mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-16 13:03:43 +08:00
4c664b8d0a
printing of static members. (_initialize_cp_valprint): New print set subcommand "static-members". Turn on printing of static members by default. (cp_print_value_fields): Print static members if necessary. * solib.c: Remove inclusion of libelf.h and elf/mips.h. (elf_locate_base): Use only standard BFD functions to collect information about the .dynamic section. Check for DT_MIPS_RLD_MAP tag only if it got defined via the inclusion of <link.h>. * f-exp.y: Write block for OP_VAR_VALUE. * f-valprint.c (info_common_command): Handle `info common' without an argument correctly. * c-typeprint.c (c_type_print_base): Handle template constructors. * symtab.c (gdb_mangle_name): Handle template method mangling, get rid of GCC_MANGLE_BUG code, which only applied to gcc-2.2.2.
892 lines
25 KiB
C
892 lines
25 KiB
C
/* Support for printing Fortran values for GDB, the GNU debugger.
|
||
Copyright 1993, 1994 Free Software Foundation, Inc.
|
||
Contributed by Motorola. Adapted from the C definitions by Farooq Butt
|
||
(fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#include "defs.h"
|
||
#include <string.h>
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "expression.h"
|
||
#include "value.h"
|
||
#include "demangle.h"
|
||
#include "valprint.h"
|
||
#include "language.h"
|
||
#include "f-lang.h"
|
||
#include "frame.h"
|
||
#include "gdbcore.h"
|
||
#include "command.h"
|
||
|
||
extern struct obstack dont_print_obstack;
|
||
|
||
extern unsigned int print_max; /* No of array elements to print */
|
||
|
||
extern int calc_f77_array_dims PARAMS ((struct type *));
|
||
|
||
int f77_array_offset_tbl[MAX_FORTRAN_DIMS+1][2];
|
||
|
||
/* Array which holds offsets to be applied to get a row's elements
|
||
for a given array. Array also holds the size of each subarray. */
|
||
|
||
/* The following macro gives us the size of the nth dimension, Where
|
||
n is 1 based. */
|
||
|
||
#define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1])
|
||
|
||
/* The following gives us the offset for row n where n is 1-based. */
|
||
|
||
#define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0])
|
||
|
||
int
|
||
f77_get_dynamic_lowerbound (type, lower_bound)
|
||
struct type *type;
|
||
int *lower_bound;
|
||
{
|
||
CORE_ADDR current_frame_addr;
|
||
CORE_ADDR ptr_to_lower_bound;
|
||
|
||
switch (TYPE_ARRAY_LOWER_BOUND_TYPE (type))
|
||
{
|
||
case BOUND_BY_VALUE_ON_STACK:
|
||
current_frame_addr = selected_frame->frame;
|
||
if (current_frame_addr > 0)
|
||
{
|
||
*lower_bound =
|
||
read_memory_integer (current_frame_addr +
|
||
TYPE_ARRAY_LOWER_BOUND_VALUE (type),
|
||
4);
|
||
}
|
||
else
|
||
{
|
||
*lower_bound = DEFAULT_LOWER_BOUND;
|
||
return BOUND_FETCH_ERROR;
|
||
}
|
||
break;
|
||
|
||
case BOUND_SIMPLE:
|
||
*lower_bound = TYPE_ARRAY_LOWER_BOUND_VALUE (type);
|
||
break;
|
||
|
||
case BOUND_CANNOT_BE_DETERMINED:
|
