mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-23 10:03:47 +08:00
e5dc0d5d04
Move some declarations related to the "quit" machinery from defs.h to event-top.h. Most of the definitions associated to these declarations are in event-top.c. The exceptions are `quit()` and `maybe_quit()`, that are defined in utils.c. For consistency, move these two definitions to event-top.c. Include "event-top.h" in many files that use these things. Change-Id: I6594f6df9047a9a480e7b9934275d186afb14378 Approved-By: Tom Tromey <tom@tromey.com>
1858 lines
49 KiB
C
1858 lines
49 KiB
C
/* Rust language support routines for GDB, the GNU debugger.
|
||
|
||
Copyright (C) 2016-2024 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
|
||
#include <ctype.h>
|
||
|
||
#include "block.h"
|
||
#include "c-lang.h"
|
||
#include "charset.h"
|
||
#include "cp-support.h"
|
||
#include "demangle.h"
|
||
#include "event-top.h"
|
||
#include "gdbarch.h"
|
||
#include "infcall.h"
|
||
#include "objfiles.h"
|
||
#include "rust-lang.h"
|
||
#include "typeprint.h"
|
||
#include "valprint.h"
|
||
#include "varobj.h"
|
||
#include <algorithm>
|
||
#include <string>
|
||
#include <vector>
|
||
#include "cli/cli-style.h"
|
||
#include "parser-defs.h"
|
||
#include "rust-exp.h"
|
||
|
||
/* See rust-lang.h. */
|
||
|
||
const char *
|
||
rust_last_path_segment (const char *path)
|
||
{
|
||
const char *result = strrchr (path, ':');
|
||
|
||
if (result == NULL)
|
||
return path;
|
||
return result + 1;
|
||
}
|
||
|
||
/* See rust-lang.h. */
|
||
|
||
std::string
|
||
rust_crate_for_block (const struct block *block)
|
||
{
|
||
const char *scope = block->scope ();
|
||
|
||
if (scope[0] == '\0')
|
||
return std::string ();
|
||
|
||
return std::string (scope, cp_find_first_component (scope));
|
||
}
|
||
|
||
/* Return true if TYPE, which must be a struct type, represents a Rust
|
||
enum. */
|
||
|
||
static bool
|
||
rust_enum_p (struct type *type)
|
||
{
|
||
/* is_dynamic_type will return true if any field has a dynamic
|
||
attribute -- but we only want to check the top level. */
|
||
return TYPE_HAS_VARIANT_PARTS (type);
|
||
}
|
||
|
||
/* Return true if TYPE, which must be an already-resolved enum type,
|
||
has no variants. */
|
||
|
||
static bool
|
||
rust_empty_enum_p (const struct type *type)
|
||
{
|
||
return type->num_fields () == 0;
|
||
}
|
||
|
||
/* Given an already-resolved enum type and contents, find which
|
||
variant is active. */
|
||
|
||
static int
|
||
rust_enum_variant (struct type *type)
|
||
{
|
||
/* The active variant is simply the first non-artificial field. */
|
||
for (int i = 0; i < type->num_fields (); ++i)
|
||
if (!type->field (i).is_artificial ())
|
||
return i;
|
||
|
||
/* Perhaps we could get here by trying to print an Ada variant
|
||
record in Rust mode. Unlikely, but an error is safer than an
|
||
assert. */
|
||
error (_("Could not find active enum variant"));
|
||
}
|
||
|
||
/* See rust-lang.h. */
|
||
|
||
bool
|
||
rust_tuple_type_p (struct type *type)
|
||
{
|
||
/* The current implementation is a bit of a hack, but there's
|
||
nothing else in the debuginfo to distinguish a tuple from a
|
||
struct. */
|
||
return (type->code () == TYPE_CODE_STRUCT
|
||
&& type->name () != NULL
|
||
&& type->name ()[0] == '(');
|
||
}
|
||
|
||
/* Return true if all non-static fields of a structlike type are in a
|
||
sequence like __0, __1, __2. */
|
||
|
||
static bool
|
||
rust_underscore_fields (struct type *type)
|
||
{
|
||
int i, field_number;
|
||
|
||
field_number = 0;
|
||
|
||
if (type->code () != TYPE_CODE_STRUCT)
|
||
return false;
|
||
for (i = 0; i < type->num_fields (); ++i)
|
||
{
|
||
if (!type->field (i).is_static ())
|
||
{
|
||
char buf[20];
|
||
|
||
xsnprintf (buf, sizeof (buf), "__%d", field_number);
|
||
if (strcmp (buf, type->field (i).name ()) != 0)
|
||
return false;
|
||
field_number++;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* See rust-lang.h. */
|
||
|
||
bool
|
||
rust_tuple_struct_type_p (struct type *type)
|
||
{
|
||
/* This is just an approximation until DWARF can represent Rust more
|
||
precisely. We exclude zero-length structs because they may not
|
||
be tuple structs, and there's no way to tell. */
|
||
return type->num_fields () > 0 && rust_underscore_fields (type);
|
||
}
|
||
|
||
/* Return true if TYPE is "slice-like"; false otherwise. */
|
||
|
||
static bool
|
||
rust_slice_type_p (const struct type *type)
|
||
{
|
||
if (type->code () == TYPE_CODE_STRUCT
|
||
&& type->name () != NULL
|
||
&& type->num_fields () == 2)
|
||
{
|
||
/* The order of fields doesn't matter. While it would be nice
|
||
to check for artificiality here, the Rust compiler doesn't
|
||
emit this information. */
|
||
const char *n1 = type->field (0).name ();
|
||
const char *n2 = type->field (1).name ();
|
||
return ((streq (n1, "data_ptr") && streq (n2, "length"))
|
||
|| (streq (n2, "data_ptr") && streq (n1, "length")));
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Return true if TYPE is a range type, otherwise false. */
|
||
|
||
static bool
|
||
rust_range_type_p (struct type *type)
|
||
{
|
||
int i;
|
||
|
||
if (type->code () != TYPE_CODE_STRUCT
|
||
|| type->num_fields () > 2
|
||
|| type->name () == NULL
|
||
|| strstr (type->name (), "::Range") == NULL)
|
||
return false;
|
||
|
||
if (type->num_fields () == 0)
|
||
return true;
|
||
|
||
i = 0;
|
||
if (strcmp (type->field (0).name (), "start") == 0)
|
||
{
|
||
if (type->num_fields () == 1)
|
||
return true;
|
||
i = 1;
|
||
}
|
||
else if (type->num_fields () == 2)
|
||
{
|
||
/* First field had to be "start". */
|
||
return false;
|
||
}
|
||
|
||
return strcmp (type->field (i).name (), "end") == 0;
|
||
}
|
||
|
||
/* Return true if TYPE is an inclusive range type, otherwise false.
|
||
This is only valid for types which are already known to be range
|
||
types. */
|
||
|
||
static bool
|
||
rust_inclusive_range_type_p (struct type *type)
|
||
{
|
||
return (strstr (type->name (), "::RangeInclusive") != NULL
|
||
|| strstr (type->name (), "::RangeToInclusive") != NULL);
|
||
}
|
||
|
||
/* Return true if TYPE seems to be the type "u8", otherwise false. */
|
||
|
||
static bool
|
||
rust_u8_type_p (struct type *type)
|
||
{
|
||
return (type->code () == TYPE_CODE_INT
|
||
&& type->is_unsigned ()
|
||
&& type->length () == 1);
|
||
}
|
||
|
||
/* Return true if TYPE is a Rust character type. */
|
||
|
||
static bool
|
||
rust_chartype_p (struct type *type)
|
||
{
|
||
return (type->code () == TYPE_CODE_CHAR
|
||
&& type->length () == 4
|
||
&& type->is_unsigned ());
|
||
}
|
||
|
||
/* If VALUE represents a trait object pointer, return the underlying
|
||
pointer with the correct (i.e., runtime) type. Otherwise, return
|
||
NULL. */
|
||
|
||
static struct value *
|
||
rust_get_trait_object_pointer (struct value *value)
|
||
{
|
||
struct type *type = check_typedef (value->type ());
|
||
|
||
if (type->code () != TYPE_CODE_STRUCT || type->num_fields () != 2)
|
||
return NULL;
|
||
|
||
/* Try to be a bit resilient if the ABI changes. */
|
||
int vtable_field = 0;
|
||
for (int i = 0; i < 2; ++i)
|
||
{
|
||
if (strcmp (type->field (i).name (), "vtable") == 0)
|
||
vtable_field = i;
|
||
else if (strcmp (type->field (i).name (), "pointer") != 0)
|
||
return NULL;
|
||
}
|
||
|
||
CORE_ADDR vtable = value_as_address (value_field (value, vtable_field));
|
||
struct symbol *symbol = find_symbol_at_address (vtable);
|
||
if (symbol == NULL || symbol->subclass != SYMBOL_RUST_VTABLE)
|
||
return NULL;
|
||
|
||
struct rust_vtable_symbol *vtable_sym
|
||
= static_cast<struct rust_vtable_symbol *> (symbol);
|
||
struct type *pointer_type = lookup_pointer_type (vtable_sym->concrete_type);
|
||
return value_cast (pointer_type, value_field (value, 1 - vtable_field));
|
||
}
|
||
|
||
/* Find and possibly rewrite the unsized part of a slice-like type.
