mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-18 05:54:26 +08:00
8b148df9ac
2003-08-18 Andrew Cagney <cagney@redhat.com> * gdbarch.sh (FRAME_RED_ZONE_SIZE): New architecture method. * gdbarch.h, gdbarch.c: Re-generate. * infcall.c (call_function_by_hand): Adjust the SP by frame_red_zone_size before allocating any stack space. * rs6000-tdep.c (rs6000_gdbarch_init): Set "frame_red_zone_size". * x86-64-tdep.c (x86_64_frame_align): New function. (x86_64_init_abi): Set "frame_red_zone_size" and "frame_align". * x86-64-tdep.c (x86_64_push_arguments): Revert 2003-08-07 change. Remove code adjusting SP so that it skips over the Red Zone. Index: doc/ChangeLog 2003-08-18 Andrew Cagney <cagney@redhat.com> * gdbint.texinfo (Target Architecture Definition): Document "frame_red_zone_size".
3055 lines
96 KiB
C
3055 lines
96 KiB
C
/* Target-dependent code for GDB, the GNU debugger.
|
||
Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
|
||
1998, 1999, 2000, 2001, 2002, 2003
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "frame.h"
|
||
#include "inferior.h"
|
||
#include "symtab.h"
|
||
#include "target.h"
|
||
#include "gdbcore.h"
|
||
#include "gdbcmd.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "arch-utils.h"
|
||
#include "regcache.h"
|
||
#include "doublest.h"
|
||
#include "value.h"
|
||
#include "parser-defs.h"
|
||
#include "osabi.h"
|
||
|
||
#include "libbfd.h" /* for bfd_default_set_arch_mach */
|
||
#include "coff/internal.h" /* for libcoff.h */
|
||
#include "libcoff.h" /* for xcoff_data */
|
||
#include "coff/xcoff.h"
|
||
#include "libxcoff.h"
|
||
|
||
#include "elf-bfd.h"
|
||
|
||
#include "solib-svr4.h"
|
||
#include "ppc-tdep.h"
|
||
|
||
#include "gdb_assert.h"
|
||
|
||
/* If the kernel has to deliver a signal, it pushes a sigcontext
|
||
structure on the stack and then calls the signal handler, passing
|
||
the address of the sigcontext in an argument register. Usually
|
||
the signal handler doesn't save this register, so we have to
|
||
access the sigcontext structure via an offset from the signal handler
|
||
frame.
|
||
The following constants were determined by experimentation on AIX 3.2. */
|
||
#define SIG_FRAME_PC_OFFSET 96
|
||
#define SIG_FRAME_LR_OFFSET 108
|
||
#define SIG_FRAME_FP_OFFSET 284
|
||
|
||
/* To be used by skip_prologue. */
|
||
|
||
struct rs6000_framedata
|
||
{
|
||
int offset; /* total size of frame --- the distance
|
||
by which we decrement sp to allocate
|
||
the frame */
|
||
int saved_gpr; /* smallest # of saved gpr */
|
||
int saved_fpr; /* smallest # of saved fpr */
|
||
int saved_vr; /* smallest # of saved vr */
|
||
int saved_ev; /* smallest # of saved ev */
|
||
int alloca_reg; /* alloca register number (frame ptr) */
|
||
char frameless; /* true if frameless functions. */
|
||
char nosavedpc; /* true if pc not saved. */
|
||
int gpr_offset; /* offset of saved gprs from prev sp */
|
||
int fpr_offset; /* offset of saved fprs from prev sp */
|
||
int vr_offset; /* offset of saved vrs from prev sp */
|
||
int ev_offset; /* offset of saved evs from prev sp */
|
||
int lr_offset; /* offset of saved lr */
|
||
int cr_offset; /* offset of saved cr */
|
||
int vrsave_offset; /* offset of saved vrsave register */
|
||
};
|
||
|
||
/* Description of a single register. */
|
||
|
||
struct reg
|
||
{
|
||
char *name; /* name of register */
|
||
unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
|
||
unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
|
||
unsigned char fpr; /* whether register is floating-point */
|
||
unsigned char pseudo; /* whether register is pseudo */
|
||
};
|
||
|
||
/* Breakpoint shadows for the single step instructions will be kept here. */
|
||
|
||
static struct sstep_breaks
|
||
{
|
||
/* Address, or 0 if this is not in use. */
|
||
CORE_ADDR address;
|
||
/* Shadow contents. */
|
||
char data[4];
|
||
}
|
||
stepBreaks[2];
|
||
|
||
/* Hook for determining the TOC address when calling functions in the
|
||
inferior under AIX. The initialization code in rs6000-nat.c sets
|
||
this hook to point to find_toc_address. */
|
||
|
||
CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
|
||
|
||
/* Hook to set the current architecture when starting a child process.
|
||
rs6000-nat.c sets this. */
|
||
|
||
void (*rs6000_set_host_arch_hook) (int) = NULL;
|
||
|
||
/* Static function prototypes */
|
||
|
||
static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
|
||
CORE_ADDR safety);
|
||
static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
|
||
struct rs6000_framedata *);
|
||
static void frame_get_saved_regs (struct frame_info * fi,
|
||
struct rs6000_framedata * fdatap);
|
||
static CORE_ADDR frame_initial_stack_address (struct frame_info *);
|
||
|
||
/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
|
||
int
|
||
altivec_register_p (int regno)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
|
||
return 0;
|
||
else
|
||
return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
|
||
}
|
||
|
||
/* Use the architectures FP registers? */
|
||
int
|
||
ppc_floating_point_unit_p (struct gdbarch *gdbarch)
|
||
{
|
||
const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
|
||
if (info->arch == bfd_arch_powerpc)
|
||
return (info->mach != bfd_mach_ppc_e500);
|
||
if (info->arch == bfd_arch_rs6000)
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Read a LEN-byte address from debugged memory address MEMADDR. */
|
||
|
||
static CORE_ADDR
|
||
read_memory_addr (CORE_ADDR memaddr, int len)
|
||
{
|
||
return read_memory_unsigned_integer (memaddr, len);
|
||
}
|
||
|
||
static CORE_ADDR
|
||
rs6000_skip_prologue (CORE_ADDR pc)
|
||
{
|
||
struct rs6000_framedata frame;
|
||
pc = skip_prologue (pc, 0, &frame);
|
||
return pc;
|
||
}
|
||
|
||
|
||
/* Fill in fi->saved_regs */
|
||
|
||
struct frame_extra_info
|
||
{
|
||
/* Functions calling alloca() change the value of the stack
|
||
pointer. We need to use initial stack pointer (which is saved in
|
||
r31 by gcc) in such cases. If a compiler emits traceback table,
|
||
then we should use the alloca register specified in traceback
|
||
table. FIXME. */
|
||
CORE_ADDR initial_sp; /* initial stack pointer. */
|
||
};
|
||
|
||
void
|
||
rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
|
||
{
|
||
struct frame_extra_info *extra_info =
|
||
frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
|
||
extra_info->initial_sp = 0;
|
||
if (get_next_frame (fi) != NULL
|
||
&& get_frame_pc (fi) < TEXT_SEGMENT_BASE)
|
||
/* We're in get_prev_frame */
|
||
/* and this is a special signal frame. */
|
||
/* (fi->pc will be some low address in the kernel, */
|
||
/* to which the signal handler returns). */
|
||
deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
|
||
}
|
||
|
||
/* Put here the code to store, into a struct frame_saved_regs,
|
||
the addresses of the saved registers of frame described by FRAME_INFO.
|
||
This includes special registers such as pc and fp saved in special
|
||
ways in the stack frame. sp is even more special:
|
||
the address we return for it IS the sp for the next frame. */
|
||
|
||
/* In this implementation for RS/6000, we do *not* save sp. I am
|
||
not sure if it will be needed. The following function takes care of gpr's
|
||
and fpr's only. */
|
||
|
||
void
|
||
rs6000_frame_init_saved_regs (struct frame_info *fi)
|
||
{
|
||
frame_get_saved_regs (fi, NULL);
|
||
}
|
||
|
||
static CORE_ADDR
|
||
rs6000_frame_args_address (struct frame_info *fi)
|
||
{
|
||
struct frame_extra_info *extra_info = get_frame_extra_info (fi);
|
||
if (extra_info->initial_sp != 0)
|
||
return extra_info->initial_sp;
|
||
else
|
||
return frame_initial_stack_address (fi);
|
||
}
|
||
|
||
/* Immediately after a function call, return the saved pc.
|
||
Can't go through the frames for this because on some machines
|
||
the new frame is not set up until the new function executes
|
||
some instructions. */
|
||
|
||
static CORE_ADDR
|
||
rs6000_saved_pc_after_call (struct frame_info *fi)
|
||
{
|
||
return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
|
||
}
|
||
|
||
/* Get the ith function argument for the current function. */
|
||
static CORE_ADDR
|
||
rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
|
||
struct type *type)
|
||
{
|
||
CORE_ADDR addr;
|
||
frame_read_register (frame, 3 + argi, &addr);
|
||
return addr;
|
||
}
|
||
|
||
/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
|
||
|
||
static CORE_ADDR
|
||
branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
|
||
{
|
||
CORE_ADDR dest;
|
||
int immediate;
|
||
int absolute;
|
||
int ext_op;
|
||
|
||
absolute = (int) ((instr >> 1) & 1);
|
||
|
||
switch (opcode)
|
||
{
|
||
case 18:
|
||
immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
|
||
if (absolute)
|
||
dest = immediate;
|
||
else
|
||
dest = pc + immediate;
|
||
break;
|
||
|
||
case 16:
|
||
immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
|
||
if (absolute)
|
||
dest = immediate;
|
||
else
|
||
dest = pc + immediate;
|
||
break;
|
||
|
||
case 19:
|
||
ext_op = (instr >> 1) & 0x3ff;
|
||
|
||
if (ext_op == 16) /* br conditional register */
|
||
{
|
||
dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
|
||
|
||
/* If we are about to return from a signal handler, dest is
|
||
something like 0x3c90. The current frame is a signal handler
|
||
caller frame, upon completion of the sigreturn system call
|
||
execution will return to the saved PC in the frame. */
|
||
if (dest < TEXT_SEGMENT_BASE)
|
||
{
|
||
struct frame_info *fi;
|
||
|
||
fi = get_current_frame ();
|
||
if (fi != NULL)
|
||
dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
|
||
gdbarch_tdep (current_gdbarch)->wordsize);
|
||
}
|
||
}
|
||
|
||
else if (ext_op == 528) /* br cond to count reg */
|
||
{
|
||
dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
|
||
|
||
/* If we are about to execute a system call, dest is something
|
||
like 0x22fc or 0x3b00. Upon completion the system call
|
||
will return to the address in the link register. */
|
||
if (dest < TEXT_SEGMENT_BASE)
|
||
dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
|
||
}
|
||
else
|
||
return -1;
|
||
break;
|
||
|
||
default:
|
||
return -1;
|
||
}
|
||
return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
|
||
}
|
||
|
||
|
||
/* Sequence of bytes for breakpoint instruction. */
|
||
|
||
const static unsigned char *
|
||
rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
|
||
{
|
||
static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
|
||
static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
|
||
*bp_size = 4;
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||
return big_breakpoint;
|
||
else
|
||
return little_breakpoint;
|
||
}
|
||
|
||
|
||
/* AIX does not support PT_STEP. Simulate it. */
|
||
|
||
void
|
||
rs6000_software_single_step (enum target_signal signal,
|
||
int insert_breakpoints_p)
|
||
{
|
||
CORE_ADDR dummy;
|
||
int breakp_sz;
|
||
const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
|
||
int ii, insn;
|
||
CORE_ADDR loc;
|
||
CORE_ADDR breaks[2];
|
||
int opcode;
|
||
|
||
if (insert_breakpoints_p)
|
||
{
|
||
|
||
loc = read_pc ();
|
||
|
||
insn = read_memory_integer (loc, 4);
|
||
|
||
breaks[0] = loc + breakp_sz;
|
||
opcode = insn >> 26;
|
||
breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
|
||
|
||
/* Don't put two breakpoints on the same address. */
|
||
if (breaks[1] == breaks[0])
|
||
breaks[1] = -1;
|
||
|
||
stepBreaks[1].address = 0;
|
||
|
||
for (ii = 0; ii < 2; ++ii)
|
||
{
|
||
|
||
/* ignore invalid breakpoint. */
|
||
if (breaks[ii] == -1)
|
||
continue;
|
||
target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
|
||
stepBreaks[ii].address = breaks[ii];
|
||
}
|
||
|
||
}
|
||
else
|
||
{
|
||
|
||
/* remove step breakpoints. */
|
||
for (ii = 0; ii < 2; ++ii)
|
||
if (stepBreaks[ii].address != 0)
|
||
target_remove_breakpoint (stepBreaks[ii].address,
|
||
stepBreaks[ii].data);
|
||
}
|
||
errno = 0; /* FIXME, don't ignore errors! */
|
||
/* What errors? {read,write}_memory call error(). */
|
||
}
|
||
|
||
|
||
/* return pc value after skipping a function prologue and also return
|
||
information about a function frame.