||
error ("Lower bound may not be '*' in F77");
|
||
break;
|
||
|
||
case BOUND_BY_REF_ON_STACK:
|
||
current_frame_addr = selected_frame->frame;
|
||
if (current_frame_addr > 0)
|
||
{
|
||
ptr_to_lower_bound =
|
||
read_memory_integer (current_frame_addr +
|
||
TYPE_ARRAY_LOWER_BOUND_VALUE (type),
|
||
4);
|
||
*lower_bound = read_memory_integer (ptr_to_lower_bound, 4);
|
||
}
|
||
else
|
||
{
|
||
*lower_bound = DEFAULT_LOWER_BOUND;
|
||
return BOUND_FETCH_ERROR;
|
||
}
|
||
break;
|
||
|
||
case BOUND_BY_REF_IN_REG:
|
||
case BOUND_BY_VALUE_IN_REG:
|
||
default:
|
||
error ("??? unhandled dynamic array bound type ???");
|
||
break;
|
||
}
|
||
return BOUND_FETCH_OK;
|
||
}
|
||
|
||
int
|
||
f77_get_dynamic_upperbound (type, upper_bound)
|
||
struct type *type;
|
||
int *upper_bound;
|
||
{
|
||
CORE_ADDR current_frame_addr = 0;
|
||
CORE_ADDR ptr_to_upper_bound;
|
||
|
||
switch (TYPE_ARRAY_UPPER_BOUND_TYPE (type))
|
||
{
|
||
case BOUND_BY_VALUE_ON_STACK:
|
||
current_frame_addr = selected_frame->frame;
|
||
if (current_frame_addr > 0)
|
||
{
|
||
*upper_bound =
|
||
read_memory_integer (current_frame_addr +
|
||
TYPE_ARRAY_UPPER_BOUND_VALUE (type),
|
||
4);
|
||
}
|
||
else
|
||
{
|
||
*upper_bound = DEFAULT_UPPER_BOUND;
|
||
return BOUND_FETCH_ERROR;
|
||
}
|
||
break;
|
||
|
||
case BOUND_SIMPLE:
|
||
*upper_bound = TYPE_ARRAY_UPPER_BOUND_VALUE (type);
|
||
break;
|
||
|
||
case BOUND_CANNOT_BE_DETERMINED:
|
||
/* we have an assumed size array on our hands. Assume that
|
||
upper_bound == lower_bound so that we show at least
|
||
1 element.If the user wants to see more elements, let
|
||
him manually ask for 'em and we'll subscript the
|
||
array and show him */
|
||
f77_get_dynamic_lowerbound (type, upper_bound);
|
||
break;
|
||
|
||
case BOUND_BY_REF_ON_STACK:
|
||
current_frame_addr = selected_frame->frame;
|
||
if (current_frame_addr > 0)
|
||
{
|
||
ptr_to_upper_bound =
|
||
read_memory_integer (current_frame_addr +
|
||
TYPE_ARRAY_UPPER_BOUND_VALUE (type),
|
||
4);
|
||
*upper_bound = read_memory_integer(ptr_to_upper_bound, 4);
|
||
}
|
||
else
|
||
{
|
||
*upper_bound = DEFAULT_UPPER_BOUND;
|
||
return BOUND_FETCH_ERROR;
|
||
}
|
||
break;
|
||
|
||
case BOUND_BY_REF_IN_REG:
|
||
case BOUND_BY_VALUE_IN_REG:
|
||
default:
|
||
error ("??? unhandled dynamic array bound type ???");
|
||
break;
|
||
}
|
||
return BOUND_FETCH_OK;
|
||
}
|
||
|
||
/* Obtain F77 adjustable array dimensions */
|
||
|
||
void
|
||
f77_get_dynamic_length_of_aggregate (type)
|
||
struct type *type;
|
||
{
|
||
int upper_bound = -1;
|
||
int lower_bound = 1;
|
||
int retcode;
|
||
|
||
/* Recursively go all the way down into a possibly multi-dimensional
|
||
F77 array and get the bounds. For simple arrays, this is pretty
|
||
easy but when the bounds are dynamic, we must be very careful
|
||
to add up all the lengths correctly. Not doing this right
|
||
will lead to horrendous-looking arrays in parameter lists.