|
||
|
||
This function has two modes. If the out parameters are both NULL,
|
||
it will return true if an unsized member of IN_TYPE is found.
|
||
|
||
If the out parameters are both non-NULL, it will do the same, but
|
||
will also rewrite the unsized member's type to be an array of the
|
||
appropriate type. BOUND is the upper bound of the new array.
|
||
|
||
See convert_slice to understand the different kinds of unsized type
|
||
and how they are represented.
|
||
*/
|
||
static bool
|
||
rewrite_slice_type (struct type *in_type, struct type **new_type,
|
||
LONGEST bound, ULONGEST *additional_length)
|
||
{
|
||
if (in_type->code () != TYPE_CODE_STRUCT)
|
||
return false;
|
||
|
||
unsigned nfields = in_type->num_fields ();
|
||
if (nfields == 0)
|
||
return false;
|
||
|
||
struct type *rewritten;
|
||
const field &field = in_type->field (nfields - 1);
|
||
struct type *field_type = field.type ();
|
||
if (field.loc_kind () == FIELD_LOC_KIND_BITPOS
|
||
&& field.loc_bitpos () == 8 * in_type->length ())
|
||
{
|
||
if (additional_length == nullptr)
|
||
return true;
|
||
rewritten = lookup_array_range_type (field_type, 0, bound);
|
||
*additional_length = rewritten->length ();
|
||
}
|
||
else
|
||
{
|
||
if (!rewrite_slice_type (field_type, &rewritten, bound,
|
||
additional_length))
|
||
return false;
|
||
if (additional_length == nullptr)
|
||
return true;
|
||
}
|
||
|
||
struct type *result = copy_type (in_type);
|
||
result->copy_fields (in_type);
|
||
result->field (nfields - 1).set_type (rewritten);
|
||
result->set_length (result->length () + *additional_length);
|
||
|
||
*new_type = result;
|
||
return true;
|
||
}
|
||
|
||
/* Convert a Rust slice to its "true" representation.
|
||
|
||
The Rust compiler emits slices as "fat" pointers like:
|
||
|
||
struct { payload *data_ptr; usize length }
|
||
|
||
Any sort of unsized type is emitted this way.
|
||
|
||
If 'payload' is a struct type, then it must be searched to see if
|
||
the trailing field is unsized. This has to be done recursively (as
|
||
in, if the final field in the struct type itself has struct type,
|
||
then that type must be searched). In this scenario, the unsized
|
||
field can be recognized because it does not contribute to the
|
||
type's size.
|
||
|
||
If 'payload' does not have a trailing unsized type, or if it is not
|
||
of struct type, then this slice is "array-like". In this case
|
||
rewriting will return an array.
|
||
*/
|
||
static struct value *
|
||
convert_slice (struct value *val)
|
||
{
|
||
struct type *type = check_typedef (val->type ());
|
||
/* This must have been checked by the caller. */
|
||
gdb_assert (rust_slice_type_p (type));
|
||
|
||
struct value *len = value_struct_elt (&val, {}, "length", nullptr,
|
||
"slice");
|
||
LONGEST llen = value_as_long (len);
|
||
|
||
struct value *ptr = value_struct_elt (&val, {}, "data_ptr", nullptr,
|
||
"slice");
|
||
struct type *original_type = ptr->type ()->target_type ();
|
||
ULONGEST new_length_storage = 0;
|
||
struct type *new_type = nullptr;
|
||
if (!rewrite_slice_type (original_type, &new_type, llen - 1,
|
||
&new_length_storage))
|
||
new_type = lookup_array_range_type (original_type, 0, llen - 1);
|
||
|
||
struct value *result = value::allocate_lazy (new_type);
|
||
result->set_lval (lval_memory);
|
||
result->set_address (value_as_address (ptr));
|
||
result->fetch_lazy ();
|
||
|
||
return result;
|
||
}
|
||
|
||
/* If TYPE is an array-like slice, return the element type; otherwise
|
||
return NULL. */
|
||
static struct type *
|
||
rust_array_like_element_type (struct type *type)
|
||
{
|
||
/* Caller must check this. */
|
||
gdb_assert (rust_slice_type_p (type));
|
||
for (int i = 0; i < type->num_fields (); ++i)
|
||
{
|
||
if (strcmp (type->field (i).name (), "data_ptr") == 0)
|
||
{
|
||
struct type *base_type = type->field (i).type ()->target_type ();
|
||
if (rewrite_slice_type (base_type, nullptr, 0, nullptr))
|
||
return nullptr;
|
||
return base_type;
|
||
}
|
||
}
|
||
return nullptr;
|
||
}
|
||
|
||
|
||
|
||
/* See language.h. */
|
||
|
||
void
|
||
rust_language::printstr (struct ui_file *stream, struct type *type,
|
||
const gdb_byte *string, unsigned int length,
|
||
const char *user_encoding, int force_ellipses,
|
||
const struct value_print_options *options) const
|
||
{
|
||
/* Rust always uses UTF-8, but let the caller override this if need
|
||
be. */
|
||
const char *encoding = user_encoding;
|
||
if (user_encoding == NULL || !*user_encoding)
|
||
{
|
||
/* In Rust strings, characters are "u8". */
|
||
if (rust_u8_type_p (type))
|
||
encoding = "UTF-8";
|
||
else
|
||
{
|
||
/* This is probably some C string, so let's let C deal with
|
||
it. */
|
||
language_defn::printstr (stream, type, string, length,
|
||
user_encoding, force_ellipses,
|
||
options);
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* This is not ideal as it doesn't use our character printer. */
|
||
generic_printstr (stream, type, string, length, encoding, force_ellipses,
|
||
'"', 0, options);
|
||
}
|
||
|
||
|
||
|
||
static const struct generic_val_print_decorations rust_decorations =
|
||
{
|
||
/* Complex isn't used in Rust, but we provide C-ish values just in
|
||
case. */
|
||
"",
|
||
" + ",
|
||
" * I",
|
||
"true",
|
||
"false",
|
||
"()",
|
||
"[",
|
||
"]"
|
||
};
|
||
|
||
/* See rust-lang.h. */
|
||
|
||
struct value *
|
||
rust_slice_to_array (struct value *val)
|
||
{
|
||
val = convert_slice (val);
|
||
if (val->type ()->code () != TYPE_CODE_ARRAY)
|
||
return nullptr;
|
||
return val;
|
||
}
|
||
|
||
/* Helper function to print a slice. */
|
||
|
||
void
|
||
rust_language::val_print_slice
|
||
(struct value *val, struct ui_file *stream, int recurse,
|
||
const struct value_print_options *options) const
|
||
{
|
||
struct type *orig_type = check_typedef (val->type ());
|
||
|
||
val = convert_slice (val);
|
||
struct type *type = check_typedef (val->type ());
|
||
|
||
/* &str is handled here; but for all other slice types it is fine to
|
||
simply print the contents. */
|
||
if (orig_type->name () != nullptr
|
||
&& strcmp (orig_type->name (), "&str") == 0)
|
||
{
|
||
LONGEST low_bound, high_bound;
|
||
if (get_array_bounds (type, &low_bound, &high_bound))
|
||
{
|
||
val_print_string (type->target_type (), "UTF-8",
|
||
val->address (), high_bound - low_bound + 1,
|
||
stream, options);
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Print the slice type here. This was gdb's historical behavior
|
||
(from before unsized types were generically handled) and helps
|
||
make it clear that the user is seeing a slice, not an array.