|
||
|
||
in struct rs6000_framedata fdata:
|
||
- frameless is TRUE, if function does not have a frame.
|
||
- nosavedpc is TRUE, if function does not save %pc value in its frame.
|
||
- offset is the initial size of this stack frame --- the amount by
|
||
which we decrement the sp to allocate the frame.
|
||
- saved_gpr is the number of the first saved gpr.
|
||
- saved_fpr is the number of the first saved fpr.
|
||
- saved_vr is the number of the first saved vr.
|
||
- saved_ev is the number of the first saved ev.
|
||
- alloca_reg is the number of the register used for alloca() handling.
|
||
Otherwise -1.
|
||
- gpr_offset is the offset of the first saved gpr from the previous frame.
|
||
- fpr_offset is the offset of the first saved fpr from the previous frame.
|
||
- vr_offset is the offset of the first saved vr from the previous frame.
|
||
- ev_offset is the offset of the first saved ev from the previous frame.
|
||
- lr_offset is the offset of the saved lr
|
||
- cr_offset is the offset of the saved cr
|
||
- vrsave_offset is the offset of the saved vrsave register
|
||
*/
|
||
|
||
#define SIGNED_SHORT(x) \
|
||
((sizeof (short) == 2) \
|
||
? ((int)(short)(x)) \
|
||
: ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
|
||
|
||
#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
|
||
|
||
/* Limit the number of skipped non-prologue instructions, as the examining
|
||
of the prologue is expensive. */
|
||
static int max_skip_non_prologue_insns = 10;
|
||
|
||
/* Given PC representing the starting address of a function, and
|
||
LIM_PC which is the (sloppy) limit to which to scan when looking
|
||
for a prologue, attempt to further refine this limit by using
|
||
the line data in the symbol table. If successful, a better guess
|
||
on where the prologue ends is returned, otherwise the previous
|
||
value of lim_pc is returned. */
|
||
static CORE_ADDR
|
||
refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
|
||
{
|
||
struct symtab_and_line prologue_sal;
|
||
|
||
prologue_sal = find_pc_line (pc, 0);
|
||
if (prologue_sal.line != 0)
|
||
{
|
||
int i;
|
||
CORE_ADDR addr = prologue_sal.end;
|
||
|
||
/* Handle the case in which compiler's optimizer/scheduler
|
||
has moved instructions into the prologue. We scan ahead
|
||
in the function looking for address ranges whose corresponding
|
||
line number is less than or equal to the first one that we
|
||
found for the function. (It can be less than when the
|
||
scheduler puts a body instruction before the first prologue
|
||
instruction.) */
|
||
for (i = 2 * max_skip_non_prologue_insns;
|
||
i > 0 && (lim_pc == 0 || addr < lim_pc);
|
||
i--)
|
||
{
|
||
struct symtab_and_line sal;
|
||
|
||
sal = find_pc_line (addr, 0);
|
||
if (sal.line == 0)
|
||
break;
|
||
if (sal.line <= prologue_sal.line
|
||
&& sal.symtab == prologue_sal.symtab)
|
||
{
|
||
prologue_sal = sal;
|
||
}
|
||
addr = sal.end;
|
||
}
|
||
|
||
if (lim_pc == 0 || prologue_sal.end < lim_pc)
|
||
lim_pc = prologue_sal.end;
|
||
}
|
||
return lim_pc;
|
||
}
|
||
|
||
|
||
static CORE_ADDR
|
||
skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
|
||
{
|
||
CORE_ADDR orig_pc = pc;
|
||
CORE_ADDR last_prologue_pc = pc;
|
||
CORE_ADDR li_found_pc = 0;
|
||
char buf[4];
|
||
unsigned long op;
|
||
long offset = 0;
|
||
long vr_saved_offset = 0;
|
||
int lr_reg = -1;
|
||
int cr_reg = -1;
|
||
int vr_reg = -1;
|
||
int ev_reg = -1;
|
||
long ev_offset = 0;
|
||
int vrsave_reg = -1;
|
||
int reg;
|
||
int framep = 0;
|
||
int minimal_toc_loaded = 0;
|
||
int prev_insn_was_prologue_insn = 1;
|
||
int num_skip_non_prologue_insns = 0;
|
||
const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
/* Attempt to find the end of the prologue when no limit is specified.
|
||
Note that refine_prologue_limit() has been written so that it may
|
||
be used to "refine" the limits of non-zero PC values too, but this
|
||
is only safe if we 1) trust the line information provided by the
|
||
compiler and 2) iterate enough to actually find the end of the
|
||
prologue.
|
||
|
||
It may become a good idea at some point (for both performance and
|
||
accuracy) to unconditionally call refine_prologue_limit(). But,
|
||
until we can make a clear determination that this is beneficial,
|
||
we'll play it safe and only use it to obtain a limit when none
|
||
has been specified. */
|
||
if (lim_pc == 0)
|
||
lim_pc = refine_prologue_limit (pc, lim_pc);
|
||
|
||
memset (fdata, 0, sizeof (struct rs6000_framedata));
|
||
fdata->saved_gpr = -1;
|
||
fdata->saved_fpr = -1;
|
||
fdata->saved_vr = -1;
|
||
fdata->saved_ev = -1;
|
||
fdata->alloca_reg = -1;
|
||
fdata->frameless = 1;
|
||
fdata->nosavedpc = 1;
|
||
|
||
for (;; pc += 4)
|
||
{
|
||
/* Sometimes it isn't clear if an instruction is a prologue
|
||
instruction or not. When we encounter one of these ambiguous
|
||
cases, we'll set prev_insn_was_prologue_insn to 0 (false).
|
||
Otherwise, we'll assume that it really is a prologue instruction. */
|
||
if (prev_insn_was_prologue_insn)
|
||
last_prologue_pc = pc;
|
||
|
||
/* Stop scanning if we've hit the limit. */
|
||
if (lim_pc != 0 && pc >= lim_pc)
|
||
break;
|
||
|
||
prev_insn_was_prologue_insn = 1;
|
||
|
||
/* Fetch the instruction and convert it to an integer. */
|
||
if (target_read_memory (pc, buf, 4))
|
||
break;
|
||
op = extract_signed_integer (buf, 4);
|
||
|
||
if ((op & 0xfc1fffff) == 0x7c0802a6)
|
||
{ /* mflr Rx */
|
||
lr_reg = (op & 0x03e00000);
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xfc1fffff) == 0x7c000026)
|
||
{ /* mfcr Rx */
|
||
cr_reg = (op & 0x03e00000);
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xfc1f0000) == 0xd8010000)
|
||
{ /* stfd Rx,NUM(r1) */
|
||
reg = GET_SRC_REG (op);
|
||
if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
|
||
{
|
||
fdata->saved_fpr = reg;
|
||
fdata->fpr_offset = SIGNED_SHORT (op) + offset;
|
||
}
|
||
continue;
|
||
|
||
}
|
||
else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
|
||
(((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
|
||
(op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
|
||
(op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
|
||
{
|
||
|
||
reg = GET_SRC_REG (op);
|
||
if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
|
||
{
|
||
fdata->saved_gpr = reg;
|
||
if ((op & 0xfc1f0003) == 0xf8010000)
|
||
op &= ~3UL;
|
||
fdata->gpr_offset = SIGNED_SHORT (op) + offset;
|
||
}
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xffff0000) == 0x60000000)
|
||
{
|
||
/* nop */
|
||
/* Allow nops in the prologue, but do not consider them to
|
||
be part of the prologue unless followed by other prologue
|
||
instructions. */
|
||
prev_insn_was_prologue_insn = 0;
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xffff0000) == 0x3c000000)
|
||
{ /* addis 0,0,NUM, used
|
||
for >= 32k frames */
|
||
fdata->offset = (op & 0x0000ffff) << 16;
|
||
fdata->frameless = 0;
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xffff0000) == 0x60000000)
|
||
{ /* ori 0,0,NUM, 2nd ha
|
||
lf of >= 32k frames */
|
||
fdata->offset |= (op & 0x0000ffff);
|
||
fdata->frameless = 0;
|
||
continue;
|
||
|
||
}
|
||
else if (lr_reg != -1 &&
|
||
/* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
|
||
(((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
|
||
/* stw Rx, NUM(r1) */
|
||
((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
|
||
/* stwu Rx, NUM(r1) */
|
||
((op & 0xffff0000) == (lr_reg | 0x94010000))))
|
||
{ /* where Rx == lr */
|
||
fdata->lr_offset = offset;
|
||
fdata->nosavedpc = 0;
|
||
lr_reg = 0;
|
||
if ((op & 0xfc000003) == 0xf8000000 || /* std */
|
||
(op & 0xfc000000) == 0x90000000) /* stw */
|
||
{
|
||
/* Does not update r1, so add displacement to lr_offset. */
|
||
fdata->lr_offset += SIGNED_SHORT (op);
|
||
}
|
||
continue;
|
||
|
||
}
|
||
else if (cr_reg != -1 &&
|
||
/* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
|
||
(((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
|
||
/* stw Rx, NUM(r1) */
|
||
((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
|
||
/* stwu Rx, NUM(r1) */
|
||
((op & 0xffff0000) == (cr_reg | 0x94010000))))
|
||
{ /* where Rx == cr */
|
||
fdata->cr_offset = offset;
|
||
cr_reg = 0;
|
||
if ((op & 0xfc000003) == 0xf8000000 ||
|
||
(op & 0xfc000000) == 0x90000000)
|
||
{
|
||
/* Does not update r1, so add displacement to cr_offset. */
|
||
fdata->cr_offset += SIGNED_SHORT (op);
|
||
}
|
||
continue;
|
||
|
||
}
|
||
else if (op == 0x48000005)
|
||
{ /* bl .+4 used in
|
||
-mrelocatable */
|
||
continue;
|
||
|
||
}
|
||
else if (op == 0x48000004)
|
||
{ /* b .+4 (xlc) */
|
||
break;
|
||
|
||
}
|
||
else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
|
||
in V.4 -mminimal-toc */
|
||
(op & 0xffff0000) == 0x3bde0000)
|
||
{ /* addi 30,30,foo@l */
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xfc000001) == 0x48000001)
|
||
{ /* bl foo,
|
||
to save fprs??? */
|
||
|
||
fdata->frameless = 0;
|
||
/* Don't skip over the subroutine call if it is not within
|
||
the first three instructions of the prologue. */
|
||
if ((pc - orig_pc) > 8)
|
||
break;
|
||
|
||
op = read_memory_integer (pc + 4, 4);
|
||
|
||
/* At this point, make sure this is not a trampoline
|
||
function (a function that simply calls another functions,
|
||
and nothing else). If the next is not a nop, this branch
|
||
was part of the function prologue. */
|
||
|
||
if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
|
||
break; /* don't skip over
|
||
this branch */
|
||
continue;
|
||
|
||
}
|
||
/* update stack pointer */
|
||
else if ((op & 0xfc1f0000) == 0x94010000)
|
||
{ /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
|
||
fdata->frameless = 0;
|
||
fdata->offset = SIGNED_SHORT (op);
|
||
offset = fdata->offset;
|
||
continue;
|
||
}
|
||
else if ((op & 0xfc1f016a) == 0x7c01016e)
|
||
{ /* stwux rX,r1,rY */
|
||
/* no way to figure out what r1 is going to be */
|
||
fdata->frameless = 0;
|
||
offset = fdata->offset;
|
||
continue;
|
||
}
|
||
else if ((op & 0xfc1f0003) == 0xf8010001)
|
||
{ /* stdu rX,NUM(r1) */
|
||
fdata->frameless = 0;
|
||
fdata->offset = SIGNED_SHORT (op & ~3UL);
|
||
offset = fdata->offset;
|
||
continue;
|
||
}
|
||
else if ((op & 0xfc1f016a) == 0x7c01016a)
|
||
{ /* stdux rX,r1,rY */
|
||
/* no way to figure out what r1 is going to be */
|
||
fdata->frameless = 0;
|
||
offset = fdata->offset;
|
||
continue;
|
||
}
|
||
/* Load up minimal toc pointer */
|
||
else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
|
||
(op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
|
||
&& !minimal_toc_loaded)
|
||
{
|
||
minimal_toc_loaded = 1;
|
||
continue;
|
||
|
||
/* move parameters from argument registers to local variable
|
||
registers */
|
||
}
|
||
else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
|
||
(((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
|
||
(((op >> 21) & 31) <= 10) &&
|
||
((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
|
||
{
|
||
continue;
|
||
|
||
/* store parameters in stack */
|
||
}
|
||
else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
|
||
(op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
|
||
(op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
|
||
{
|
||
continue;
|
||
|
||
/* store parameters in stack via frame pointer */
|
||
}
|
||
else if (framep &&
|
||
((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
|
||
(op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
|
||
(op & 0xfc1f0000) == 0xfc1f0000))
|
||
{ /* frsp, fp?,NUM(r1) */
|
||
continue;
|
||
|
||
/* Set up frame pointer */
|
||
}
|
||
else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
|
||