|
||
|
||
This function also works for strings which behave very
|
||
similarly to arrays. */
|
||
|
||
if (TYPE_CODE(TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY
|
||
|| TYPE_CODE(TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING)
|
||
f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type));
|
||
|
||
/* Recursion ends here, start setting up lengths. */
|
||
retcode = f77_get_dynamic_lowerbound (type, &lower_bound);
|
||
if (retcode == BOUND_FETCH_ERROR)
|
||
error ("Cannot obtain valid array lower bound");
|
||
|
||
retcode = f77_get_dynamic_upperbound (type, &upper_bound);
|
||
if (retcode == BOUND_FETCH_ERROR)
|
||
error ("Cannot obtain valid array upper bound");
|
||
|
||
/* Patch in a valid length value. */
|
||
|
||
TYPE_LENGTH (type) =
|
||
(upper_bound - lower_bound + 1) * TYPE_LENGTH (TYPE_TARGET_TYPE (type));
|
||
}
|
||
|
||
/* Print a FORTRAN COMPLEX value of type TYPE, pointed to in GDB by VALADDR,
|
||
on STREAM. which_complex indicates precision, which may be regular,
|
||
*16, or *32 */
|
||
|
||
void
|
||
f77_print_cmplx (valaddr, type, stream, which_complex)
|
||
char *valaddr;
|
||
struct type *type;
|
||
FILE *stream;
|
||
int which_complex;
|
||
{
|
||
float *f1,*f2;
|
||
double *d1, *d2;
|
||
|
||
switch (which_complex)
|
||
{
|
||
case TARGET_COMPLEX_BIT:
|
||
f1 = (float *) valaddr;
|
||
f2 = (float *) (valaddr + sizeof(float));
|
||
fprintf_filtered (stream, "(%.7e,%.7e)", *f1, *f2);
|
||
break;
|
||
|
||
case TARGET_DOUBLE_COMPLEX_BIT:
|
||
d1 = (double *) valaddr;
|
||
d2 = (double *) (valaddr + sizeof(double));
|
||
fprintf_filtered (stream, "(%.16e,%.16e)", *d1, *d2);
|
||
break;
|
||
#if 0
|
||
case TARGET_EXT_COMPLEX_BIT:
|
||
fprintf_filtered (stream, "<complex*32 format unavailable, "
|
||
"printing raw data>\n");
|
||
|
||
fprintf_filtered (stream, "( [ ");
|
||
|
||
for (i = 0;i<4;i++)
|
||
fprintf_filtered (stream, "0x%x ",
|
||
* ( (unsigned int *) valaddr+i));
|
||
|
||
fprintf_filtered (stream, "],\n [ ");
|
||
|
||
for (i=4;i<8;i++)
|
||
fprintf_filtered (stream, "0x%x ",
|
||
* ((unsigned int *) valaddr+i));
|
||
|
||
fprintf_filtered (stream, "] )");
|
||
|
||
break;
|
||
#endif
|
||
default:
|
||
fprintf_filtered (stream, "<cannot handle complex of this type>");
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Function that sets up the array offset,size table for the array
|
||
type "type". */
|
||
|
||
void
|
||
f77_create_arrayprint_offset_tbl (type, stream)
|
||
struct type *type;
|
||
FILE *stream;
|
||
{
|
||
struct type *tmp_type;
|
||
int eltlen;
|
||
int ndimen = 1;
|
||
int upper, lower, retcode;
|
||
|
||
tmp_type = type;
|
||
|
||
while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY))
|
||
{
|
||
if (TYPE_ARRAY_UPPER_BOUND_TYPE (tmp_type) == BOUND_CANNOT_BE_DETERMINED)
|
||
fprintf_filtered (stream, "<assumed size array> ");
|
||
|
||
retcode = f77_get_dynamic_upperbound (tmp_type, &upper);
|
||
if (retcode == BOUND_FETCH_ERROR)
|
||
error ("Cannot obtain dynamic upper bound");
|
||
|
||
retcode = f77_get_dynamic_lowerbound(tmp_type,&lower);
|
||
if (retcode == BOUND_FETCH_ERROR)
|
||
error("Cannot obtain dynamic lower bound");
|
||
|
||
F77_DIM_SIZE (ndimen) = upper - lower + 1;
|
||
|
||
if (ndimen == 1)
|
||
F77_DIM_OFFSET (ndimen) = 1;
|
||
else
|
||
F77_DIM_OFFSET (ndimen) =
|
||
F77_DIM_OFFSET (ndimen - 1) * F77_DIM_SIZE(ndimen - 1);
|
||
|
||
tmp_type = TYPE_TARGET_TYPE (tmp_type);
|