|
||
Only arrays must be handled as the other cases are handled by
|
||
value_print_inner. */
|
||
if (type->code () == TYPE_CODE_ARRAY)
|
||
{
|
||
type_print (orig_type, "", stream, -1);
|
||
gdb_printf (stream, " ");
|
||
}
|
||
|
||
value_print_inner (val, stream, recurse, options);
|
||
}
|
||
|
||
/* See rust-lang.h. */
|
||
|
||
void
|
||
rust_language::val_print_struct
|
||
(struct value *val, struct ui_file *stream, int recurse,
|
||
const struct value_print_options *options) const
|
||
{
|
||
int i;
|
||
int first_field;
|
||
struct type *type = check_typedef (val->type ());
|
||
|
||
if (rust_slice_type_p (type))
|
||
{
|
||
val_print_slice (val, stream, recurse, options);
|
||
return;
|
||
}
|
||
|
||
bool is_tuple = rust_tuple_type_p (type);
|
||
bool is_tuple_struct = !is_tuple && rust_tuple_struct_type_p (type);
|
||
struct value_print_options opts;
|
||
|
||
if (!is_tuple)
|
||
{
|
||
if (type->name () != NULL)
|
||
gdb_printf (stream, "%s", type->name ());
|
||
|
||
if (type->num_fields () == 0)
|
||
return;
|
||
|
||
if (type->name () != NULL)
|
||
gdb_puts (" ", stream);
|
||
}
|
||
|
||
if (is_tuple || is_tuple_struct)
|
||
gdb_puts ("(", stream);
|
||
else
|
||
gdb_puts ("{", stream);
|
||
|
||
opts = *options;
|
||
opts.deref_ref = false;
|
||
|
||
first_field = 1;
|
||
for (i = 0; i < type->num_fields (); ++i)
|
||
{
|
||
if (type->field (i).is_static ())
|
||
continue;
|
||
|
||
if (!first_field)
|
||
gdb_puts (",", stream);
|
||
|
||
if (options->prettyformat)
|
||
{
|
||
gdb_puts ("\n", stream);
|
||
print_spaces (2 + 2 * recurse, stream);
|
||
}
|
||
else if (!first_field)
|
||
gdb_puts (" ", stream);
|
||
|
||
first_field = 0;
|
||
|
||
if (!is_tuple && !is_tuple_struct)
|
||
{
|
||
fputs_styled (type->field (i).name (),
|
||
variable_name_style.style (), stream);
|
||
gdb_puts (": ", stream);
|
||
}
|
||
|
||
common_val_print (value_field (val, i), stream, recurse + 1, &opts,
|
||
this);
|
||
}
|
||
|
||
if (options->prettyformat)
|
||
{
|
||
gdb_puts ("\n", stream);
|
||
print_spaces (2 * recurse, stream);
|
||
}
|
||
|
||
if (is_tuple || is_tuple_struct)
|
||
gdb_puts (")", stream);
|
||
else
|
||
gdb_puts ("}", stream);
|
||
}
|
||
|
||
/* See rust-lang.h. */
|
||
|
||
void
|
||
rust_language::print_enum (struct value *val, struct ui_file *stream,
|
||
int recurse,
|
||
const struct value_print_options *options) const
|
||
{
|
||
struct value_print_options opts = *options;
|
||
struct type *type = check_typedef (val->type ());
|
||
|
||
opts.deref_ref = false;
|
||
|
||
gdb_assert (rust_enum_p (type));
|
||
gdb::array_view<const gdb_byte> view
|
||
(val->contents_for_printing ().data (),
|
||
val->type ()->length ());
|
||
type = resolve_dynamic_type (type, view, val->address ());
|
||
|
||
if (rust_empty_enum_p (type))
|
||
{
|
||
/* Print the enum type name here to be more clear. */
|
||
gdb_printf (stream, _("%s {%p[<No data fields>%p]}"),
|
||
type->name (),
|
||
metadata_style.style ().ptr (), nullptr);
|
||
return;
|
||
}
|
||
|
||
int variant_fieldno = rust_enum_variant (type);
|
||
val = val->primitive_field (0, variant_fieldno, type);
|
||
struct type *variant_type = type->field (variant_fieldno).type ();
|
||
|
||
int nfields = variant_type->num_fields ();
|
||
|
||
bool is_tuple = rust_tuple_struct_type_p (variant_type);
|
||
|
||
gdb_printf (stream, "%s", variant_type->name ());
|
||
if (nfields == 0)
|
||
{
|
||
/* In case of a nullary variant like 'None', just output
|
||
the name. */
|
||
return;
|
||
}
|
||
|
||
/* In case of a non-nullary variant, we output 'Foo(x,y,z)'. */
|
||
if (is_tuple)
|
||
gdb_printf (stream, "(");
|
||
else
|
||
{
|
||
/* struct variant. */
|
||
gdb_printf (stream, "{");
|
||
}
|
||
|
||
bool first_field = true;
|
||
for (int j = 0; j < nfields; j++)
|
||
{
|
||
if (!first_field)
|
||
gdb_puts (", ", stream);
|
||
first_field = false;
|
||
|
||
if (!is_tuple)
|
||
gdb_printf (stream, "%ps: ",
|
||
styled_string (variable_name_style.style (),
|
||
variant_type->field (j).name ()));
|
||
|
||
common_val_print (value_field (val, j), stream, recurse + 1, &opts,
|
||
this);
|
||
}
|
||
|
||
if (is_tuple)
|
||
gdb_puts (")", stream);
|
||
else
|
||
gdb_puts ("}", stream);
|
||
}
|
||
|
||
/* See language.h. */
|
||
|
||
void
|
||
rust_language::value_print_inner
|
||
(struct value *val, struct ui_file *stream, int recurse,
|
||
const struct value_print_options *options) const
|
||
{
|
||
struct value_print_options opts = *options;
|
||
opts.deref_ref = true;
|
||
|
||
if (opts.prettyformat == Val_prettyformat_default)
|
||
opts.prettyformat = (opts.prettyformat_structs
|
||
? Val_prettyformat : Val_no_prettyformat);
|
||
|
||
struct type *type = check_typedef (val->type ());
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_PTR:
|
||
{
|
||
LONGEST low_bound, high_bound;
|
||
|
||
if (type->target_type ()->code () == TYPE_CODE_ARRAY
|
||
&& rust_u8_type_p (type->target_type ()->target_type ())
|
||
&& get_array_bounds (type->target_type (), &low_bound,
|
||
&high_bound))
|
||
{
|
||
/* We have a pointer to a byte string, so just print
|
||
that. */
|
||
struct type *elttype = check_typedef (type->target_type ());
|
||
CORE_ADDR addr = value_as_address (val);
|
||
struct gdbarch *arch = type->arch ();
|
||
|
||
if (opts.addressprint)
|
||
{
|
||
gdb_puts (paddress (arch, addr), stream);
|
||
gdb_puts (" ", stream);
|
||
}
|
||
|
||
gdb_puts ("b", stream);
|
||
val_print_string (elttype->target_type (), "ASCII", addr,
|
||
high_bound - low_bound + 1, stream,
|
||
&opts);
|
||
break;
|
||
}
|
||
}
|
||
goto generic_print;
|
||
|
||
case TYPE_CODE_INT:
|
||
/* Recognize the unit type. */
|
||
if (type->is_unsigned () && type->length () == 0
|
||
&& type->name () != NULL && strcmp (type->name (), "()") == 0)
|
||
{
|
||
gdb_puts ("()", stream);
|
||
break;
|
||
}
|
||
goto generic_print;
|
||
|
||
case TYPE_CODE_STRING:
|
||
{
|
||
LONGEST low_bound, high_bound;
|
||
|
||
if (!get_array_bounds (type, &low_bound, &high_bound))
|
||
error (_("Could not determine the array bounds"));
|
||
|
||
/* If we see a plain TYPE_CODE_STRING, then we're printing a
|
||
byte string, hence the choice of "ASCII" as the
|
||
encoding. */
|
||
gdb_puts ("b", stream);
|
||
printstr (stream, type->target_type (),
|
||
val->contents_for_printing ().data (),
|
||
high_bound - low_bound + 1, "ASCII", 0, &opts);
|
||
}
|
||
break;
|
||
|
||
case TYPE_CODE_ARRAY:
|
||
{
|
||
LONGEST low_bound, high_bound;
|
||
|
||
if (get_array_bounds (type, &low_bound, &high_bound)
|
||
