mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-23 01:53:38 +08:00
8f6606b6e3
Fix the following common misspellings: ... accidently -> accidentally additonal -> additional addresing -> addressing adress -> address agaisnt -> against albiet -> albeit arbitary -> arbitrary artifical -> artificial auxillary -> auxiliary auxilliary -> auxiliary bcak -> back begining -> beginning cannonical -> canonical compatiblity -> compatibility completetion -> completion diferent -> different emited -> emitted emiting -> emitting emmitted -> emitted everytime -> every time excercise -> exercise existance -> existence fucntion -> function funtion -> function guarentee -> guarantee htis -> this immediatly -> immediately layed -> laid noone -> no one occurances -> occurrences occured -> occurred originaly -> originally preceeded -> preceded preceeds -> precedes propogate -> propagate publically -> publicly refering -> referring substract -> subtract substracting -> subtracting substraction -> subtraction taht -> that targetting -> targeting teh -> the thier -> their thru -> through transfered -> transferred transfering -> transferring upto -> up to vincinity -> vicinity whcih -> which whereever -> wherever wierd -> weird withing -> within writen -> written wtih -> with doesnt -> doesn't ... Tested on x86_64-linux.
2419 lines
76 KiB
C
2419 lines
76 KiB
C
/* Target-dependent code for Renesas Super-H, for GDB.
|
||
|
||
Copyright (C) 1993-2024 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
/* Contributed by Steve Chamberlain
|
||
sac@cygnus.com. */
|
||
|
||
#include "extract-store-integer.h"
|
||
#include "frame.h"
|
||
#include "frame-base.h"
|
||
#include "frame-unwind.h"
|
||
#include "dwarf2/frame.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "cli/cli-cmds.h"
|
||
#include "gdbcore.h"
|
||
#include "value.h"
|
||
#include "dis-asm.h"
|
||
#include "inferior.h"
|
||
#include "arch-utils.h"
|
||
#include "regcache.h"
|
||
#include "target-float.h"
|
||
#include "osabi.h"
|
||
#include "reggroups.h"
|
||
#include "regset.h"
|
||
#include "objfiles.h"
|
||
|
||
#include "sh-tdep.h"
|
||
|
||
#include "elf-bfd.h"
|
||
#include "solib-svr4.h"
|
||
|
||
/* sh flags */
|
||
#include "elf/sh.h"
|
||
#include "dwarf2.h"
|
||
/* registers numbers shared with the simulator. */
|
||
#include "sim/sim-sh.h"
|
||
#include <algorithm>
|
||
|
||
/* List of "set sh ..." and "show sh ..." commands. */
|
||
static struct cmd_list_element *setshcmdlist = NULL;
|
||
static struct cmd_list_element *showshcmdlist = NULL;
|
||
|
||
static const char sh_cc_gcc[] = "gcc";
|
||
static const char sh_cc_renesas[] = "renesas";
|
||
static const char *const sh_cc_enum[] = {
|
||
sh_cc_gcc,
|
||
sh_cc_renesas,
|
||
NULL
|
||
};
|
||
|
||
static const char *sh_active_calling_convention = sh_cc_gcc;
|
||
|
||
#define SH_NUM_REGS 67
|
||
|
||
struct sh_frame_cache
|
||
{
|
||
/* Base address. */
|
||
CORE_ADDR base;
|
||
LONGEST sp_offset;
|
||
CORE_ADDR pc;
|
||
|
||
/* Flag showing that a frame has been created in the prologue code. */
|
||
int uses_fp;
|
||
|
||
/* Saved registers. */
|
||
CORE_ADDR saved_regs[SH_NUM_REGS];
|
||
CORE_ADDR saved_sp;
|
||
};
|
||
|
||
static int
|
||
sh_is_renesas_calling_convention (struct type *func_type)
|
||
{
|
||
int val = 0;
|
||
|
||
if (func_type)
|
||
{
|
||
func_type = check_typedef (func_type);
|
||
|
||
if (func_type->code () == TYPE_CODE_PTR)
|
||
func_type = check_typedef (func_type->target_type ());
|
||
|
||
if (func_type->code () == TYPE_CODE_FUNC
|
||
&& TYPE_CALLING_CONVENTION (func_type) == DW_CC_GNU_renesas_sh)
|
||
val = 1;
|
||
}
|
||
|
||
if (sh_active_calling_convention == sh_cc_renesas)
|
||
val = 1;
|
||
|
||
return val;
|
||
}
|
||
|
||
static const char *
|
||
sh_sh_register_name (struct gdbarch *gdbarch, int reg_nr)
|
||
{
|
||
static const char *register_names[] = {
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr"
|
||
};
|
||
|
||
if (reg_nr >= ARRAY_SIZE (register_names))
|
||
return "";
|
||
return register_names[reg_nr];
|
||
}
|
||
|
||
static const char *
|
||
sh_sh3_register_name (struct gdbarch *gdbarch, int reg_nr)
|
||
{
|
||
static const char *register_names[] = {
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
||
"", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
"ssr", "spc",
|
||
"r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
|
||
"r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
|
||
};
|
||
|
||
if (reg_nr >= ARRAY_SIZE (register_names))
|
||
return "";
|
||
return register_names[reg_nr];
|
||
}
|
||
|
||
static const char *
|
||
sh_sh3e_register_name (struct gdbarch *gdbarch, int reg_nr)
|
||
{
|
||
static const char *register_names[] = {
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
||
"fpul", "fpscr",
|
||
"fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
|
||
"fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
|
||
"ssr", "spc",
|
||
"r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
|
||
"r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
|
||
};
|
||
if (reg_nr >= ARRAY_SIZE (register_names))
|
||
return "";
|
||
return register_names[reg_nr];
|
||
}
|
||
|
||
static const char *
|
||
sh_sh2e_register_name (struct gdbarch *gdbarch, int reg_nr)
|
||
{
|
||
static const char *register_names[] = {
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
||
"fpul", "fpscr",
|
||
"fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
|
||
"fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
|
||
};
|
||
if (reg_nr >= ARRAY_SIZE (register_names))
|
||
return "";
|
||
return register_names[reg_nr];
|
||
}
|
||
|
||
static const char *
|
||
sh_sh2a_register_name (struct gdbarch *gdbarch, int reg_nr)
|
||
{
|
||
static const char *register_names[] = {
|
||
/* general registers 0-15 */
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
/* 16 - 22 */
|
||
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
||
/* 23, 24 */
|
||
"fpul", "fpscr",
|
||
/* floating point registers 25 - 40 */
|
||
"fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
|
||
"fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
|
||
/* 41, 42 */
|
||
"", "",
|
||
/* 43 - 62. Banked registers. The bank number used is determined by
|
||
the bank register (63). */
|
||
"r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
|
||
"r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
|
||
"machb", "ivnb", "prb", "gbrb", "maclb",
|
||
/* 63: register bank number, not a real register but used to
|
||
communicate the register bank currently get/set. This register
|
||
is hidden to the user, who manipulates it using the pseudo
|
||
register called "bank" (67). See below. */
|
||
"",
|
||
/* 64 - 66 */
|
||
"ibcr", "ibnr", "tbr",
|
||
/* 67: register bank number, the user visible pseudo register. */
|
||
"bank",
|
||
/* double precision (pseudo) 68 - 75 */
|
||
"dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
|
||
};
|
||
if (reg_nr >= ARRAY_SIZE (register_names))
|
||
return "";
|
||
return register_names[reg_nr];
|
||
}
|
||
|
||
static const char *
|
||
sh_sh2a_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
|
||
{
|
||
static const char *register_names[] = {
|
||
/* general registers 0-15 */
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
/* 16 - 22 */
|
||
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
||
/* 23, 24 */
|
||
"", "",
|
||
/* floating point registers 25 - 40 */
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
/* 41, 42 */
|
||
"", "",
|
||
/* 43 - 62. Banked registers. The bank number used is determined by
|
||
the bank register (63). */
|
||
"r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
|
||
"r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
|
||
"machb", "ivnb", "prb", "gbrb", "maclb",
|
||
/* 63: register bank number, not a real register but used to
|
||
communicate the register bank currently get/set. This register
|
||
is hidden to the user, who manipulates it using the pseudo
|
||
register called "bank" (67). See below. */
|
||
"",
|
||
/* 64 - 66 */
|
||
"ibcr", "ibnr", "tbr",
|
||
/* 67: register bank number, the user visible pseudo register. */
|
||
"bank",
|
||
/* double precision (pseudo) 68 - 75: report blank, see below. */
|
||
};
|
||
if (reg_nr >= ARRAY_SIZE (register_names))
|
||
return "";
|
||
return register_names[reg_nr];
|
||
}
|
||
|
||
static const char *
|
||
sh_sh_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
|
||
{
|
||
static const char *register_names[] = {
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
||
"", "dsr",
|
||
"a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
|
||
"y0", "y1", "", "", "", "", "", "mod",
|
||
"", "",
|
||
"rs", "re",
|
||
};
|
||
if (reg_nr >= ARRAY_SIZE (register_names))
|
||
return "";
|
||
return register_names[reg_nr];
|
||
}
|
||
|
||
static const char *
|
||
sh_sh3_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
|
||
{
|
||
static const char *register_names[] = {
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
||
"", "dsr",
|
||
"a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
|
||
"y0", "y1", "", "", "", "", "", "mod",
|
||
"ssr", "spc",
|
||
"rs", "re", "", "", "", "", "", "",
|
||
"r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
|
||
};
|
||
if (reg_nr >= ARRAY_SIZE (register_names))
|
||
return "";
|
||
return register_names[reg_nr];
|
||
}
|
||
|
||
static const char *
|
||