||
ndimen++;
|
||
}
|
||
|
||
eltlen = TYPE_LENGTH (tmp_type);
|
||
|
||
/* Now we multiply eltlen by all the offsets, so that later we
|
||
can print out array elements correctly. Up till now we
|
||
know an offset to apply to get the item but we also
|
||
have to know how much to add to get to the next item */
|
||
|
||
tmp_type = type;
|
||
ndimen = 1;
|
||
|
||
while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY))
|
||
{
|
||
F77_DIM_OFFSET (ndimen) *= eltlen;
|
||
ndimen++;
|
||
tmp_type = TYPE_TARGET_TYPE (tmp_type);
|
||
}
|
||
}
|
||
|
||
/* Actual function which prints out F77 arrays, Valaddr == address in
|
||
the superior. Address == the address in the inferior. */
|
||
|
||
void
|
||
f77_print_array_1 (nss, ndimensions, type, valaddr, address,
|
||
stream, format, deref_ref, recurse, pretty)
|
||
int nss;
|
||
int ndimensions;
|
||
char *valaddr;
|
||
struct type *type;
|
||
CORE_ADDR address;
|
||
FILE *stream;
|
||
int format;
|
||
int deref_ref;
|
||
int recurse;
|
||
enum val_prettyprint pretty;
|
||
{
|
||
int i;
|
||
|
||
if (nss != ndimensions)
|
||
{
|
||
for (i = 0; i< F77_DIM_SIZE(nss); i++)
|
||
{
|
||
fprintf_filtered (stream, "( ");
|
||
f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type),
|
||
valaddr + i * F77_DIM_OFFSET (nss),
|
||
address + i * F77_DIM_OFFSET (nss),
|
||
stream, format, deref_ref, recurse, pretty, i);
|
||
fprintf_filtered (stream, ") ");
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (i = 0; (i < F77_DIM_SIZE (nss) && i < print_max); i++)
|
||
{
|
||
val_print (TYPE_TARGET_TYPE (type),
|
||
valaddr + i * F77_DIM_OFFSET (ndimensions),
|
||
address + i * F77_DIM_OFFSET (ndimensions),
|
||
stream, format, deref_ref, recurse, pretty);
|
||
|
||
if (i != (F77_DIM_SIZE (nss) - 1))
|
||
fprintf_filtered (stream, ", ");
|
||
|
||
if (i == print_max - 1)
|
||
fprintf_filtered (stream, "...");
|
||
}
|
||
}
|
||
}
|
||
|
||
/* This function gets called to print an F77 array, we set up some
|
||
stuff and then immediately call f77_print_array_1() */
|
||
|
||
void
|
||
f77_print_array (type, valaddr, address, stream, format, deref_ref, recurse,
|
||
pretty)
|
||
struct type *type;
|
||
char *valaddr;
|
||
CORE_ADDR address;
|
||
FILE *stream;
|
||
int format;
|
||
int deref_ref;
|
||
int recurse;
|
||
enum val_prettyprint pretty;
|
||
{
|
||
int ndimensions;
|
||
|
||
ndimensions = calc_f77_array_dims (type);
|
||
|
||
if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0)
|
||
error ("Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)",
|
||
ndimensions, MAX_FORTRAN_DIMS);
|
||
|
||
/* Since F77 arrays are stored column-major, we set up an
|
||
offset table to get at the various row's elements. The
|
||
offset table contains entries for both offset and subarray size. */
|
||
|
||
f77_create_arrayprint_offset_tbl (type, stream);
|
||
|
||
f77_print_array_1 (1, ndimensions, type, valaddr, address, stream, format,
|
||
deref_ref, recurse, pretty);
|
||
}
|
||
|
||
|
||
/* Print data of type TYPE located at VALADDR (within GDB), which came from
|
||
the inferior at address ADDRESS, onto stdio stream STREAM according to
|
||
FORMAT (a letter or 0 for natural format). The data at VALADDR is in
|
||
target byte order.
|
||
|
||
If the data are a string pointer, returns the number of string characters
|
||
printed.
|
||
|
||
If DEREF_REF is nonzero, then dereference references, otherwise just print
|
||
them like pointers.