&& high_bound - low_bound + 1 == 0)
|
||
gdb_puts ("[]", stream);
|
||
else
|
||
goto generic_print;
|
||
}
|
||
break;
|
||
|
||
case TYPE_CODE_UNION:
|
||
/* Untagged unions are printed as if they are structs. Since
|
||
the field bit positions overlap in the debuginfo, the code
|
||
for printing a union is same as that for a struct, the only
|
||
difference is that the input type will have overlapping
|
||
fields. */
|
||
val_print_struct (val, stream, recurse, &opts);
|
||
break;
|
||
|
||
case TYPE_CODE_STRUCT:
|
||
if (rust_enum_p (type))
|
||
print_enum (val, stream, recurse, &opts);
|
||
else
|
||
val_print_struct (val, stream, recurse, &opts);
|
||
break;
|
||
|
||
default:
|
||
generic_print:
|
||
/* Nothing special yet. */
|
||
generic_value_print (val, stream, recurse, &opts, &rust_decorations);
|
||
}
|
||
}
|
||
|
||
/* See language.h. */
|
||
|
||
void
|
||
rust_language::value_print
|
||
(struct value *val, struct ui_file *stream,
|
||
const struct value_print_options *options) const
|
||
{
|
||
value_print_options opts = *options;
|
||
opts.deref_ref = true;
|
||
|
||
struct type *type = check_typedef (val->type ());
|
||
if (type->is_pointer_or_reference ())
|
||
{
|
||
gdb_printf (stream, "(");
|
||
type_print (val->type (), "", stream, -1);
|
||
gdb_printf (stream, ") ");
|
||
}
|
||
|
||
return common_val_print (val, stream, 0, &opts, this);
|
||
}
|
||
|
||
|
||
|
||
static void
|
||
rust_internal_print_type (struct type *type, const char *varstring,
|
||
struct ui_file *stream, int show, int level,
|
||
const struct type_print_options *flags,
|
||
bool for_rust_enum, print_offset_data *podata);
|
||
|
||
/* Print a struct or union typedef. */
|
||
static void
|
||
rust_print_struct_def (struct type *type, const char *varstring,
|
||
struct ui_file *stream, int show, int level,
|
||
const struct type_print_options *flags,
|
||
bool for_rust_enum, print_offset_data *podata)
|
||
{
|
||
/* Print a tuple type simply. */
|
||
if (rust_tuple_type_p (type))
|
||
{
|
||
gdb_puts (type->name (), stream);
|
||
return;
|
||
}
|
||
|
||
/* If we see a base class, delegate to C. */
|
||
if (TYPE_N_BASECLASSES (type) > 0)
|
||
c_print_type (type, varstring, stream, show, level, language_rust, flags);
|
||
|
||
if (flags->print_offsets)
|
||
{
|
||
/* Temporarily bump the level so that the output lines up
|
||
correctly. */
|
||
level += 2;
|
||
}
|
||
|
||
/* Compute properties of TYPE here because, in the enum case, the
|
||
rest of the code ends up looking only at the variant part. */
|
||
const char *tagname = type->name ();
|
||
bool is_tuple_struct = rust_tuple_struct_type_p (type);
|
||
bool is_tuple = rust_tuple_type_p (type);
|
||
bool is_enum = rust_enum_p (type);
|
||
|
||
if (for_rust_enum)
|
||
{
|
||
/* Already printing an outer enum, so nothing to print here. */
|
||
}
|
||
else
|
||
{
|
||
/* This code path is also used by unions and enums. */
|
||
if (is_enum)
|
||
{
|
||
gdb_puts ("enum ", stream);
|
||
dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS);
|
||
if (prop != nullptr && prop->kind () == PROP_TYPE)
|
||
type = prop->original_type ();
|
||
}
|
||
else if (type->code () == TYPE_CODE_STRUCT)
|
||
gdb_puts ("struct ", stream);
|
||
else
|
||
gdb_puts ("union ", stream);
|
||
|
||
if (tagname != NULL)
|
||
gdb_puts (tagname, stream);
|
||
}
|
||
|
||
if (type->num_fields () == 0 && !is_tuple)
|
||
return;
|
||
if (for_rust_enum && !flags->print_offsets)
|
||
gdb_puts (is_tuple_struct ? "(" : "{", stream);
|
||
else
|
||
gdb_puts (is_tuple_struct ? " (\n" : " {\n", stream);
|
||
|
||
/* When printing offsets, we rearrange the fields into storage
|
||
order. This lets us show holes more clearly. We work using
|
||
field indices here because it simplifies calls to
|
||
print_offset_data::update below. */
|
||
std::vector<int> fields;
|
||
for (int i = 0; i < type->num_fields (); ++i)
|
||
{
|
||
if (type->field (i).is_static ())
|
||
continue;
|
||
if (is_enum && type->field (i).is_artificial ())
|
||
continue;
|
||
fields.push_back (i);
|
||
}
|
||
if (flags->print_offsets)
|
||
std::sort (fields.begin (), fields.end (),
|
||
[&] (int a, int b)
|
||
{
|
||
return (type->field (a).loc_bitpos ()
|
||
< type->field (b).loc_bitpos ());
|
||
});
|
||
|
||
for (int i : fields)
|
||
{
|
||
QUIT;
|
||
|
||
gdb_assert (!type->field (i).is_static ());
|
||
gdb_assert (! (is_enum && type->field (i).is_artificial ()));
|
||
|
||
if (flags->print_offsets)
|
||
podata->update (type, i, stream);
|
||
|
||
/* We'd like to print "pub" here as needed, but rustc
|
||
doesn't emit the debuginfo, and our types don't have
|
||
cplus_struct_type attached. */
|
||
|
||
/* For a tuple struct we print the type but nothing
|
||
else. */
|
||
if (!for_rust_enum || flags->print_offsets)
|
||
print_spaces (level + 2, stream);
|
||
if (is_enum)
|
||
fputs_styled (type->field (i).name (), variable_name_style.style (),
|
||
stream);
|
||
else if (!is_tuple_struct)
|
||
gdb_printf (stream, "%ps: ",
|
||
styled_string (variable_name_style.style (),
|
||
type->field (i).name ()));
|
||
|
||
rust_internal_print_type (type->field (i).type (), NULL,
|
||
stream, (is_enum ? show : show - 1),
|
||
level + 2, flags, is_enum, podata);
|
||
if (!for_rust_enum || flags->print_offsets)
|
||
gdb_puts (",\n", stream);
|
||
/* Note that this check of "I" is ok because we only sorted the
|
||
fields by offset when print_offsets was set, so we won't take
|
||
this branch in that case. */
|
||
else if (i + 1 < type->num_fields ())
|
||
gdb_puts (", ", stream);
|
||
}
|
||
|
||
if (flags->print_offsets)
|
||
{
|
||
/* Undo the temporary level increase we did above. */
|
||
level -= 2;
|
||
podata->finish (type, level, stream);
|
||
print_spaces (print_offset_data::indentation, stream);
|
||
if (level == 0)
|
||
print_spaces (2, stream);
|
||
}
|
||
if (!for_rust_enum || flags->print_offsets)
|
||
print_spaces (level, stream);
|
||
gdb_puts (is_tuple_struct ? ")" : "}", stream);
|
||
}
|
||
|
||
/* la_print_type implementation for Rust. */
|
||
|
||
static void
|
||
rust_internal_print_type (struct type *type, const char *varstring,
|
||
struct ui_file *stream, int show, int level,
|
||
const struct type_print_options *flags,
|
||
bool for_rust_enum, print_offset_data *podata)
|
||
{
|
||
QUIT;
|
||
if (show <= 0
|
||
&& type->name () != NULL)
|
||
{
|
||
/* Rust calls the unit type "void" in its debuginfo,
|
||
but we don't want to print it as that. */
|
||
if (type->code () == TYPE_CODE_VOID)
|
||
gdb_puts ("()", stream);
|
||
else
|
||