|| op == 0x7c3f0b78)
|
||
{ /* mr r31, r1 */
|
||
fdata->frameless = 0;
|
||
framep = 1;
|
||
fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
|
||
continue;
|
||
|
||
/* Another way to set up the frame pointer. */
|
||
}
|
||
else if ((op & 0xfc1fffff) == 0x38010000)
|
||
{ /* addi rX, r1, 0x0 */
|
||
fdata->frameless = 0;
|
||
framep = 1;
|
||
fdata->alloca_reg = (tdep->ppc_gp0_regnum
|
||
+ ((op & ~0x38010000) >> 21));
|
||
continue;
|
||
}
|
||
/* AltiVec related instructions. */
|
||
/* Store the vrsave register (spr 256) in another register for
|
||
later manipulation, or load a register into the vrsave
|
||
register. 2 instructions are used: mfvrsave and
|
||
mtvrsave. They are shorthand notation for mfspr Rn, SPR256
|
||
and mtspr SPR256, Rn. */
|
||
/* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
|
||
mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
|
||
else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
|
||
{
|
||
vrsave_reg = GET_SRC_REG (op);
|
||
continue;
|
||
}
|
||
else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
|
||
{
|
||
continue;
|
||
}
|
||
/* Store the register where vrsave was saved to onto the stack:
|
||
rS is the register where vrsave was stored in a previous
|
||
instruction. */
|
||
/* 100100 sssss 00001 dddddddd dddddddd */
|
||
else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
|
||
{
|
||
if (vrsave_reg == GET_SRC_REG (op))
|
||
{
|
||
fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
|
||
vrsave_reg = -1;
|
||
}
|
||
continue;
|
||
}
|
||
/* Compute the new value of vrsave, by modifying the register
|
||
where vrsave was saved to. */
|
||
else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
|
||
|| ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
|
||
{
|
||
continue;
|
||
}
|
||
/* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
|
||
in a pair of insns to save the vector registers on the
|
||
stack. */
|
||
/* 001110 00000 00000 iiii iiii iiii iiii */
|
||
/* 001110 01110 00000 iiii iiii iiii iiii */
|
||
else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
|
||
|| (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
|
||
{
|
||
li_found_pc = pc;
|
||
vr_saved_offset = SIGNED_SHORT (op);
|
||
}
|
||
/* Store vector register S at (r31+r0) aligned to 16 bytes. */
|
||
/* 011111 sssss 11111 00000 00111001110 */
|
||
else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
|
||
{
|
||
if (pc == (li_found_pc + 4))
|
||
{
|
||
vr_reg = GET_SRC_REG (op);
|
||
/* If this is the first vector reg to be saved, or if
|
||
it has a lower number than others previously seen,
|
||
reupdate the frame info. */
|
||
if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
|
||
{
|
||
fdata->saved_vr = vr_reg;
|
||
fdata->vr_offset = vr_saved_offset + offset;
|
||
}
|
||
vr_saved_offset = -1;
|
||
vr_reg = -1;
|
||
li_found_pc = 0;
|
||
}
|
||
}
|
||
/* End AltiVec related instructions. */
|
||
|
||
/* Start BookE related instructions. */
|
||
/* Store gen register S at (r31+uimm).
|
||
Any register less than r13 is volatile, so we don't care. */
|
||
/* 000100 sssss 11111 iiiii 01100100001 */
|
||
else if (arch_info->mach == bfd_mach_ppc_e500
|
||
&& (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
|
||
{
|
||
if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
|
||
{
|
||
unsigned int imm;
|
||
ev_reg = GET_SRC_REG (op);
|
||
imm = (op >> 11) & 0x1f;
|
||
ev_offset = imm * 8;
|
||
/* If this is the first vector reg to be saved, or if
|
||
it has a lower number than others previously seen,
|
||
reupdate the frame info. */
|
||
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
|
||
{
|
||
fdata->saved_ev = ev_reg;
|
||
fdata->ev_offset = ev_offset + offset;
|
||
}
|
||
}
|
||
continue;
|
||
}
|
||
/* Store gen register rS at (r1+rB). */
|
||
/* 000100 sssss 00001 bbbbb 01100100000 */
|
||
else if (arch_info->mach == bfd_mach_ppc_e500
|
||
&& (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
|
||
{
|
||
if (pc == (li_found_pc + 4))
|
||
{
|
||
ev_reg = GET_SRC_REG (op);
|
||
/* If this is the first vector reg to be saved, or if
|
||
it has a lower number than others previously seen,
|
||
reupdate the frame info. */
|
||
/* We know the contents of rB from the previous instruction. */
|
||
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
|
||
{
|
||
fdata->saved_ev = ev_reg;
|
||
fdata->ev_offset = vr_saved_offset + offset;
|
||
}
|
||
vr_saved_offset = -1;
|
||
ev_reg = -1;
|
||
li_found_pc = 0;
|
||
}
|
||
continue;
|
||
}
|
||
/* Store gen register r31 at (rA+uimm). */
|
||
/* 000100 11111 aaaaa iiiii 01100100001 */
|
||
else if (arch_info->mach == bfd_mach_ppc_e500
|
||
&& (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
|
||
{
|
||
/* Wwe know that the source register is 31 already, but
|
||
it can't hurt to compute it. */
|
||
ev_reg = GET_SRC_REG (op);
|
||
ev_offset = ((op >> 11) & 0x1f) * 8;
|
||
/* If this is the first vector reg to be saved, or if
|
||
it has a lower number than others previously seen,
|
||
reupdate the frame info. */
|
||
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
|
||
{
|
||
fdata->saved_ev = ev_reg;
|
||
fdata->ev_offset = ev_offset + offset;
|
||
}
|
||
|
||
continue;
|
||
}
|
||
/* Store gen register S at (r31+r0).
|
||
Store param on stack when offset from SP bigger than 4 bytes. */
|
||
/* 000100 sssss 11111 00000 01100100000 */
|
||
else if (arch_info->mach == bfd_mach_ppc_e500
|
||
&& (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
|
||
{
|
||
if (pc == (li_found_pc + 4))
|
||
{
|
||
if ((op & 0x03e00000) >= 0x01a00000)
|
||
{
|
||
ev_reg = GET_SRC_REG (op);
|
||
/* If this is the first vector reg to be saved, or if
|
||
it has a lower number than others previously seen,
|
||
reupdate the frame info. */
|
||
/* We know the contents of r0 from the previous
|
||
instruction. */
|
||
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
|
||
{
|
||
fdata->saved_ev = ev_reg;
|
||
fdata->ev_offset = vr_saved_offset + offset;
|
||
}
|
||
ev_reg = -1;
|
||
}
|
||
vr_saved_offset = -1;
|
||
li_found_pc = 0;
|
||
continue;
|
||
}
|
||
}
|
||
/* End BookE related instructions. */
|
||
|
||
else
|
||
{
|
||
/* Not a recognized prologue instruction.
|
||
Handle optimizer code motions into the prologue by continuing
|
||
the search if we have no valid frame yet or if the return
|
||
address is not yet saved in the frame. */
|
||
if (fdata->frameless == 0
|
||
&& (lr_reg == -1 || fdata->nosavedpc == 0))
|
||
break;
|
||
|
||
if (op == 0x4e800020 /* blr */
|
||
|| op == 0x4e800420) /* bctr */
|
||
/* Do not scan past epilogue in frameless functions or
|
||
trampolines. */
|
||
break;
|
||
if ((op & 0xf4000000) == 0x40000000) /* bxx */
|
||
/* Never skip branches. */
|
||
break;
|
||
|
||
if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
|
||
/* Do not scan too many insns, scanning insns is expensive with
|
||
remote targets. */
|
||
break;
|
||
|
||
/* Continue scanning. */
|
||
prev_insn_was_prologue_insn = 0;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
#if 0
|
||
/* I have problems with skipping over __main() that I need to address
|
||
* sometime. Previously, I used to use misc_function_vector which
|
||
* didn't work as well as I wanted to be. -MGO */
|
||
|
||
/* If the first thing after skipping a prolog is a branch to a function,
|
||
this might be a call to an initializer in main(), introduced by gcc2.
|
||
We'd like to skip over it as well. Fortunately, xlc does some extra
|
||
work before calling a function right after a prologue, thus we can
|
||
single out such gcc2 behaviour. */
|
||
|
||
|
||
if ((op & 0xfc000001) == 0x48000001)
|
||
{ /* bl foo, an initializer function? */
|
||
op = read_memory_integer (pc + 4, 4);
|
||
|
||
if (op == 0x4def7b82)
|
||
{ /* cror 0xf, 0xf, 0xf (nop) */
|
||
|
||
/* Check and see if we are in main. If so, skip over this
|
||
initializer function as well. */
|
||
|
||
tmp = find_pc_misc_function (pc);
|
||
if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
|
||
return pc + 8;
|
||
}
|
||
}
|
||
#endif /* 0 */
|
||
|
||
fdata->offset = -fdata->offset;
|
||
return last_prologue_pc;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Support for creating pushing a dummy frame into the stack, and popping
|
||
frames, etc.
|
||
*************************************************************************/
|
||
|
||
|
||
/* Pop the innermost frame, go back to the caller. */
|
||
|
||
static void
|
||
rs6000_pop_frame (void)
|
||
{
|
||
CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
|
||
struct rs6000_framedata fdata;
|
||
struct frame_info *frame = get_current_frame ();
|
||
int ii, wordsize;
|
||
|
||
pc = read_pc ();
|
||
sp = get_frame_base (frame);
|
||
|
||
if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
|
||
get_frame_base (frame),
|
||
get_frame_base (frame)))
|
||
{
|
||
generic_pop_dummy_frame ();
|
||
flush_cached_frames ();
|
||
return;
|
||
}
|
||
|
||
/* Make sure that all registers are valid. */
|
||
deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
|
||
|
||
/* Figure out previous %pc value. If the function is frameless, it is
|
||
still in the link register, otherwise walk the frames and retrieve the
|
||
saved %pc value in the previous frame. */
|
||
|
||
addr = get_frame_func (frame);
|
||
(void) skip_prologue (addr, get_frame_pc (frame), &fdata);
|
||
|
||
wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
|
||
if (fdata.frameless)
|
||
prev_sp = sp;
|
||
else
|
||
prev_sp = read_memory_addr (sp, wordsize);
|
||
if (fdata.lr_offset == 0)
|
||
lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
|
||
else
|
||
lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
|
||
|
||
/* reset %pc value. */
|
||
write_register (PC_REGNUM, lr);
|
||
|
||
/* reset register values if any was saved earlier. */
|
||
|
||
if (fdata.saved_gpr != -1)
|
||
{
|
||
addr = prev_sp + fdata.gpr_offset;
|
||
for (ii = fdata.saved_gpr; ii <= 31; ++ii)
|
||
{
|
||
read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii)],
|
||
wordsize);
|
||
addr += wordsize;
|
||
}
|
||
}
|
||
|
||
if (fdata.saved_fpr != -1)
|
||
{
|
||
addr = prev_sp + fdata.fpr_offset;
|
||
for (ii = fdata.saved_fpr; ii <= 31; ++ii)
|
||
{
|
||
read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
|
||
addr += 8;
|
||
}
|
||
}
|
||
|
||
write_register (SP_REGNUM, prev_sp);
|
||
target_store_registers (-1);
|
||
flush_cached_frames ();
|
||
}
|
||
|
||
/* Fixup the call sequence of a dummy function, with the real function
|
||
address. Its arguments will be passed by gdb. */
|
||
|
||
static void
|
||
rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
|
||
int nargs, struct value **args, struct type *type,
|
||
int gcc_p)
|
||
{
|
||
int ii;
|
||
CORE_ADDR target_addr;
|
||
|
||
if (rs6000_find_toc_address_hook != NULL)
|
||
{
|
||
CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
|
||
write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
|
||
tocvalue);
|
||
}
|
||
}
|
||
|
||
/* All the ABI's require 16 byte alignment. */
|
||
static CORE_ADDR
|
||
rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
|
||
{
|
||
return (addr & -16);
|
||
}
|
||
|
||
/* Pass the arguments in either registers, or in the stack. In RS/6000,
|
||
the first eight words of the argument list (that might be less than
|
||
eight parameters if some parameters occupy more than one word) are
|
||
passed in r3..r10 registers. float and double parameters are
|
||
passed in fpr's, in addition to that. Rest of the parameters if any
|
||
are passed in user stack. There might be cases in which half of the
|
||
parameter is copied into registers, the other half is pushed into
|
||
stack.