sh_sh4_register_name (struct gdbarch *gdbarch, int reg_nr)
|
||
{
|
||
static const char *register_names[] = {
|
||
/* general registers 0-15 */
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
/* 16 - 22 */
|
||
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
||
/* 23, 24 */
|
||
"fpul", "fpscr",
|
||
/* floating point registers 25 - 40 */
|
||
"fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
|
||
"fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
|
||
/* 41, 42 */
|
||
"ssr", "spc",
|
||
/* bank 0 43 - 50 */
|
||
"r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
|
||
/* bank 1 51 - 58 */
|
||
"r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
|
||
/* 59 - 66 */
|
||
"", "", "", "", "", "", "", "",
|
||
/* pseudo bank register. */
|
||
"",
|
||
/* double precision (pseudo) 68 - 75 */
|
||
"dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
|
||
/* vectors (pseudo) 76 - 79 */
|
||
"fv0", "fv4", "fv8", "fv12",
|
||
/* FIXME: missing XF */
|
||
/* FIXME: missing XD */
|
||
};
|
||
if (reg_nr >= ARRAY_SIZE (register_names))
|
||
return "";
|
||
return register_names[reg_nr];
|
||
}
|
||
|
||
static const char *
|
||
sh_sh4_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
|
||
{
|
||
static const char *register_names[] = {
|
||
/* general registers 0-15 */
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
/* 16 - 22 */
|
||
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
||
/* 23, 24 */
|
||
"", "",
|
||
/* floating point registers 25 - 40 -- not for nofpu target */
|
||
"", "", "", "", "", "", "", "",
|
||
"", "", "", "", "", "", "", "",
|
||
/* 41, 42 */
|
||
"ssr", "spc",
|
||
/* bank 0 43 - 50 */
|
||
"r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
|
||
/* bank 1 51 - 58 */
|
||
"r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
|
||
/* 59 - 66 */
|
||
"", "", "", "", "", "", "", "",
|
||
/* pseudo bank register. */
|
||
"",
|
||
/* double precision (pseudo) 68 - 75 -- not for nofpu target */
|
||
"", "", "", "", "", "", "", "",
|
||
/* vectors (pseudo) 76 - 79 -- not for nofpu target: report blank
|
||
below. */
|
||
};
|
||
if (reg_nr >= ARRAY_SIZE (register_names))
|
||
return "";
|
||
return register_names[reg_nr];
|
||
}
|
||
|
||
static const char *
|
||
sh_sh4al_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
|
||
{
|
||
static const char *register_names[] = {
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
"pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
|
||
"", "dsr",
|
||
"a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
|
||
"y0", "y1", "", "", "", "", "", "mod",
|
||
"ssr", "spc",
|
||
"rs", "re", "", "", "", "", "", "",
|
||
"r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
|
||
};
|
||
if (reg_nr >= ARRAY_SIZE (register_names))
|
||
return "";
|
||
return register_names[reg_nr];
|
||
}
|
||
|
||
/* Implement the breakpoint_kind_from_pc gdbarch method. */
|
||
|
||
static int
|
||
sh_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
|
||
{
|
||
return 2;
|
||
}
|
||
|
||
/* Implement the sw_breakpoint_from_kind gdbarch method. */
|
||
|
||
static const gdb_byte *
|
||
sh_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
|
||
{
|
||
*size = kind;
|
||
|
||
/* For remote stub targets, trapa #20 is used. */
|
||
if (strcmp (target_shortname (), "remote") == 0)
|
||
{
|
||
static unsigned char big_remote_breakpoint[] = { 0xc3, 0x20 };
|
||
static unsigned char little_remote_breakpoint[] = { 0x20, 0xc3 };
|
||
|
||
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
||
return big_remote_breakpoint;
|
||
else
|
||
return little_remote_breakpoint;
|
||
}
|
||
else
|
||
{
|
||
/* 0xc3c3 is trapa #c3, and it works in big and little endian
|
||
modes. */
|
||
static unsigned char breakpoint[] = { 0xc3, 0xc3 };
|
||
|
||
return breakpoint;
|
||
}
|
||
}
|
||
|
||
/* Prologue looks like
|
||
mov.l r14,@-r15
|
||
sts.l pr,@-r15
|
||
mov.l <regs>,@-r15
|
||
sub <room_for_loca_vars>,r15
|
||
mov r15,r14
|
||
|
||
Actually it can be more complicated than this but that's it, basically. */
|
||
|
||
#define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
|
||
#define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
|
||
|
||
/* JSR @Rm 0100mmmm00001011 */
|
||
#define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
|
||
|
||
/* STS.L PR,@-r15 0100111100100010
|
||
r15-4-->r15, PR-->(r15) */
|
||
#define IS_STS(x) ((x) == 0x4f22)
|
||
|
||
/* STS.L MACL,@-r15 0100111100010010
|
||
r15-4-->r15, MACL-->(r15) */
|
||
#define IS_MACL_STS(x) ((x) == 0x4f12)
|
||
|
||
/* MOV.L Rm,@-r15 00101111mmmm0110
|
||
r15-4-->r15, Rm-->(R15) */
|
||
#define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
|
||
|
||
/* MOV r15,r14 0110111011110011
|
||
r15-->r14 */
|
||
#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
|
||
|
||
/* ADD #imm,r15 01111111iiiiiiii
|
||
r15+imm-->r15 */
|
||
#define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
|
||
|
||
#define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
|
||
#define IS_SHLL_R3(x) ((x) == 0x4300)
|
||
|
||
/* ADD r3,r15 0011111100111100
|
||
r15+r3-->r15 */
|
||
#define IS_ADD_R3SP(x) ((x) == 0x3f3c)
|
||
|
||
/* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
|
||
FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
|
||
FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
|
||
/* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
|
||
make this entirely clear. */
|
||
/* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
|
||
#define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
|
||
|
||
/* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
|
||
#define IS_MOV_ARG_TO_REG(x) \
|
||
(((x) & 0xf00f) == 0x6003 && \
|
||
((x) & 0x00f0) >= 0x0040 && \
|
||
((x) & 0x00f0) <= 0x0070)
|
||
/* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
|
||
#define IS_MOV_ARG_TO_IND_R14(x) \
|
||
(((x) & 0xff0f) == 0x2e02 && \
|
||
((x) & 0x00f0) >= 0x0040 && \
|
||
((x) & 0x00f0) <= 0x0070)
|
||
/* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
|
||
#define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
|
||
(((x) & 0xff00) == 0x1e00 && \
|
||
((x) & 0x00f0) >= 0x0040 && \
|
||
((x) & 0x00f0) <= 0x0070)
|
||
|
||
/* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
|
||
#define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
|
||
/* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
|
||
#define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
|
||
/* MOVI20 #imm20,Rn 0000nnnniiii0000 */
|
||
#define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
|
||
/* SUB Rn,R15 00111111nnnn1000 */
|
||
#define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
|
||
|
||
#define FPSCR_SZ (1 << 20)
|
||
|
||
/* The following instructions are used for epilogue testing. */
|
||
#define IS_RESTORE_FP(x) ((x) == 0x6ef6)
|
||
#define IS_RTS(x) ((x) == 0x000b)
|
||
#define IS_LDS(x) ((x) == 0x4f26)
|
||
#define IS_MACL_LDS(x) ((x) == 0x4f16)
|
||
#define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
|
||
#define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
|
||
#define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
|
||
|
||
static CORE_ADDR
|
||
sh_analyze_prologue (struct gdbarch *gdbarch,
|
||
CORE_ADDR pc, CORE_ADDR limit_pc,
|
||
struct sh_frame_cache *cache, ULONGEST fpscr)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
ULONGEST inst;
|
||
int offset;
|
||
int sav_offset = 0;
|
||
int r3_val = 0;
|
||
int reg, sav_reg = -1;
|
||
|
||
cache->uses_fp = 0;
|
||
for (; pc < limit_pc; pc += 2)
|
||
{
|
||
inst = read_memory_unsigned_integer (pc, 2, byte_order);
|
||
/* See where the registers will be saved to. */
|
||
if (IS_PUSH (inst))
|
||
{
|
||
cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
|
||
cache->sp_offset += 4;
|
||
}
|
||
else if (IS_STS (inst))
|
||
{
|
||
cache->saved_regs[PR_REGNUM] = cache->sp_offset;
|
||
cache->sp_offset += 4;
|
||
}
|
||
else if (IS_MACL_STS (inst))
|
||
{
|
||
cache->saved_regs[MACL_REGNUM] = cache->sp_offset;
|
||
cache->sp_offset += 4;
|
||
}
|
||
else if (IS_MOV_R3 (inst))
|
||
{
|
||
r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
|
||
}
|
||
else if (IS_SHLL_R3 (inst))
|
||
{
|
||
r3_val <<= 1;
|
||
}
|
||
else if (IS_ADD_R3SP (inst))
|
||
{
|
||
cache->sp_offset += -r3_val;
|
||
}
|
||
else if (IS_ADD_IMM_SP (inst))
|
||
{
|
||
offset = ((inst & 0xff) ^ 0x80) - 0x80;
|
||
cache->sp_offset -= offset;
|
||
}
|
||
else if (IS_MOVW_PCREL_TO_REG (inst))
|
||
{
|
||
if (sav_reg < 0)
|
||
{
|
||
reg = GET_TARGET_REG (inst);
|
||
if (reg < 14)
|
||
{
|
||
sav_reg = reg;
|
||
offset = (inst & 0xff) << 1;
|
||
sav_offset =
|
||
read_memory_integer ((pc + 4) + offset, 2, byte_order);
|
||
}
|
||
}
|
||
}
|
||
else if (IS_MOVL_PCREL_TO_REG (inst))
|
||
{
|
||
if (sav_reg < 0)
|
||
{
|
||
reg = GET_TARGET_REG (inst);
|
||
if (reg < 14)
|
||
{
|
||
sav_reg = reg;
|
||
offset = (inst & 0xff) << 2;
|
||
sav_offset =
|
||
read_memory_integer (((pc & 0xfffffffc) + 4) + offset,
|
||
4, byte_order);
|
||
}
|
||
}
|
||
}
|
||
else if (IS_MOVI20 (inst)
|
||
&& (pc + 2 < limit_pc))
|
||
{
|
||
if (sav_reg < 0)
|
||
{
|
||
reg = GET_TARGET_REG (inst);
|
||
if (reg < 14)
|
||
{
|
||
sav_reg = reg;
|
||
sav_offset = GET_SOURCE_REG (inst) << 16;
|
||
/* MOVI20 is a 32 bit instruction! */
|
||
pc += 2;
|
||
sav_offset
|
||
|= read_memory_unsigned_integer (pc, 2, byte_order);
|
||
/* Now sav_offset contains an unsigned 20 bit value.
