mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-23 01:53:38 +08:00
2fa4b6e6df
Three new functions for looking up the enum type containing a given enumeration constant, and optionally that constant's value. The simplest, ctf_lookup_enumerator, looks up a root-visible enumerator by name in one dict: if the dict contains multiple such constants (which is possible for dicts created by older versions of the libctf deduplicator), ECTF_DUPLICATE is returned. The next simplest, ctf_lookup_enumerator_next, is an iterator which returns all enumerators with a given name in a given dict, whether root-visible or not. The most elaborate, ctf_arc_lookup_enumerator_next, finds all enumerators with a given name across all dicts in an entire CTF archive, whether root-visible or not, starting looking in the shared parent dict; opened dicts are cached (as with all other ctf_arc_*lookup functions) so that repeated use does not incur repeated opening costs. All three of these return enumerator values as int64_t: unfortunately, API compatibility concerns prevent us from doing the same with the other older enum-related functions, which all return enumerator constant values as ints. We may be forced to add symbol-versioning compatibility aliases that fix the other functions in due course, bumping the soname for platforms that do not support such things. ctf_arc_lookup_enumerator_next is implemented as a nested ctf_archive_next iterator, and inside that, a nested ctf_lookup_enumerator_next iterator within each dict. To aid in this, add support to ctf_next_t iterators for iterators that are implemented in terms of two simultaneous nested iterators at once. (It has always been possible for callers to use as many nested or semi-overlapping ctf_next_t iterators as they need, which is one of the advantages of this style over the _iter style that calls a function for each thing iterated over: the iterator change here permits *ctf_next_t iterators themselves* to be implemented by iterating using multiple other iterators as part of their internal operation, transparently to the caller.) Also add a testcase that tests all these functions (which is fairly easy because ctf_arc_lookup_enumerator_next is implemented in terms of ctf_lookup_enumerator_next) in addition to enumeration addition in ctf_open()ed dicts, ctf_add_enumerator duplicate enumerator addition, and conflicting enumerator constant deduplication. include/ * ctf-api.h (ctf_lookup_enumerator): New. (ctf_lookup_enumerator_next): Likewise. (ctf_arc_lookup_enumerator_next): Likewise. libctf/ * libctf.ver: Add them. * ctf-impl.h (ctf_next_t) <ctn_next_inner>: New. * ctf-util.c (ctf_next_copy): Copy it. (ctf_next_destroy): Destroy it. * ctf-lookup.c (ctf_lookup_enumerator): New. (ctf_lookup_enumerator_next): New. * ctf-archive.c (ctf_arc_lookup_enumerator_next): New. * testsuite/libctf-lookup/enumerator-iteration.*: New test. * testsuite/libctf-lookup/enum-ctf-2.c: New test CTF, used by the above.
1311 lines
36 KiB
C
1311 lines
36 KiB
C
/* Symbol, variable and name lookup.
|
|
Copyright (C) 2019-2024 Free Software Foundation, Inc.
|
|
|
|
This file is part of libctf.
|
|
|
|
libctf is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; see the file COPYING. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <ctf-impl.h>
|
|
#include <elf.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
/* Grow the pptrtab so that it is at least NEW_LEN long. */
|
|
static int
|
|
grow_pptrtab (ctf_dict_t *fp, size_t new_len)
|
|
{
|
|
uint32_t *new_pptrtab;
|
|
|
|
if ((new_pptrtab = realloc (fp->ctf_pptrtab, sizeof (uint32_t)
|
|
* new_len)) == NULL)
|
|
return (ctf_set_errno (fp, ENOMEM));
|
|
|
|
fp->ctf_pptrtab = new_pptrtab;
|
|
|
|
memset (fp->ctf_pptrtab + fp->ctf_pptrtab_len, 0,
|
|
sizeof (uint32_t) * (new_len - fp->ctf_pptrtab_len));
|
|
|
|
fp->ctf_pptrtab_len = new_len;
|
|
return 0;
|
|
}
|
|
|
|
/* Update entries in the pptrtab that relate to types newly added in the
|
|
child. */
|
|
static int
|
|
refresh_pptrtab (ctf_dict_t *fp, ctf_dict_t *pfp)
|
|
{
|
|
uint32_t i;
|
|
for (i = fp->ctf_pptrtab_typemax; i <= fp->ctf_typemax; i++)
|
|
{
|
|
ctf_id_t type = LCTF_INDEX_TO_TYPE (fp, i, 1);
|
|
ctf_id_t reffed_type;
|
|
|
|
if (ctf_type_kind (fp, type) != CTF_K_POINTER)
|
|
continue;
|
|
|
|
reffed_type = ctf_type_reference (fp, type);
|
|
|
|
if (LCTF_TYPE_ISPARENT (fp, reffed_type))
|
|
{
|
|
uint32_t idx = LCTF_TYPE_TO_INDEX (fp, reffed_type);
|
|
|
|
/* Guard against references to invalid types. No need to consider
|
|
the CTF dict corrupt in this case: this pointer just can't be a
|
|
pointer to any type we know about. */
|
|
if (idx <= pfp->ctf_typemax)
|
|
{
|
|
if (idx >= fp->ctf_pptrtab_len
|
|
&& grow_pptrtab (fp, pfp->ctf_ptrtab_len) < 0)
|
|
return -1; /* errno is set for us. */
|
|
|
|
fp->ctf_pptrtab[idx] = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
fp->ctf_pptrtab_typemax = fp->ctf_typemax;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Compare the given input string and length against a table of known C storage
|
|
qualifier keywords. We just ignore these in ctf_lookup_by_name, below. To
|
|
do this quickly, we use a pre-computed Perfect Hash Function similar to the
|
|
technique originally described in the classic paper:
|
|
|
|
R.J. Cichelli, "Minimal Perfect Hash Functions Made Simple",
|
|
Communications of the ACM, Volume 23, Issue 1, January 1980, pp. 17-19.
|
|
|
|
For an input string S of length N, we use hash H = S[N - 1] + N - 105, which
|
|
for the current set of qualifiers yields a unique H in the range [0 .. 20].
|
|
The hash can be modified when the keyword set changes as necessary. We also
|
|
store the length of each keyword and check it prior to the final strcmp().
|
|
|
|
TODO: just use gperf. */
|
|
|
|
static int
|
|
isqualifier (const char *s, size_t len)
|
|
{
|
|
static const struct qual
|
|
{
|
|
const char *q_name;
|
|
size_t q_len;
|
|
} qhash[] = {
|
|
{"static", 6}, {"", 0}, {"", 0}, {"", 0},
|
|
{"volatile", 8}, {"", 0}, {"", 0}, {"", 0}, {"", 0},
|
|
{"", 0}, {"auto", 4}, {"extern", 6}, {"", 0}, {"", 0},
|
|
{"", 0}, {"", 0}, {"const", 5}, {"register", 8},
|
|
{"", 0}, {"restrict", 8}, {"_Restrict", 9}
|
|
};
|
|
|
|
int h = s[len - 1] + (int) len - 105;
|
|
const struct qual *qp;
|
|
|
|
if (h < 0 || (size_t) h >= sizeof (qhash) / sizeof (qhash[0]))
|
|
return 0;
|
|
|
|
qp = &qhash[h];
|
|
|
|
return ((size_t) len == qp->q_len &&
|
|
strncmp (qp->q_name, s, qp->q_len) == 0);
|
|
}
|
|
|
|
/* Attempt to convert the given C type name into the corresponding CTF type ID.