|
||
|
||
Stack must be aligned on 64-bit boundaries when synthesizing
|
||
function calls.
|
||
|
||
If the function is returning a structure, then the return address is passed
|
||
in r3, then the first 7 words of the parameters can be passed in registers,
|
||
starting from r4. */
|
||
|
||
static CORE_ADDR
|
||
rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
|
||
int struct_return, CORE_ADDR struct_addr)
|
||
{
|
||
int ii;
|
||
int len = 0;
|
||
int argno; /* current argument number */
|
||
int argbytes; /* current argument byte */
|
||
char tmp_buffer[50];
|
||
int f_argno = 0; /* current floating point argno */
|
||
int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
|
||
|
||
struct value *arg = 0;
|
||
struct type *type;
|
||
|
||
CORE_ADDR saved_sp;
|
||
|
||
/* The first eight words of ther arguments are passed in registers.
|
||
Copy them appropriately.
|
||
|
||
If the function is returning a `struct', then the first word (which
|
||
will be passed in r3) is used for struct return address. In that
|
||
case we should advance one word and start from r4 register to copy
|
||
parameters. */
|
||
|
||
ii = struct_return ? 1 : 0;
|
||
|
||
/*
|
||
effectively indirect call... gcc does...
|
||
|
||
return_val example( float, int);
|
||
|
||
eabi:
|
||
float in fp0, int in r3
|
||
offset of stack on overflow 8/16
|
||
for varargs, must go by type.
|
||
power open:
|
||
float in r3&r4, int in r5
|
||
offset of stack on overflow different
|
||
both:
|
||
return in r3 or f0. If no float, must study how gcc emulates floats;
|
||
pay attention to arg promotion.
|
||
User may have to cast\args to handle promotion correctly
|
||
since gdb won't know if prototype supplied or not.
|
||
*/
|
||
|
||
for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
|
||
{
|
||
int reg_size = REGISTER_RAW_SIZE (ii + 3);
|
||
|
||
arg = args[argno];
|
||
type = check_typedef (VALUE_TYPE (arg));
|
||
len = TYPE_LENGTH (type);
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
||
{
|
||
|
||
/* Floating point arguments are passed in fpr's, as well as gpr's.
|
||
There are 13 fpr's reserved for passing parameters. At this point
|
||
there is no way we would run out of them. */
|
||
|
||
if (len > 8)
|
||
printf_unfiltered (
|
||
"Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
|
||
|
||
memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
|
||
VALUE_CONTENTS (arg),
|
||
len);
|
||
++f_argno;
|
||
}
|
||
|
||
if (len > reg_size)
|
||
{
|
||
|
||
/* Argument takes more than one register. */
|
||
while (argbytes < len)
|
||
{
|
||
memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0,
|
||
reg_size);
|
||
memcpy (&deprecated_registers[REGISTER_BYTE (ii + 3)],
|
||
((char *) VALUE_CONTENTS (arg)) + argbytes,
|
||
(len - argbytes) > reg_size
|
||
? reg_size : len - argbytes);
|
||
++ii, argbytes += reg_size;
|
||
|
||
if (ii >= 8)
|
||
goto ran_out_of_registers_for_arguments;
|
||
}
|
||
argbytes = 0;
|
||
--ii;
|
||
}
|
||
else
|
||
{
|
||
/* Argument can fit in one register. No problem. */
|
||
int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
|
||
memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
|
||
memcpy ((char *)&deprecated_registers[REGISTER_BYTE (ii + 3)] + adj,
|
||
VALUE_CONTENTS (arg), len);
|
||
}
|
||
++argno;
|
||
}
|
||
|
||
ran_out_of_registers_for_arguments:
|
||
|
||
saved_sp = read_sp ();
|
||
|
||
/* Location for 8 parameters are always reserved. */
|
||
sp -= wordsize * 8;
|
||
|
||
/* Another six words for back chain, TOC register, link register, etc. */
|
||
sp -= wordsize * 6;
|
||
|
||
/* Stack pointer must be quadword aligned. */
|
||
sp &= -16;
|
||
|
||
/* If there are more arguments, allocate space for them in
|
||
the stack, then push them starting from the ninth one. */
|
||
|
||
if ((argno < nargs) || argbytes)
|
||
{
|
||
int space = 0, jj;
|
||
|
||
if (argbytes)
|
||
{
|
||
space += ((len - argbytes + 3) & -4);
|
||
jj = argno + 1;
|
||
}
|
||
else
|
||
jj = argno;
|
||
|
||
for (; jj < nargs; ++jj)
|
||
{
|
||
struct value *val = args[jj];
|
||
space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
|
||
}
|
||
|
||
/* Add location required for the rest of the parameters. */
|
||
space = (space + 15) & -16;
|
||
sp -= space;
|
||
|
||
/* This is another instance we need to be concerned about
|
||
securing our stack space. If we write anything underneath %sp
|
||
(r1), we might conflict with the kernel who thinks he is free
|
||
to use this area. So, update %sp first before doing anything
|
||
else. */
|
||
|
||
write_register (SP_REGNUM, sp);
|
||
|
||
/* If the last argument copied into the registers didn't fit there
|
||
completely, push the rest of it into stack. */
|
||
|
||
if (argbytes)
|
||
{
|
||
write_memory (sp + 24 + (ii * 4),
|
||
((char *) VALUE_CONTENTS (arg)) + argbytes,
|
||
len - argbytes);
|
||
++argno;
|
||
ii += ((len - argbytes + 3) & -4) / 4;
|
||
}
|
||
|
||
/* Push the rest of the arguments into stack. */
|
||
for (; argno < nargs; ++argno)
|
||
{
|
||
|
||
arg = args[argno];
|
||
type = check_typedef (VALUE_TYPE (arg));
|
||
len = TYPE_LENGTH (type);
|
||
|
||
|
||
/* Float types should be passed in fpr's, as well as in the
|
||
stack. */
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
|
||
{
|
||
|
||
if (len > 8)
|
||
printf_unfiltered (
|
||
"Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
|
||
|
||
memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
|
||
VALUE_CONTENTS (arg),
|
||
len);
|
||
++f_argno;
|
||
}
|
||
|
||
write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
|
||
ii += ((len + 3) & -4) / 4;
|
||
}
|
||
}
|
||
else
|
||
/* Secure stack areas first, before doing anything else. */
|
||
write_register (SP_REGNUM, sp);
|
||
|
||
/* set back chain properly */
|
||
store_unsigned_integer (tmp_buffer, 4, saved_sp);
|
||
write_memory (sp, tmp_buffer, 4);
|
||
|
||
target_store_registers (-1);
|
||
return sp;
|
||
}
|
||
|
||
/* Function: ppc_push_return_address (pc, sp)
|
||
Set up the return address for the inferior function call. */
|
||
|
||
static CORE_ADDR
|
||
ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
|
||
{
|
||
write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
|
||
CALL_DUMMY_ADDRESS ());
|
||
return sp;
|
||
}
|
||
|
||
/* Extract a function return value of type TYPE from raw register array
|
||
REGBUF, and copy that return value into VALBUF in virtual format. */
|
||
static void
|
||
e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
|
||
{
|
||
int offset = 0;
|
||
int vallen = TYPE_LENGTH (valtype);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
|
||
&& vallen == 8
|
||
&& TYPE_VECTOR (valtype))
|
||
{
|
||
regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
|
||
}
|
||
else
|
||
{
|
||
/* Return value is copied starting from r3. Note that r3 for us
|
||
is a pseudo register. */
|
||
int offset = 0;
|
||
int return_regnum = tdep->ppc_gp0_regnum + 3;
|
||
int reg_size = REGISTER_RAW_SIZE (return_regnum);
|
||
int reg_part_size;
|
||
char *val_buffer;
|
||
int copied = 0;
|
||
int i = 0;
|
||
|
||
/* Compute where we will start storing the value from. */
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||
{
|
||
if (vallen <= reg_size)
|
||
offset = reg_size - vallen;
|
||
else
|
||
offset = reg_size + (reg_size - vallen);
|
||
}
|
||
|
||
/* How big does the local buffer need to be? */
|
||
if (vallen <= reg_size)
|
||
val_buffer = alloca (reg_size);
|
||
else
|
||
val_buffer = alloca (vallen);
|
||
|
||
/* Read all we need into our private buffer. We copy it in
|
||
chunks that are as long as one register, never shorter, even
|
||
if the value is smaller than the register. */
|
||
while (copied < vallen)
|
||
{
|
||
reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
|
||
/* It is a pseudo/cooked register. */
|
||
regcache_cooked_read (regbuf, return_regnum + i,
|
||
val_buffer + copied);
|
||
copied += reg_part_size;
|
||
i++;
|
||
}
|
||
/* Put the stuff in the return buffer. */
|
||
memcpy (valbuf, val_buffer + offset, vallen);
|
||
}
|
||
}
|
||
|
||
static void
|
||
rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
|
||
{
|
||
int offset = 0;
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
|
||
{
|
||
|
||
double dd;
|
||
float ff;
|
||
/* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
|
||
We need to truncate the return value into float size (4 byte) if
|
||
necessary. */
|
||
|
||
if (TYPE_LENGTH (valtype) > 4) /* this is a double */
|
||
memcpy (valbuf,
|
||
®buf[REGISTER_BYTE (FP0_REGNUM + 1)],
|
||
TYPE_LENGTH (valtype));
|
||
else
|
||
{ /* float */
|
||
memcpy (&dd, ®buf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
|
||
ff = (float) dd;
|
||
memcpy (valbuf, &ff, sizeof (float));
|
||
}
|
||
}
|
||
else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
|
||
&& TYPE_LENGTH (valtype) == 16
|
||
&& TYPE_VECTOR (valtype))
|
||
{
|
||
memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
|
||
TYPE_LENGTH (valtype));
|
||
}
|
||
else
|
||
{
|
||
/* return value is copied starting from r3. */
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
|
||
&& TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
|
||
offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
|
||
|
||
memcpy (valbuf,
|
||
regbuf + REGISTER_BYTE (3) + offset,
|
||
TYPE_LENGTH (valtype));
|
||
}
|
||
}
|
||
|
||
/* Return whether handle_inferior_event() should proceed through code
|
||
starting at PC in function NAME when stepping.
|
||
|
||
The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
|
||
handle memory references that are too distant to fit in instructions
|
||
generated by the compiler. For example, if 'foo' in the following
|
||
instruction:
|
||
|
||
lwz r9,foo(r2)
|
||
|
||
is greater than 32767, the linker might replace the lwz with a branch to
|
||
somewhere in @FIX1 that does the load in 2 instructions and then branches
|
||
back to where execution should continue.
|
||
|
||
GDB should silently step over @FIX code, just like AIX dbx does.
|
||
Unfortunately, the linker uses the "b" instruction for the branches,
|
||
meaning that the link register doesn't get set. Therefore, GDB's usual
|
||
step_over_function() mechanism won't work.
|
||
|
||
Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
|
||
in handle_inferior_event() to skip past @FIX code. */
|
||
|
||
int
|
||
rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
|
||
{
|
||
return name && !strncmp (name, "@FIX", 4);
|
||
}
|
||
|
||
/* Skip code that the user doesn't want to see when stepping:
|
||
|
||
1. Indirect function calls use a piece of trampoline code to do context
|
||
switching, i.e. to set the new TOC table. Skip such code if we are on
|
||
its first instruction (as when we have single-stepped to here).
|
||
|
||
2. Skip shared library trampoline code (which is different from
|
||
indirect function call trampolines).