gdb_puts (type->name (), stream);
|
||
return;
|
||
}
|
||
|
||
type = check_typedef (type);
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_VOID:
|
||
/* If we have an enum, we've already printed the type's
|
||
unqualified name, and there is nothing else to print
|
||
here. */
|
||
if (!for_rust_enum)
|
||
gdb_puts ("()", stream);
|
||
break;
|
||
|
||
case TYPE_CODE_FUNC:
|
||
/* Delegate varargs to the C printer. */
|
||
if (type->has_varargs ())
|
||
goto c_printer;
|
||
|
||
gdb_puts ("fn ", stream);
|
||
if (varstring != NULL)
|
||
gdb_puts (varstring, stream);
|
||
gdb_puts ("(", stream);
|
||
for (int i = 0; i < type->num_fields (); ++i)
|
||
{
|
||
QUIT;
|
||
if (i > 0)
|
||
gdb_puts (", ", stream);
|
||
rust_internal_print_type (type->field (i).type (), "", stream,
|
||
-1, 0, flags, false, podata);
|
||
}
|
||
gdb_puts (")", stream);
|
||
/* If it returns unit, we can omit the return type. */
|
||
if (type->target_type ()->code () != TYPE_CODE_VOID)
|
||
{
|
||
gdb_puts (" -> ", stream);
|
||
rust_internal_print_type (type->target_type (), "", stream,
|
||
-1, 0, flags, false, podata);
|
||
}
|
||
break;
|
||
|
||
case TYPE_CODE_ARRAY:
|
||
{
|
||
LONGEST low_bound, high_bound;
|
||
|
||
gdb_puts ("[", stream);
|
||
rust_internal_print_type (type->target_type (), NULL,
|
||
stream, show - 1, level, flags, false,
|
||
podata);
|
||
|
||
if (type->bounds ()->high.kind () == PROP_LOCEXPR
|
||
|| type->bounds ()->high.kind () == PROP_LOCLIST)
|
||
gdb_printf (stream, "; variable length");
|
||
else if (get_array_bounds (type, &low_bound, &high_bound))
|
||
gdb_printf (stream, "; %s",
|
||
plongest (high_bound - low_bound + 1));
|
||
gdb_puts ("]", stream);
|
||
}
|
||
break;
|
||
|
||
case TYPE_CODE_UNION:
|
||
case TYPE_CODE_STRUCT:
|
||
rust_print_struct_def (type, varstring, stream, show, level, flags,
|
||
for_rust_enum, podata);
|
||
break;
|
||
|
||
case TYPE_CODE_ENUM:
|
||
{
|
||
int len = 0;
|
||
|
||
gdb_puts ("enum ", stream);
|
||
if (type->name () != NULL)
|
||
{
|
||
gdb_puts (type->name (), stream);
|
||
gdb_puts (" ", stream);
|
||
len = strlen (type->name ());
|
||
}
|
||
gdb_puts ("{\n", stream);
|
||
|
||
for (int i = 0; i < type->num_fields (); ++i)
|
||
{
|
||
const char *name = type->field (i).name ();
|
||
|
||
QUIT;
|
||
|
||
if (len > 0
|
||
&& strncmp (name, type->name (), len) == 0
|
||
&& name[len] == ':'
|
||
&& name[len + 1] == ':')
|
||
name += len + 2;
|
||
gdb_printf (stream, "%*s%ps,\n",
|
||
level + 2, "",
|
||
styled_string (variable_name_style.style (),
|
||
name));
|
||
}
|
||
|
||
gdb_puts ("}", stream);
|
||
}
|
||
break;
|
||
|
||
case TYPE_CODE_PTR:
|
||
{
|
||
if (type->name () != nullptr)
|
||
gdb_puts (type->name (), stream);
|
||
else
|
||
{
|
||
/* We currently can't distinguish between pointers and
|
||
references. */
|
||
gdb_puts ("*mut ", stream);
|
||
type_print (type->target_type (), "", stream, 0);
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
c_printer:
|
||
c_print_type (type, varstring, stream, show, level, language_rust,
|
||
flags);
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Like arch_composite_type, but uses TYPE to decide how to allocate
|
||
-- either on an obstack or on a gdbarch. */
|
||
|
||
static struct type *
|
||
rust_composite_type (struct type *original,
|
||
const char *name,
|
||
const char *field1, struct type *type1,
|
||
const char *field2, struct type *type2)
|
||
{
|
||
struct type *result = type_allocator (original).new_type ();
|
||
int i, nfields, bitpos;
|
||
|
||
nfields = 0;
|
||
if (field1 != NULL)
|
||
++nfields;
|
||
if (field2 != NULL)
|
||
++nfields;
|
||
|
||
result->set_code (TYPE_CODE_STRUCT);
|
||
result->set_name (name);
|
||
|
||
result->alloc_fields (nfields);
|
||
|
||
i = 0;
|
||
bitpos = 0;
|
||
if (field1 != NULL)
|
||
{
|
||
struct field *field = &result->field (i);
|
||
|
||
field->set_loc_bitpos (bitpos);
|
||
bitpos += type1->length () * TARGET_CHAR_BIT;
|
||
|
||
field->set_name (field1);
|
||
field->set_type (type1);
|
||
++i;
|
||
}
|
||
if (field2 != NULL)
|
||
{
|
||
struct field *field = &result->field (i);
|
||
unsigned align = type_align (type2);
|
||
|
||
if (align != 0)
|
||
{
|
||
int delta;
|
||
|
||
align *= TARGET_CHAR_BIT;
|
||
delta = bitpos % align;
|
||
if (delta != 0)
|
||
bitpos += align - delta;
|
||
}
|
||
field->set_loc_bitpos (bitpos);
|
||
|
||
field->set_name (field2);
|
||
field->set_type (type2);
|
||
++i;
|
||
}
|
||
|
||
if (i > 0)
|
||
result->set_length (result->field (i - 1).loc_bitpos () / TARGET_CHAR_BIT
|
||
+ result->field (i - 1).type ()->length ());
|
||
return result;
|
||
}
|
||
|
||
/* See rust-lang.h. */
|
||
|
||
struct type *
|
||
rust_slice_type (const char *name, struct type *elt_type,
|
||
struct type *usize_type)
|
||
{
|
||
struct type *type;
|
||
|
||
elt_type = lookup_pointer_type (elt_type);
|
||
type = rust_composite_type (elt_type, name,
|
||
"data_ptr", elt_type,
|
||
"length", usize_type);
|
||
|
||
return type;
|
||
}
|
||
|
||
|
||
|
||
/* A helper for rust_evaluate_subexp that handles OP_RANGE. */
|
||
|
||
struct value *
|
||
rust_range (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, enum range_flag kind,
|
||
struct value *low, struct value *high)
|
||
{
|
||
struct value *addrval, *result;
|
||
CORE_ADDR addr;
|
||
struct type *range_type;
|
||
struct type *index_type;
|
||
struct type *temp_type;
|
||
const char *name;
|
||
|
||
bool inclusive = !(kind & RANGE_HIGH_BOUND_EXCLUSIVE);
|
||
|
||
if (low == NULL)
|
||
{
|
||
if (high == NULL)
|
||
{
|
||
index_type = NULL;
|
||
name = "std::ops::RangeFull";
|
||
}
|
||
else
|
||
{
|
||
index_type = high->type ();
|
||
name = (inclusive
|
||
? "std::ops::RangeToInclusive" : "std::ops::RangeTo");
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (high == NULL)
|
||
{
|
||
index_type = low->type ();
|
||
name = "std::ops::RangeFrom";
|
||
}
|
||
else
|
||
{
|
||
if (!types_equal (low->type (), high->type ()))
|
||
error (_("Range expression with different types"));
|
||
index_type = low->type ();
|
||
name = inclusive ? "std::ops::RangeInclusive" : "std::ops::Range";
|
||
}
|
||
}
|
||
|
||
/* If we don't have an index type, just allocate this on the
|
||
arch. Here any type will do. */
|
||
temp_type = (index_type == NULL
|
||
? language_bool_type (exp->language_defn, exp->gdbarch)
|
||
: index_type);
|
||
/* It would be nicer to cache the range type. */
|
||
range_type = rust_composite_type (temp_type, name,
|
||
low == NULL ? NULL : "start", index_type,
|
||
