mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-23 01:53:38 +08:00
2fa4b6e6df
Three new functions for looking up the enum type containing a given enumeration constant, and optionally that constant's value. The simplest, ctf_lookup_enumerator, looks up a root-visible enumerator by name in one dict: if the dict contains multiple such constants (which is possible for dicts created by older versions of the libctf deduplicator), ECTF_DUPLICATE is returned. The next simplest, ctf_lookup_enumerator_next, is an iterator which returns all enumerators with a given name in a given dict, whether root-visible or not. The most elaborate, ctf_arc_lookup_enumerator_next, finds all enumerators with a given name across all dicts in an entire CTF archive, whether root-visible or not, starting looking in the shared parent dict; opened dicts are cached (as with all other ctf_arc_*lookup functions) so that repeated use does not incur repeated opening costs. All three of these return enumerator values as int64_t: unfortunately, API compatibility concerns prevent us from doing the same with the other older enum-related functions, which all return enumerator constant values as ints. We may be forced to add symbol-versioning compatibility aliases that fix the other functions in due course, bumping the soname for platforms that do not support such things. ctf_arc_lookup_enumerator_next is implemented as a nested ctf_archive_next iterator, and inside that, a nested ctf_lookup_enumerator_next iterator within each dict. To aid in this, add support to ctf_next_t iterators for iterators that are implemented in terms of two simultaneous nested iterators at once. (It has always been possible for callers to use as many nested or semi-overlapping ctf_next_t iterators as they need, which is one of the advantages of this style over the _iter style that calls a function for each thing iterated over: the iterator change here permits *ctf_next_t iterators themselves* to be implemented by iterating using multiple other iterators as part of their internal operation, transparently to the caller.) Also add a testcase that tests all these functions (which is fairly easy because ctf_arc_lookup_enumerator_next is implemented in terms of ctf_lookup_enumerator_next) in addition to enumeration addition in ctf_open()ed dicts, ctf_add_enumerator duplicate enumerator addition, and conflicting enumerator constant deduplication. include/ * ctf-api.h (ctf_lookup_enumerator): New. (ctf_lookup_enumerator_next): Likewise. (ctf_arc_lookup_enumerator_next): Likewise. libctf/ * libctf.ver: Add them. * ctf-impl.h (ctf_next_t) <ctn_next_inner>: New. * ctf-util.c (ctf_next_copy): Copy it. (ctf_next_destroy): Destroy it. * ctf-lookup.c (ctf_lookup_enumerator): New. (ctf_lookup_enumerator_next): New. * ctf-archive.c (ctf_arc_lookup_enumerator_next): New. * testsuite/libctf-lookup/enumerator-iteration.*: New test. * testsuite/libctf-lookup/enum-ctf-2.c: New test CTF, used by the above.
313 lines
7.4 KiB
C
313 lines
7.4 KiB
C
/* Miscellaneous utilities.
|
|
Copyright (C) 2019-2024 Free Software Foundation, Inc.
|
|
|
|
This file is part of libctf.
|
|
|
|
libctf is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; see the file COPYING. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <ctf-impl.h>
|
|
#include <string.h>
|
|
#include "ctf-endian.h"
|
|
|
|
/* Simple doubly-linked list append routine. This implementation assumes that
|
|
each list element contains an embedded ctf_list_t as the first member.
|
|
An additional ctf_list_t is used to store the head (l_next) and tail