|
||
|
||
3. Skip bigtoc fixup code.
|
||
|
||
Result is desired PC to step until, or NULL if we are not in
|
||
code that should be skipped. */
|
||
|
||
CORE_ADDR
|
||
rs6000_skip_trampoline_code (CORE_ADDR pc)
|
||
{
|
||
register unsigned int ii, op;
|
||
int rel;
|
||
CORE_ADDR solib_target_pc;
|
||
struct minimal_symbol *msymbol;
|
||
|
||
static unsigned trampoline_code[] =
|
||
{
|
||
0x800b0000, /* l r0,0x0(r11) */
|
||
0x90410014, /* st r2,0x14(r1) */
|
||
0x7c0903a6, /* mtctr r0 */
|
||
0x804b0004, /* l r2,0x4(r11) */
|
||
0x816b0008, /* l r11,0x8(r11) */
|
||
0x4e800420, /* bctr */
|
||
0x4e800020, /* br */
|
||
0
|
||
};
|
||
|
||
/* Check for bigtoc fixup code. */
|
||
msymbol = lookup_minimal_symbol_by_pc (pc);
|
||
if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
|
||
{
|
||
/* Double-check that the third instruction from PC is relative "b". */
|
||
op = read_memory_integer (pc + 8, 4);
|
||
if ((op & 0xfc000003) == 0x48000000)
|
||
{
|
||
/* Extract bits 6-29 as a signed 24-bit relative word address and
|
||
add it to the containing PC. */
|
||
rel = ((int)(op << 6) >> 6);
|
||
return pc + 8 + rel;
|
||
}
|
||
}
|
||
|
||
/* If pc is in a shared library trampoline, return its target. */
|
||
solib_target_pc = find_solib_trampoline_target (pc);
|
||
if (solib_target_pc)
|
||
return solib_target_pc;
|
||
|
||
for (ii = 0; trampoline_code[ii]; ++ii)
|
||
{
|
||
op = read_memory_integer (pc + (ii * 4), 4);
|
||
if (op != trampoline_code[ii])
|
||
return 0;
|
||
}
|
||
ii = read_register (11); /* r11 holds destination addr */
|
||
pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
|
||
return pc;
|
||
}
|
||
|
||
/* Determines whether the function FI has a frame on the stack or not. */
|
||
|
||
int
|
||
rs6000_frameless_function_invocation (struct frame_info *fi)
|
||
{
|
||
CORE_ADDR func_start;
|
||
struct rs6000_framedata fdata;
|
||
|
||
/* Don't even think about framelessness except on the innermost frame
|
||
or if the function was interrupted by a signal. */
|
||
if (get_next_frame (fi) != NULL
|
||
&& !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
|
||
return 0;
|
||
|
||
func_start = get_frame_func (fi);
|
||
|
||
/* If we failed to find the start of the function, it is a mistake
|
||
to inspect the instructions. */
|
||
|
||
if (!func_start)
|
||
{
|
||
/* A frame with a zero PC is usually created by dereferencing a NULL
|
||
function pointer, normally causing an immediate core dump of the
|
||
inferior. Mark function as frameless, as the inferior has no chance
|
||
of setting up a stack frame. */
|
||
if (get_frame_pc (fi) == 0)
|
||
return 1;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
(void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
|
||
return fdata.frameless;
|
||
}
|
||
|
||
/* Return the PC saved in a frame. */
|
||
|
||
CORE_ADDR
|
||
rs6000_frame_saved_pc (struct frame_info *fi)
|
||
{
|
||
CORE_ADDR func_start;
|
||
struct rs6000_framedata fdata;
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
int wordsize = tdep->wordsize;
|
||
|
||
if ((get_frame_type (fi) == SIGTRAMP_FRAME))
|
||
return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
|
||
wordsize);
|
||
|
||
if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
|
||
get_frame_base (fi),
|
||
get_frame_base (fi)))
|
||
return deprecated_read_register_dummy (get_frame_pc (fi),
|
||
get_frame_base (fi), PC_REGNUM);
|
||
|
||
func_start = get_frame_func (fi);
|
||
|
||
/* If we failed to find the start of the function, it is a mistake
|
||
to inspect the instructions. */
|
||
if (!func_start)
|
||
return 0;
|
||
|
||
(void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
|
||
|
||
if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
|
||
{
|
||
if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
|
||
return read_memory_addr ((get_frame_base (get_next_frame (fi))
|
||
+ SIG_FRAME_LR_OFFSET),
|
||
wordsize);
|
||
else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
|
||
/* The link register wasn't saved by this frame and the next
|
||
(inner, newer) frame is a dummy. Get the link register
|
||
value by unwinding it from that [dummy] frame. */
|
||
{
|
||
ULONGEST lr;
|
||
frame_unwind_unsigned_register (get_next_frame (fi),
|
||
tdep->ppc_lr_regnum, &lr);
|
||
return lr;
|
||
}
|
||
else
|
||
return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
|
||
+ tdep->lr_frame_offset,
|
||
wordsize);
|
||
}
|
||
|
||
if (fdata.lr_offset == 0)
|
||
return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
|
||
|
||
return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
|
||
wordsize);
|
||
}
|
||
|
||
/* If saved registers of frame FI are not known yet, read and cache them.
|
||
&FDATAP contains rs6000_framedata; TDATAP can be NULL,
|
||
in which case the framedata are read. */
|
||
|
||
static void
|
||
frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
|
||
{
|
||
CORE_ADDR frame_addr;
|
||
struct rs6000_framedata work_fdata;
|
||
struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
|
||
int wordsize = tdep->wordsize;
|
||
|
||
if (get_frame_saved_regs (fi))
|
||
return;
|
||
|
||
if (fdatap == NULL)
|
||
{
|
||
fdatap = &work_fdata;
|
||
(void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
|
||
}
|
||
|
||
frame_saved_regs_zalloc (fi);
|
||
|
||
/* If there were any saved registers, figure out parent's stack
|
||
pointer. */
|
||
/* The following is true only if the frame doesn't have a call to
|
||
alloca(), FIXME. */
|
||
|
||
if (fdatap->saved_fpr == 0
|
||
&& fdatap->saved_gpr == 0
|
||
&& fdatap->saved_vr == 0
|
||
&& fdatap->saved_ev == 0
|
||
&& fdatap->lr_offset == 0
|
||
&& fdatap->cr_offset == 0
|
||
&& fdatap->vr_offset == 0
|
||
&& fdatap->ev_offset == 0)
|
||
frame_addr = 0;
|
||
else
|
||
/* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
|
||
address of the current frame. Things might be easier if the
|
||
->frame pointed to the outer-most address of the frame. In the
|
||
mean time, the address of the prev frame is used as the base
|
||
address of this frame. */
|
||
frame_addr = DEPRECATED_FRAME_CHAIN (fi);
|
||
|
||
/* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
|
||
All fpr's from saved_fpr to fp31 are saved. */
|
||
|
||
if (fdatap->saved_fpr >= 0)
|
||
{
|
||
int i;
|
||
CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
|
||
for (i = fdatap->saved_fpr; i < 32; i++)
|
||
{
|
||
get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
|
||
fpr_addr += 8;
|
||
}
|
||
}
|
||
|
||
/* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
|
||
All gpr's from saved_gpr to gpr31 are saved. */
|
||
|
||
if (fdatap->saved_gpr >= 0)
|
||
{
|
||
int i;
|
||
CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
|
||
for (i = fdatap->saved_gpr; i < 32; i++)
|
||
{
|
||
get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
|
||
gpr_addr += wordsize;
|
||
}
|
||
}
|
||
|
||
/* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
|
||
All vr's from saved_vr to vr31 are saved. */
|
||
if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
|
||
{
|
||
if (fdatap->saved_vr >= 0)
|
||
{
|
||
int i;
|
||
CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
|
||
for (i = fdatap->saved_vr; i < 32; i++)
|
||
{
|
||
get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
|
||
vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
|
||
All vr's from saved_ev to ev31 are saved. ????? */
|
||
if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
|
||
{
|
||
if (fdatap->saved_ev >= 0)
|
||
{
|
||
int i;
|
||
CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
|
||
for (i = fdatap->saved_ev; i < 32; i++)
|
||
{
|
||
get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
|
||
get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
|
||
ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If != 0, fdatap->cr_offset is the offset from the frame that holds
|
||
the CR. */
|
||
if (fdatap->cr_offset != 0)
|
||
get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
|
||
|
||
/* If != 0, fdatap->lr_offset is the offset from the frame that holds
|
||
the LR. */
|
||
if (fdatap->lr_offset != 0)
|
||
get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
|
||
|
||
/* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
|
||
the VRSAVE. */
|
||
if (fdatap->vrsave_offset != 0)
|
||
get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
|
||
}
|
||
|
||
/* Return the address of a frame. This is the inital %sp value when the frame
|
||
was first allocated. For functions calling alloca(), it might be saved in
|
||
an alloca register. */
|
||
|
||
static CORE_ADDR
|
||
frame_initial_stack_address (struct frame_info *fi)
|
||
{
|
||
CORE_ADDR tmpaddr;
|
||
struct rs6000_framedata fdata;
|
||
struct frame_info *callee_fi;
|
||
|
||
/* If the initial stack pointer (frame address) of this frame is known,
|
||
just return it. */
|
||
|
||
if (get_frame_extra_info (fi)->initial_sp)
|
||
return get_frame_extra_info (fi)->initial_sp;
|
||
|
||
/* Find out if this function is using an alloca register. */
|
||
|
||
(void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
|
||
|
||
/* If saved registers of this frame are not known yet, read and
|
||
cache them. */
|
||
|
||
if (!get_frame_saved_regs (fi))
|
||
frame_get_saved_regs (fi, &fdata);
|
||
|
||
/* If no alloca register used, then fi->frame is the value of the %sp for
|
||
this frame, and it is good enough. */
|
||
|
||
if (fdata.alloca_reg < 0)
|
||
{
|
||
get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
|
||
return get_frame_extra_info (fi)->initial_sp;
|
||
}
|
||
|
||
/* There is an alloca register, use its value, in the current frame,
|
||
as the initial stack pointer. */
|
||
{
|
||
char tmpbuf[MAX_REGISTER_SIZE];
|
||
if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
|
||
{
|
||
get_frame_extra_info (fi)->initial_sp
|
||
= extract_unsigned_integer (tmpbuf,
|
||
REGISTER_RAW_SIZE (fdata.alloca_reg));
|
||
}
|
||
else
|
||
/* NOTE: cagney/2002-04-17: At present the only time
|
||
frame_register_read will fail is when the register isn't
|
||
available. If that does happen, use the frame. */
|
||
get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
|
||
}
|
||
return get_frame_extra_info (fi)->initial_sp;
|
||
}
|
||
|
||
/* Describe the pointer in each stack frame to the previous stack frame
|
||
(its caller). */
|
||
|
||
/* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
|
||
the frame's chain-pointer. */
|
||
|
||
/* In the case of the RS/6000, the frame's nominal address
|
||
is the address of a 4-byte word containing the calling frame's address. */
|
||
|
||
CORE_ADDR
|
||
rs6000_frame_chain (struct frame_info *thisframe)
|
||
{
|
||
CORE_ADDR fp, fpp, lr;
|
||
int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
|
||
|
||
if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
|
||
get_frame_base (thisframe),
|
||
get_frame_base (thisframe)))
|
||
/* A dummy frame always correctly chains back to the previous
|
||
frame. */
|
||
return read_memory_addr (get_frame_base (thisframe), wordsize);
|
||
|
||
if (inside_entry_file (get_frame_pc (thisframe))
|
||
|| get_frame_pc (thisframe) == entry_point_address ())
|
||
return 0;
|
||
|
||
if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
|
||
fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
|
||
wordsize);
|
||
else if (get_next_frame (thisframe) != NULL
|
||
&& (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
|
||
&& FRAMELESS_FUNCTION_INVOCATION (thisframe))
|
||
/* A frameless function interrupted by a signal did not change the
|
||
frame pointer. */
|
||
fp = get_frame_base (thisframe);
|
||
else
|
||
fp = read_memory_addr (get_frame_base (thisframe), wordsize);
|
||
return fp;
|
||
}
|
||
|
||
/* Return the size of register REG when words are WORDSIZE bytes long. If REG
|
||
isn't available with that word size, return 0. */
|
||
|
||
static int
|
||
regsize (const struct reg *reg, int wordsize)
|
||
{
|
||
return wordsize == 8 ? reg->sz64 : reg->sz32;
|
||
}
|
||
|
||
/* Return the name of register number N, or null if no such register exists
|
||
in the current architecture. */
|
||
|
||
static const char *
|
||
rs6000_register_name (int n)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
const struct reg *reg = tdep->regs + n;
|
||
|
||
if (!regsize (reg, tdep->wordsize))
|
||
return NULL;
|
||
return reg->name;
|
||
}
|
||
|
||
/* Index within `registers' of the first byte of the space for
|
||
register N. */
|
||
|
||
static int
|
||
rs6000_register_byte (int n)
|
||
{
|
||
return gdbarch_tdep (current_gdbarch)->regoff[n];
|
||
}
|
||
|
||
/* Return the number of bytes of storage in the actual machine representation
|
||
for register N if that register is available, else return 0. */
|
||
|
||
static int
|
||
rs6000_register_raw_size (int n)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
const struct reg *reg = tdep->regs + n;
|
||
return regsize (reg, tdep->wordsize);
|
||
}
|
||
|
||
/* Return the GDB type object for the "standard" data type
|
||
of data in register N. */
|
||
|
||
static struct type *
|
||
rs6000_register_virtual_type (int n)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
const struct reg *reg = tdep->regs + n;
|
||
|
||
if (reg->fpr)
|
||
return builtin_type_double;
|
||
else
|
||
{
|
||
int size = regsize (reg, tdep->wordsize);
|
||
switch (size)
|
||
{
|
||
case 0:
|
||
return builtin_type_int0;
|
||
case 4:
|
||
return builtin_type_int32;
|
||
case 8:
|
||
if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
|
||
return builtin_type_vec64;
|
||
else
|
||
return builtin_type_int64;
|
||
break;
|
||
case 16:
|
||
return builtin_type_vec128;
|
||
break;
|
||
default:
|
||
internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
|
||
n, size);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Return whether register N requires conversion when moving from raw format
|
||
to virtual format.