|
||
It must still get sign extended. */
|
||
if (sav_offset & 0x00080000)
|
||
sav_offset |= 0xfff00000;
|
||
}
|
||
}
|
||
}
|
||
else if (IS_SUB_REG_FROM_SP (inst))
|
||
{
|
||
reg = GET_SOURCE_REG (inst);
|
||
if (sav_reg > 0 && reg == sav_reg)
|
||
{
|
||
sav_reg = -1;
|
||
}
|
||
cache->sp_offset += sav_offset;
|
||
}
|
||
else if (IS_FPUSH (inst))
|
||
{
|
||
if (fpscr & FPSCR_SZ)
|
||
{
|
||
cache->sp_offset += 8;
|
||
}
|
||
else
|
||
{
|
||
cache->sp_offset += 4;
|
||
}
|
||
}
|
||
else if (IS_MOV_SP_FP (inst))
|
||
{
|
||
pc += 2;
|
||
/* Don't go any further than six more instructions. */
|
||
limit_pc = std::min (limit_pc, pc + (2 * 6));
|
||
|
||
cache->uses_fp = 1;
|
||
/* At this point, only allow argument register moves to other
|
||
registers or argument register moves to @(X,fp) which are
|
||
moving the register arguments onto the stack area allocated
|
||
by a former add somenumber to SP call. Don't allow moving
|
||
to an fp indirect address above fp + cache->sp_offset. */
|
||
for (; pc < limit_pc; pc += 2)
|
||
{
|
||
inst = read_memory_integer (pc, 2, byte_order);
|
||
if (IS_MOV_ARG_TO_IND_R14 (inst))
|
||
{
|
||
reg = GET_SOURCE_REG (inst);
|
||
if (cache->sp_offset > 0)
|
||
cache->saved_regs[reg] = cache->sp_offset;
|
||
}
|
||
else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
|
||
{
|
||
reg = GET_SOURCE_REG (inst);
|
||
offset = (inst & 0xf) * 4;
|
||
if (cache->sp_offset > offset)
|
||
cache->saved_regs[reg] = cache->sp_offset - offset;
|
||
}
|
||
else if (IS_MOV_ARG_TO_REG (inst))
|
||
continue;
|
||
else
|
||
break;
|
||
}
|
||
break;
|
||
}
|
||
else if (IS_JSR (inst))
|
||
{
|
||
/* We have found a jsr that has been scheduled into the prologue.
|
||
If we continue the scan and return a pc someplace after this,
|
||
then setting a breakpoint on this function will cause it to
|
||
appear to be called after the function it is calling via the
|
||
jsr, which will be very confusing. Most likely the next
|
||
instruction is going to be IS_MOV_SP_FP in the delay slot. If
|
||
so, note that before returning the current pc. */
|
||
if (pc + 2 < limit_pc)
|
||
{
|
||
inst = read_memory_integer (pc + 2, 2, byte_order);
|
||
if (IS_MOV_SP_FP (inst))
|
||
cache->uses_fp = 1;
|
||
}
|
||
break;
|
||
}
|
||
#if 0 /* This used to just stop when it found an instruction
|
||
that was not considered part of the prologue. Now,
|
||
we just keep going looking for likely
|
||
instructions. */
|
||
else
|
||
break;
|
||
#endif
|
||
}
|
||
|
||
return pc;
|
||
}
|
||
|
||
/* Skip any prologue before the guts of a function. */
|
||
static CORE_ADDR
|
||
sh_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
||
{
|
||
CORE_ADDR post_prologue_pc, func_addr, func_end_addr, limit_pc;
|
||
struct sh_frame_cache cache;
|
||
|
||
/* See if we can determine the end of the prologue via the symbol table.
|
||
If so, then return either PC, or the PC after the prologue, whichever
|
||
is greater. */
|
||
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
|
||
{
|
||
post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
|
||
if (post_prologue_pc != 0)
|
||
return std::max (pc, post_prologue_pc);
|
||
}
|
||
|
||
/* Can't determine prologue from the symbol table, need to examine
|
||
instructions. */
|
||
|
||
/* Find an upper limit on the function prologue using the debug
|
||
information. If the debug information could not be used to provide
|
||
that bound, then use an arbitrary large number as the upper bound. */
|
||
limit_pc = skip_prologue_using_sal (gdbarch, pc);
|
||
if (limit_pc == 0)
|
||
/* Don't go any further than 28 instructions. */
|
||
limit_pc = pc + (2 * 28);
|
||
|
||
/* Do not allow limit_pc to be past the function end, if we know
|
||
where that end is... */
|
||
if (func_end_addr != 0)
|
||
limit_pc = std::min (limit_pc, func_end_addr);
|
||
|
||
cache.sp_offset = -4;
|
||
post_prologue_pc = sh_analyze_prologue (gdbarch, pc, limit_pc, &cache, 0);
|
||
if (cache.uses_fp)
|
||
pc = post_prologue_pc;
|
||
|
||
return pc;
|
||
}
|
||
|
||
/* The ABI says:
|
||
|
||
Aggregate types not bigger than 8 bytes that have the same size and
|
||
alignment as one of the integer scalar types are returned in the
|
||
same registers as the integer type they match.
|
||
|
||
For example, a 2-byte aligned structure with size 2 bytes has the
|
||
same size and alignment as a short int, and will be returned in R0.
|
||
A 4-byte aligned structure with size 8 bytes has the same size and
|
||
alignment as a long long int, and will be returned in R0 and R1.
|
||
|
||
When an aggregate type is returned in R0 and R1, R0 contains the
|
||
first four bytes of the aggregate, and R1 contains the
|
||
remainder. If the size of the aggregate type is not a multiple of 4
|
||
bytes, the aggregate is tail-padded up to a multiple of 4
|
||
bytes. The value of the padding is undefined. For little-endian
|
||
targets the padding will appear at the most significant end of the
|
||
last element, for big-endian targets the padding appears at the
|
||
least significant end of the last element.
|
||
|
||
All other aggregate types are returned by address. The caller
|
||
function passes the address of an area large enough to hold the
|
||
aggregate value in R2. The called function stores the result in
|
||
this location.
|
||
|
||
To reiterate, structs smaller than 8 bytes could also be returned
|
||
in memory, if they don't pass the "same size and alignment as an
|
||
integer type" rule.
|
||
|
||
For example, in
|
||
|
||
struct s { char c[3]; } wibble;
|
||
struct s foo(void) { return wibble; }
|
||
|
||
the return value from foo() will be in memory, not
|
||
in R0, because there is no 3-byte integer type.
|
||
|
||
Similarly, in
|
||
|
||
struct s { char c[2]; } wibble;
|
||
struct s foo(void) { return wibble; }
|
||
|
||
because a struct containing two chars has alignment 1, that matches
|
||
type char, but size 2, that matches type short. There's no integer
|
||
type that has alignment 1 and size 2, so the struct is returned in
|
||
memory. */
|
||
|
||
static int
|
||
sh_use_struct_convention (int renesas_abi, struct type *type)
|
||
{
|
||
int len = type->length ();
|
||
int nelem = type->num_fields ();
|
||
|
||
/* The Renesas ABI returns aggregate types always on stack. */
|
||
if (renesas_abi && (type->code () == TYPE_CODE_STRUCT
|
||
|| type->code () == TYPE_CODE_UNION))
|
||
return 1;
|
||
|
||
/* Non-power of 2 length types and types bigger than 8 bytes (which don't
|
||
fit in two registers anyway) use struct convention. */
|
||
if (len != 1 && len != 2 && len != 4 && len != 8)
|
||
return 1;
|
||
|
||
/* Scalar types and aggregate types with exactly one field are aligned
|
||
by definition. They are returned in registers. */
|
||
if (nelem <= 1)
|
||
return 0;
|
||
|
||
/* If the first field in the aggregate has the same length as the entire
|
||
aggregate type, the type is returned in registers. */
|
||
if (type->field (0).type ()->length () == len)
|
||
return 0;
|
||
|
||
/* If the size of the aggregate is 8 bytes and the first field is
|
||
of size 4 bytes its alignment is equal to long long's alignment,
|
||
so it's returned in registers. */
|
||
if (len == 8 && type->field (0).type ()->length () == 4)
|
||
return 0;
|
||
|
||
/* Otherwise use struct convention. */
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
sh_use_struct_convention_nofpu (int renesas_abi, struct type *type)
|
||
{
|
||
/* The Renesas ABI returns long longs/doubles etc. always on stack. */
|
||
if (renesas_abi && type->num_fields () == 0 && type->length () >= 8)
|
||
return 1;
|
||
return sh_use_struct_convention (renesas_abi, type);
|
||
}
|
||
|
||
static CORE_ADDR
|
||
sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
|
||
{
|
||
return sp & ~3;
|
||
}
|
||
|
||
/* Function: push_dummy_call (formerly push_arguments)
|
||
Setup the function arguments for calling a function in the inferior.
|
||
|
||
On the Renesas SH architecture, there are four registers (R4 to R7)
|
||
which are dedicated for passing function arguments. Up to the first
|
||
four arguments (depending on size) may go into these registers.
|
||
The rest go on the stack.
|
||
|
||
MVS: Except on SH variants that have floating point registers.
|
||
In that case, float and double arguments are passed in the same
|
||
manner, but using FP registers instead of GP registers.
|
||
|
||
Arguments that are smaller than 4 bytes will still take up a whole
|
||
register or a whole 32-bit word on the stack, and will be
|
||
right-justified in the register or the stack word. This includes
|
||
chars, shorts, and small aggregate types.
|
||
|
||
Arguments that are larger than 4 bytes may be split between two or
|
||
more registers. If there are not enough registers free, an argument
|
||
may be passed partly in a register (or registers), and partly on the
|
||
stack. This includes doubles, long longs, and larger aggregates.
|
||
As far as I know, there is no upper limit to the size of aggregates
|
||
that will be passed in this way; in other words, the convention of
|
||
passing a pointer to a large aggregate instead of a copy is not used.
|
||
|
||
MVS: The above appears to be true for the SH variants that do not
|
||
have an FPU, however those that have an FPU appear to copy the
|
||
aggregate argument onto the stack (and not place it in registers)
|
||
if it is larger than 16 bytes (four GP registers).
|
||
|
||
An exceptional case exists for struct arguments (and possibly other
|
||
aggregates such as arrays) if the size is larger than 4 bytes but
|
||
not a multiple of 4 bytes. In this case the argument is never split
|
||
between the registers and the stack, but instead is copied in its
|
||
entirety onto the stack, AND also copied into as many registers as
|
||
there is room for. In other words, space in registers permitting,
|
||
two copies of the same argument are passed in. As far as I can tell,
|
||
only the one on the stack is used, although that may be a function
|
||
of the level of compiler optimization. I suspect this is a compiler
|
||
bug. Arguments of these odd sizes are left-justified within the
|
||
word (as opposed to arguments smaller than 4 bytes, which are
|
||
right-justified).