|
||
|
||
The PRETTY parameter controls prettyprinting. */
|
||
|
||
int
|
||
f_val_print (type, valaddr, address, stream, format, deref_ref, recurse,
|
||
pretty)
|
||
struct type *type;
|
||
char *valaddr;
|
||
CORE_ADDR address;
|
||
FILE *stream;
|
||
int format;
|
||
int deref_ref;
|
||
int recurse;
|
||
enum val_prettyprint pretty;
|
||
{
|
||
register unsigned int i = 0; /* Number of characters printed */
|
||
unsigned len;
|
||
struct type *elttype;
|
||
LONGEST val;
|
||
char *localstr;
|
||
char *straddr;
|
||
CORE_ADDR addr;
|
||
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_LITERAL_STRING:
|
||
/* It is trivial to print out F77 strings allocated in the
|
||
superior process. The address field is actually a
|
||
pointer to the bytes of the literal. For an internalvar,
|
||
valaddr points to a ptr. which points to
|
||
VALUE_LITERAL_DATA(value->internalvar->value)
|
||
and for straight literals (i.e. of the form 'hello world'),
|
||
valaddr points a ptr to VALUE_LITERAL_DATA(value). */
|
||
|
||
/* First dereference valaddr. This relies on valaddr pointing to the
|
||
aligner union of a struct value (so we are now fetching the
|
||
literal_data pointer from that union). FIXME: Is this always
|
||
true. */
|
||
|
||
straddr = * (char **) valaddr;
|
||
|
||
if (straddr)
|
||
{
|
||
len = TYPE_LENGTH (type);
|
||
localstr = alloca (len + 1);
|
||
strncpy (localstr, straddr, len);
|
||
localstr[len] = '\0';
|
||
fprintf_filtered (stream, "'%s'", localstr);
|
||
}
|
||
else
|
||
fprintf_filtered (stream, "Unable to print literal F77 string");
|
||
break;
|
||
|
||
/* Strings are a little bit funny. They can be viewed as
|
||
monolithic arrays that are dealt with as atomic data
|
||
items. As such they are the only atomic data items whose
|
||
contents are not located in the superior process. Instead
|
||
instead of having the actual data, they contain pointers
|
||
to addresses in the inferior where data is located. Thus
|
||
instead of using valaddr, we use address. */
|
||
|
||
case TYPE_CODE_STRING:
|
||
f77_get_dynamic_length_of_aggregate (type);
|
||
val_print_string (address, TYPE_LENGTH (type), stream);
|
||
break;
|
||
|
||
case TYPE_CODE_ARRAY:
|
||
fprintf_filtered (stream, "(");
|
||
f77_print_array (type, valaddr, address, stream, format,
|
||
deref_ref, recurse, pretty);
|
||
fprintf_filtered (stream, ")");
|
||
break;
|
||
#if 0
|
||
/* Array of unspecified length: treat like pointer to first elt. */
|
||
valaddr = (char *) &address;
|
||
/* FALL THROUGH */
|
||
#endif
|
||
case TYPE_CODE_PTR:
|
||
if (format && format != 's')
|
||
{
|
||
print_scalar_formatted (valaddr, type, format, 0, stream);
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
addr = unpack_pointer (type, valaddr);
|
||
elttype = TYPE_TARGET_TYPE (type);
|
||
|
||
if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
|
||
{
|
||
/* Try to print what function it points to. */
|
||
print_address_demangle (addr, stream, demangle);
|
||
/* Return value is irrelevant except for string pointers. */
|
||
return 0;
|
||
}
|
||
|
||
if (addressprint && format != 's')
|
||
fprintf_filtered (stream, "0x%x", addr);
|
||
|
||
/* For a pointer to char or unsigned char, also print the string
|
||
pointed to, unless pointer is null. */
|
||
if (TYPE_LENGTH (elttype) == 1
|
||
&& TYPE_CODE (elttype) == TYPE_CODE_INT
|
||
&& (format == 0 || format == 's')
|
||
&& addr != 0)
|
||
i = val_print_string (addr, 0, stream);
|
||
|
||
/* Return number of characters printed, plus one for the
|
||
terminating null if we have "reached the end". */
|
||
return (i + (print_max && i != print_max));
|
||
}
|
||
break;
|
||
|
||
case TYPE_CODE_FUNC:
|
||
if (format)
|
||
{
|
||
print_scalar_formatted (valaddr, type, format, 0, stream);
|
||
break;
|
||
}
|
||
/* FIXME, we should consider, at least for ANSI C language, eliminating
|
||
the distinction made between FUNCs and POINTERs to FUNCs. */
|
||
fprintf_filtered (stream, "{");
|
||
type_print (type, "", stream, -1);
|
||
fprintf_filtered (stream, "} ");
|
||
/* Try to print what function it points to, and its address. */
|
||
print_address_demangle (address, stream, demangle);
|
||
break;
|
||
|
||
case TYPE_CODE_INT:
|
||
format = format ? format : output_format;
|
||
if (format)
|
||
print_scalar_formatted (valaddr, type, format, 0, stream);
|
||
else
|
||
{
|
||
val_print_type_code_int (type, valaddr, stream);
|
||
/* C and C++ has no single byte int type, char is used instead.