|
||
|
||
The register format for RS/6000 floating point registers is always
|
||
double, we need a conversion if the memory format is float. */
|
||
|
||
static int
|
||
rs6000_register_convertible (int n)
|
||
{
|
||
const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
|
||
return reg->fpr;
|
||
}
|
||
|
||
/* Convert data from raw format for register N in buffer FROM
|
||
to virtual format with type TYPE in buffer TO. */
|
||
|
||
static void
|
||
rs6000_register_convert_to_virtual (int n, struct type *type,
|
||
char *from, char *to)
|
||
{
|
||
if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
|
||
{
|
||
double val = deprecated_extract_floating (from, REGISTER_RAW_SIZE (n));
|
||
deprecated_store_floating (to, TYPE_LENGTH (type), val);
|
||
}
|
||
else
|
||
memcpy (to, from, REGISTER_RAW_SIZE (n));
|
||
}
|
||
|
||
/* Convert data from virtual format with type TYPE in buffer FROM
|
||
to raw format for register N in buffer TO. */
|
||
|
||
static void
|
||
rs6000_register_convert_to_raw (struct type *type, int n,
|
||
const char *from, char *to)
|
||
{
|
||
if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
|
||
{
|
||
double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
|
||
deprecated_store_floating (to, REGISTER_RAW_SIZE (n), val);
|
||
}
|
||
else
|
||
memcpy (to, from, REGISTER_RAW_SIZE (n));
|
||
}
|
||
|
||
static void
|
||
e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
||
int reg_nr, void *buffer)
|
||
{
|
||
int base_regnum;
|
||
int offset = 0;
|
||
char temp_buffer[MAX_REGISTER_SIZE];
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (reg_nr >= tdep->ppc_gp0_regnum
|
||
&& reg_nr <= tdep->ppc_gplast_regnum)
|
||
{
|
||
base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
|
||
|
||
/* Build the value in the provided buffer. */
|
||
/* Read the raw register of which this one is the lower portion. */
|
||
regcache_raw_read (regcache, base_regnum, temp_buffer);
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||
offset = 4;
|
||
memcpy ((char *) buffer, temp_buffer + offset, 4);
|
||
}
|
||
}
|
||
|
||
static void
|
||
e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
||
int reg_nr, const void *buffer)
|
||
{
|
||
int base_regnum;
|
||
int offset = 0;
|
||
char temp_buffer[MAX_REGISTER_SIZE];
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (reg_nr >= tdep->ppc_gp0_regnum
|
||
&& reg_nr <= tdep->ppc_gplast_regnum)
|
||
{
|
||
base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
|
||
/* reg_nr is 32 bit here, and base_regnum is 64 bits. */
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||
offset = 4;
|
||
|
||
/* Let's read the value of the base register into a temporary
|
||
buffer, so that overwriting the last four bytes with the new
|
||
value of the pseudo will leave the upper 4 bytes unchanged. */
|
||
regcache_raw_read (regcache, base_regnum, temp_buffer);
|
||
|
||
/* Write as an 8 byte quantity. */
|
||
memcpy (temp_buffer + offset, (char *) buffer, 4);
|
||
regcache_raw_write (regcache, base_regnum, temp_buffer);
|
||
}
|
||
}
|
||
|
||
/* Convert a dwarf2 register number to a gdb REGNUM. */
|
||
static int
|
||
e500_dwarf2_reg_to_regnum (int num)
|
||
{
|
||
int regnum;
|
||
if (0 <= num && num <= 31)
|
||
return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
|
||
else
|
||
return num;
|
||
}
|
||
|
||
/* Convert a dbx stab register number (from `r' declaration) to a gdb
|
||
REGNUM. */
|
||
static int
|
||
rs6000_stab_reg_to_regnum (int num)
|
||
{
|
||
int regnum;
|
||
switch (num)
|
||
{
|
||
case 64:
|
||
regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
|
||
break;
|
||
case 65:
|
||
regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
|
||
break;
|
||
case 66:
|
||
regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
|
||
break;
|
||
case 76:
|
||
regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
|
||
break;
|
||
default:
|
||
regnum = num;
|
||
break;
|
||
}
|
||
return regnum;
|
||
}
|
||
|
||
/* Store the address of the place in which to copy the structure the
|
||
subroutine will return. */
|
||
|
||
static void
|
||
rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
write_register (tdep->ppc_gp0_regnum + 3, addr);
|
||
}
|
||
|
||
/* Write into appropriate registers a function return value
|
||
of type TYPE, given in virtual format. */
|
||
static void
|
||
e500_store_return_value (struct type *type, char *valbuf)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
/* Everything is returned in GPR3 and up. */
|
||
int copied = 0;
|
||
int i = 0;
|
||
int len = TYPE_LENGTH (type);
|
||
while (copied < len)
|
||
{
|
||
int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
|
||
int reg_size = REGISTER_RAW_SIZE (regnum);
|
||
char *reg_val_buf = alloca (reg_size);
|
||
|
||
memcpy (reg_val_buf, valbuf + copied, reg_size);
|
||
copied += reg_size;
|
||
deprecated_write_register_gen (regnum, reg_val_buf);
|
||
i++;
|
||
}
|
||
}
|
||
|
||
static void
|
||
rs6000_store_return_value (struct type *type, char *valbuf)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
||
|
||
/* Floating point values are returned starting from FPR1 and up.
|
||
Say a double_double_double type could be returned in
|
||
FPR1/FPR2/FPR3 triple. */
|
||
|
||
deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
|
||
TYPE_LENGTH (type));
|
||
else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
||
{
|
||
if (TYPE_LENGTH (type) == 16
|
||
&& TYPE_VECTOR (type))
|
||
deprecated_write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
|
||
valbuf, TYPE_LENGTH (type));
|
||
}
|
||
else
|
||
/* Everything else is returned in GPR3 and up. */
|
||
deprecated_write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
|
||
valbuf, TYPE_LENGTH (type));
|
||
}
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state
|
||
the address in which a function should return its structure value,
|
||
as a CORE_ADDR (or an expression that can be used as one). */
|
||
|
||
static CORE_ADDR
|
||
rs6000_extract_struct_value_address (struct regcache *regcache)
|
||
{
|
||
/* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
|
||
function call GDB knows the address of the struct return value
|
||
and hence, should not need to call this function. Unfortunately,
|
||
the current call_function_by_hand() code only saves the most
|
||
recent struct address leading to occasional calls. The code
|
||
should instead maintain a stack of such addresses (in the dummy
|
||
frame object). */
|
||
/* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
|
||
really got no idea where the return value is being stored. While
|
||
r3, on function entry, contained the address it will have since
|
||
been reused (scratch) and hence wouldn't be valid */
|
||
return 0;
|
||
}
|
||
|
||
/* Return whether PC is in a dummy function call.
|
||
|
||
FIXME: This just checks for the end of the stack, which is broken
|
||
for things like stepping through gcc nested function stubs. */
|
||
|
||
static int
|
||
rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
|
||
{
|
||
return sp < pc && pc < fp;
|
||
}
|
||
|
||
/* Hook called when a new child process is started. */
|
||
|
||
void
|
||
rs6000_create_inferior (int pid)
|
||
{
|
||
if (rs6000_set_host_arch_hook)
|
||
rs6000_set_host_arch_hook (pid);
|
||
}
|
||
|
||
/* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
|
||
|
||
Usually a function pointer's representation is simply the address
|
||
of the function. On the RS/6000 however, a function pointer is
|
||
represented by a pointer to a TOC entry. This TOC entry contains
|
||
three words, the first word is the address of the function, the
|
||
second word is the TOC pointer (r2), and the third word is the
|
||
static chain value. Throughout GDB it is currently assumed that a
|
||
function pointer contains the address of the function, which is not
|
||
easy to fix. In addition, the conversion of a function address to
|
||
a function pointer would require allocation of a TOC entry in the
|
||
inferior's memory space, with all its drawbacks. To be able to
|
||
call C++ virtual methods in the inferior (which are called via
|
||
function pointers), find_function_addr uses this function to get the
|
||
function address from a function pointer. */
|
||
|
||
/* Return real function address if ADDR (a function pointer) is in the data
|
||
space and is therefore a special function pointer. */
|
||
|
||
static CORE_ADDR
|
||
rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
|
||
{
|
||
struct obj_section *s;
|
||
|
||
s = find_pc_section (addr);
|
||
if (s && s->the_bfd_section->flags & SEC_CODE)
|
||
return addr;
|
||
|
||
/* ADDR is in the data space, so it's a special function pointer. */
|
||
return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
|
||
}
|
||
|
||
|
||
/* Handling the various POWER/PowerPC variants. */
|
||
|
||
|
||
/* The arrays here called registers_MUMBLE hold information about available
|
||
registers.
|
||
|
||
For each family of PPC variants, I've tried to isolate out the
|
||
common registers and put them up front, so that as long as you get
|
||
the general family right, GDB will correctly identify the registers
|
||
common to that family. The common register sets are:
|
||
|
||
For the 60x family: hid0 hid1 iabr dabr pir
|
||
|
||
For the 505 and 860 family: eie eid nri
|
||
|
||
For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
|
||
tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
|
||
pbu1 pbl2 pbu2
|
||
|
||
Most of these register groups aren't anything formal. I arrived at
|
||
them by looking at the registers that occurred in more than one
|
||
processor.