|
||
|
||
If the function is to return an aggregate type such as a struct, it
|
||
is either returned in the normal return value register R0 (if its
|
||
size is no greater than one byte), or else the caller must allocate
|
||
space into which the callee will copy the return value (if the size
|
||
is greater than one byte). In this case, a pointer to the return
|
||
value location is passed into the callee in register R2, which does
|
||
not displace any of the other arguments passed in via registers R4
|
||
to R7. */
|
||
|
||
/* Helper function to justify value in register according to endianness. */
|
||
static const gdb_byte *
|
||
sh_justify_value_in_reg (struct gdbarch *gdbarch, struct value *val, int len)
|
||
{
|
||
static gdb_byte valbuf[4];
|
||
|
||
memset (valbuf, 0, sizeof (valbuf));
|
||
if (len < 4)
|
||
{
|
||
/* value gets right-justified in the register or stack word. */
|
||
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
||
memcpy (valbuf + (4 - len), val->contents ().data (), len);
|
||
else
|
||
memcpy (valbuf, val->contents ().data (), len);
|
||
return valbuf;
|
||
}
|
||
return val->contents ().data ();
|
||
}
|
||
|
||
/* Helper function to eval number of bytes to allocate on stack. */
|
||
static CORE_ADDR
|
||
sh_stack_allocsize (int nargs, struct value **args)
|
||
{
|
||
int stack_alloc = 0;
|
||
while (nargs-- > 0)
|
||
stack_alloc += ((args[nargs]->type ()->length () + 3) & ~3);
|
||
return stack_alloc;
|
||
}
|
||
|
||
/* Helper functions for getting the float arguments right. Registers usage
|
||
depends on the ABI and the endianness. The comments should enlighten how
|
||
it's intended to work. */
|
||
|
||
/* This array stores which of the float arg registers are already in use. */
|
||
static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
|
||
|
||
/* This function just resets the above array to "no reg used so far". */
|
||
static void
|
||
sh_init_flt_argreg (void)
|
||
{
|
||
memset (flt_argreg_array, 0, sizeof flt_argreg_array);
|
||
}
|
||
|
||
/* This function returns the next register to use for float arg passing.
|
||
It returns either a valid value between FLOAT_ARG0_REGNUM and
|
||
FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
|
||
FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
|
||
|
||
Note that register number 0 in flt_argreg_array corresponds with the
|
||
real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
|
||
29) the parity of the register number is preserved, which is important
|
||
for the double register passing test (see the "argreg & 1" test below). */
|
||
static int
|
||
sh_next_flt_argreg (struct gdbarch *gdbarch, int len, struct type *func_type)
|
||
{
|
||
int argreg;
|
||
|
||
/* First search for the next free register. */
|
||
for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
|
||
++argreg)
|
||
if (!flt_argreg_array[argreg])
|
||
break;
|
||
|
||
/* No register left? */
|
||
if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
|
||
return FLOAT_ARGLAST_REGNUM + 1;
|
||
|
||
if (len == 8)
|
||
{
|
||
/* Doubles are always starting in a even register number. */
|
||
if (argreg & 1)
|
||
{
|
||
/* In gcc ABI, the skipped register is lost for further argument
|
||
passing now. Not so in Renesas ABI. */
|
||
if (!sh_is_renesas_calling_convention (func_type))
|
||
flt_argreg_array[argreg] = 1;
|
||
|
||
++argreg;
|
||
|
||
/* No register left? */
|
||
if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
|
||
return FLOAT_ARGLAST_REGNUM + 1;
|
||
}
|
||
/* Also mark the next register as used. */
|
||
flt_argreg_array[argreg + 1] = 1;
|
||
}
|
||
else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
|
||
&& !sh_is_renesas_calling_convention (func_type))
|
||
{
|
||
/* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
|
||
if (!flt_argreg_array[argreg + 1])
|
||
++argreg;
|
||
}
|
||
flt_argreg_array[argreg] = 1;
|
||
return FLOAT_ARG0_REGNUM + argreg;
|
||
}
|
||
|
||
/* Helper function which figures out, if a type is treated like a float type.
|
||
|
||
The FPU ABIs have a special way how to treat types as float types.
|
||
Structures with exactly one member, which is of type float or double, are
|
||
treated exactly as the base types float or double:
|
||
|
||
struct sf {
|
||
float f;
|
||
};
|
||
|
||
struct sd {
|
||
double d;
|
||
};
|
||
|
||
are handled the same way as just
|
||
|
||
float f;
|
||
|
||
double d;
|
||
|
||
As a result, arguments of these struct types are pushed into floating point
|
||
registers exactly as floats or doubles, using the same decision algorithm.
|
||
|
||
The same is valid if these types are used as function return types. The
|
||
above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
|
||
or even using struct convention as it is for other structs. */
|
||
|
||
static int
|
||
sh_treat_as_flt_p (struct type *type)
|
||
{
|
||
/* Ordinary float types are obviously treated as float. */
|
||
if (type->code () == TYPE_CODE_FLT)
|
||
return 1;
|
||
/* Otherwise non-struct types are not treated as float. */
|
||
if (type->code () != TYPE_CODE_STRUCT)
|
||
return 0;
|
||
/* Otherwise structs with more than one member are not treated as float. */
|
||
if (type->num_fields () != 1)
|
||
return 0;
|
||
/* Otherwise if the type of that member is float, the whole type is
|
||
treated as float. */
|
||
if (type->field (0).type ()->code () == TYPE_CODE_FLT)
|
||
return 1;
|
||
/* Otherwise it's not treated as float. */
|
||
return 0;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
|
||
struct value *function,
|
||
struct regcache *regcache,
|
||
CORE_ADDR bp_addr, int nargs,
|
||
struct value **args,
|
||
CORE_ADDR sp, function_call_return_method return_method,
|
||
CORE_ADDR struct_addr)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
int stack_offset = 0;
|
||
int argreg = ARG0_REGNUM;
|
||
int flt_argreg = 0;
|
||
int argnum;
|
||
struct type *func_type = function->type ();
|
||
struct type *type;
|
||
CORE_ADDR regval;
|
||
const gdb_byte *val;
|
||
int len, reg_size = 0;
|
||
int pass_on_stack = 0;
|
||
int treat_as_flt;
|
||
int last_reg_arg = INT_MAX;
|
||
|
||
/* The Renesas ABI expects all varargs arguments, plus the last
|
||
non-vararg argument to be on the stack, no matter how many
|
||
registers have been used so far. */
|
||
if (sh_is_renesas_calling_convention (func_type)
|
||
&& func_type->has_varargs ())
|
||
last_reg_arg = func_type->num_fields () - 2;
|
||
|
||
/* First force sp to a 4-byte alignment. */
|
||
sp = sh_frame_align (gdbarch, sp);
|
||
|
||
/* Make room on stack for args. */
|
||
sp -= sh_stack_allocsize (nargs, args);
|
||
|
||
/* Initialize float argument mechanism. */
|
||
sh_init_flt_argreg ();
|
||
|
||
/* Now load as many as possible of the first arguments into
|
||
registers, and push the rest onto the stack. There are 16 bytes
|
||
in four registers available. Loop through args from first to last. */
|
||
for (argnum = 0; argnum < nargs; argnum++)
|
||
{
|
||
type = args[argnum]->type ();
|
||
len = type->length ();
|
||
val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
|
||
|
||
/* Some decisions have to be made how various types are handled.
|
||
This also differs in different ABIs. */
|
||
pass_on_stack = 0;
|
||
|
||
/* Find out the next register to use for a floating point value. */
|
||
treat_as_flt = sh_treat_as_flt_p (type);
|
||
if (treat_as_flt)
|
||
flt_argreg = sh_next_flt_argreg (gdbarch, len, func_type);
|
||
/* In Renesas ABI, long longs and aggregate types are always passed
|
||
on stack. */
|
||
else if (sh_is_renesas_calling_convention (func_type)
|
||
&& ((type->code () == TYPE_CODE_INT && len == 8)
|
||
|| type->code () == TYPE_CODE_STRUCT
|
||
|| type->code () == TYPE_CODE_UNION))
|
||
pass_on_stack = 1;
|
||
/* In contrast to non-FPU CPUs, arguments are never split between
|
||
registers and stack. If an argument doesn't fit in the remaining
|
||
registers it's always pushed entirely on the stack. */
|
||
else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
|
||
pass_on_stack = 1;
|
||
|
||
while (len > 0)
|
||
{
|
||
if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
|
||
|| (!treat_as_flt && (argreg > ARGLAST_REGNUM
|
||
|| pass_on_stack))
|
||
|| argnum > last_reg_arg)
|
||
{
|
||
/* The data goes entirely on the stack, 4-byte aligned. */
|
||
reg_size = (len + 3) & ~3;
|
||
write_memory (sp + stack_offset, val, reg_size);
|
||
stack_offset += reg_size;
|
||
}
|
||
else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
|
||
{
|
||
/* Argument goes in a float argument register. */
|
||
reg_size = register_size (gdbarch, flt_argreg);
|
||
regval = extract_unsigned_integer (val, reg_size, byte_order);
|
||
/* In little endian mode, float types taking two registers
|
||
(doubles on sh4, long doubles on sh2e, sh3e and sh4) must
|
||
be stored swapped in the argument registers. The below
|
||
code first writes the first 32 bits in the next but one
|
||
register, increments the val and len values accordingly
|
||
and then proceeds as normal by writing the second 32 bits
|
||
into the next register. */
|
||
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
|
||
&& type->length () == 2 * reg_size)
|
||
{
|
||
regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
|
||
regval);
|
||
val += reg_size;
|
||
len -= reg_size;
|
||
regval = extract_unsigned_integer (val, reg_size,
|
||
byte_order);
|
||
}
|
||
regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
|
||
}
|
||
else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
|
||
{
|
||
/* there's room in a register */
|
||
reg_size = register_size (gdbarch, argreg);
|
||
regval = extract_unsigned_integer (val, reg_size, byte_order);
|
||
regcache_cooked_write_unsigned (regcache, argreg++, regval);
|
||
}
|
||
/* Store the value one register at a time or in one step on
|
||
stack. */
|
||
len -= reg_size;
|
||
val += reg_size;
|
||
}
|
||
}
|
||
|
||
if (return_method == return_method_struct)
|
||
{
|
||
if (sh_is_renesas_calling_convention (func_type))
|
||
/* If the function uses the Renesas ABI, subtract another 4 bytes from
|
||
the stack and store the struct return address there. */
|
||
write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
|
||
else
|
||
/* Using the gcc ABI, the "struct return pointer" pseudo-argument has
|
||
its own dedicated register. */
|
||
regcache_cooked_write_unsigned (regcache,
|
||
STRUCT_RETURN_REGNUM, struct_addr);
|
||
}
|
||
|
||
/* Store return address. */
|
||
regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
|
||
|
||
/* Update stack pointer. */
|
||
regcache_cooked_write_unsigned (regcache,
|
||
gdbarch_sp_regnum (gdbarch), sp);
|
||
|
||
return sp;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
|
||
struct value *function,
|
||
struct regcache *regcache,
|
||
CORE_ADDR bp_addr,
|
||
int nargs, struct value **args,
|
||
CORE_ADDR sp,
|
||
function_call_return_method return_method,
|
||
CORE_ADDR struct_addr)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
int stack_offset = 0;
|
||
int argreg = ARG0_REGNUM;
|
||
int argnum;
|
||
struct type *func_type = function->type ();
|
||
struct type *type;
|
||
CORE_ADDR regval;
|
||
const gdb_byte *val;
|
||
int len, reg_size = 0;
|
||
int pass_on_stack = 0;
|
||
int last_reg_arg = INT_MAX;
|
||
|
||
/* The Renesas ABI expects all varargs arguments, plus the last
|
||
non-vararg argument to be on the stack, no matter how many
|
||
registers have been used so far. */
|
||
if (sh_is_renesas_calling_convention (func_type)
|
||
&& func_type->has_varargs ())
|
||
last_reg_arg = func_type->num_fields () - 2;
|
||
|
||
/* First force sp to a 4-byte alignment. */
|
||
sp = sh_frame_align (gdbarch, sp);
|
||
|
||
/* Make room on stack for args. */
|
||
sp -= sh_stack_allocsize (nargs, args);
|
||
|
||
/* Now load as many as possible of the first arguments into
|
||
registers, and push the rest onto the stack. There are 16 bytes
|
||
in four registers available. Loop through args from first to last. */
|
||
for (argnum = 0; argnum < nargs; argnum++)
|
||
{
|
||
type = args[argnum]->type ();
|
||
len = type->length ();
|
||
val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
|
||
|
||
/* Some decisions have to be made how various types are handled.