|
|
It is not possible to do complete and proper conversion of type names
|
|
without implementing a more full-fledged parser, which is necessary to
|
|
handle things like types that are function pointers to functions that
|
|
have arguments that are function pointers, and fun stuff like that.
|
|
Instead, this function implements a very simple conversion algorithm that
|
|
finds the things that we actually care about: structs, unions, enums,
|
|
integers, floats, typedefs, and pointers to any of these named types. */
|
|
|
|
static ctf_id_t
|
|
ctf_lookup_by_name_internal (ctf_dict_t *fp, ctf_dict_t *child,
|
|
const char *name)
|
|
{
|
|
static const char delimiters[] = " \t\n\r\v\f*";
|
|
|
|
const ctf_lookup_t *lp;
|
|
const char *p, *q, *end;
|
|
ctf_id_t type = 0;
|
|
ctf_id_t ntype, ptype;
|
|
|
|
if (name == NULL)
|
|
return (ctf_set_typed_errno (fp, EINVAL));
|
|
|
|
for (p = name, end = name + strlen (name); *p != '\0'; p = q)
|
|
{
|
|
while (isspace ((int) *p))
|
|
p++; /* Skip leading whitespace. */
|
|
|
|
if (p == end)
|
|
break;
|
|
|
|
if ((q = strpbrk (p + 1, delimiters)) == NULL)
|
|
q = end; /* Compare until end. */
|
|
|
|
if (*p == '*')
|
|
{
|
|
/* Find a pointer to type by looking in child->ctf_pptrtab (if child
|
|
is set) and fp->ctf_ptrtab. If we can't find a pointer to the
|
|
given type, see if we can compute a pointer to the type resulting
|
|
from resolving the type down to its base type and use that instead.
|
|
This helps with cases where the CTF data includes "struct foo *"
|
|
but not "foo_t *" and the user tries to access "foo_t *" in the
|
|
debugger.
|
|
|
|
There is extra complexity here because uninitialized elements in
|
|
the pptrtab and ptrtab are set to zero, but zero (as the type ID
|
|
meaning the unimplemented type) is a valid return type from
|
|
ctf_lookup_by_name. (Pointers to types are never of type 0, so
|
|
this is unambiguous, just fiddly to deal with.) */
|
|
|
|
uint32_t idx = LCTF_TYPE_TO_INDEX (fp, type);
|
|
int in_child = 0;
|
|
|
|
ntype = CTF_ERR;
|
|
if (child && idx < child->ctf_pptrtab_len)
|
|
{
|
|
ntype = child->ctf_pptrtab[idx];
|
|
if (ntype)
|
|
in_child = 1;
|
|
else
|
|
ntype = CTF_ERR;
|
|
}
|
|
|
|
if (ntype == CTF_ERR)
|
|
{
|
|
ntype = fp->ctf_ptrtab[idx];
|
|
if (ntype == 0)
|
|
ntype = CTF_ERR;
|
|
}
|
|
|
|
/* Try resolving to its base type and check again. */
|
|
if (ntype == CTF_ERR)
|
|
{
|
|
if (child)
|
|
ntype = ctf_type_resolve_unsliced (child, type);
|
|
else
|
|
ntype = ctf_type_resolve_unsliced (fp, type);
|
|
|
|
if (ntype == CTF_ERR)
|
|
goto notype;
|
|
|
|
idx = LCTF_TYPE_TO_INDEX (fp, ntype);
|
|
|
|
ntype = CTF_ERR;
|
|
if (child && idx < child->ctf_pptrtab_len)
|
|
{
|
|
ntype = child->ctf_pptrtab[idx];
|
|
if (ntype)
|
|
in_child = 1;
|
|
else
|
|
ntype = CTF_ERR;
|
|
}
|
|
|
|
if (ntype == CTF_ERR)
|
|
{
|
|
ntype = fp->ctf_ptrtab[idx];
|
|
if (ntype == 0)
|
|
ntype = CTF_ERR;
|
|
}
|
|
if (ntype == CTF_ERR)
|
|
goto notype;
|
|
}
|
|
|
|
type = LCTF_INDEX_TO_TYPE (fp, ntype, (fp->ctf_flags & LCTF_CHILD)
|
|
|| in_child);
|
|
|
|
/* We are looking up a type in the parent, but the pointed-to type is
|
|
in the child. Switch to looking in the child: if we need to go
|
|
back into the parent, we can recurse again. */
|
|
if (in_child)
|
|
{
|
|
fp = child;
|
|
child = NULL;
|
|
}
|
|
|
|
q = p + 1;
|
|
continue;
|
|
}
|
|
|
|
if (isqualifier (p, (size_t) (q - p)))
|
|
continue; /* Skip qualifier keyword. */
|
|
|
|
for (lp = fp->ctf_lookups; lp->ctl_prefix != NULL; lp++)
|
|
{
|
|
/* TODO: This is not MT-safe. */
|
|
if ((lp->ctl_prefix[0] == '\0' ||
|
|
strncmp (p, lp->ctl_prefix, (size_t) (q - p)) == 0) &&
|
|
(size_t) (q - p) >= lp->ctl_len)
|
|
{
|
|
for (p += lp->ctl_len; isspace ((int) *p); p++)
|
|
continue; /* Skip prefix and next whitespace. */
|
|
|
|
if ((q = strchr (p, '*')) == NULL)
|
|
q = end; /* Compare until end. */
|
|
|
|
while (isspace ((int) q[-1]))
|
|
q--; /* Exclude trailing whitespace. */
|
|
|
|
/* Expand and/or allocate storage for a slice of the name, then
|
|
copy it in. */
|
|
|
|
if (fp->ctf_tmp_typeslicelen >= (size_t) (q - p) + 1)
|
|
{
|
|
memcpy (fp->ctf_tmp_typeslice, p, (size_t) (q - p));
|
|
fp->ctf_tmp_typeslice[(size_t) (q - p)] = '\0';
|
|
}
|
|
else
|
|
{
|
|
free (fp->ctf_tmp_typeslice);
|
|
fp->ctf_tmp_typeslice = xstrndup (p, (size_t) (q - p));
|
|
if (fp->ctf_tmp_typeslice == NULL)
|
|
return ctf_set_typed_errno (fp, ENOMEM);
|
|
}
|
|
|
|
if ((type = (ctf_id_t) (uintptr_t)
|
|
ctf_dynhash_lookup (lp->ctl_hash,
|
|
fp->ctf_tmp_typeslice)) == 0)
|
|
goto notype;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (lp->ctl_prefix == NULL)
|
|
goto notype;
|
|
}
|
|
|
|
if (*p != '\0' || type == 0)
|
|
return (ctf_set_typed_errno (fp, ECTF_SYNTAX));
|
|
|
|
return type;
|
|
|
|
notype:
|
|
ctf_set_errno (fp, ECTF_NOTYPE);
|
|
if (fp->ctf_parent != NULL)
|
|
{
|
|
/* Need to look up in the parent, from the child's perspective.