|
||
|
||
Note: kevinb/2002-04-30: Support for the fpscr register was added
|
||
during April, 2002. Slot 70 is being used for PowerPC and slot 71
|
||
for Power. For PowerPC, slot 70 was unused and was already in the
|
||
PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
|
||
slot 70 was being used for "mq", so the next available slot (71)
|
||
was chosen. It would have been nice to be able to make the
|
||
register numbers the same across processor cores, but this wasn't
|
||
possible without either 1) renumbering some registers for some
|
||
processors or 2) assigning fpscr to a really high slot that's
|
||
larger than any current register number. Doing (1) is bad because
|
||
existing stubs would break. Doing (2) is undesirable because it
|
||
would introduce a really large gap between fpscr and the rest of
|
||
the registers for most processors. */
|
||
|
||
/* Convenience macros for populating register arrays. */
|
||
|
||
/* Within another macro, convert S to a string. */
|
||
|
||
#define STR(s) #s
|
||
|
||
/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
|
||
and 64 bits on 64-bit systems. */
|
||
#define R(name) { STR(name), 4, 8, 0, 0 }
|
||
|
||
/* Return a struct reg defining register NAME that's 32 bits on all
|
||
systems. */
|
||
#define R4(name) { STR(name), 4, 4, 0, 0 }
|
||
|
||
/* Return a struct reg defining register NAME that's 64 bits on all
|
||
systems. */
|
||
#define R8(name) { STR(name), 8, 8, 0, 0 }
|
||
|
||
/* Return a struct reg defining register NAME that's 128 bits on all
|
||
systems. */
|
||
#define R16(name) { STR(name), 16, 16, 0, 0 }
|
||
|
||
/* Return a struct reg defining floating-point register NAME. */
|
||
#define F(name) { STR(name), 8, 8, 1, 0 }
|
||
|
||
/* Return a struct reg defining a pseudo register NAME. */
|
||
#define P(name) { STR(name), 4, 8, 0, 1}
|
||
|
||
/* Return a struct reg defining register NAME that's 32 bits on 32-bit
|
||
systems and that doesn't exist on 64-bit systems. */
|
||
#define R32(name) { STR(name), 4, 0, 0, 0 }
|
||
|
||
/* Return a struct reg defining register NAME that's 64 bits on 64-bit
|
||
systems and that doesn't exist on 32-bit systems. */
|
||
#define R64(name) { STR(name), 0, 8, 0, 0 }
|
||
|
||
/* Return a struct reg placeholder for a register that doesn't exist. */
|
||
#define R0 { 0, 0, 0, 0, 0 }
|
||
|
||
/* UISA registers common across all architectures, including POWER. */
|
||
|
||
#define COMMON_UISA_REGS \
|
||
/* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
|
||
/* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
|
||
/* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
|
||
/* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
|
||
/* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
|
||
/* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
|
||
/* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
|
||
/* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
|
||
/* 64 */ R(pc), R(ps)
|
||
|
||
#define COMMON_UISA_NOFP_REGS \
|
||
/* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
|
||
/* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
|
||
/* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
|
||
/* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
|
||
/* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
|
||
/* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
|
||
/* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
|
||
/* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
|
||
/* 64 */ R(pc), R(ps)
|
||
|
||
/* UISA-level SPRs for PowerPC. */
|
||
#define PPC_UISA_SPRS \
|
||
/* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
|
||
|
||
/* UISA-level SPRs for PowerPC without floating point support. */
|
||
#define PPC_UISA_NOFP_SPRS \
|
||
/* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
|
||
|
||
/* Segment registers, for PowerPC. */
|
||
#define PPC_SEGMENT_REGS \
|
||
/* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
|
||
/* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
|
||
/* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
|
||
/* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
|
||
|
||
/* OEA SPRs for PowerPC. */
|
||
#define PPC_OEA_SPRS \
|
||
/* 87 */ R4(pvr), \
|
||
/* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
|
||
/* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
|
||
/* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
|
||
/* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
|
||
/* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
|
||
/* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
|
||
/* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
|
||
/* 116 */ R4(dec), R(dabr), R4(ear)
|
||
|
||
/* AltiVec registers. */
|
||
#define PPC_ALTIVEC_REGS \
|
||
/*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
|
||
/*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
|
||
/*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
|
||
/*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
|
||
/*151*/R4(vscr), R4(vrsave)
|
||
|
||
/* Vectors of hi-lo general purpose registers. */
|
||
#define PPC_EV_REGS \
|
||
/* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
|
||
/* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
|
||
/*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
|
||
/*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
|
||
|
||
/* Lower half of the EV registers. */
|
||
#define PPC_GPRS_PSEUDO_REGS \
|
||
/* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
|
||
/* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
|
||
/* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
|
||
/* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
|
||
|
||
/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
|
||
user-level SPR's. */
|
||
static const struct reg registers_power[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
/* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
|
||
/* 71 */ R4(fpscr)
|
||
};
|
||
|
||
/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
|
||
view of the PowerPC. */
|
||
static const struct reg registers_powerpc[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_ALTIVEC_REGS
|
||
};
|
||
|
||
/* PowerPC UISA - a PPC processor as viewed by user-level
|
||
code, but without floating point registers. */
|
||
static const struct reg registers_powerpc_nofp[] =
|
||
{
|
||
COMMON_UISA_NOFP_REGS,
|
||
PPC_UISA_SPRS
|
||
};
|
||
|
||
/* IBM PowerPC 403. */
|
||
static const struct reg registers_403[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
|
||
/* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
|
||
/* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
|
||
/* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
|
||
/* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
|
||
/* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
|
||
};
|
||
|
||
/* IBM PowerPC 403GC. */
|
||
static const struct reg registers_403GC[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
|
||
/* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
|
||
/* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
|
||
/* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
|
||
/* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
|
||
/* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
|
||
/* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
|
||
/* 147 */ R(tbhu), R(tblu)
|
||
};
|
||
|
||
/* Motorola PowerPC 505. */
|
||
static const struct reg registers_505[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* 119 */ R(eie), R(eid), R(nri)
|
||
};
|
||
|
||
/* Motorola PowerPC 860 or 850. */
|
||
static const struct reg registers_860[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* 119 */ R(eie), R(eid), R(nri), R(cmpa),
|
||
/* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
|
||
/* 127 */ R(der), R(counta), R(countb), R(cmpe),
|
||
/* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
|
||
/* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
|
||
/* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
|
||
/* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
|
||
/* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
|
||
/* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
|
||
/* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
|
||
/* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
|
||
/* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
|
||
};
|
||
|
||
/* Motorola PowerPC 601. Note that the 601 has different register numbers
|
||
for reading and writing RTCU and RTCL. However, how one reads and writes a
|
||
register is the stub's problem. */
|
||
static const struct reg registers_601[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
|
||
/* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
|
||
};
|
||
|
||
/* Motorola PowerPC 602. */
|
||
static const struct reg registers_602[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* 119 */ R(hid0), R(hid1), R(iabr), R0,
|
||
/* 123 */ R0, R(tcr), R(ibr), R(esassr),
|
||
/* 127 */ R(sebr), R(ser), R(sp), R(lt)
|
||
};
|
||
|
||
/* Motorola/IBM PowerPC 603 or 603e. */
|
||
static const struct reg registers_603[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* 119 */ R(hid0), R(hid1), R(iabr), R0,
|
||
/* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
|
||
/* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
|
||
};
|
||
|
||
/* Motorola PowerPC 604 or 604e. */
|
||
static const struct reg registers_604[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
|
||
/* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
|
||
/* 127 */ R(sia), R(sda)
|
||
};
|
||
|
||
/* Motorola/IBM PowerPC 750 or 740. */
|
||
static const struct reg registers_750[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
|
||
/* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
|
||
/* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
|
||
/* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
|
||
/* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
|
||
/* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
|
||
};
|
||
|
||
|
||
/* Motorola PowerPC 7400. */
|
||
static const struct reg registers_7400[] =
|
||
{
|
||
/* gpr0-gpr31, fpr0-fpr31 */
|
||
COMMON_UISA_REGS,
|
||
/* ctr, xre, lr, cr */
|
||
PPC_UISA_SPRS,
|
||
/* sr0-sr15 */
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* vr0-vr31, vrsave, vscr */
|
||
PPC_ALTIVEC_REGS
|
||
/* FIXME? Add more registers? */
|
||
};
|
||
|
||
/* Motorola e500. */
|
||
static const struct reg registers_e500[] =
|
||
{
|
||
R(pc), R(ps),
|
||
/* cr, lr, ctr, xer, "" */
|
||
PPC_UISA_NOFP_SPRS,
|
||
/* 7...38 */
|
||
PPC_EV_REGS,
|
||
R8(acc), R(spefscr),
|
||
/* NOTE: Add new registers here the end of the raw register
|
||
list and just before the first pseudo register. */
|
||
/* 39...70 */
|
||
PPC_GPRS_PSEUDO_REGS
|
||
};
|
||
|
||
/* Information about a particular processor variant. */
|
||
|
||
struct variant
|
||
{
|
||
/* Name of this variant. */
|
||
char *name;
|
||
|
||
/* English description of the variant. */
|
||
char *description;
|
||
|
||
/* bfd_arch_info.arch corresponding to variant. */
|
||
enum bfd_architecture arch;
|
||
|
||
/* bfd_arch_info.mach corresponding to variant. */
|
||
unsigned long mach;
|
||
|
||
/* Number of real registers. */
|
||
int nregs;
|
||
|
||
/* Number of pseudo registers. */
|
||
int npregs;
|
||
|
||
/* Number of total registers (the sum of nregs and npregs). */
|
||
int num_tot_regs;
|
||
|
||
/* Table of register names; registers[R] is the name of the register
|
||
number R. */
|
||
const struct reg *regs;
|
||
};
|
||
|
||
#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
|
||
|
||
static int
|
||
num_registers (const struct reg *reg_list, int num_tot_regs)
|
||
{
|
||
int i;
|
||
int nregs = 0;
|
||
|
||
for (i = 0; i < num_tot_regs; i++)
|
||
if (!reg_list[i].pseudo)
|
||
nregs++;
|
||
|
||
return nregs;
|
||
}
|
||
|
||
static int
|
||
num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
|
||
{
|
||
int i;
|
||
int npregs = 0;
|
||
|
||
for (i = 0; i < num_tot_regs; i++)
|
||
if (reg_list[i].pseudo)
|
||
npregs ++;
|
||
|
||
return npregs;
|
||
}
|
||
|
||
/* Information in this table comes from the following web sites:
|
||
IBM: http://www.chips.ibm.com:80/products/embedded/
|
||
Motorola: http://www.mot.com/SPS/PowerPC/
|
||
|
||
I'm sure I've got some of the variant descriptions not quite right.
|
||
Please report any inaccuracies you find to GDB's maintainer.
|
||
|
||
If you add entries to this table, please be sure to allow the new
|
||
value as an argument to the --with-cpu flag, in configure.in. */
|
||
|
||
static struct variant variants[] =
|
||
{
|
||
|
||
{"powerpc", "PowerPC user-level", bfd_arch_powerpc,
|
||
bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
|
||
registers_powerpc},
|
||
{"power", "POWER user-level", bfd_arch_rs6000,
|
||
bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
|
||
registers_power},
|
||
{"403", "IBM PowerPC 403", bfd_arch_powerpc,
|
||
bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
|
||
registers_403},
|
||
{"601", "Motorola PowerPC 601", bfd_arch_powerpc,
|
||
bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
|
||
registers_601},
|
||
{"602", "Motorola PowerPC 602", bfd_arch_powerpc,
|
||
bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
|
||
registers_602},
|
||
{"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
|
||
bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
|
||
registers_603},
|
||
{"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
|
||
604, -1, -1, tot_num_registers (registers_604),
|
||
registers_604},
|
||
{"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
|
||
bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
|
||
registers_403GC},
|
||
{"505", "Motorola PowerPC 505", bfd_arch_powerpc,
|
||
bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
|
||
registers_505},
|
||
{"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
|
||
bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
|
||
registers_860},
|
||
{"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
|
||
bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
|
||
registers_750},
|
||
{"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
|
||
bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
|
||
registers_7400},
|
||
{"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
|
||
bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
|
||
registers_e500},
|
||
|
||
/* 64-bit */
|
||
{"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
|
||
bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
|
||
registers_powerpc},
|
||
{"620", "Motorola PowerPC 620", bfd_arch_powerpc,
|
||
bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
|
||
registers_powerpc},
|
||
{"630", "Motorola PowerPC 630", bfd_arch_powerpc,
|
||
bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
|
||
registers_powerpc},
|
||
{"a35", "PowerPC A35", bfd_arch_powerpc,
|
||
bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
|
||
registers_powerpc},
|
||
{"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
|
||
bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
|
||
registers_powerpc},
|
||
{"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
|
||
bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
|
||
registers_powerpc},
|
||
|
||
/* FIXME: I haven't checked the register sets of the following. */
|
||
{"rs1", "IBM POWER RS1", bfd_arch_rs6000,
|
||
bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
|
||
registers_power},
|
||
{"rsc", "IBM POWER RSC", bfd_arch_rs6000,
|
||
bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
|
||
registers_power},
|
||
{"rs2", "IBM POWER RS2", bfd_arch_rs6000,
|
||
bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
|
||
registers_power},
|
||
|
||
{0, 0, 0, 0, 0, 0, 0, 0}
|
||
};
|
||
|
||
/* Initialize the number of registers and pseudo registers in each variant. */
|
||
|
||
static void
|
||
init_variants (void)
|
||
{
|
||
struct variant *v;
|
||
|
||
for (v = variants; v->name; v++)
|
||
{
|
||
if (v->nregs == -1)
|
||
v->nregs = num_registers (v->regs, v->num_tot_regs);
|
||
if (v->npregs == -1)
|
||
v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
|
||
}
|
||
}
|
||
|
||
/* Return the variant corresponding to architecture ARCH and machine number
|
||
MACH. If no such variant exists, return null. */
|
||
|
||
static const struct variant *
|
||
find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
|
||
{
|
||
const struct variant *v;
|
||
|
||
for (v = variants; v->name; v++)
|
||
if (arch == v->arch && mach == v->mach)
|
||
return v;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static int
|
||
gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
|
||
{
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||
return print_insn_big_powerpc (memaddr, info);
|
||
else
|
||
return print_insn_little_powerpc (memaddr, info);
|
||
}
|
||
|
||
/* Initialize the current architecture based on INFO. If possible, re-use an
|
||
architecture from ARCHES, which is a list of architectures already created
|
||
during this debugging session.