|
|
(l_prev) pointers. The current head and tail list elements have their
|
|
previous and next pointers set to NULL, respectively. */
|
|
|
|
void
|
|
ctf_list_append (ctf_list_t *lp, void *newp)
|
|
{
|
|
ctf_list_t *p = lp->l_prev; /* p = tail list element. */
|
|
ctf_list_t *q = newp; /* q = new list element. */
|
|
|
|
lp->l_prev = q;
|
|
q->l_prev = p;
|
|
q->l_next = NULL;
|
|
|
|
if (p != NULL)
|
|
p->l_next = q;
|
|
else
|
|
lp->l_next = q;
|
|
}
|
|
|
|
/* Prepend the specified existing element to the given ctf_list_t. The
|
|
existing pointer should be pointing at a struct with embedded ctf_list_t. */
|
|
|
|
void
|
|
ctf_list_prepend (ctf_list_t * lp, void *newp)
|
|
{
|
|
ctf_list_t *p = newp; /* p = new list element. */
|
|
ctf_list_t *q = lp->l_next; /* q = head list element. */
|
|
|
|
lp->l_next = p;
|
|
p->l_prev = NULL;
|
|
p->l_next = q;
|
|
|
|
if (q != NULL)
|
|
q->l_prev = p;
|
|
else
|
|
lp->l_prev = p;
|
|
}
|
|
|
|
/* Delete the specified existing element from the given ctf_list_t. The
|
|
existing pointer should be pointing at a struct with embedded ctf_list_t. */
|
|
|
|
void
|
|
ctf_list_delete (ctf_list_t *lp, void *existing)
|
|
{
|
|
ctf_list_t *p = existing;
|
|
|
|
if (p->l_prev != NULL)
|
|
p->l_prev->l_next = p->l_next;
|
|
else
|
|
lp->l_next = p->l_next;
|
|
|
|
if (p->l_next != NULL)
|
|
p->l_next->l_prev = p->l_prev;
|
|
else
|
|
lp->l_prev = p->l_prev;
|
|
}
|
|
|
|
/* Return 1 if the list is empty. */
|
|
|
|
int
|
|
ctf_list_empty_p (ctf_list_t *lp)
|
|
{
|
|
return (lp->l_next == NULL && lp->l_prev == NULL);
|
|
}
|
|
|
|
/* Splice one entire list onto the end of another one. The existing list is
|
|
emptied. */
|
|
|
|
void
|
|
ctf_list_splice (ctf_list_t *lp, ctf_list_t *append)
|
|
{
|
|
if (ctf_list_empty_p (append))
|
|
return;
|
|
|
|
if (lp->l_prev != NULL)
|
|
lp->l_prev->l_next = append->l_next;
|
|
else
|
|
lp->l_next = append->l_next;
|
|
|
|
append->l_next->l_prev = lp->l_prev;
|
|
lp->l_prev = append->l_prev;
|
|
append->l_next = NULL;
|
|
append->l_prev = NULL;
|
|
}
|
|
|
|
/* Convert a 32-bit ELF symbol to a ctf_link_sym_t. */
|
|
|
|
ctf_link_sym_t *
|
|
ctf_elf32_to_link_sym (ctf_dict_t *fp, ctf_link_sym_t *dst, const Elf32_Sym *src,
|
|
uint32_t symidx)
|
|
{
|
|
Elf32_Sym tmp;
|
|
int needs_flipping = 0;
|
|
|
|
#ifdef WORDS_BIGENDIAN
|
|
if (fp->ctf_symsect_little_endian)
|
|
needs_flipping = 1;
|
|
#else
|
|
if (!fp->ctf_symsect_little_endian)
|
|
needs_flipping = 1;
|
|
#endif
|
|
|
|
memcpy (&tmp, src, sizeof (Elf32_Sym));
|
|
if (needs_flipping)
|
|
{
|
|
swap_thing (tmp.st_name);
|
|
swap_thing (tmp.st_size);
|
|
swap_thing (tmp.st_shndx);
|
|
swap_thing (tmp.st_value);
|
|
}
|
|
/* The name must be in the external string table. */
|
|
if (tmp.st_name < fp->ctf_str[CTF_STRTAB_1].cts_len)
|
|
dst->st_name = (const char *) fp->ctf_str[CTF_STRTAB_1].cts_strs + tmp.st_name;
|
|
else
|
|
dst->st_name = _CTF_NULLSTR;
|
|
dst->st_nameidx_set = 0;
|
|
dst->st_symidx = symidx;
|
|
dst->st_shndx = tmp.st_shndx;
|
|
dst->st_type = ELF32_ST_TYPE (tmp.st_info);
|
|
dst->st_value = tmp.st_value;
|
|
|
|
return dst;
|
|
}
|
|
|
|
/* Convert a 64-bit ELF symbol to a ctf_link_sym_t. */
|
|
|
|
ctf_link_sym_t *
|
|
ctf_elf64_to_link_sym (ctf_dict_t *fp, ctf_link_sym_t *dst, const Elf64_Sym *src,
|
|
uint32_t symidx)
|
|
{
|
|
Elf64_Sym tmp;
|
|
int needs_flipping = 0;
|
|
|
|
#ifdef WORDS_BIGENDIAN
|
|
if (fp->ctf_symsect_little_endian)
|
|
needs_flipping = 1;
|
|
#else
|
|
if (!fp->ctf_symsect_little_endian)