|
|
Make sure the pptrtab is up to date. */
|
|
|
|
if (fp->ctf_pptrtab_typemax < fp->ctf_typemax)
|
|
{
|
|
if (refresh_pptrtab (fp, fp->ctf_parent) < 0)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
}
|
|
|
|
if ((ptype = ctf_lookup_by_name_internal (fp->ctf_parent, fp,
|
|
name)) != CTF_ERR)
|
|
return ptype;
|
|
return (ctf_set_typed_errno (fp, ctf_errno (fp->ctf_parent)));
|
|
}
|
|
|
|
return CTF_ERR;
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_lookup_by_name (ctf_dict_t *fp, const char *name)
|
|
{
|
|
return ctf_lookup_by_name_internal (fp, NULL, name);
|
|
}
|
|
|
|
/* Return the pointer to the internal CTF type data corresponding to the
|
|
given type ID. If the ID is invalid, the function returns NULL.
|
|
This function is not exported outside of the library. */
|
|
|
|
const ctf_type_t *
|
|
ctf_lookup_by_id (ctf_dict_t **fpp, ctf_id_t type)
|
|
{
|
|
ctf_dict_t *fp = *fpp;
|
|
ctf_id_t idx;
|
|
|
|
if ((fp = ctf_get_dict (fp, type)) == NULL)
|
|
{
|
|
(void) ctf_set_errno (*fpp, ECTF_NOPARENT);
|
|
return NULL;
|
|
}
|
|
|
|
idx = LCTF_TYPE_TO_INDEX (fp, type);
|
|
if (idx > 0 && (unsigned long) idx <= fp->ctf_typemax)
|
|
{
|
|
*fpp = fp; /* Possibly the parent CTF dict. */
|
|
return (LCTF_INDEX_TO_TYPEPTR (fp, idx));
|
|
}
|
|
|
|
(void) ctf_set_errno (*fpp, ECTF_BADID);
|
|
return NULL;
|
|
}
|
|
|
|
typedef struct ctf_lookup_idx_key
|
|
{
|
|
ctf_dict_t *clik_fp;
|
|
const char *clik_name;
|
|
uint32_t *clik_names;
|
|
} ctf_lookup_idx_key_t;
|
|
|
|
/* A bsearch function for variable names. */
|
|
|
|
static int
|
|
ctf_lookup_var (const void *key_, const void *lookup_)
|
|
{
|
|
const ctf_lookup_idx_key_t *key = key_;
|
|
const ctf_varent_t *lookup = lookup_;
|
|
|
|
return (strcmp (key->clik_name, ctf_strptr (key->clik_fp, lookup->ctv_name)));
|
|
}
|
|
|
|
/* Given a variable name, return the type of the variable with that name.
|
|
Look only in this dict, not in the parent. */
|
|
|
|
ctf_id_t
|
|
ctf_lookup_variable_here (ctf_dict_t *fp, const char *name)
|
|
{
|
|
ctf_dvdef_t *dvd = ctf_dvd_lookup (fp, name);
|
|
ctf_varent_t *ent;
|
|
ctf_lookup_idx_key_t key = { fp, name, NULL };
|
|
|
|
if (dvd != NULL)
|
|
return dvd->dvd_type;
|
|
|
|
/* This array is sorted, so we can bsearch for it. */
|
|
|
|
ent = bsearch (&key, fp->ctf_vars, fp->ctf_nvars, sizeof (ctf_varent_t),
|
|
ctf_lookup_var);
|
|
|
|
if (ent == NULL)
|
|
return (ctf_set_typed_errno (fp, ECTF_NOTYPEDAT));
|
|
|
|
return ent->ctv_type;
|
|
}
|
|
|
|
/* As above, but look in the parent too. */
|
|
|
|
ctf_id_t
|
|
ctf_lookup_variable (ctf_dict_t *fp, const char *name)
|
|
{
|
|
ctf_id_t type;
|
|
|
|
if ((type = ctf_lookup_variable_here (fp, name)) == CTF_ERR)
|
|
{
|
|
if (ctf_errno (fp) == ECTF_NOTYPEDAT && fp->ctf_parent != NULL)
|
|
{
|
|
if ((type = ctf_lookup_variable_here (fp->ctf_parent, name)) != CTF_ERR)
|
|
return type;
|
|
return (ctf_set_typed_errno (fp, ctf_errno (fp->ctf_parent)));
|
|
}
|
|
|
|
return -1; /* errno is set for us. */
|
|
}
|
|
|
|
return type;
|
|
}
|
|
|
|
/* Look up a single enumerator by enumeration constant name. Returns the ID of
|
|
the enum it is contained within and optionally its value. Error out with
|
|
ECTF_DUPLICATE if multiple exist (which can happen in some older dicts). See
|
|
ctf_lookup_enumerator_next in that case. Enumeration constants in non-root
|
|
types are not returned, but constants in parents are, if not overridden by
|
|
an enum in the child.. */
|
|
|
|
ctf_id_t
|
|
ctf_lookup_enumerator (ctf_dict_t *fp, const char *name, int64_t *enum_value)
|
|
{
|
|
ctf_id_t type;
|
|
int enum_int_value;
|
|
|
|
if (ctf_dynset_lookup (fp->ctf_conflicting_enums, name))
|
|
return (ctf_set_typed_errno (fp, ECTF_DUPLICATE));
|
|
|
|
/* CTF_K_UNKNOWN suffices for things like enumeration constants that aren't
|
|
actually types at all (ending up in the global name table). */
|
|
type = ctf_lookup_by_rawname (fp, CTF_K_UNKNOWN, name);
|
|
/* Nonexistent type? It may be in the parent. */
|
|
if (type == 0 && fp->ctf_parent)
|
|
{
|
|
if ((type = ctf_lookup_enumerator (fp->ctf_parent, name, enum_value)) == 0)
|
|
return ctf_set_typed_errno (fp, ECTF_NOENUMNAM);
|
|
return type;
|
|
}
|
|
|
|
/* Nothing more to do if this type didn't exist or we don't have to look up
|
|
the enum value. */
|
|
if (type == 0)
|
|
return ctf_set_typed_errno (fp, ECTF_NOENUMNAM);
|
|
|
|
if (enum_value == NULL)
|
|
return type;
|
|
|
|
if (ctf_enum_value (fp, type, name, &enum_int_value) < 0)
|
|
return CTF_ERR;
|
|
*enum_value = enum_int_value;
|
|
|
|
return type;
|
|
}
|
|
|
|
/* Return all enumeration constants with a given name in a given dict, similar
|
|
to ctf_lookup_enumerator above but capable of returning multiple values.