|
||
|
||
Called e.g. at program startup, when reading a core file, and when reading
|
||
a binary file. */
|
||
|
||
static struct gdbarch *
|
||
rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
||
{
|
||
struct gdbarch *gdbarch;
|
||
struct gdbarch_tdep *tdep;
|
||
int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
|
||
struct reg *regs;
|
||
const struct variant *v;
|
||
enum bfd_architecture arch;
|
||
unsigned long mach;
|
||
bfd abfd;
|
||
int sysv_abi;
|
||
asection *sect;
|
||
|
||
from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
|
||
bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
|
||
|
||
from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
|
||
bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
|
||
|
||
sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
|
||
|
||
/* Check word size. If INFO is from a binary file, infer it from
|
||
that, else choose a likely default. */
|
||
if (from_xcoff_exec)
|
||
{
|
||
if (bfd_xcoff_is_xcoff64 (info.abfd))
|
||
wordsize = 8;
|
||
else
|
||
wordsize = 4;
|
||
}
|
||
else if (from_elf_exec)
|
||
{
|
||
if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
|
||
wordsize = 8;
|
||
else
|
||
wordsize = 4;
|
||
}
|
||
else
|
||
{
|
||
if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
|
||
wordsize = info.bfd_arch_info->bits_per_word /
|
||
info.bfd_arch_info->bits_per_byte;
|
||
else
|
||
wordsize = 4;
|
||
}
|
||
|
||
/* Find a candidate among extant architectures. */
|
||
for (arches = gdbarch_list_lookup_by_info (arches, &info);
|
||
arches != NULL;
|
||
arches = gdbarch_list_lookup_by_info (arches->next, &info))
|
||
{
|
||
/* Word size in the various PowerPC bfd_arch_info structs isn't
|
||
meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
|
||
separate word size check. */
|
||
tdep = gdbarch_tdep (arches->gdbarch);
|
||
if (tdep && tdep->wordsize == wordsize)
|
||
return arches->gdbarch;
|
||
}
|
||
|
||
/* None found, create a new architecture from INFO, whose bfd_arch_info
|
||
validity depends on the source:
|
||
- executable useless
|
||
- rs6000_host_arch() good
|
||
- core file good
|
||
- "set arch" trust blindly
|
||
- GDB startup useless but harmless */
|
||
|
||
if (!from_xcoff_exec)
|
||
{
|
||
arch = info.bfd_arch_info->arch;
|
||
mach = info.bfd_arch_info->mach;
|
||
}
|
||
else
|
||
{
|
||
arch = bfd_arch_powerpc;
|
||
bfd_default_set_arch_mach (&abfd, arch, 0);
|
||
info.bfd_arch_info = bfd_get_arch_info (&abfd);
|
||
mach = info.bfd_arch_info->mach;
|
||
}
|
||
tdep = xmalloc (sizeof (struct gdbarch_tdep));
|
||
tdep->wordsize = wordsize;
|
||
|
||
/* For e500 executables, the apuinfo section is of help here. Such
|
||
section contains the identifier and revision number of each
|
||
Application-specific Processing Unit that is present on the
|
||
chip. The content of the section is determined by the assembler
|
||
which looks at each instruction and determines which unit (and
|
||
which version of it) can execute it. In our case we just look for
|
||
the existance of the section. */
|
||
|
||
if (info.abfd)
|
||
{
|
||
sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
|
||
if (sect)
|
||
{
|
||
arch = info.bfd_arch_info->arch;
|
||
mach = bfd_mach_ppc_e500;
|
||
bfd_default_set_arch_mach (&abfd, arch, mach);
|
||
info.bfd_arch_info = bfd_get_arch_info (&abfd);
|
||
}
|
||
}
|
||
|
||
gdbarch = gdbarch_alloc (&info, tdep);
|
||
power = arch == bfd_arch_rs6000;
|
||
|
||
/* Initialize the number of real and pseudo registers in each variant. */
|
||
init_variants ();
|
||
|
||
/* Choose variant. */
|
||
v = find_variant_by_arch (arch, mach);
|
||
if (!v)
|
||
return NULL;
|
||
|
||
tdep->regs = v->regs;
|
||
|
||
tdep->ppc_gp0_regnum = 0;
|
||
tdep->ppc_gplast_regnum = 31;
|
||
tdep->ppc_toc_regnum = 2;
|
||
tdep->ppc_ps_regnum = 65;
|
||
tdep->ppc_cr_regnum = 66;
|
||
tdep->ppc_lr_regnum = 67;
|
||
tdep->ppc_ctr_regnum = 68;
|
||
tdep->ppc_xer_regnum = 69;
|
||
if (v->mach == bfd_mach_ppc_601)
|
||
tdep->ppc_mq_regnum = 124;
|
||
else if (power)
|
||
tdep->ppc_mq_regnum = 70;
|
||
else
|
||
tdep->ppc_mq_regnum = -1;
|
||
tdep->ppc_fpscr_regnum = power ? 71 : 70;
|
||
|
||
set_gdbarch_pc_regnum (gdbarch, 64);
|
||
set_gdbarch_sp_regnum (gdbarch, 1);
|
||
set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
|
||
set_gdbarch_deprecated_extract_return_value (gdbarch,
|
||
rs6000_extract_return_value);
|
||
set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
|
||
|
||
if (v->arch == bfd_arch_powerpc)
|
||
switch (v->mach)
|
||
{
|
||
case bfd_mach_ppc:
|
||
tdep->ppc_vr0_regnum = 71;
|
||
tdep->ppc_vrsave_regnum = 104;
|
||
tdep->ppc_ev0_regnum = -1;
|
||
tdep->ppc_ev31_regnum = -1;
|
||
break;
|
||
case bfd_mach_ppc_7400:
|
||
tdep->ppc_vr0_regnum = 119;
|
||
tdep->ppc_vrsave_regnum = 152;
|
||
tdep->ppc_ev0_regnum = -1;
|
||
tdep->ppc_ev31_regnum = -1;
|
||
break;
|
||
case bfd_mach_ppc_e500:
|
||
tdep->ppc_gp0_regnum = 41;
|
||
tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
|
||
tdep->ppc_toc_regnum = -1;
|
||
tdep->ppc_ps_regnum = 1;
|
||
tdep->ppc_cr_regnum = 2;
|
||
tdep->ppc_lr_regnum = 3;
|
||
tdep->ppc_ctr_regnum = 4;
|
||
tdep->ppc_xer_regnum = 5;
|
||
tdep->ppc_ev0_regnum = 7;
|
||
tdep->ppc_ev31_regnum = 38;
|
||
set_gdbarch_pc_regnum (gdbarch, 0);
|
||
set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
|
||
set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
|
||
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
|
||
set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
|
||
set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
|
||
set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
|
||
set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
|
||
break;
|
||
default:
|
||
tdep->ppc_vr0_regnum = -1;
|
||
tdep->ppc_vrsave_regnum = -1;
|
||
tdep->ppc_ev0_regnum = -1;
|
||
tdep->ppc_ev31_regnum = -1;
|
||
break;
|
||
}
|
||
|
||
/* Sanity check on registers. */
|
||
gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
|
||
|
||
/* Set lr_frame_offset. */
|
||
if (wordsize == 8)
|
||
tdep->lr_frame_offset = 16;
|
||
else if (sysv_abi)
|
||
tdep->lr_frame_offset = 4;
|
||
else
|
||
tdep->lr_frame_offset = 8;
|
||
|
||
/* Calculate byte offsets in raw register array. */
|
||
tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
|
||
for (i = off = 0; i < v->num_tot_regs; i++)
|
||
{
|
||
tdep->regoff[i] = off;
|
||
off += regsize (v->regs + i, wordsize);
|
||
}
|
||
|
||
/* Select instruction printer. */
|
||
if (arch == power)
|
||
set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
|
||
else
|
||
set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
|
||
|
||
set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
|
||
set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp);
|
||
|
||
set_gdbarch_num_regs (gdbarch, v->nregs);
|
||
set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
|
||
set_gdbarch_register_name (gdbarch, rs6000_register_name);
|
||
set_gdbarch_deprecated_register_size (gdbarch, wordsize);
|
||
set_gdbarch_deprecated_register_bytes (gdbarch, off);
|
||
set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
|
||
set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
|
||
set_gdbarch_deprecated_max_register_raw_size (gdbarch, 16);
|
||
set_gdbarch_deprecated_register_virtual_size (gdbarch, generic_register_size);
|
||
set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 16);
|
||
set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
|
||
|
||
set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
|
||
set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
||
set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
|
||
set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||
if (sysv_abi)
|
||
set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
|
||
else
|
||
set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||
set_gdbarch_char_signed (gdbarch, 0);
|
||
|
||
set_gdbarch_deprecated_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
|
||
set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
|
||
if (sysv_abi && wordsize == 8)
|
||
/* PPC64 SYSV. */
|
||
set_gdbarch_frame_red_zone_size (gdbarch, 288);
|
||
else if (!sysv_abi && wordsize == 4)
|
||
/* PowerOpen / AIX 32 bit. */
|
||
set_gdbarch_frame_red_zone_size (gdbarch, 220);
|
||
set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
|
||
set_gdbarch_deprecated_push_return_address (gdbarch, ppc_push_return_address);
|
||
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
|
||
|
||
set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
|
||
set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
|
||
set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
|
||
set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
|
||
/* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
|
||
is correct for the SysV ABI when the wordsize is 8, but I'm also
|
||
fairly certain that ppc_sysv_abi_push_arguments() will give even
|
||
worse results since it only works for 32-bit code. So, for the moment,
|
||
we're better off calling rs6000_push_arguments() since it works for
|
||
64-bit code. At some point in the future, this matter needs to be
|
||
revisited. */
|
||
if (sysv_abi && wordsize == 4)
|
||
set_gdbarch_deprecated_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
|
||
else
|
||
set_gdbarch_deprecated_push_arguments (gdbarch, rs6000_push_arguments);
|
||
|
||
set_gdbarch_deprecated_store_struct_return (gdbarch, rs6000_store_struct_return);
|
||
set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
|
||
set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
|
||
|
||
set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
|
||
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
||
set_gdbarch_decr_pc_after_break (gdbarch, 0);
|
||
set_gdbarch_function_start_offset (gdbarch, 0);
|
||
set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
|
||
|
||
/* Not sure on this. FIXMEmgo */
|
||
set_gdbarch_frame_args_skip (gdbarch, 8);
|
||
|
||
if (sysv_abi)
|
||
set_gdbarch_use_struct_convention (gdbarch,
|
||
ppc_sysv_abi_use_struct_convention);
|
||
else
|
||
set_gdbarch_use_struct_convention (gdbarch,
|
||
generic_use_struct_convention);
|
||
|
||
set_gdbarch_frameless_function_invocation (gdbarch,
|
||
rs6000_frameless_function_invocation);
|
||
set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
|
||
set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
|
||
|
||
set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
|
||
set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
|
||
|
||
if (!sysv_abi)
|
||
{
|
||
/* Handle RS/6000 function pointers (which are really function
|
||
descriptors). */
|
||
set_gdbarch_convert_from_func_ptr_addr (gdbarch,
|
||
rs6000_convert_from_func_ptr_addr);
|
||
}
|
||
set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address);
|
||
set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address);
|
||
set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
|
||
|
||
/* Helpers for function argument information. */
|
||
set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
|
||
|
||
/* Hook in ABI-specific overrides, if they have been registered. */
|
||
gdbarch_init_osabi (info, gdbarch);
|
||
|
||
return gdbarch;
|
||
}
|
||
|
||
static void
|
||
rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (tdep == NULL)
|
||
return;
|
||
|
||
/* FIXME: Dump gdbarch_tdep. */
|
||
}
|
||
|
||
static struct cmd_list_element *info_powerpc_cmdlist = NULL;
|
||
|
||
static void
|
||
rs6000_info_powerpc_command (char *args, int from_tty)
|
||
{
|
||
help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
|
||
}
|
||
|
||
/* Initialization code. */
|
||
|
||
extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
|
||
|
||
void
|
||
_initialize_rs6000_tdep (void)
|
||
{
|
||
gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
|
||
gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
|
||
|
||
/* Add root prefix command for "info powerpc" commands */
|
||
add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
|
||
"Various POWERPC info specific commands.",
|
||
&info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
|
||
}
|