|
|
needs_flipping = 1;
|
|
#endif
|
|
|
|
memcpy (&tmp, src, sizeof (Elf64_Sym));
|
|
if (needs_flipping)
|
|
{
|
|
swap_thing (tmp.st_name);
|
|
swap_thing (tmp.st_size);
|
|
swap_thing (tmp.st_shndx);
|
|
swap_thing (tmp.st_value);
|
|
}
|
|
|
|
/* The name must be in the external string table. */
|
|
if (tmp.st_name < fp->ctf_str[CTF_STRTAB_1].cts_len)
|
|
dst->st_name = (const char *) fp->ctf_str[CTF_STRTAB_1].cts_strs + tmp.st_name;
|
|
else
|
|
dst->st_name = _CTF_NULLSTR;
|
|
dst->st_nameidx_set = 0;
|
|
dst->st_symidx = symidx;
|
|
dst->st_shndx = tmp.st_shndx;
|
|
dst->st_type = ELF32_ST_TYPE (tmp.st_info);
|
|
|
|
/* We only care if the value is zero, so avoid nonzeroes turning into
|
|
zeroes. */
|
|
if (_libctf_unlikely_ (tmp.st_value != 0 && ((uint32_t) tmp.st_value == 0)))
|
|
dst->st_value = 1;
|
|
else
|
|
dst->st_value = (uint32_t) tmp.st_value;
|
|
|
|
return dst;
|
|
}
|
|
|
|
/* A string appender working on dynamic strings. Returns NULL on OOM. */
|
|
|
|
char *
|
|
ctf_str_append (char *s, const char *append)
|
|
{
|
|
size_t s_len = 0;
|
|
|
|
if (append == NULL)
|
|
return s;
|
|
|
|
if (s != NULL)
|
|
s_len = strlen (s);
|
|
|
|
size_t append_len = strlen (append);
|
|
|
|
if ((s = realloc (s, s_len + append_len + 1)) == NULL)
|
|
return NULL;
|
|
|
|
memcpy (s + s_len, append, append_len);
|
|
s[s_len + append_len] = '\0';
|
|
|
|
return s;
|
|
}
|
|
|
|
/* A version of ctf_str_append that returns the old string on OOM. */
|
|
|
|
char *
|
|
ctf_str_append_noerr (char *s, const char *append)
|
|
{
|
|
char *new_s;
|
|
|
|
new_s = ctf_str_append (s, append);
|
|
if (!new_s)
|
|
return s;
|
|
return new_s;
|
|
}
|
|
|
|
/* Store the specified error code into errp if it is non-NULL, and then
|
|
return NULL for the benefit of the caller. */
|
|
|
|
void *
|
|
ctf_set_open_errno (int *errp, int error)
|
|
{
|
|
if (errp != NULL)
|
|
*errp = error;
|
|
return NULL;
|
|
}
|
|
|
|
/* Create a ctf_next_t. */
|
|
|
|
ctf_next_t *
|
|
ctf_next_create (void)
|
|
{
|
|
return calloc (1, sizeof (struct ctf_next));
|
|
}
|
|
|
|
/* Destroy a ctf_next_t, for early exit from iterators. */
|
|
|
|
void
|
|
ctf_next_destroy (ctf_next_t *i)
|
|
{
|
|
if (i == NULL)
|
|
return;
|
|
|
|
if (i->ctn_iter_fun == (void (*) (void)) ctf_dynhash_next_sorted)
|
|
free (i->u.ctn_sorted_hkv);
|
|
if (i->ctn_next)
|
|
ctf_next_destroy (i->ctn_next);
|
|
if (i->ctn_next_inner)
|
|
ctf_next_destroy (i->ctn_next_inner);
|
|
free (i);
|
|
}
|
|
|
|
/* Copy a ctf_next_t. */
|
|
|
|
ctf_next_t *
|
|
ctf_next_copy (ctf_next_t *i)
|
|
{
|
|
ctf_next_t *i2;
|
|
|
|
if ((i2 = ctf_next_create()) == NULL)
|
|
return NULL;
|
|
memcpy (i2, i, sizeof (struct ctf_next));
|
|
|
|
if (i2->ctn_next)
|
|
{
|
|
i2->ctn_next = ctf_next_copy (i2->ctn_next);
|
|
if (i2->ctn_next == NULL)
|
|
goto err_next;
|
|
}
|
|
|
|
if (i2->ctn_next_inner)
|
|
{
|
|
i2->ctn_next_inner = ctf_next_copy (i2->ctn_next_inner);
|
|
if (i2->ctn_next_inner == NULL)
|
|
goto err_next_inner;
|
|
}
|
|
|
|
if (i2->ctn_iter_fun == (void (*) (void)) ctf_dynhash_next_sorted)
|
|
{
|
|
size_t els = ctf_dynhash_elements ((ctf_dynhash_t *) i->cu.ctn_h);
|
|
if ((i2->u.ctn_sorted_hkv = calloc (els, sizeof (ctf_next_hkv_t))) == NULL)
|
|
goto err_sorted_hkv;
|
|
memcpy (i2->u.ctn_sorted_hkv, i->u.ctn_sorted_hkv,
|
|
els * sizeof (ctf_next_hkv_t));
|
|
}
|
|
return i2;
|
|
|
|
err_sorted_hkv:
|
|
ctf_next_destroy (i2->ctn_next_inner);
|
|
err_next_inner:
|
|
ctf_next_destroy (i2->ctn_next);
|
|
err_next:
|
|
ctf_next_destroy (i2);
|
|
return NULL;
|
|
}
|