|
|
Enumerators in parent dictionaries are not returned: enumerators in
|
|
hidden types *are* returned. */
|
|
|
|
ctf_id_t
|
|
ctf_lookup_enumerator_next (ctf_dict_t *fp, const char *name,
|
|
ctf_next_t **it, int64_t *val)
|
|
{
|
|
ctf_next_t *i = *it;
|
|
int found = 0;
|
|
|
|
/* We use ctf_type_next() to iterate across all types, but then traverse each
|
|
enumerator found by hand: traversing enumerators is very easy, and it would
|
|
probably be more confusing to use two nested iterators than to do it this
|
|
way. We use ctn_next to work over enums, then ctn_en and ctn_n to work
|
|
over enumerators within each enum. */
|
|
if (!i)
|
|
{
|
|
if ((i = ctf_next_create ()) == NULL)
|
|
return ctf_set_typed_errno (fp, ENOMEM);
|
|
|
|
i->cu.ctn_fp = fp;
|
|
i->ctn_iter_fun = (void (*) (void)) ctf_lookup_enumerator_next;
|
|
i->ctn_increment = 0;
|
|
i->ctn_tp = NULL;
|
|
i->u.ctn_en = NULL;
|
|
i->ctn_n = 0;
|
|
*it = i;
|
|
}
|
|
|
|
if ((void (*) (void)) ctf_lookup_enumerator_next != i->ctn_iter_fun)
|
|
return (ctf_set_typed_errno (fp, ECTF_NEXT_WRONGFUN));
|
|
|
|
if (fp != i->cu.ctn_fp)
|
|
return (ctf_set_typed_errno (fp, ECTF_NEXT_WRONGFP));
|
|
|
|
do
|
|
{
|
|
const char *this_name;
|
|
|
|
/* At end of enum? Traverse to next one, if any are left. */
|
|
|
|
if (i->u.ctn_en == NULL || i->ctn_n == 0)
|
|
{
|
|
const ctf_type_t *tp;
|
|
ctf_dtdef_t *dtd;
|
|
|
|
do
|
|
i->ctn_type = ctf_type_next (i->cu.ctn_fp, &i->ctn_next, NULL, 1);
|
|
while (i->ctn_type != CTF_ERR
|
|
&& ctf_type_kind_unsliced (i->cu.ctn_fp, i->ctn_type)
|
|
!= CTF_K_ENUM);
|
|
|
|
if (i->ctn_type == CTF_ERR)
|
|
{
|
|
/* Conveniently, when the iterator over all types is done, so is the
|
|
iteration as a whole: so we can just pass all errors from the
|
|
internal iterator straight back out.. */
|
|
ctf_next_destroy (i);
|
|
*it = NULL;
|
|
return CTF_ERR; /* errno is set for us. */
|
|
}
|
|
|
|
if ((tp = ctf_lookup_by_id (&fp, i->ctn_type)) == NULL)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
i->ctn_n = LCTF_INFO_VLEN (fp, tp->ctt_info);
|
|
|
|
dtd = ctf_dynamic_type (fp, i->ctn_type);
|
|
|
|
if (dtd == NULL)
|
|
{
|
|
(void) ctf_get_ctt_size (fp, tp, NULL, &i->ctn_increment);
|
|
i->u.ctn_en = (const ctf_enum_t *) ((uintptr_t) tp +
|
|
i->ctn_increment);
|
|
}
|
|
else
|
|
i->u.ctn_en = (const ctf_enum_t *) dtd->dtd_vlen;
|
|
}
|
|
|
|
this_name = ctf_strptr (fp, i->u.ctn_en->cte_name);
|
|
|
|
i->ctn_n--;
|
|
|
|
if (strcmp (name, this_name) == 0)
|
|
{
|
|
if (val)
|
|
*val = i->u.ctn_en->cte_value;
|
|
found = 1;
|
|
|
|
/* Constant found in this enum: try the next one. (Constant names
|
|
cannot be duplicated within a given enum.) */
|
|
|
|
i->ctn_n = 0;
|
|
}
|
|
|
|
i->u.ctn_en++;
|
|
}
|
|
while (!found);
|
|
|
|
return i->ctn_type;
|
|
}
|
|
|
|
typedef struct ctf_symidx_sort_arg_cb
|
|
{
|
|
ctf_dict_t *fp;
|
|
uint32_t *names;
|
|
} ctf_symidx_sort_arg_cb_t;
|
|
|
|
static int
|
|
sort_symidx_by_name (const void *one_, const void *two_, void *arg_)
|
|
{
|
|
const uint32_t *one = one_;
|
|
const uint32_t *two = two_;
|
|
ctf_symidx_sort_arg_cb_t *arg = arg_;
|
|
|
|
return (strcmp (ctf_strptr (arg->fp, arg->names[*one]),
|
|
ctf_strptr (arg->fp, arg->names[*two])));
|
|
}
|
|
|
|
/* Sort a symbol index section by name. Takes a 1:1 mapping of names to the
|
|
corresponding symbol table. Returns a lexicographically sorted array of idx
|
|
indexes (and thus, of indexes into the corresponding func info / data object
|
|
section). */
|
|
|
|
static uint32_t *
|
|
ctf_symidx_sort (ctf_dict_t *fp, uint32_t *idx, size_t *nidx,
|
|
size_t len)
|
|
{
|
|
uint32_t *sorted;
|
|
size_t i;
|
|
|
|
if ((sorted = malloc (len)) == NULL)
|
|
{
|
|
ctf_set_errno (fp, ENOMEM);
|
|
return NULL;
|
|
}
|
|
|
|
*nidx = len / sizeof (uint32_t);
|
|
for (i = 0; i < *nidx; i++)
|
|
sorted[i] = i;
|
|
|
|
if (!(fp->ctf_header->cth_flags & CTF_F_IDXSORTED))
|
|
{
|
|
ctf_symidx_sort_arg_cb_t arg = { fp, idx };
|
|
ctf_dprintf ("Index section unsorted: sorting.\n");
|
|
ctf_qsort_r (sorted, *nidx, sizeof (uint32_t), sort_symidx_by_name, &arg);
|
|
fp->ctf_header->cth_flags |= CTF_F_IDXSORTED;
|
|
}
|
|
|
|
return sorted;
|
|
}
|
|
|
|
/* Given a symbol index, return the name of that symbol from the table provided
|
|
by ctf_link_shuffle_syms, or failing that from the secondary string table, or
|
|
the null string. */
|
|
static const char *
|
|
ctf_lookup_symbol_name (ctf_dict_t *fp, unsigned long symidx)
|
|
{
|
|
const ctf_sect_t *sp = &fp->ctf_ext_symtab;
|
|
ctf_link_sym_t sym;
|
|
int err;
|
|
|
|
if (fp->ctf_dynsymidx)
|
|
{
|
|
err = EINVAL;
|
|
if (symidx > fp->ctf_dynsymmax)
|
|
goto try_parent;
|
|
|
|
ctf_link_sym_t *symp = fp->ctf_dynsymidx[symidx];
|
|
|
|
if (!symp)
|
|
goto try_parent;
|
|
|
|
return symp->st_name;
|
|
}
|
|
|
|
err = ECTF_NOSYMTAB;
|
|
if (sp->cts_data == NULL)
|
|
goto try_parent;
|
|
|
|
if (symidx >= fp->ctf_nsyms)
|
|
goto try_parent;
|
|
|
|
switch (sp->cts_entsize)
|
|
{
|
|
case sizeof (Elf64_Sym):
|
|
{
|
|
const Elf64_Sym *symp = (Elf64_Sym *) sp->cts_data + symidx;