high == NULL ? NULL : "end", index_type);
|
||
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value::zero (range_type, lval_memory);
|
||
|
||
addrval = value_allocate_space_in_inferior (range_type->length ());
|
||
addr = value_as_long (addrval);
|
||
result = value_at_lazy (range_type, addr);
|
||
|
||
if (low != NULL)
|
||
{
|
||
struct value *start = value_struct_elt (&result, {}, "start", NULL,
|
||
"range");
|
||
|
||
value_assign (start, low);
|
||
}
|
||
|
||
if (high != NULL)
|
||
{
|
||
struct value *end = value_struct_elt (&result, {}, "end", NULL,
|
||
"range");
|
||
|
||
value_assign (end, high);
|
||
}
|
||
|
||
result = value_at_lazy (range_type, addr);
|
||
return result;
|
||
}
|
||
|
||
/* A helper function to compute the range and kind given a range
|
||
value. TYPE is the type of the range value. RANGE is the range
|
||
value. LOW, HIGH, and KIND are out parameters. The LOW and HIGH
|
||
parameters might be filled in, or might not be, depending on the
|
||
kind of range this is. KIND will always be set to the appropriate
|
||
value describing the kind of range, and this can be used to
|
||
determine whether LOW or HIGH are valid. */
|
||
|
||
static void
|
||
rust_compute_range (struct type *type, struct value *range,
|
||
LONGEST *low, LONGEST *high,
|
||
range_flags *kind)
|
||
{
|
||
int i;
|
||
|
||
*low = 0;
|
||
*high = 0;
|
||
*kind = RANGE_LOW_BOUND_DEFAULT | RANGE_HIGH_BOUND_DEFAULT;
|
||
|
||
if (type->num_fields () == 0)
|
||
return;
|
||
|
||
i = 0;
|
||
if (strcmp (type->field (0).name (), "start") == 0)
|
||
{
|
||
*kind = RANGE_HIGH_BOUND_DEFAULT;
|
||
*low = value_as_long (value_field (range, 0));
|
||
++i;
|
||
}
|
||
if (type->num_fields () > i
|
||
&& strcmp (type->field (i).name (), "end") == 0)
|
||
{
|
||
*kind = (*kind == (RANGE_LOW_BOUND_DEFAULT | RANGE_HIGH_BOUND_DEFAULT)
|
||
? RANGE_LOW_BOUND_DEFAULT : RANGE_STANDARD);
|
||
*high = value_as_long (value_field (range, i));
|
||
|
||
if (rust_inclusive_range_type_p (type))
|
||
++*high;
|
||
}
|
||
}
|
||
|
||
/* A helper for rust_evaluate_subexp that handles BINOP_SUBSCRIPT. */
|
||
|
||
struct value *
|
||
rust_subscript (struct type *expect_type, struct expression *exp,
|
||
enum noside noside, bool for_addr,
|
||
struct value *lhs, struct value *rhs)
|
||
{
|
||
struct value *result;
|
||
struct type *rhstype;
|
||
LONGEST low, high_bound;
|
||
/* Initialized to appease the compiler. */
|
||
range_flags kind = RANGE_LOW_BOUND_DEFAULT | RANGE_HIGH_BOUND_DEFAULT;
|
||
LONGEST high = 0;
|
||
int want_slice = 0;
|
||
|
||
rhstype = check_typedef (rhs->type ());
|
||
if (rust_range_type_p (rhstype))
|
||
{
|
||
if (!for_addr)
|
||
error (_("Can't take slice of array without '&'"));
|
||
rust_compute_range (rhstype, rhs, &low, &high, &kind);
|
||
want_slice = 1;
|
||
}
|
||
else
|
||
low = value_as_long (rhs);
|
||
|
||
struct type *type = check_typedef (lhs->type ());
|
||
struct type *orig_type = type;
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
struct type *base_type = nullptr;
|
||
if (type->code () == TYPE_CODE_ARRAY)
|
||
base_type = type->target_type ();
|
||
else if (rust_slice_type_p (type))
|
||
{
|
||
base_type = rust_array_like_element_type (type);
|
||
if (base_type == nullptr)
|
||
error (_("Cannot subscript non-array-like slice"));
|
||
}
|
||
else if (type->code () == TYPE_CODE_PTR)
|
||
base_type = type->target_type ();
|
||
else
|
||
error (_("Cannot subscript non-array type"));
|
||
|
||
struct type *new_type;
|
||
if (want_slice)
|
||
{
|
||
if (rust_slice_type_p (type))
|
||
new_type = type;
|
||
else
|
||
{
|
||
struct type *usize
|
||
= language_lookup_primitive_type (exp->language_defn,
|
||
exp->gdbarch,
|
||
"usize");
|
||
new_type = rust_slice_type ("&[*gdb*]", base_type, usize);
|
||
}
|
||
}
|
||
else
|
||
new_type = base_type;
|
||
|
||
return value::zero (new_type, lhs->lval ());
|
||
}
|
||
else
|
||
{
|
||
LONGEST low_bound;
|
||
struct value *base;
|
||
|
||
if (rust_slice_type_p (type))
|
||
{
|
||
lhs = convert_slice (lhs);
|
||
type = check_typedef (lhs->type ());
|
||
}
|
||
|
||
if (type->code () == TYPE_CODE_ARRAY)
|
||
{
|
||
base = lhs;
|
||
if (!get_array_bounds (type, &low_bound, &high_bound))
|
||
error (_("Can't compute array bounds"));
|
||
if (low_bound != 0)
|
||
error (_("Found array with non-zero lower bound"));
|
||
++high_bound;
|
||
}
|
||
else if (type->code () == TYPE_CODE_PTR)
|
||
{
|
||
base = lhs;
|
||
low_bound = 0;
|
||
high_bound = LONGEST_MAX;
|
||
}
|
||
else
|
||
error (_("Cannot subscript non-array type"));
|
||
|
||
if (want_slice && (kind & RANGE_LOW_BOUND_DEFAULT))
|
||
low = low_bound;
|
||
if (low < 0)
|
||
error (_("Index less than zero"));
|
||
if (low > high_bound)
|
||
error (_("Index greater than length"));
|
||
|
||
result = value_subscript (base, low);
|
||
}
|
||
|
||
if (for_addr)
|
||
{
|
||
if (want_slice)
|
||
{
|
||
struct type *usize, *slice;
|
||
CORE_ADDR addr;
|
||
struct value *addrval, *tem;
|
||
|
||
if (kind & RANGE_HIGH_BOUND_DEFAULT)
|
||
high = high_bound;
|
||
if (high < 0)
|
||
error (_("High index less than zero"));
|
||
if (low > high)
|
||
error (_("Low index greater than high index"));
|
||
if (high > high_bound)
|
||
error (_("High index greater than length"));
|
||
|
||
usize = language_lookup_primitive_type (exp->language_defn,
|
||
exp->gdbarch,
|
||
"usize");
|
||
/* Preserve the name for slice-of-slice; this lets
|
||
string-printing work a bit more nicely. */
|
||
const char *new_name = ((orig_type != nullptr
|
||
&& rust_slice_type_p (orig_type))
|
||
? orig_type->name () : "&[*gdb*]");
|
||
|
||
slice = rust_slice_type (new_name, result->type (), usize);
|
||
|
||
addrval = value_allocate_space_in_inferior (slice->length ());
|
||
addr = value_as_long (addrval);
|
||
tem = value_at_lazy (slice, addr);
|
||
|
||
value_assign (value_field (tem, 0), value_addr (result));
|
||
value_assign (value_field (tem, 1),
|
||
value_from_longest (usize, high - low));
|
||
|
||
result = value_at_lazy (slice, addr);
|
||
}
|
||
else
|
||
result = value_addr (result);
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
namespace expr
|
||
{
|
||
|
||
struct value *
|
||
rust_unop_ind_operation::evaluate (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
if (noside != EVAL_NORMAL)
|
||
return unop_ind_operation::evaluate (expect_type, exp, noside);
|
||
|
||
struct value *value = std::get<0> (m_storage)->evaluate (nullptr, exp,
|
||
noside);
|
||
struct value *trait_ptr = rust_get_trait_object_pointer (value);
|
||
