binutils-gdb/gdb/solist.h
Tom Tromey 2abed72b2c Use bool for solib::symbols_loaded
This changes solib::symbols_loaded to be of type 'bool'.

Approved-By: Simon Marchi <simon.marchi@efficios.com>
2024-11-16 08:45:57 -07:00

208 lines
8.1 KiB
C++

/* Shared library declarations for GDB, the GNU Debugger.
Copyright (C) 1990-2024 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#ifndef SOLIST_H
#define SOLIST_H
#define SO_NAME_MAX_PATH_SIZE 512 /* FIXME: Should be dynamic */
/* For domain_enum domain. */
#include "symtab.h"
#include "gdb_bfd.h"
#include "gdbsupport/owning_intrusive_list.h"
#include "target-section.h"
/* Base class for target-specific link map information. */
struct lm_info
{
lm_info () = default;
lm_info (const lm_info &) = default;
virtual ~lm_info () = 0;
};
using lm_info_up = std::unique_ptr<lm_info>;
struct solib : intrusive_list_node<solib>
{
/* Free symbol-file related contents of SO and reset for possible reloading
of SO. If we have opened a BFD for SO, close it. If we have placed SO's
sections in some target's section table, the caller is responsible for
removing them.
This function doesn't mess with objfiles at all. If there is an
objfile associated with SO that needs to be removed, the caller is
responsible for taking care of that. */
void clear () ;
/* The following fields of the structure come directly from the
dynamic linker's tables in the inferior, and are initialized by
current_sos. */
/* A pointer to target specific link map information. Often this
will be a copy of struct link_map from the user process, but
it need not be; it can be any collection of data needed to
traverse the dynamic linker's data structures. */
lm_info_up lm_info;
/* Shared object file name, exactly as it appears in the
inferior's link map. This may be a relative path, or something
which needs to be looked up in LD_LIBRARY_PATH, etc. We use it
to tell which entries in the inferior's dynamic linker's link
map we've already loaded. */
std::string so_original_name;
/* Shared object file name, expanded to something GDB can open. */
std::string so_name;
/* The following fields of the structure are built from
information gathered from the shared object file itself, and
are set when we actually add it to our symbol tables.
current_sos must initialize these fields to 0. */
gdb_bfd_ref_ptr abfd;
/* True if symbols have been read in. */
bool symbols_loaded = false;
/* objfile with symbols for a loaded library. Target memory is read from
ABFD. OBJFILE may be NULL either before symbols have been loaded, if
the file cannot be found or after the command "nosharedlibrary". */
struct objfile *objfile = nullptr;
std::vector<target_section> sections;
/* Record the range of addresses belonging to this shared library.
There may not be just one (e.g. if two segments are relocated
differently). This is used for "info sharedlibrary" and
the MI command "-file-list-shared-libraries". The latter has a format
that supports outputting multiple segments once the related code
supports them. */
CORE_ADDR addr_low = 0, addr_high = 0;
};
struct solib_ops
{
/* Adjust the section binding addresses by the base address at
which the object was actually mapped. */
void (*relocate_section_addresses) (solib &so, target_section *);
/* Reset private data structures associated with SO.
This is called when SO is about to be reloaded.
It is also called when SO is about to be freed. */
void (*clear_so) (const solib &so);
/* Free private data structures associated to PSPACE. This method
should not free resources associated to individual so_list entries,
those are cleared by the clear_so method. */
void (*clear_solib) (program_space *pspace);
/* Target dependent code to run after child process fork. */
void (*solib_create_inferior_hook) (int from_tty);
/* Construct a list of the currently loaded shared objects. This
list does not include an entry for the main executable file.
Note that we only gather information directly available from the
inferior --- we don't examine any of the shared library files
themselves. The declaration of `struct solib' says which fields
we provide values for. */
owning_intrusive_list<solib> (*current_sos) ();
/* Find, open, and read the symbols for the main executable. If
FROM_TTY is non-zero, allow messages to be printed. */
int (*open_symbol_file_object) (int from_ttyp);
/* Determine if PC lies in the dynamic symbol resolution code of
the run time loader. */
int (*in_dynsym_resolve_code) (CORE_ADDR pc);
/* Find and open shared library binary file. */
gdb_bfd_ref_ptr (*bfd_open) (const char *pathname);
/* Given two so_list objects, one from the GDB thread list
and another from the list returned by current_sos, return 1
if they represent the same library.
Falls back to using strcmp on so_original_name field when set
to NULL. */
int (*same) (const solib &gdb, const solib &inferior);
/* Return whether a region of memory must be kept in a core file
for shared libraries loaded before "gcore" is used to be
handled correctly when the core file is loaded. This only
applies when the section would otherwise not be kept in the
core file (in particular, for readonly sections). */
int (*keep_data_in_core) (CORE_ADDR vaddr,
unsigned long size);
/* Enable or disable optional solib event breakpoints as
appropriate. This should be called whenever
stop_on_solib_events is changed. This pointer can be
NULL, in which case no enabling or disabling is necessary
for this target. */
void (*update_breakpoints) (void);
/* Target-specific processing of solib events that will be
performed before solib_add is called. This pointer can be
NULL, in which case no specific preprocessing is necessary
for this target. */
void (*handle_event) (void);
/* Return an address within the inferior's address space which is known
to be part of SO. If there is no such address, or GDB doesn't know
how to figure out such an address then an empty optional is
returned.
The returned address can be used when loading the shared libraries
for a core file. GDB knows the build-ids for (some) files mapped
into the inferior's address space, and knows the address ranges which
those mapped files cover. If GDB can figure out a representative
address for the library then this can be used to match a library to a
mapped file, and thus to a build-id. GDB can then use this
information to help locate the shared library objfile, if the objfile
is not in the expected place (as defined by the shared libraries file
name). */
std::optional<CORE_ADDR> (*find_solib_addr) (solib &so);
};
/* A unique pointer to a so_list. */
using solib_up = std::unique_ptr<solib>;
/* Find main executable binary file. */
extern gdb::unique_xmalloc_ptr<char> exec_file_find (const char *in_pathname,
int *fd);
/* Find shared library binary file. */
extern gdb::unique_xmalloc_ptr<char> solib_find (const char *in_pathname,
int *fd);
/* Open BFD for shared library file. */
extern gdb_bfd_ref_ptr solib_bfd_fopen (const char *pathname, int fd);
/* Find solib binary file and open it. */
extern gdb_bfd_ref_ptr solib_bfd_open (const char *in_pathname);
/* A default implementation of the solib_ops::find_solib_addr callback.
This just returns an empty std::optional<CORE_ADDR> indicating GDB is
unable to find an address within the library SO. */
extern std::optional<CORE_ADDR> default_find_solib_addr (solib &so);
#endif