|
|
ctf_elf64_to_link_sym (fp, &sym, symp, symidx);
|
|
}
|
|
break;
|
|
case sizeof (Elf32_Sym):
|
|
{
|
|
const Elf32_Sym *symp = (Elf32_Sym *) sp->cts_data + symidx;
|
|
ctf_elf32_to_link_sym (fp, &sym, symp, symidx);
|
|
}
|
|
break;
|
|
default:
|
|
ctf_set_errno (fp, ECTF_SYMTAB);
|
|
return _CTF_NULLSTR;
|
|
}
|
|
|
|
assert (!sym.st_nameidx_set);
|
|
|
|
return sym.st_name;
|
|
|
|
try_parent:
|
|
if (fp->ctf_parent)
|
|
{
|
|
const char *ret;
|
|
ret = ctf_lookup_symbol_name (fp->ctf_parent, symidx);
|
|
if (ret == NULL)
|
|
ctf_set_errno (fp, ctf_errno (fp->ctf_parent));
|
|
return ret;
|
|
}
|
|
else
|
|
{
|
|
ctf_set_errno (fp, err);
|
|
return _CTF_NULLSTR;
|
|
}
|
|
}
|
|
|
|
/* Given a symbol name, return the index of that symbol, or -1 on error or if
|
|
not found. If is_function is >= 0, return only function or data object
|
|
symbols, respectively. */
|
|
static unsigned long
|
|
ctf_lookup_symbol_idx (ctf_dict_t *fp, const char *symname, int try_parent,
|
|
int is_function)
|
|
{
|
|
const ctf_sect_t *sp = &fp->ctf_ext_symtab;
|
|
ctf_link_sym_t sym;
|
|
void *known_idx;
|
|
int err;
|
|
ctf_dict_t *cache = fp;
|
|
|
|
if (fp->ctf_dynsyms)
|
|
{
|
|
err = EINVAL;
|
|
|
|
ctf_link_sym_t *symp;
|
|
|
|
if (((symp = ctf_dynhash_lookup (fp->ctf_dynsyms, symname)) == NULL)
|
|
|| (symp->st_type != STT_OBJECT && is_function == 0)
|
|
|| (symp->st_type != STT_FUNC && is_function == 1))
|
|
goto try_parent;
|
|
|
|
return symp->st_symidx;
|
|
}
|
|
|
|
err = ECTF_NOSYMTAB;
|
|
if (sp->cts_data == NULL)
|
|
goto try_parent;
|
|
|
|
/* First, try a hash lookup to see if we have already spotted this symbol
|
|
during a past iteration: create the hash first if need be. The
|
|
lifespan of the strings is equal to the lifespan of the cts_data, so we
|
|
don't need to strdup them. If this dict was opened as part of an
|
|
archive, and this archive has a crossdict_cache to cache results that
|
|
are the same across all dicts in an archive, use it. */
|
|
|
|
if (fp->ctf_archive && fp->ctf_archive->ctfi_crossdict_cache)
|
|
cache = fp->ctf_archive->ctfi_crossdict_cache;
|
|
|
|
if (!cache->ctf_symhash_func)
|
|
if ((cache->ctf_symhash_func = ctf_dynhash_create (ctf_hash_string,
|
|
ctf_hash_eq_string,
|
|
NULL, NULL)) == NULL)
|
|
goto oom;
|
|
|
|
if (!cache->ctf_symhash_objt)
|
|
if ((cache->ctf_symhash_objt = ctf_dynhash_create (ctf_hash_string,
|
|
ctf_hash_eq_string,
|
|
NULL, NULL)) == NULL)
|
|
goto oom;
|
|
|
|
if (is_function != 0 &&
|
|
ctf_dynhash_lookup_kv (cache->ctf_symhash_func, symname, NULL, &known_idx))
|
|
return (unsigned long) (uintptr_t) known_idx;
|
|
|
|
if (is_function != 1 &&
|
|
ctf_dynhash_lookup_kv (cache->ctf_symhash_objt, symname, NULL, &known_idx))
|
|
return (unsigned long) (uintptr_t) known_idx;
|
|
|
|
/* Hash lookup unsuccessful: linear search, populating the hashtab for later
|
|
lookups as we go. */
|
|
|
|
for (; cache->ctf_symhash_latest < sp->cts_size / sp->cts_entsize;
|
|
cache->ctf_symhash_latest++)
|
|
{
|
|
ctf_dynhash_t *h;
|
|
|
|
switch (sp->cts_entsize)
|
|
{
|
|
case sizeof (Elf64_Sym):
|
|
{
|
|
Elf64_Sym *symp = (Elf64_Sym *) sp->cts_data;
|
|
|
|
ctf_elf64_to_link_sym (fp, &sym, &symp[cache->ctf_symhash_latest],
|
|
cache->ctf_symhash_latest);
|
|
}
|
|
break;
|
|
case sizeof (Elf32_Sym):
|
|
{
|
|
Elf32_Sym *symp = (Elf32_Sym *) sp->cts_data;
|
|
ctf_elf32_to_link_sym (fp, &sym, &symp[cache->ctf_symhash_latest],
|
|
cache->ctf_symhash_latest);
|
|
break;
|
|
}
|
|
default:
|
|
ctf_set_errno (fp, ECTF_SYMTAB);
|
|
return (unsigned long) -1;
|
|
}
|
|
|
|
if (sym.st_type == STT_FUNC)
|
|
h = cache->ctf_symhash_func;
|
|
else if (sym.st_type == STT_OBJECT)
|
|
h = cache->ctf_symhash_objt;
|
|
else
|
|
continue; /* Not of interest. */
|
|
|
|
if (!ctf_dynhash_lookup_kv (h, sym.st_name,
|
|
NULL, NULL))
|
|
if (ctf_dynhash_cinsert (h, sym.st_name,
|
|
(const void *) (uintptr_t)
|
|
cache->ctf_symhash_latest) < 0)
|
|
goto oom;
|
|
if (strcmp (sym.st_name, symname) == 0)
|
|
return cache->ctf_symhash_latest++;
|
|
}
|
|
|
|
/* Searched everything, still not found. */
|
|
|
|
return (unsigned long) -1;
|
|
|
|
try_parent:
|
|
if (fp->ctf_parent && try_parent)
|
|
{
|
|
unsigned long psym;
|
|
|
|
if ((psym = ctf_lookup_symbol_idx (fp->ctf_parent, symname, try_parent,
|
|
is_function))
|
|
!= (unsigned long) -1)
|
|
return psym;
|
|
|
|
ctf_set_errno (fp, ctf_errno (fp->ctf_parent));
|
|
return (unsigned long) -1;
|
|
}
|
|
else
|
|
{
|
|
ctf_set_errno (fp, err);
|
|
return (unsigned long) -1;
|
|
}
|
|
oom:
|
|
ctf_set_errno (fp, ENOMEM);
|
|
ctf_err_warn (fp, 0, 0, _("cannot allocate memory for symbol "
|
|
"lookup hashtab"));
|
|
return (unsigned long) -1;
|
|
|
|
}
|
|
|
|
ctf_id_t
|
|
ctf_symbol_next_static (ctf_dict_t *fp, ctf_next_t **it, const char **name,
|
|
int functions);
|
|
|
|
/* Iterate over all symbols with types: if FUNC, function symbols,
|
|
otherwise, data symbols. The name argument is not optional. The return
|
|
order is arbitrary, though is likely to be in symbol index or name order.