if (trait_ptr != NULL)
|
||
value = trait_ptr;
|
||
|
||
return value_ind (value);
|
||
}
|
||
|
||
} /* namespace expr */
|
||
|
||
/* A helper function for UNOP_COMPLEMENT. */
|
||
|
||
struct value *
|
||
eval_op_rust_complement (struct type *expect_type, struct expression *exp,
|
||
enum noside noside,
|
||
enum exp_opcode opcode,
|
||
struct value *value)
|
||
{
|
||
if (value->type ()->code () == TYPE_CODE_BOOL)
|
||
return value_from_longest (value->type (), value_logical_not (value));
|
||
return value_complement (value);
|
||
}
|
||
|
||
/* A helper function for OP_ARRAY. */
|
||
|
||
struct value *
|
||
eval_op_rust_array (struct type *expect_type, struct expression *exp,
|
||
enum noside noside,
|
||
enum exp_opcode opcode,
|
||
struct value *elt, struct value *ncopies)
|
||
{
|
||
int copies = value_as_long (ncopies);
|
||
if (copies < 0)
|
||
error (_("Array with negative number of elements"));
|
||
|
||
if (noside == EVAL_NORMAL)
|
||
return value_array (0, std::vector<value *> (copies, elt));
|
||
else
|
||
{
|
||
struct type *arraytype
|
||
= lookup_array_range_type (elt->type (), 0, copies - 1);
|
||
return value::allocate (arraytype);
|
||
}
|
||
}
|
||
|
||
namespace expr
|
||
{
|
||
|
||
struct value *
|
||
rust_struct_anon::evaluate (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
value *lhs = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
|
||
int field_number = std::get<0> (m_storage);
|
||
|
||
struct type *type = lhs->type ();
|
||
|
||
if (type->code () == TYPE_CODE_STRUCT)
|
||
{
|
||
struct type *outer_type = NULL;
|
||
|
||
if (rust_enum_p (type))
|
||
{
|
||
type = resolve_dynamic_type (type, lhs->contents (),
|
||
lhs->address ());
|
||
|
||
if (rust_empty_enum_p (type))
|
||
error (_("Cannot access field %d of empty enum %s"),
|
||
field_number, type->name ());
|
||
|
||
int fieldno = rust_enum_variant (type);
|
||
lhs = lhs->primitive_field (0, fieldno, type);
|
||
outer_type = type;
|
||
type = lhs->type ();
|
||
}
|
||
|
||
/* Tuples and tuple structs */
|
||
int nfields = type->num_fields ();
|
||
|
||
if (field_number >= nfields || field_number < 0)
|
||
{
|
||
if (outer_type != NULL)
|
||
error(_("Cannot access field %d of variant %s::%s, "
|
||
"there are only %d fields"),
|
||
field_number, outer_type->name (),
|
||
rust_last_path_segment (type->name ()),
|
||
nfields);
|
||
else
|
||
error(_("Cannot access field %d of %s, "
|
||
"there are only %d fields"),
|
||
field_number, type->name (), nfields);
|
||
}
|
||
|
||
/* Tuples are tuple structs too. */
|
||
if (!rust_tuple_struct_type_p (type))
|
||
{
|
||
if (outer_type != NULL)
|
||
error(_("Variant %s::%s is not a tuple variant"),
|
||
outer_type->name (),
|
||
rust_last_path_segment (type->name ()));
|
||
else
|
||
error(_("Attempting to access anonymous field %d "
|
||
"of %s, which is not a tuple, tuple struct, or "
|
||
"tuple-like variant"),
|
||
field_number, type->name ());
|
||
}
|
||
|
||
return lhs->primitive_field (0, field_number, type);
|
||
}
|
||
else
|
||
error(_("Anonymous field access is only allowed on tuples, \
|
||
tuple structs, and tuple-like enum variants"));
|
||
}
|
||
|
||
struct value *
|
||
rust_structop::evaluate (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
value *lhs = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
|
||
const char *field_name = std::get<1> (m_storage).c_str ();
|
||
|
||
struct value *result;
|
||
struct type *type = lhs->type ();
|
||
if (type->code () == TYPE_CODE_STRUCT && rust_enum_p (type))
|
||
{
|
||
type = resolve_dynamic_type (type, lhs->contents (),
|
||
lhs->address ());
|
||
|
||
if (rust_empty_enum_p (type))
|
||
error (_("Cannot access field %s of empty enum %s"),
|
||
field_name, type->name ());
|
||
|
||
int fieldno = rust_enum_variant (type);
|
||
lhs = lhs->primitive_field (0, fieldno, type);
|
||
|
||
struct type *outer_type = type;
|
||
type = lhs->type ();
|
||
if (rust_tuple_type_p (type) || rust_tuple_struct_type_p (type))
|
||
error (_("Attempting to access named field %s of tuple "
|
||
"variant %s::%s, which has only anonymous fields"),
|
||
field_name, outer_type->name (),
|
||
rust_last_path_segment (type->name ()));
|
||
|
||
try
|
||
{
|
||
result = value_struct_elt (&lhs, {}, field_name,
|
||
NULL, "structure");
|
||
}
|
||
catch (const gdb_exception_error &except)
|
||
{
|
||
error (_("Could not find field %s of struct variant %s::%s"),
|
||
field_name, outer_type->name (),
|
||
rust_last_path_segment (type->name ()));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (rust_slice_type_p (type))
|
||
lhs = convert_slice (lhs);
|
||
result = value_struct_elt (&lhs, {}, field_name, NULL, "structure");
|
||
}
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
result = value::zero (result->type (), result->lval ());
|
||
return result;
|
||
}
|
||
|
||
value *
|
||
rust_aggregate_operation::evaluate (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside)
|
||
{
|
||
struct type *type = std::get<0> (m_storage);
|
||
CORE_ADDR addr = 0;
|
||
struct value *addrval = NULL;
|
||
value *result;
|
||
|
||
if (noside == EVAL_NORMAL)
|
||
{
|
||
addrval = value_allocate_space_in_inferior (type->length ());
|
||
addr = value_as_long (addrval);
|
||
result = value_at_lazy (type, addr);
|
||
}
|
||
|
||
if (std::get<1> (m_storage) != nullptr)
|
||
{
|
||
struct value *init = std::get<1> (m_storage)->evaluate (nullptr, exp,
|
||
noside);
|
||
|
||
if (noside == EVAL_NORMAL)
|
||
{
|
||
/* This isn't quite right but will do for the time
|
||
being, seeing that we can't implement the Copy
|
||
trait anyway. */
|
||
value_assign (result, init);
|
||
}
|
||
}
|
||
|
||
for (const auto &item : std::get<2> (m_storage))
|
||
{
|
||
value *val = item.second->evaluate (nullptr, exp, noside);
|
||
if (noside == EVAL_NORMAL)
|
||
{
|
||
const char *fieldname = item.first.c_str ();
|
||
value *field = value_struct_elt (&result, {}, fieldname,
|
||
nullptr, "structure");
|
||
value_assign (field, val);
|
||
}
|
||
}
|
||
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
result = value::allocate (type);
|
||
else
|
||
result = value_at_lazy (type, addr);
|
||
|
||
return result;
|
||
}
|
||
|
||
value *
|
||
rust_structop::evaluate_funcall (struct type *expect_type,
|
||
struct expression *exp,
|
||
enum noside noside,
|
||
const std::vector<operation_up> &ops)
|
||
{
|
||
std::vector<struct value *> args (ops.size () + 1);
|
||
|
||
/* Evaluate the argument to STRUCTOP_STRUCT, then find its
|
||
type in order to look up the method. */
|
||