|
||
Since we don't know whether the value is really intended to
|
||
be used as an integer or a character, print the character
|
||
equivalent as well. */
|
||
if (TYPE_LENGTH (type) == 1)
|
||
{
|
||
fputs_filtered (" ", stream);
|
||
LA_PRINT_CHAR ((unsigned char) unpack_long (type, valaddr),
|
||
stream);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case TYPE_CODE_FLT:
|
||
if (format)
|
||
print_scalar_formatted (valaddr, type, format, 0, stream);
|
||
else
|
||
print_floating (valaddr, type, stream);
|
||
break;
|
||
|
||
case TYPE_CODE_VOID:
|
||
fprintf_filtered (stream, "VOID");
|
||
break;
|
||
|
||
case TYPE_CODE_ERROR:
|
||
fprintf_filtered (stream, "<error type>");
|
||
break;
|
||
|
||
case TYPE_CODE_RANGE:
|
||
/* FIXME, we should not ever have to print one of these yet. */
|
||
fprintf_filtered (stream, "<range type>");
|
||
break;
|
||
|
||
case TYPE_CODE_BOOL:
|
||
format = format ? format : output_format;
|
||
if (format)
|
||
print_scalar_formatted (valaddr, type, format, 0, stream);
|
||
else
|
||
{
|
||
val = 0;
|
||
switch (TYPE_LENGTH(type))
|
||
{
|
||
case 1:
|
||
val = unpack_long (builtin_type_f_logical_s1, valaddr);
|
||
break ;
|
||
|
||
case 2:
|
||
val = unpack_long (builtin_type_f_logical_s2, valaddr);
|
||
break ;
|
||
|
||
case 4:
|
||
val = unpack_long (builtin_type_f_logical, valaddr);
|
||
break ;
|
||
|
||
default:
|
||
error ("Logicals of length %d bytes not supported",
|
||
TYPE_LENGTH (type));
|
||
|
||
}
|
||
|
||
if (val == 0)
|
||
fprintf_filtered (stream, ".FALSE.");
|
||
else
|
||
if (val == 1)
|
||
fprintf_filtered (stream, ".TRUE.");
|
||
else
|
||
/* Not a legitimate logical type, print as an integer. */
|
||
{
|
||
/* Bash the type code temporarily. */
|
||
TYPE_CODE (type) = TYPE_CODE_INT;
|
||
f_val_print (type, valaddr, address, stream, format,
|
||
deref_ref, recurse, pretty);
|
||
/* Restore the type code so later uses work as intended. */
|
||
TYPE_CODE (type) = TYPE_CODE_BOOL;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case TYPE_CODE_LITERAL_COMPLEX:
|
||
/* We know that the literal complex is stored in the superior
|
||
process not the inferior and that it is 16 bytes long.