|
||
This also differs in different ABIs. */
|
||
pass_on_stack = 0;
|
||
/* Renesas ABI pushes doubles and long longs entirely on stack.
|
||
Same goes for aggregate types. */
|
||
if (sh_is_renesas_calling_convention (func_type)
|
||
&& ((type->code () == TYPE_CODE_INT && len >= 8)
|
||
|| (type->code () == TYPE_CODE_FLT && len >= 8)
|
||
|| type->code () == TYPE_CODE_STRUCT
|
||
|| type->code () == TYPE_CODE_UNION))
|
||
pass_on_stack = 1;
|
||
while (len > 0)
|
||
{
|
||
if (argreg > ARGLAST_REGNUM || pass_on_stack
|
||
|| argnum > last_reg_arg)
|
||
{
|
||
/* The remainder of the data goes entirely on the stack,
|
||
4-byte aligned. */
|
||
reg_size = (len + 3) & ~3;
|
||
write_memory (sp + stack_offset, val, reg_size);
|
||
stack_offset += reg_size;
|
||
}
|
||
else if (argreg <= ARGLAST_REGNUM)
|
||
{
|
||
/* There's room in a register. */
|
||
reg_size = register_size (gdbarch, argreg);
|
||
regval = extract_unsigned_integer (val, reg_size, byte_order);
|
||
regcache_cooked_write_unsigned (regcache, argreg++, regval);
|
||
}
|
||
/* Store the value reg_size bytes at a time. This means that things
|
||
larger than reg_size bytes may go partly in registers and partly
|
||
on the stack. */
|
||
len -= reg_size;
|
||
val += reg_size;
|
||
}
|
||
}
|
||
|
||
if (return_method == return_method_struct)
|
||
{
|
||
if (sh_is_renesas_calling_convention (func_type))
|
||
/* If the function uses the Renesas ABI, subtract another 4 bytes from
|
||
the stack and store the struct return address there. */
|
||
write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
|
||
else
|
||
/* Using the gcc ABI, the "struct return pointer" pseudo-argument has
|
||
its own dedicated register. */
|
||
regcache_cooked_write_unsigned (regcache,
|
||
STRUCT_RETURN_REGNUM, struct_addr);
|
||
}
|
||
|
||
/* Store return address. */
|
||
regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
|
||
|
||
/* Update stack pointer. */
|
||
regcache_cooked_write_unsigned (regcache,
|
||
gdbarch_sp_regnum (gdbarch), sp);
|
||
|
||
return sp;
|
||
}
|
||
|
||
/* Find a function's return value in the appropriate registers (in
|
||
regbuf), and copy it into valbuf. Extract from an array REGBUF
|
||
containing the (raw) register state a function return value of type
|
||
TYPE, and copy that, in virtual format, into VALBUF. */
|
||
static void
|
||
sh_extract_return_value_nofpu (struct type *type, struct regcache *regcache,
|
||
gdb_byte *valbuf)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
int len = type->length ();
|
||
|
||
if (len <= 4)
|
||
{
|
||
ULONGEST c;
|
||
|
||
regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
|
||
store_unsigned_integer (valbuf, len, byte_order, c);
|
||
}
|
||
else if (len == 8)
|
||
{
|
||
int i, regnum = R0_REGNUM;
|
||
for (i = 0; i < len; i += 4)
|
||
regcache->raw_read (regnum++, valbuf + i);
|
||
}
|
||
else
|
||
error (_("bad size for return value"));
|
||
}
|
||
|
||
static void
|
||
sh_extract_return_value_fpu (struct type *type, struct regcache *regcache,
|
||
gdb_byte *valbuf)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
if (sh_treat_as_flt_p (type))
|
||
{
|
||
int len = type->length ();
|
||
int i, regnum = gdbarch_fp0_regnum (gdbarch);
|
||
for (i = 0; i < len; i += 4)
|
||
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
|
||
regcache->raw_read (regnum++,
|
||
valbuf + len - 4 - i);
|
||
else
|
||
regcache->raw_read (regnum++, valbuf + i);
|
||
}
|
||
else
|
||
sh_extract_return_value_nofpu (type, regcache, valbuf);
|
||
}
|
||
|
||
/* Write into appropriate registers a function return value
|
||
of type TYPE, given in virtual format.
|
||
If the architecture is sh4 or sh3e, store a function's return value
|
||
in the R0 general register or in the FP0 floating point register,
|
||
depending on the type of the return value. In all the other cases
|
||
the result is stored in r0, left-justified. */
|
||
static void
|
||
sh_store_return_value_nofpu (struct type *type, struct regcache *regcache,
|
||
const gdb_byte *valbuf)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
ULONGEST val;
|
||
int len = type->length ();
|
||
|
||
if (len <= 4)
|
||
{
|
||
val = extract_unsigned_integer (valbuf, len, byte_order);
|
||
regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
|
||
}
|
||
else
|
||
{
|
||
int i, regnum = R0_REGNUM;
|
||
for (i = 0; i < len; i += 4)
|
||
regcache->raw_write (regnum++, valbuf + i);
|
||
}
|
||
}
|
||
|
||
static void
|
||
sh_store_return_value_fpu (struct type *type, struct regcache *regcache,
|
||
const gdb_byte *valbuf)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
if (sh_treat_as_flt_p (type))
|
||
{
|
||
int len = type->length ();
|
||
int i, regnum = gdbarch_fp0_regnum (gdbarch);
|
||
for (i = 0; i < len; i += 4)
|
||
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
|
||
regcache->raw_write (regnum++,
|
||
valbuf + len - 4 - i);
|
||
else
|
||
regcache->raw_write (regnum++, valbuf + i);
|
||
}
|
||
else
|
||
sh_store_return_value_nofpu (type, regcache, valbuf);
|
||
}
|
||
|
||
static enum return_value_convention
|
||
sh_return_value_nofpu (struct gdbarch *gdbarch, struct value *function,
|
||
struct type *type, struct regcache *regcache,
|
||
gdb_byte *readbuf, const gdb_byte *writebuf)
|
||
{
|
||
struct type *func_type = function ? function->type () : NULL;
|
||
|
||
if (sh_use_struct_convention_nofpu
|
||
(sh_is_renesas_calling_convention (func_type), type))
|
||
return RETURN_VALUE_STRUCT_CONVENTION;
|
||
if (writebuf)
|
||
sh_store_return_value_nofpu (type, regcache, writebuf);
|
||
else if (readbuf)
|
||
sh_extract_return_value_nofpu (type, regcache, readbuf);
|
||
return RETURN_VALUE_REGISTER_CONVENTION;
|
||
}
|
||
|
||
static enum return_value_convention
|
||
sh_return_value_fpu (struct gdbarch *gdbarch, struct value *function,
|
||
struct type *type, struct regcache *regcache,
|
||
gdb_byte *readbuf, const gdb_byte *writebuf)
|
||
{
|
||
struct type *func_type = function ? function->type () : NULL;
|
||
|
||
if (sh_use_struct_convention (
|
||
sh_is_renesas_calling_convention (func_type), type))
|
||
return RETURN_VALUE_STRUCT_CONVENTION;
|
||
if (writebuf)
|
||
sh_store_return_value_fpu (type, regcache, writebuf);
|
||
else if (readbuf)
|
||
sh_extract_return_value_fpu (type, regcache, readbuf);
|
||
return RETURN_VALUE_REGISTER_CONVENTION;
|
||
}
|
||
|
||
static struct type *
|
||
sh_sh2a_register_type (struct gdbarch *gdbarch, int reg_nr)
|
||
{
|
||
if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
|
||
&& (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
|
||
return builtin_type (gdbarch)->builtin_float;
|
||
else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
|
||
return builtin_type (gdbarch)->builtin_double;
|
||
else if (reg_nr == PC_REGNUM || reg_nr == PR_REGNUM || reg_nr == VBR_REGNUM
|
||
|| reg_nr == SPC_REGNUM)
|
||
return builtin_type (gdbarch)->builtin_func_ptr;
|
||
else if (reg_nr == R0_REGNUM + 15 || reg_nr == GBR_REGNUM)
|
||
return builtin_type (gdbarch)->builtin_data_ptr;
|
||
else
|
||
return builtin_type (gdbarch)->builtin_int;
|
||
}
|
||
|
||
/* Return the GDB type object for the "standard" data type
|
||
of data in register N. */
|
||
static struct type *
|
||
sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
|
||
{
|
||
if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
|
||
&& (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
|
||
return builtin_type (gdbarch)->builtin_float;
|
||
else if (reg_nr == PC_REGNUM || reg_nr == PR_REGNUM || reg_nr == VBR_REGNUM
|
||
|| reg_nr == SPC_REGNUM)
|
||
return builtin_type (gdbarch)->builtin_func_ptr;
|
||
else if (reg_nr == R0_REGNUM + 15 || reg_nr == GBR_REGNUM)
|
||
return builtin_type (gdbarch)->builtin_data_ptr;
|
||
else
|
||
return builtin_type (gdbarch)->builtin_int;
|
||
}
|
||
|
||
static struct type *
|
||
sh_sh4_build_float_register_type (struct gdbarch *gdbarch, int high)
|
||
{
|
||
return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
|
||
0, high);
|
||
}
|
||
|
||
static struct type *
|
||
sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
|
||
{
|
||
if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
|
||
&& (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
|
||
return builtin_type (gdbarch)->builtin_float;
|
||
else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
|
||
return builtin_type (gdbarch)->builtin_double;
|
||
else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
|
||
return sh_sh4_build_float_register_type (gdbarch, 3);
|
||
else if (reg_nr == PC_REGNUM || reg_nr == PR_REGNUM || reg_nr == VBR_REGNUM
|
||
|| reg_nr == SPC_REGNUM)
|
||
return builtin_type (gdbarch)->builtin_func_ptr;
|
||
else if (reg_nr == R0_REGNUM + 15 || reg_nr == GBR_REGNUM)
|
||
return builtin_type (gdbarch)->builtin_data_ptr;
|
||
else
|
||
return builtin_type (gdbarch)->builtin_int;
|
||
}
|
||
|
||
static struct type *
|
||
sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
|
||
{
|
||
if (reg_nr == PC_REGNUM || reg_nr == PR_REGNUM || reg_nr == VBR_REGNUM
|
||
|| reg_nr == SPC_REGNUM)
|
||
return builtin_type (gdbarch)->builtin_func_ptr;
|
||
else if (reg_nr == R0_REGNUM + 15 || reg_nr == GBR_REGNUM)
|
||
return builtin_type (gdbarch)->builtin_data_ptr;
|
||
else
|
||
return builtin_type (gdbarch)->builtin_int;
|
||
}
|
||
|
||
/* Is a register in a reggroup?