args[0] = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
|
||
/* We don't yet implement real Deref semantics. */
|
||
while (args[0]->type ()->code () == TYPE_CODE_PTR)
|
||
args[0] = value_ind (args[0]);
|
||
|
||
struct type *type = args[0]->type ();
|
||
if ((type->code () != TYPE_CODE_STRUCT
|
||
&& type->code () != TYPE_CODE_UNION
|
||
&& type->code () != TYPE_CODE_ENUM)
|
||
|| rust_tuple_type_p (type))
|
||
error (_("Method calls only supported on struct or enum types"));
|
||
if (type->name () == NULL)
|
||
error (_("Method call on nameless type"));
|
||
|
||
std::string name = (std::string (type->name ()) + "::"
|
||
+ std::get<1> (m_storage));
|
||
|
||
const struct block *block = get_selected_block (0);
|
||
struct block_symbol sym = lookup_symbol (name.c_str (), block,
|
||
SEARCH_FUNCTION_DOMAIN,
|
||
nullptr);
|
||
if (sym.symbol == NULL)
|
||
error (_("Could not find function named '%s'"), name.c_str ());
|
||
|
||
struct type *fn_type = sym.symbol->type ();
|
||
if (fn_type->num_fields () == 0)
|
||
error (_("Function '%s' takes no arguments"), name.c_str ());
|
||
|
||
if (fn_type->field (0).type ()->code () == TYPE_CODE_PTR)
|
||
args[0] = value_addr (args[0]);
|
||
|
||
value *function = address_of_variable (sym.symbol, block);
|
||
|
||
for (int i = 0; i < ops.size (); ++i)
|
||
args[i + 1] = ops[i]->evaluate (nullptr, exp, noside);
|
||
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value::zero (fn_type->target_type (), not_lval);
|
||
return call_function_by_hand (function, NULL, args);
|
||
}
|
||
|
||
}
|
||
|
||
|
||
|
||
/* See language.h. */
|
||
|
||
void
|
||
rust_language::language_arch_info (struct gdbarch *gdbarch,
|
||
struct language_arch_info *lai) const
|
||
{
|
||
const struct builtin_type *builtin = builtin_type (gdbarch);
|
||
|
||
/* Helper function to allow shorter lines below. */
|
||
auto add = [&] (struct type * t) -> struct type *
|
||
{
|
||
lai->add_primitive_type (t);
|
||
return t;
|
||
};
|
||
|
||
type_allocator alloc (gdbarch);
|
||
struct type *bool_type
|
||
= add (init_boolean_type (alloc, 8, 1, "bool"));
|
||
add (init_character_type (alloc, 32, 1, "char"));
|
||
add (init_integer_type (alloc, 8, 0, "i8"));
|
||
struct type *u8_type
|
||
= add (init_integer_type (alloc, 8, 1, "u8"));
|
||
add (init_integer_type (alloc, 16, 0, "i16"));
|
||
add (init_integer_type (alloc, 16, 1, "u16"));
|
||
add (init_integer_type (alloc, 32, 0, "i32"));
|
||
add (init_integer_type (alloc, 32, 1, "u32"));
|
||
add (init_integer_type (alloc, 64, 0, "i64"));
|
||
add (init_integer_type (alloc, 64, 1, "u64"));
|
||
add (init_integer_type (alloc, 128, 0, "i128"));
|
||
add (init_integer_type (alloc, 128, 1, "u128"));
|
||
|
||
unsigned int length = 8 * builtin->builtin_data_ptr->length ();
|
||
add (init_integer_type (alloc, length, 0, "isize"));
|
||
struct type *usize_type
|
||
= add (init_integer_type (alloc, length, 1, "usize"));
|
||
|
||
add (init_float_type (alloc, 32, "f32", floatformats_ieee_single));
|
||
add (init_float_type (alloc, 64, "f64", floatformats_ieee_double));
|
||
add (init_integer_type (alloc, 0, 1, "()"));
|
||
|
||
struct type *tem = make_cv_type (1, 0, u8_type, NULL);
|
||
add (rust_slice_type ("&str", tem, usize_type));
|
||
|
||
lai->set_bool_type (bool_type);
|
||
lai->set_string_char_type (u8_type);
|
||
}
|
||
|
||
/* See language.h. */
|
||
|
||
void
|
||
rust_language::print_type (struct type *type, const char *varstring,
|
||
struct ui_file *stream, int show, int level,
|
||
const struct type_print_options *flags) const
|
||
{
|
||
print_offset_data podata (flags);
|
||
rust_internal_print_type (type, varstring, stream, show, level,
|
||
flags, false, &podata);
|
||
}
|
||
|
||
/* See language.h. */
|
||
|
||
void
|
||
rust_language::emitchar (int ch, struct type *chtype,
|
||
struct ui_file *stream, int quoter) const
|
||
{
|
||
if (!rust_chartype_p (chtype))
|
||
generic_emit_char (ch, chtype, stream, quoter,
|
||
target_charset (chtype->arch ()));
|
||
else if (ch == '\\' || ch == quoter)
|
||
gdb_printf (stream, "\\%c", ch);
|
||
else if (ch == '\n')
|
||
gdb_puts ("\\n", stream);
|
||
else if (ch == '\r')
|
||
gdb_puts ("\\r", stream);
|
||
else if (ch == '\t')
|
||
gdb_puts ("\\t", stream);
|
||
else if (ch == '\0')
|
||
gdb_puts ("\\0", stream);
|
||
else if (ch >= 32 && ch <= 127 && isprint (ch))
|
||
gdb_putc (ch, stream);
|
||
else if (ch <= 255)
|
||
gdb_printf (stream, "\\x%02x", ch);
|
||
else
|
||
gdb_printf (stream, "\\u{%06x}", ch);
|
||
}
|
||
|
||
/* See language.h. */
|
||
|
||
bool
|
||
rust_language::is_array_like (struct type *type) const
|
||
{
|
||
if (!rust_slice_type_p (type))
|
||
return false;
|
||
return rust_array_like_element_type (type) != nullptr;
|
||
}
|
||
|
||
/* See language.h. */
|
||
|
||
bool
|
||
rust_language::is_string_type_p (struct type *type) const
|
||
{
|
||
LONGEST low_bound, high_bound;
|
||
|
||
type = check_typedef (type);
|
||
return ((type->code () == TYPE_CODE_STRING)
|
||
|| (type->code () == TYPE_CODE_PTR
|
||
&& (type->target_type ()->code () == TYPE_CODE_ARRAY
|
||
&& rust_u8_type_p (type->target_type ()->target_type ())
|
||
&& get_array_bounds (type->target_type (), &low_bound,
|
||
&high_bound)))
|
||
|| (type->code () == TYPE_CODE_STRUCT
|
||
&& !rust_enum_p (type)
|
||
&& rust_slice_type_p (type)
|
||
&& strcmp (type->name (), "&str") == 0));
|
||
}
|
||
|
||
/* See language.h. */
|
||
|
||
struct block_symbol
|
||
rust_language::lookup_symbol_nonlocal
|
||
(const char *name, const struct block *block,
|
||
const domain_search_flags domain) const
|
||
{
|
||
struct block_symbol result = {};
|
||
|
||
const char *scope = block == nullptr ? "" : block->scope ();
|
||
symbol_lookup_debug_printf
|
||
("rust_lookup_symbol_non_local (%s, %s (scope %s), %s)",
|
||
name, host_address_to_string (block), scope,
|
||
domain_name (domain).c_str ());
|
||
|
||
/* Look up bare names in the block's scope. */
|
||
std::string scopedname;
|
||
if (name[cp_find_first_component (name)] == '\0')
|
||
{
|
||
if (scope[0] != '\0')
|
||
{
|
||
scopedname = std::string (scope) + "::" + name;
|
||
name = scopedname.c_str ();
|
||
}
|
||
else
|
||
name = NULL;
|
||
}
|
||
|
||
if (name != NULL)
|
||
{
|
||
result = lookup_symbol_in_static_block (name, block, domain);
|
||
if (result.symbol == NULL)
|
||
result = lookup_global_symbol (name, block, domain);
|
||
}
|
||
return result;
|
||
}
|
||
|
||
/* Single instance of the Rust language class. */
|
||
|
||
static rust_language rust_language_defn;
|