|
||
Just like the case above with a literal array, the
|
||
bytes for the the literal complex number are stored
|
||
at the address pointed to by valaddr */
|
||
|
||
if (TYPE_LENGTH (type) == 32)
|
||
error ("Cannot currently print out complex*32 literals");
|
||
|
||
/* First dereference valaddr. */
|
||
|
||
addr = * (CORE_ADDR *) valaddr;
|
||
|
||
if (addr)
|
||
{
|
||
fprintf_filtered (stream, "(");
|
||
|
||
if (TYPE_LENGTH(type) == 16)
|
||
{
|
||
fprintf_filtered (stream, "%.16f", * (double *) addr);
|
||
fprintf_filtered (stream, ", %.16f", * (double *)
|
||
(addr + sizeof(double)));
|
||
}
|
||
else
|
||
{
|
||
fprintf_filtered (stream, "%.8f", * (float *) addr);
|
||
fprintf_filtered (stream, ", %.8f", * (float *)
|
||
(addr + sizeof(float)));
|
||
}
|
||
fprintf_filtered (stream, ") ");
|
||
}
|
||
else
|
||
fprintf_filtered (stream, "Unable to print literal F77 array");
|
||
break;
|
||
|
||
case TYPE_CODE_COMPLEX:
|
||
switch (TYPE_LENGTH (type))
|
||
{
|
||
case 8:
|
||
f77_print_cmplx (valaddr, type, stream, TARGET_COMPLEX_BIT);
|
||
break;
|
||
|
||
case 16:
|
||
f77_print_cmplx(valaddr, type, stream, TARGET_DOUBLE_COMPLEX_BIT);
|
||
break;
|
||
#if 0
|
||
case 32:
|
||
f77_print_cmplx(valaddr, type, stream, TARGET_EXT_COMPLEX_BIT);
|
||
break;
|
||
#endif
|
||
default:
|
||
error ("Cannot print out complex*%d variables", TYPE_LENGTH(type));
|
||
}
|
||
break;
|
||
|
||
case TYPE_CODE_UNDEF:
|
||
/* This happens (without TYPE_FLAG_STUB set) on systems which don't use
|
||
dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
|
||
and no complete type for struct foo in that file. */
|
||
fprintf_filtered (stream, "<incomplete type>");
|
||
break;
|
||
|
||
default:
|
||
error ("Invalid F77 type code %d in symbol table.", TYPE_CODE (type));
|
||
}
|
||
fflush (stream);
|
||
return 0;
|
||
}
|
||
|
||
void
|
||
list_all_visible_commons (funname)
|
||
char *funname;
|
||
{
|
||
SAVED_F77_COMMON_PTR tmp;
|
||
|
||
tmp = head_common_list;
|
||
|
||
printf_filtered ("All COMMON blocks visible at this level:\n\n");
|
||
|
||
while (tmp != NULL)
|
||
{
|
||
if (STREQ(tmp->owning_function,funname))
|
||
printf_filtered ("%s\n", tmp->name);
|
||
|
||
tmp = tmp->next;
|
||
}
|
||
}
|
||
|
||
/* This function is used to print out the values in a given COMMON
|
||
block. It will always use the most local common block of the
|
||
given name */
|
||
|
||
static void
|
||
info_common_command (comname, from_tty)
|
||
char *comname;
|
||
int from_tty;
|
||
{
|
||
SAVED_F77_COMMON_PTR the_common;
|
||
COMMON_ENTRY_PTR entry;
|
||
struct frame_info *fi;
|
||
register char *funname = 0;
|
||
struct symbol *func;
|
||
|
||
/* We have been told to display the contents of F77 COMMON
|
||
block supposedly visible in this function. Let us
|
||
first make sure that it is visible and if so, let
|
||
us display its contents */
|
||
|
||
fi = selected_frame;
|
||
|
||
if (fi == NULL)
|
||
error ("No frame selected");
|
||
|
||
/* The following is generally ripped off from stack.c's routine
|
||
print_frame_info() */
|
||
|
||
func = find_pc_function (fi->pc);
|
||
if (func)
|
||
{
|
||
/* In certain pathological cases, the symtabs give the wrong
|
||
function (when we are in the first function in a file which
|
||
is compiled without debugging symbols, the previous function
|
||
is compiled with debugging symbols, and the "foo.o" symbol
|
||
that is supposed to tell us where the file with debugging symbols
|
||
ends has been truncated by ar because it is longer than 15
|
||
characters).
|
||
|
||
So look in the minimal symbol tables as well, and if it comes
|
||
up with a larger address for the function use that instead.
|
||
I don't think this can ever cause any problems; there shouldn't
|
||
be any minimal symbols in the middle of a function.