|
||
The default code in reggroup.c doesn't identify system registers, some
|
||
float registers or any of the vector registers.
|
||
TODO: sh2a and dsp registers. */
|
||
static int
|
||
sh_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
||
const struct reggroup *reggroup)
|
||
{
|
||
if (*gdbarch_register_name (gdbarch, regnum) == '\0')
|
||
return 0;
|
||
|
||
if (reggroup == float_reggroup
|
||
&& (regnum == FPUL_REGNUM
|
||
|| regnum == FPSCR_REGNUM))
|
||
return 1;
|
||
|
||
if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
|
||
{
|
||
if (reggroup == vector_reggroup || reggroup == float_reggroup)
|
||
return 1;
|
||
if (reggroup == general_reggroup)
|
||
return 0;
|
||
}
|
||
|
||
if (regnum == VBR_REGNUM
|
||
|| regnum == SR_REGNUM
|
||
|| regnum == FPSCR_REGNUM
|
||
|| regnum == SSR_REGNUM
|
||
|| regnum == SPC_REGNUM)
|
||
{
|
||
if (reggroup == system_reggroup)
|
||
return 1;
|
||
if (reggroup == general_reggroup)
|
||
return 0;
|
||
}
|
||
|
||
/* The default code can cope with any other registers. */
|
||
return default_register_reggroup_p (gdbarch, regnum, reggroup);
|
||
}
|
||
|
||
/* On the sh4, the DRi pseudo registers are problematic if the target
|
||
is little endian. When the user writes one of those registers, for
|
||
instance with 'set var $dr0=1', we want the double to be stored
|
||
like this:
|
||
fr0 = 0x00 0x00 0xf0 0x3f
|
||
fr1 = 0x00 0x00 0x00 0x00
|
||
|
||
This corresponds to little endian byte order & big endian word
|
||
order. However if we let gdb write the register w/o conversion, it
|
||
will write fr0 and fr1 this way:
|
||
fr0 = 0x00 0x00 0x00 0x00
|
||
fr1 = 0x00 0x00 0xf0 0x3f
|
||
because it will consider fr0 and fr1 as a single LE stretch of memory.
|
||
|
||
To achieve what we want we must force gdb to store things in
|
||
floatformat_ieee_double_littlebyte_bigword (which is defined in
|
||
include/floatformat.h and libiberty/floatformat.c.
|
||
|
||
In case the target is big endian, there is no problem, the
|
||
raw bytes will look like:
|
||
fr0 = 0x3f 0xf0 0x00 0x00
|
||
fr1 = 0x00 0x00 0x00 0x00
|
||
|
||
The other pseudo registers (the FVs) also don't pose a problem
|
||
because they are stored as 4 individual FP elements. */
|
||
|
||
static struct type *
|
||
sh_littlebyte_bigword_type (struct gdbarch *gdbarch)
|
||
{
|
||
sh_gdbarch_tdep *tdep = gdbarch_tdep<sh_gdbarch_tdep> (gdbarch);
|
||
|
||
if (tdep->sh_littlebyte_bigword_type == NULL)
|
||
{
|
||
type_allocator alloc (gdbarch);
|
||
tdep->sh_littlebyte_bigword_type
|
||
= init_float_type (alloc, -1, "builtin_type_sh_littlebyte_bigword",
|
||
floatformats_ieee_double_littlebyte_bigword);
|
||
}
|
||
|
||
return tdep->sh_littlebyte_bigword_type;
|
||
}
|
||
|
||
static void
|
||
sh_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
|
||
struct type *type, gdb_byte *from, gdb_byte *to)
|
||
{
|
||
if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
|
||
{
|
||
/* It is a no-op. */
|
||
memcpy (to, from, register_size (gdbarch, regnum));
|
||
return;
|
||
}
|
||
|
||
if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
|
||
target_float_convert (from, sh_littlebyte_bigword_type (gdbarch),
|
||
to, type);
|
||
else
|
||
error
|
||
("sh_register_convert_to_virtual called with non DR register number");
|
||
}
|
||
|
||
static void
|
||
sh_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
|
||
int regnum, const gdb_byte *from, gdb_byte *to)
|
||
{
|
||
if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
|
||
{
|
||
/* It is a no-op. */
|
||
memcpy (to, from, register_size (gdbarch, regnum));
|
||
return;
|
||
}
|
||
|
||
if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
|
||
target_float_convert (from, type,
|
||
to, sh_littlebyte_bigword_type (gdbarch));
|
||
else
|
||
error (_("sh_register_convert_to_raw called with non DR register number"));
|
||
}
|
||
|
||
/* For vectors of 4 floating point registers. */
|
||
static int
|
||
fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
|
||
{
|
||
int fp_regnum;
|
||
|
||
fp_regnum = gdbarch_fp0_regnum (gdbarch)
|
||
+ (fv_regnum - FV0_REGNUM) * 4;
|
||
return fp_regnum;
|
||
}
|
||
|
||
/* For double precision floating point registers, i.e 2 fp regs. */
|
||
static int
|
||
dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
|
||
{
|
||
int fp_regnum;
|
||
|
||
fp_regnum = gdbarch_fp0_regnum (gdbarch)
|
||
+ (dr_regnum - DR0_REGNUM) * 2;
|
||
return fp_regnum;
|
||
}
|
||
|
||
/* Concatenate PORTIONS contiguous raw registers starting at
|
||
BASE_REGNUM into BUFFER. */
|
||
|
||
static enum register_status
|
||
pseudo_register_read_portions (struct gdbarch *gdbarch,
|
||
readable_regcache *regcache,
|
||
int portions,
|
||
int base_regnum, gdb_byte *buffer)
|
||
{
|
||
int portion;
|
||
|
||
for (portion = 0; portion < portions; portion++)
|
||
{
|
||
enum register_status status;
|
||
gdb_byte *b;
|
||
|
||
b = buffer + register_size (gdbarch, base_regnum) * portion;
|
||
status = regcache->raw_read (base_regnum + portion, b);
|
||
if (status != REG_VALID)
|
||
return status;
|
||
}
|
||
|
||
return REG_VALID;
|
||
}
|
||
|
||
static enum register_status
|
||
sh_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
|
||
int reg_nr, gdb_byte *buffer)
|
||
{
|
||
int base_regnum;
|
||
enum register_status status;
|
||
|
||
if (reg_nr == PSEUDO_BANK_REGNUM)
|
||
return regcache->raw_read (BANK_REGNUM, buffer);
|
||
else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
|
||
{
|
||
/* Enough space for two float registers. */
|
||
gdb_byte temp_buffer[4 * 2];
|
||
base_regnum = dr_reg_base_num (gdbarch, reg_nr);
|
||
|
||
/* Build the value in the provided buffer. */
|
||
/* Read the real regs for which this one is an alias. */
|
||
status = pseudo_register_read_portions (gdbarch, regcache,
|
||
2, base_regnum, temp_buffer);
|
||
if (status == REG_VALID)
|
||
{
|
||
/* We must pay attention to the endianness. */
|
||
sh_register_convert_to_virtual (gdbarch, reg_nr,
|
||
register_type (gdbarch, reg_nr),
|
||
temp_buffer, buffer);
|
||
}
|
||
return status;
|
||
}
|
||
else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
|
||
{
|
||
base_regnum = fv_reg_base_num (gdbarch, reg_nr);
|
||
|
||
/* Read the real regs for which this one is an alias. */
|
||
return pseudo_register_read_portions (gdbarch, regcache,
|
||
4, base_regnum, buffer);
|
||
