
|
||
/*
|
||
* The decimal exponent has a magnitude so great that
|
||
* our tables can't help us fragment it. Although this
|
||
* routine is in error because it can't imagine a
|
||
* number that big, signal an error as if it is the
|
||
* user's fault for presenting such a big number.
|
||
*/
|
||
return_value = ERROR_EXPONENT_OVERFLOW;
|
||
/*
|
||
* quit out of loop gracefully
|
||
*/
|
||
decimal_exponent = 0;
|
||
}
|
||
else
|
||
{
|
||
#ifdef TRACE
|
||
printf("before multiply, place_number = %d., power_of_10_flonum:\n", place_number);
|
||
flonum_print( & power_of_10_flonum );
|
||
(void)putchar('\n');
|
||
#endif
|
||
flonum_multip(multiplicand + place_number, &power_of_10_flonum, &temporary_flonum);
|
||
flonum_copy (& temporary_flonum, & power_of_10_flonum);
|
||
} /* If this bit of decimal_exponent was computable.*/
|
||
} /* If this bit of decimal_exponent was set. */
|
||
} /* For each bit of binary representation of exponent */
|
||
#ifdef TRACE
|
||
printf( " after computing power_of_10_flonum: " );
|
||
flonum_print( & power_of_10_flonum );
|
||
(void)putchar('\n');
|
||
#endif
|
||
}
|
||
|
||
}
|
||
|
||
/*
|
||
* power_of_10_flonum is power of ten in binary (mantissa) , (exponent).
|
||
* It may be the number 1, in which case we don't NEED to multiply.
|
||
*
|
||
* Multiply (decimal digits) by power_of_10_flonum.
|
||
*/
|
||
|
||
flonum_multip (& power_of_10_flonum, & digits_flonum, address_of_generic_floating_point_number);
|
||
/* Assert sign of the number we made is '+'. */
|
||
address_of_generic_floating_point_number -> sign = digits_sign_char;
|
||
|
||
} /* If we had any significant digits. */
|
||
return (return_value);
|
||
} /* atof_generic () */
|
||
|
||
/* end: atof_generic.c */
|