|
||
FIXME: (Not necessarily true. What about text labels) */
|
||
|
||
struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
|
||
|
||
if (msymbol != NULL
|
||
&& (SYMBOL_VALUE_ADDRESS (msymbol)
|
||
> BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
|
||
funname = SYMBOL_NAME (msymbol);
|
||
else
|
||
funname = SYMBOL_NAME (func);
|
||
}
|
||
else
|
||
{
|
||
register struct minimal_symbol *msymbol =
|
||
lookup_minimal_symbol_by_pc (fi->pc);
|
||
|
||
if (msymbol != NULL)
|
||
funname = SYMBOL_NAME (msymbol);
|
||
}
|
||
|
||
/* If comname is NULL, we assume the user wishes to see the
|
||
which COMMON blocks are visible here and then return */
|
||
|
||
if (comname == 0)
|
||
{
|
||
list_all_visible_commons (funname);
|
||
return;
|
||
}
|
||
|
||
the_common = find_common_for_function (comname,funname);
|
||
|
||
if (the_common)
|
||
{
|
||
if (STREQ(comname,BLANK_COMMON_NAME_LOCAL))
|
||
printf_filtered ("Contents of blank COMMON block:\n");
|
||
else
|
||
printf_filtered ("Contents of F77 COMMON block '%s':\n",comname);
|
||
|
||
printf_filtered ("\n");
|
||
entry = the_common->entries;
|
||
|
||
while (entry != NULL)
|
||
{
|
||
printf_filtered ("%s = ",SYMBOL_NAME(entry->symbol));
|
||
print_variable_value (entry->symbol,fi,stdout);
|
||
printf_filtered ("\n");
|
||
entry = entry->next;
|
||
}
|
||
}
|
||
else
|
||
printf_filtered ("Cannot locate the common block %s in function '%s'\n",
|
||
comname, funname);
|
||
}
|
||
|
||
/* This function is used to determine whether there is a
|
||
F77 common block visible at the current scope called 'comname'. */
|
||
|
||
int
|
||
there_is_a_visible_common_named (comname)
|
||
char *comname;
|
||
{
|
||
SAVED_F77_COMMON_PTR the_common;
|
||
struct frame_info *fi;
|
||
register char *funname = 0;
|
||
struct symbol *func;
|
||
|
||
if (comname == NULL)
|
||
error ("Cannot deal with NULL common name!");
|
||
|
||
fi = selected_frame;
|
||
|
||
if (fi == NULL)
|
||
error ("No frame selected");
|
||
|
||
/* The following is generally ripped off from stack.c's routine
|
||
print_frame_info() */
|
||
|
||
func = find_pc_function (fi->pc);
|
||
if (func)
|
||
{
|
||
/* In certain pathological cases, the symtabs give the wrong
|
||
function (when we are in the first function in a file which
|
||
is compiled without debugging symbols, the previous function
|
||
is compiled with debugging symbols, and the "foo.o" symbol
|
||
that is supposed to tell us where the file with debugging symbols
|
||
ends has been truncated by ar because it is longer than 15
|
||
characters).
|
||
|
||
So look in the minimal symbol tables as well, and if it comes
|
||
up with a larger address for the function use that instead.
|
||
I don't think this can ever cause any problems; there shouldn't
|
||
be any minimal symbols in the middle of a function.
|
||
FIXME: (Not necessarily true. What about text labels) */
|
||
|
||
struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
|
||
|
||
if (msymbol != NULL
|
||
&& (SYMBOL_VALUE_ADDRESS (msymbol)
|
||
> BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
|
||
funname = SYMBOL_NAME (msymbol);
|
||
else
|
||
funname = SYMBOL_NAME (func);
|
||
}
|
||
else
|
||
{
|
||
register struct minimal_symbol *msymbol =
|
||
lookup_minimal_symbol_by_pc (fi->pc);
|
||
|
||
if (msymbol != NULL)
|
||
funname = SYMBOL_NAME (msymbol);
|
||
}
|
||
|
||
the_common = find_common_for_function (comname, funname);
|
||
|
||
return (the_common ? 1 : 0);
|
||
}
|
||
|
||
void
|
||
_initialize_f_valprint ()
|
||
{
|
||
add_info ("common", info_common_command,
|
||
"Print out the values contained in a Fortran COMMON block.");
|
||
}
|