|
|
Changing the value of 'functions' in the middle of iteration has
|
|
unpredictable effects (probably skipping symbols, etc) and is not
|
|
recommended. Adding symbols while iteration is underway may also lead
|
|
to other symbols being skipped. */
|
|
|
|
ctf_id_t
|
|
ctf_symbol_next (ctf_dict_t *fp, ctf_next_t **it, const char **name,
|
|
int functions)
|
|
{
|
|
ctf_id_t sym = CTF_ERR;
|
|
ctf_next_t *i = *it;
|
|
int err;
|
|
|
|
if (!i)
|
|
{
|
|
if ((i = ctf_next_create ()) == NULL)
|
|
return ctf_set_typed_errno (fp, ENOMEM);
|
|
|
|
i->cu.ctn_fp = fp;
|
|
i->ctn_iter_fun = (void (*) (void)) ctf_symbol_next;
|
|
i->ctn_n = 0;
|
|
*it = i;
|
|
}
|
|
|
|
if ((void (*) (void)) ctf_symbol_next != i->ctn_iter_fun)
|
|
return (ctf_set_typed_errno (fp, ECTF_NEXT_WRONGFUN));
|
|
|
|
if (fp != i->cu.ctn_fp)
|
|
return (ctf_set_typed_errno (fp, ECTF_NEXT_WRONGFP));
|
|
|
|
/* Check the dynamic set of names first, to allow previously-written names
|
|
to be replaced with dynamic ones (there is still no way to remove them,
|
|
though).
|
|
|
|
We intentionally use raw access, not ctf_lookup_by_symbol, to avoid
|
|
incurring additional sorting cost for unsorted symtypetabs coming from the
|
|
compiler, to allow ctf_symbol_next to work in the absence of a symtab, and
|
|
finally because it's easier to work out what the name of each symbol is if
|
|
we do that. */
|
|
|
|
ctf_dynhash_t *dynh = functions ? fp->ctf_funchash : fp->ctf_objthash;
|
|
void *dyn_name = NULL, *dyn_value = NULL;
|
|
size_t dyn_els = dynh ? ctf_dynhash_elements (dynh) : 0;
|
|
|
|
if (i->ctn_n < dyn_els)
|
|
{
|
|
err = ctf_dynhash_next (dynh, &i->ctn_next, &dyn_name, &dyn_value);
|
|
|
|
/* This covers errors and also end-of-iteration. */
|
|
if (err != 0)
|
|
{
|
|
ctf_next_destroy (i);
|
|
*it = NULL;
|
|
return ctf_set_typed_errno (fp, err);
|
|
}
|
|
|
|
*name = dyn_name;
|
|
sym = (ctf_id_t) (uintptr_t) dyn_value;
|
|
i->ctn_n++;
|
|
|
|
return sym;
|
|
}
|
|
|
|
return ctf_symbol_next_static (fp, it, name, functions);
|
|
}
|
|
|
|
/* ctf_symbol_next, but only for static symbols. Mostly an internal
|
|
implementation detail of ctf_symbol_next, but also used to simplify
|
|
serialization. */
|
|
ctf_id_t
|
|
ctf_symbol_next_static (ctf_dict_t *fp, ctf_next_t **it, const char **name,
|
|
int functions)
|
|
{
|
|
ctf_id_t sym = CTF_ERR;
|
|
ctf_next_t *i = *it;
|
|
ctf_dynhash_t *dynh = functions ? fp->ctf_funchash : fp->ctf_objthash;
|
|
size_t dyn_els = dynh ? ctf_dynhash_elements (dynh) : 0;
|
|
|
|
/* Only relevant for direct internal-to-library calls, not via
|
|
ctf_symbol_next (but important then). */
|
|
|
|
if (!i)
|
|
{
|
|
if ((i = ctf_next_create ()) == NULL)
|
|
return ctf_set_typed_errno (fp, ENOMEM);
|
|
|
|
i->cu.ctn_fp = fp;
|
|
i->ctn_iter_fun = (void (*) (void)) ctf_symbol_next;
|
|
i->ctn_n = dyn_els;
|
|
*it = i;
|
|
}
|
|
|
|
if ((void (*) (void)) ctf_symbol_next != i->ctn_iter_fun)
|
|
return (ctf_set_typed_errno (fp, ECTF_NEXT_WRONGFUN));
|
|
|
|
if (fp != i->cu.ctn_fp)
|
|
return (ctf_set_typed_errno (fp, ECTF_NEXT_WRONGFP));
|
|
|
|
/* TODO-v4: Indexed after non-indexed portions? */
|
|
|
|
if ((!functions && fp->ctf_objtidx_names) ||
|
|
(functions && fp->ctf_funcidx_names))
|
|
{
|
|
ctf_header_t *hp = fp->ctf_header;
|
|
uint32_t *idx = functions ? fp->ctf_funcidx_names : fp->ctf_objtidx_names;
|
|
uint32_t *tab;
|
|
size_t len;
|
|
|
|
if (functions)
|
|
{
|
|
len = (hp->cth_varoff - hp->cth_funcidxoff) / sizeof (uint32_t);
|
|
tab = (uint32_t *) (fp->ctf_buf + hp->cth_funcoff);
|
|
}
|
|
else
|
|
{
|
|
len = (hp->cth_funcidxoff - hp->cth_objtidxoff) / sizeof (uint32_t);
|
|
tab = (uint32_t *) (fp->ctf_buf + hp->cth_objtoff);
|
|
}
|
|
|
|
do
|
|
{
|
|
if (i->ctn_n - dyn_els >= len)
|
|
goto end;
|
|
|
|
*name = ctf_strptr (fp, idx[i->ctn_n - dyn_els]);
|
|
sym = tab[i->ctn_n - dyn_els];
|
|
i->ctn_n++;
|
|
}
|
|
while (sym == -1u || sym == 0);
|
|
}
|
|
else
|
|
{
|
|
/* Skip over pads in ctf_sxlate, padding for typeless symbols in the
|
|
symtypetab itself, and symbols in the wrong table. */
|
|
for (; i->ctn_n - dyn_els < fp->ctf_nsyms; i->ctn_n++)