}
|
||
else
|
||
gdb_assert_not_reached ("invalid pseudo register number");
|
||
}
|
||
|
||
static void
|
||
sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
||
int reg_nr, const gdb_byte *buffer)
|
||
{
|
||
int base_regnum, portion;
|
||
|
||
if (reg_nr == PSEUDO_BANK_REGNUM)
|
||
{
|
||
/* When the bank register is written to, the whole register bank
|
||
is switched and all values in the bank registers must be read
|
||
from the target/sim again. We're just invalidating the regcache
|
||
so that a re-read happens next time it's necessary. */
|
||
int bregnum;
|
||
|
||
regcache->raw_write (BANK_REGNUM, buffer);
|
||
for (bregnum = R0_BANK0_REGNUM; bregnum < MACLB_REGNUM; ++bregnum)
|
||
regcache->invalidate (bregnum);
|
||
}
|
||
else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
|
||
{
|
||
/* Enough space for two float registers. */
|
||
gdb_byte temp_buffer[4 * 2];
|
||
base_regnum = dr_reg_base_num (gdbarch, reg_nr);
|
||
|
||
/* We must pay attention to the endianness. */
|
||
sh_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
|
||
reg_nr, buffer, temp_buffer);
|
||
|
||
/* Write the real regs for which this one is an alias. */
|
||
for (portion = 0; portion < 2; portion++)
|
||
regcache->raw_write (base_regnum + portion,
|
||
(temp_buffer
|
||
+ register_size (gdbarch,
|
||
base_regnum) * portion));
|
||
}
|
||
else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
|
||
{
|
||
base_regnum = fv_reg_base_num (gdbarch, reg_nr);
|
||
|
||
/* Write the real regs for which this one is an alias. */
|
||
for (portion = 0; portion < 4; portion++)
|
||
regcache->raw_write (base_regnum + portion,
|
||
(buffer
|
||
+ register_size (gdbarch,
|
||
base_regnum) * portion));
|
||
}
|
||
}
|
||
|
||
static int
|
||
sh_dsp_register_sim_regno (struct gdbarch *gdbarch, int nr)
|
||
{
|
||
if (legacy_register_sim_regno (gdbarch, nr) < 0)
|
||
return legacy_register_sim_regno (gdbarch, nr);
|
||
if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
|
||
return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
|
||
if (nr == MOD_REGNUM)
|
||
return SIM_SH_MOD_REGNUM;
|
||
if (nr == RS_REGNUM)
|
||
return SIM_SH_RS_REGNUM;
|
||
if (nr == RE_REGNUM)
|
||
return SIM_SH_RE_REGNUM;
|
||
if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
|
||
return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
|
||
return nr;
|
||
}
|
||
|
||
static int
|
||
sh_sh2a_register_sim_regno (struct gdbarch *gdbarch, int nr)
|
||
{
|
||
switch (nr)
|
||
{
|
||
case TBR_REGNUM:
|
||
return SIM_SH_TBR_REGNUM;
|
||
case IBNR_REGNUM:
|
||
return SIM_SH_IBNR_REGNUM;
|
||
case IBCR_REGNUM:
|
||
return SIM_SH_IBCR_REGNUM;
|
||
case BANK_REGNUM:
|
||
return SIM_SH_BANK_REGNUM;
|
||
case MACLB_REGNUM:
|
||
return SIM_SH_BANK_MACL_REGNUM;
|
||
case GBRB_REGNUM:
|
||
return SIM_SH_BANK_GBR_REGNUM;
|
||
case PRB_REGNUM:
|
||
return SIM_SH_BANK_PR_REGNUM;
|
||
case IVNB_REGNUM:
|
||
return SIM_SH_BANK_IVN_REGNUM;
|
||
case MACHB_REGNUM:
|
||
return SIM_SH_BANK_MACH_REGNUM;
|
||
default:
|
||
break;
|
||
}
|
||
return legacy_register_sim_regno (gdbarch, nr);
|
||
}
|
||
|
||
/* Set up the register unwinding such that call-clobbered registers are
|
||
not displayed in frames >0 because the true value is not certain.
|
||
The 'undefined' registers will show up as 'not available' unless the
|
||
CFI says otherwise.
|
||
|
||
This function is currently set up for SH4 and compatible only. */
|
||
|
||
static void
|
||
sh_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
|
||
struct dwarf2_frame_state_reg *reg,
|
||
const frame_info_ptr &this_frame)
|
||
{
|
||
/* Mark the PC as the destination for the return address. */
|
||
if (regnum == gdbarch_pc_regnum (gdbarch))
|
||
reg->how = DWARF2_FRAME_REG_RA;
|
||
|
||
/* Mark the stack pointer as the call frame address. */
|
||
else if (regnum == gdbarch_sp_regnum (gdbarch))
|
||
reg->how = DWARF2_FRAME_REG_CFA;
|
||
|
||
/* The above was taken from the default init_reg in dwarf2-frame.c
|
||
while the below is SH specific. */
|
||
|
||
/* Caller save registers. */
|
||
else if ((regnum >= R0_REGNUM && regnum <= R0_REGNUM+7)
|
||
|| (regnum >= FR0_REGNUM && regnum <= FR0_REGNUM+11)
|
||
|| (regnum >= DR0_REGNUM && regnum <= DR0_REGNUM+5)
|
||
|| (regnum >= FV0_REGNUM && regnum <= FV0_REGNUM+2)
|
||
|| (regnum == MACH_REGNUM)
|
||
|| (regnum == MACL_REGNUM)
|
||
|| (regnum == FPUL_REGNUM)
|
||
|| (regnum == SR_REGNUM))
|
||
reg->how = DWARF2_FRAME_REG_UNDEFINED;
|
||
|
||
/* Callee save registers. */
|
||
else if ((regnum >= R0_REGNUM+8 && regnum <= R0_REGNUM+15)
|
||
|| (regnum >= FR0_REGNUM+12 && regnum <= FR0_REGNUM+15)
|
||
|| (regnum >= DR0_REGNUM+6 && regnum <= DR0_REGNUM+8)
|
||
|| (regnum == FV0_REGNUM+3))
|
||
reg->how = DWARF2_FRAME_REG_SAME_VALUE;
|
||
|
||
/* Other registers. These are not in the ABI and may or may not
|
||
mean anything in frames >0 so don't show them. */
|
||
else if ((regnum >= R0_BANK0_REGNUM && regnum <= R0_BANK0_REGNUM+15)
|
||
|| (regnum == GBR_REGNUM)
|
||
|| (regnum == VBR_REGNUM)
|
||
|| (regnum == FPSCR_REGNUM)
|
||
|| (regnum == SSR_REGNUM)
|
||
|| (regnum == SPC_REGNUM))
|
||
reg->how = DWARF2_FRAME_REG_UNDEFINED;
|
||
}
|
||
|
||
static struct sh_frame_cache *
|
||
sh_alloc_frame_cache (void)
|
||
{
|
||
struct sh_frame_cache *cache;
|
||
int i;
|
||
|
||
cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
|
||
|
||
/* Base address. */
|
||
cache->base = 0;
|
||
cache->saved_sp = 0;
|
||
cache->sp_offset = 0;
|
||
cache->pc = 0;
|
||
|
||
/* Frameless until proven otherwise. */
|
||
cache->uses_fp = 0;
|
||
|
||
/* Saved registers. We initialize these to -1 since zero is a valid
|
||
offset (that's where fp is supposed to be stored). */
|
||
for (i = 0; i < SH_NUM_REGS; i++)
|
||
{
|
||
cache->saved_regs[i] = -1;
|
||
}
|
||
|
||
return cache;
|
||
}
|
||
|
||
static struct sh_frame_cache *
|
||
sh_frame_cache (const frame_info_ptr &this_frame, void **this_cache)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
struct sh_frame_cache *cache;
|
||
CORE_ADDR current_pc;
|
||
int i;
|
||
|
||
if (*this_cache)
|
||
return (struct sh_frame_cache *) *this_cache;
|
||
|
||
cache = sh_alloc_frame_cache ();
|
||
*this_cache = cache;
|
||
|
||
/* In principle, for normal frames, fp holds the frame pointer,
|
||
which holds the base address for the current stack frame.