|
|
{
|
|
ctf_header_t *hp = fp->ctf_header;
|
|
size_t n = i->ctn_n - dyn_els;
|
|
|
|
if (fp->ctf_sxlate[n] == -1u)
|
|
continue;
|
|
|
|
sym = *(uint32_t *) ((uintptr_t) fp->ctf_buf + fp->ctf_sxlate[n]);
|
|
|
|
if (sym == 0)
|
|
continue;
|
|
|
|
if (functions)
|
|
{
|
|
if (fp->ctf_sxlate[n] >= hp->cth_funcoff
|
|
&& fp->ctf_sxlate[n] < hp->cth_objtidxoff)
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
if (fp->ctf_sxlate[n] >= hp->cth_objtoff
|
|
&& fp->ctf_sxlate[n] < hp->cth_funcoff)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i->ctn_n - dyn_els >= fp->ctf_nsyms)
|
|
goto end;
|
|
|
|
*name = ctf_lookup_symbol_name (fp, i->ctn_n - dyn_els);
|
|
i->ctn_n++;
|
|
}
|
|
|
|
return sym;
|
|
|
|
end:
|
|
ctf_next_destroy (i);
|
|
*it = NULL;
|
|
return (ctf_set_typed_errno (fp, ECTF_NEXT_END));
|
|
}
|
|
|
|
/* A bsearch function for function and object index names. */
|
|
|
|
static int
|
|
ctf_lookup_idx_name (const void *key_, const void *idx_)
|
|
{
|
|
const ctf_lookup_idx_key_t *key = key_;
|
|
const uint32_t *idx = idx_;
|
|
|
|
return (strcmp (key->clik_name, ctf_strptr (key->clik_fp, key->clik_names[*idx])));
|
|
}
|
|
|
|
/* Given a symbol name or (failing that) number, look up that symbol in the
|
|
function or object index table (which must exist). Return 0 if not found
|
|
there (or pad). */
|
|
|
|
static ctf_id_t
|
|
ctf_try_lookup_indexed (ctf_dict_t *fp, unsigned long symidx,
|
|
const char *symname, int is_function)
|
|
{
|
|
struct ctf_header *hp = fp->ctf_header;
|
|
uint32_t *symtypetab;
|
|
uint32_t *names;
|
|
uint32_t *sxlate;
|
|
size_t nidx;
|
|
|
|
if (symname == NULL)
|
|
symname = ctf_lookup_symbol_name (fp, symidx);
|
|
|
|
/* Dynamic dict with no static portion: just return. */
|
|
if (!hp)
|
|
{
|
|
ctf_dprintf ("%s not found in idx: dict is dynamic\n", symname);
|
|
return 0;
|
|
}
|
|
|
|
ctf_dprintf ("Looking up type of object with symtab idx %lx or name %s in "
|
|
"indexed symtypetab\n", symidx, symname);
|
|
|
|
if (symname[0] == '\0')
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
if (is_function)
|
|
{
|
|
if (!fp->ctf_funcidx_sxlate)
|
|
{
|
|
if ((fp->ctf_funcidx_sxlate
|
|
= ctf_symidx_sort (fp, (uint32_t *)
|
|
(fp->ctf_buf + hp->cth_funcidxoff),
|
|
&fp->ctf_nfuncidx,
|
|
hp->cth_varoff - hp->cth_funcidxoff))
|
|
== NULL)
|
|
{
|
|
ctf_err_warn (fp, 0, 0, _("cannot sort function symidx"));
|
|
return CTF_ERR; /* errno is set for us. */
|
|
}
|
|
}
|
|
symtypetab = (uint32_t *) (fp->ctf_buf + hp->cth_funcoff);
|
|
sxlate = fp->ctf_funcidx_sxlate;
|
|
names = fp->ctf_funcidx_names;
|
|
nidx = fp->ctf_nfuncidx;
|
|
}
|
|
else
|
|
{
|
|
if (!fp->ctf_objtidx_sxlate)
|
|
{
|
|
if ((fp->ctf_objtidx_sxlate
|
|
= ctf_symidx_sort (fp, (uint32_t *)
|
|
(fp->ctf_buf + hp->cth_objtidxoff),
|
|
&fp->ctf_nobjtidx,
|
|
hp->cth_funcidxoff - hp->cth_objtidxoff))
|
|
== NULL)
|
|
{
|
|
ctf_err_warn (fp, 0, 0, _("cannot sort object symidx"));
|
|
return CTF_ERR; /* errno is set for us. */
|
|
}
|
|
}
|
|
|
|
symtypetab = (uint32_t *) (fp->ctf_buf + hp->cth_objtoff);
|
|
sxlate = fp->ctf_objtidx_sxlate;
|
|
names = fp->ctf_objtidx_names;
|
|
nidx = fp->ctf_nobjtidx;
|
|
}
|
|
|
|
ctf_lookup_idx_key_t key = { fp, symname, names };
|
|
uint32_t *idx;
|
|
|
|
idx = bsearch (&key, sxlate, nidx, sizeof (uint32_t), ctf_lookup_idx_name);
|
|
|
|
if (!idx)
|
|
{
|
|
ctf_dprintf ("%s not found in idx\n", symname);
|
|
return 0;
|
|
}
|
|
|
|
/* Should be impossible, but be paranoid. */
|
|
if ((idx - sxlate) > (ptrdiff_t) nidx)
|
|
return (ctf_set_typed_errno (fp, ECTF_CORRUPT));
|
|
|
|
ctf_dprintf ("Symbol %lx (%s) is of type %x\n", symidx, symname,
|
|
symtypetab[*idx]);
|
|
return symtypetab[*idx];
|
|
}
|
|
|
|
/* Given a symbol name or (if NULL) symbol index, return the type of the
|
|
function or data object described by the corresponding entry in the symbol
|
|
table. We can only return symbols in read-only dicts and in dicts for which
|
|
ctf_link_shuffle_syms has been called to assign symbol indexes to symbol
|
|
names.
|
|
|
|
If try_parent is false, do not check the parent dict too.
|
|
|
|
If is_function is > -1, only look for data objects or functions in
|
|
particular. */
|
|
|
|
ctf_id_t
|
|
ctf_lookup_by_sym_or_name (ctf_dict_t *fp, unsigned long symidx,
|
|
const char *symname, int try_parent,
|
|
int is_function)
|
|
{
|
|
const ctf_sect_t *sp = &fp->ctf_ext_symtab;
|
|
ctf_id_t type = 0;
|
|
int err = 0;
|
|
|
|
/* Shuffled dynsymidx present? Use that. For now, the dynsymidx and
|
|
shuffled-symbol lookup only support dynamically-added symbols, because
|
|
this interface is meant for use by linkers, and linkers are only going
|
|
to report symbols against newly-created, freshly-ctf_link'ed dicts: so
|
|
there will be no static component in any case. */
|
|
if (fp->ctf_dynsymidx)
|
|
{
|
|
const ctf_link_sym_t *sym;
|
|
|
|
if (symname)
|
|
ctf_dprintf ("Looking up type of object with symname %s in "
|
|
"writable dict symtypetab\n", symname);
|
|
else
|
|
ctf_dprintf ("Looking up type of object with symtab idx %lx in "
|
|
"writable dict symtypetab\n", symidx);
|
|
|
|
/* No name? Need to look it up. */
|
|
if (!symname)
|
|
{
|
|
err = EINVAL;
|
|
if (symidx > fp->ctf_dynsymmax)
|
|
goto try_parent;
|
|
|
|
sym = fp->ctf_dynsymidx[symidx];
|
|
err = ECTF_NOTYPEDAT;
|
|
if (!sym || (sym->st_type != STT_OBJECT && sym->st_type != STT_FUNC)
|
|
|| (sym->st_type != STT_OBJECT && is_function == 0)
|
|
|| (sym->st_type != STT_FUNC && is_function == 1))
|
|
goto try_parent;
|
|
|
|
if (!ctf_assert (fp, !sym->st_nameidx_set))
|
|
return CTF_ERR;
|
|
symname = sym->st_name;
|
|
}
|
|
|
|
if (fp->ctf_objthash == NULL
|
|
|| is_function == 1
|
|
|| (type = (ctf_id_t) (uintptr_t)
|
|
ctf_dynhash_lookup (fp->ctf_objthash, symname)) == 0)
|
|
{
|
|
if (fp->ctf_funchash == NULL
|
|
|| is_function == 0
|
|
|| (type = (ctf_id_t) (uintptr_t)
|
|
ctf_dynhash_lookup (fp->ctf_funchash, symname)) == 0)
|
|
goto try_parent;
|
|
}
|
|
|
|
return type;
|
|
}
|
|
|
|
/* Dict not shuffled: look for a dynamic sym first, and look it up
|
|
directly. */
|
|
if (symname)
|
|
{
|
|
if (fp->ctf_objthash != NULL
|
|
&& is_function != 1
|
|
&& ((type = (ctf_id_t) (uintptr_t)
|
|
ctf_dynhash_lookup (fp->ctf_objthash, symname)) != 0))
|
|
return type;
|
|
|
|
if (fp->ctf_funchash != NULL
|
|
&& is_function != 0
|
|
&& ((type = (ctf_id_t) (uintptr_t)
|
|
ctf_dynhash_lookup (fp->ctf_funchash, symname)) != 0))
|
|
return type;
|
|
}
|
|
|
|
err = ECTF_NOSYMTAB;
|
|
if (sp->cts_data == NULL && symname == NULL &&
|
|
((is_function && !fp->ctf_funcidx_names) ||
|
|
(!is_function && !fp->ctf_objtidx_names)))
|
|
goto try_parent;
|
|
|
|
/* This covers both out-of-range lookups by index and a dynamic dict which
|
|
hasn't been shuffled yet. */
|
|
err = EINVAL;
|
|
if (symname == NULL && symidx >= fp->ctf_nsyms)
|
|
goto try_parent;
|
|
|
|
/* Try an indexed lookup. */
|
|
|
|
if (fp->ctf_objtidx_names && is_function != 1)
|
|
{
|
|
if ((type = ctf_try_lookup_indexed (fp, symidx, symname, 0)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
}
|
|
if (type == 0 && fp->ctf_funcidx_names && is_function != 0)
|
|
{
|
|
if ((type = ctf_try_lookup_indexed (fp, symidx, symname, 1)) == CTF_ERR)
|
|
return CTF_ERR; /* errno is set for us. */
|
|
}
|
|
if (type != 0)
|
|
return type;
|
|
|
|
/* Indexed but no symbol found -> not present, try the parent. */
|
|
err = ECTF_NOTYPEDAT;
|
|
if (fp->ctf_objtidx_names && fp->ctf_funcidx_names)
|
|
goto try_parent;
|
|
|
|
/* Table must be nonindexed. */
|
|
|
|
ctf_dprintf ("Looking up object type %lx in 1:1 dict symtypetab\n", symidx);
|
|
|
|
if (symname != NULL)
|
|
if ((symidx = ctf_lookup_symbol_idx (fp, symname, try_parent, is_function))
|
|
== (unsigned long) -1)
|
|
goto try_parent;
|
|
|
|
if (fp->ctf_sxlate[symidx] == -1u)
|
|
goto try_parent;
|
|
|
|
type = *(uint32_t *) ((uintptr_t) fp->ctf_buf + fp->ctf_sxlate[symidx]);
|
|
|
|
if (type == 0)
|
|
goto try_parent;
|
|
|
|
return type;
|
|
|
|
try_parent:
|
|
if (!try_parent)
|
|
return ctf_set_errno (fp, err);
|
|
|
|
if (fp->ctf_parent)
|
|
{
|
|
ctf_id_t ret = ctf_lookup_by_sym_or_name (fp->ctf_parent, symidx,
|
|
symname, try_parent,
|
|
is_function);
|
|
if (ret == CTF_ERR)
|
|
ctf_set_errno (fp, ctf_errno (fp->ctf_parent));
|
|
return ret;
|
|
}
|
|
else
|
|
return (ctf_set_typed_errno (fp, err));
|
|
}
|
|
|
|
/* Given a symbol table index, return the type of the function or data object
|
|
described by the corresponding entry in the symbol table. */
|
|
ctf_id_t
|
|
ctf_lookup_by_symbol (ctf_dict_t *fp, unsigned long symidx)
|
|
{
|
|
return ctf_lookup_by_sym_or_name (fp, symidx, NULL, 1, -1);
|
|
}
|
|
|
|
/* Given a symbol name, return the type of the function or data object described
|
|
by the corresponding entry in the symbol table. */
|
|
ctf_id_t
|
|
ctf_lookup_by_symbol_name (ctf_dict_t *fp, const char *symname)
|
|
{
|
|
return ctf_lookup_by_sym_or_name (fp, 0, symname, 1, -1);
|
|
}
|
|
|
|
/* Given a symbol table index, return the info for the function described
|
|
by the corresponding entry in the symbol table, which may be a function
|
|
symbol or may be a data symbol that happens to be a function pointer. */
|
|
|
|
int
|
|
ctf_func_info (ctf_dict_t *fp, unsigned long symidx, ctf_funcinfo_t *fip)
|
|
{
|
|
ctf_id_t type;
|
|
|
|
if ((type = ctf_lookup_by_symbol (fp, symidx)) == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if (ctf_type_kind (fp, type) != CTF_K_FUNCTION)
|
|
return (ctf_set_errno (fp, ECTF_NOTFUNC));
|
|
|
|
return ctf_func_type_info (fp, type, fip);
|
|
}
|
|
|
|
/* Given a symbol table index, return the arguments for the function described
|
|
by the corresponding entry in the symbol table. */
|
|
|
|
int
|
|
ctf_func_args (ctf_dict_t *fp, unsigned long symidx, uint32_t argc,
|
|
ctf_id_t *argv)
|
|
{
|
|
ctf_id_t type;
|
|
|
|
if ((type = ctf_lookup_by_symbol (fp, symidx)) == CTF_ERR)
|
|
return -1; /* errno is set for us. */
|
|
|
|
if (ctf_type_kind (fp, type) != CTF_K_FUNCTION)
|
|
return (ctf_set_errno (fp, ECTF_NOTFUNC));
|
|
|
|
return ctf_func_type_args (fp, type, argc, argv);
|
|
}
|