|
||
However, for functions that don't need it, the frame pointer is
|
||
optional. For these "frameless" functions the frame pointer is
|
||
actually the frame pointer of the calling frame. */
|
||
cache->base = get_frame_register_unsigned (this_frame, FP_REGNUM);
|
||
if (cache->base == 0)
|
||
return cache;
|
||
|
||
cache->pc = get_frame_func (this_frame);
|
||
current_pc = get_frame_pc (this_frame);
|
||
if (cache->pc != 0)
|
||
{
|
||
ULONGEST fpscr;
|
||
|
||
/* Check for the existence of the FPSCR register. If it exists,
|
||
fetch its value for use in prologue analysis. Passing a zero
|
||
value is the best choice for architecture variants upon which
|
||
there's no FPSCR register. */
|
||
if (gdbarch_register_reggroup_p (gdbarch, FPSCR_REGNUM, all_reggroup))
|
||
fpscr = get_frame_register_unsigned (this_frame, FPSCR_REGNUM);
|
||
else
|
||
fpscr = 0;
|
||
|
||
sh_analyze_prologue (gdbarch, cache->pc, current_pc, cache, fpscr);
|
||
}
|
||
|
||
if (!cache->uses_fp)
|
||
{
|
||
/* We didn't find a valid frame, which means that CACHE->base
|
||
currently holds the frame pointer for our calling frame. If
|
||
we're at the start of a function, or somewhere half-way its
|
||
prologue, the function's frame probably hasn't been fully
|
||
setup yet. Try to reconstruct the base address for the stack
|
||
frame by looking at the stack pointer. For truly "frameless"
|
||
functions this might work too. */
|
||
cache->base = get_frame_register_unsigned
|
||
(this_frame, gdbarch_sp_regnum (gdbarch));
|
||
}
|
||
|
||
/* Now that we have the base address for the stack frame we can
|
||
calculate the value of sp in the calling frame. */
|
||
cache->saved_sp = cache->base + cache->sp_offset;
|
||
|
||
/* Adjust all the saved registers such that they contain addresses
|
||
instead of offsets. */
|
||
for (i = 0; i < SH_NUM_REGS; i++)
|
||
if (cache->saved_regs[i] != -1)
|
||
cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
|
||
|
||
return cache;
|
||
}
|
||
|
||
static struct value *
|
||
sh_frame_prev_register (const frame_info_ptr &this_frame,
|
||
void **this_cache, int regnum)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
|
||
|
||
gdb_assert (regnum >= 0);
|
||
|
||
if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
|
||
return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
|
||
|
||
/* The PC of the previous frame is stored in the PR register of
|
||
the current frame. Frob regnum so that we pull the value from
|
||
the correct place. */
|
||
if (regnum == gdbarch_pc_regnum (gdbarch))
|
||
regnum = PR_REGNUM;
|
||
|
||
if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
|
||
return frame_unwind_got_memory (this_frame, regnum,
|
||
cache->saved_regs[regnum]);
|
||
|
||
return frame_unwind_got_register (this_frame, regnum, regnum);
|
||
}
|
||
|
||
static void
|
||
sh_frame_this_id (const frame_info_ptr &this_frame, void **this_cache,
|
||
struct frame_id *this_id)
|
||
{
|
||
struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
|
||
|
||
/* This marks the outermost frame. */
|
||
if (cache->base == 0)
|
||
return;
|
||
|
||
*this_id = frame_id_build (cache->saved_sp, cache->pc);
|
||
}
|
||
|
||
static const struct frame_unwind sh_frame_unwind = {
|
||
"sh prologue",
|
||
NORMAL_FRAME,
|
||
default_frame_unwind_stop_reason,
|
||
sh_frame_this_id,
|
||
sh_frame_prev_register,
|
||
NULL,
|
||
default_frame_sniffer
|
||
};
|
||
|
||
static CORE_ADDR
|
||
sh_frame_base_address (const frame_info_ptr &this_frame, void **this_cache)
|
||
{
|
||
struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
|
||
|
||
return cache->base;
|
||
}
|
||
|
||
static const struct frame_base sh_frame_base = {
|
||
&sh_frame_unwind,
|
||
sh_frame_base_address,
|
||
sh_frame_base_address,
|
||
sh_frame_base_address
|
||
};
|
||
|
||
static struct sh_frame_cache *
|
||
sh_make_stub_cache (const frame_info_ptr &this_frame)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
struct sh_frame_cache *cache;
|
||
|
||
cache = sh_alloc_frame_cache ();
|
||
|
||
cache->saved_sp
|
||
= get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
|
||
|
||
return cache;
|
||
}
|
||
|
||
static void
|
||
sh_stub_this_id (const frame_info_ptr &this_frame, void **this_cache,
|
||
struct frame_id *this_id)
|
||
{
|
||
struct sh_frame_cache *cache;
|
||
|
||
if (*this_cache == NULL)
|
||
*this_cache = sh_make_stub_cache (this_frame);
|
||
cache = (struct sh_frame_cache *) *this_cache;
|
||
|
||
*this_id = frame_id_build (cache->saved_sp, get_frame_pc (this_frame));
|
||
}
|
||
|
||
static int
|
||
sh_stub_unwind_sniffer (const struct frame_unwind *self,
|
||
const frame_info_ptr &this_frame,
|
||
void **this_prologue_cache)
|
||
{
|
||
CORE_ADDR addr_in_block;
|
||
|
||
addr_in_block = get_frame_address_in_block (this_frame);
|
||
if (in_plt_section (addr_in_block))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static const struct frame_unwind sh_stub_unwind =
|
||
{
|
||
"sh stub",
|
||
NORMAL_FRAME,
|
||
default_frame_unwind_stop_reason,
|
||
sh_stub_this_id,
|
||
sh_frame_prev_register,
|
||
NULL,
|
||
sh_stub_unwind_sniffer
|
||
};
|
||
|
||
/* Implement the stack_frame_destroyed_p gdbarch method.
|
||
|
||
The epilogue is defined here as the area at the end of a function,
|
||
either on the `ret' instruction itself or after an instruction which
|
||
destroys the function's stack frame. */
|
||
|
||
static int
|
||
sh_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
CORE_ADDR func_addr = 0, func_end = 0;
|
||
|
||
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
||
{
|
||
ULONGEST inst;
|
||
/* The sh epilogue is max. 14 bytes long. Give another 14 bytes
|
||
for a nop and some fixed data (e.g. big offsets) which are
|
||
unfortunately also treated as part of the function (which
|
||
means, they are below func_end. */
|
||
CORE_ADDR addr = func_end - 28;
|
||
if (addr < func_addr + 4)
|
||
addr = func_addr + 4;
|
||
if (pc < addr)
|
||
return 0;
|
||
|
||
/* First search forward until hitting an rts. */
|
||
while (addr < func_end
|
||
&& !IS_RTS (read_memory_unsigned_integer (addr, 2, byte_order)))
|
||
addr += 2;
|
||
if (addr >= func_end)
|
||
return 0;
|
||
|
||
/* At this point we should find a mov.l @r15+,r14 instruction,
|
||
either before or after the rts. If not, then the function has
|
||
probably no "normal" epilogue and we bail out here. */
|
||
inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
|
||
if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2,
|
||
byte_order)))
|
||
addr -= 2;
|
||
else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2,
|
||
byte_order)))
|
||
return 0;
|
||
|
||
inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
|
||
|
||
/* Step over possible lds.l @r15+,macl. */
|
||
if (IS_MACL_LDS (inst))
|
||
{
|
||
addr -= 2;
|
||
inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
|
||
}
|
||
|
||
/* Step over possible lds.l @r15+,pr. */
|
||
if (IS_LDS (inst))
|
||
{
|
||
addr -= 2;
|
||
inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
|
||
}
|
||
|
||
/* Step over possible mov r14,r15. */
|
||
if (IS_MOV_FP_SP (inst))
|
||
{
|
||
addr -= 2;
|
||
inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
|
||
}
|
||
|
||
/* Now check for FP adjustments, using add #imm,r14 or add rX, r14
|
||
instructions. */
|
||
while (addr > func_addr + 4
|
||
&& (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
|
||
{
|
||
addr -= 2;
|
||
inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
|
||
}
|
||
|
||
/* On SH2a check if the previous instruction was perhaps a MOVI20.
|
||
That's allowed for the epilogue. */
|
||
if ((gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a
|
||
|| gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a_nofpu)
|
||
&& addr > func_addr + 6
|
||
&& IS_MOVI20 (read_memory_unsigned_integer (addr - 4, 2,
|
||
byte_order)))
|
||
addr -= 4;
|
||
|
||
if (pc >= addr)
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Supply register REGNUM from the buffer specified by REGS and LEN
|
||
in the register set REGSET to register cache REGCACHE.
|
||
REGTABLE specifies where each register can be found in REGS.
|
||
If REGNUM is -1, do this for all registers in REGSET. */
|
||
|
||
void
|
||
sh_corefile_supply_regset (const struct regset *regset,
|
||
struct regcache *regcache,
|
||
int regnum, const void *regs, size_t len)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
sh_gdbarch_tdep *tdep = gdbarch_tdep<sh_gdbarch_tdep> (gdbarch);
|
||
const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
|
||
? tdep->core_gregmap
|
||
: tdep->core_fpregmap);
|
||
int i;
|
||
|
||
for (i = 0; regmap[i].regnum != -1; i++)
|
||
{
|
||
if ((regnum == -1 || regnum == regmap[i].regnum)
|
||
&& regmap[i].offset + 4 <= len)
|
||
regcache->raw_supply
|
||
(regmap[i].regnum, (char *) regs + regmap[i].offset);
|
||
}
|
||
}
|
||
|
||
/* Collect register REGNUM in the register set REGSET from register cache
|
||
REGCACHE into the buffer specified by REGS and LEN.
|
||
REGTABLE specifies where each register can be found in REGS.
|
||
If REGNUM is -1, do this for all registers in REGSET. */
|
||
|
||
void
|
||
sh_corefile_collect_regset (const struct regset *regset,
|
||
const struct regcache *regcache,
|
||
int regnum, void *regs, size_t len)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
sh_gdbarch_tdep *tdep = gdbarch_tdep<sh_gdbarch_tdep> (gdbarch);
|
||
const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
|
||
? tdep->core_gregmap
|
||
: tdep->core_fpregmap);
|
||
int i;
|
||
|
||
for (i = 0; regmap[i].regnum != -1; i++)
|
||
{
|
||
if ((regnum == -1 || regnum == regmap[i].regnum)
|
||
&& regmap[i].offset + 4 <= len)
|
||
regcache->raw_collect (regmap[i].regnum,
|
||
(char *)regs + regmap[i].offset);
|
||
}
|
||
}
|
||
|
||
/* The following two regsets have the same contents, so it is tempting to
|
||
unify them, but they are distinguished by their address, so don't. */
|
||
|
||
const struct regset sh_corefile_gregset =
|
||
{
|
||
NULL,
|
||
sh_corefile_supply_regset,
|
||
sh_corefile_collect_regset
|
||
};
|
||
|
||
static const struct regset sh_corefile_fpregset =
|
||
{
|
||
NULL,
|
||
sh_corefile_supply_regset,
|
||
sh_corefile_collect_regset
|
||
};
|
||
|
||
static void
|
||
sh_iterate_over_regset_sections (struct gdbarch *gdbarch,
|
||
iterate_over_regset_sections_cb *cb,
|
||
void *cb_data,
|
||
const struct regcache *regcache)
|
||
{
|
||
sh_gdbarch_tdep *tdep = gdbarch_tdep<sh_gdbarch_tdep> (gdbarch);
|
||
|
||
if (tdep->core_gregmap != NULL)
|
||
cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset,
|
||
&sh_corefile_gregset, NULL, cb_data);
|
||
|
||
if (tdep->core_fpregmap != NULL)
|
||
cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset,
|
||
&sh_corefile_fpregset, NULL, cb_data);
|
||
}
|
||
|
||
/* This is the implementation of gdbarch method
|
||
return_in_first_hidden_param_p. */
|
||
|
||
static int
|
||
sh_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
|
||
struct type *type)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
|
||
|
||
static struct gdbarch *
|
||
sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
||
{
|
||
/* If there is already a candidate, use it. */
|
||
arches = gdbarch_list_lookup_by_info (arches, &info);
|
||
if (arches != NULL)
|
||
return arches->gdbarch;
|
||
|
||
/* None found, create a new architecture from the information
|
||
provided. */
|
||
gdbarch *gdbarch
|
||
= gdbarch_alloc (&info, gdbarch_tdep_up (new sh_gdbarch_tdep));
|
||
|
||
set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
||
set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||
|
||
set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
||
set_gdbarch_wchar_signed (gdbarch, 0);
|
||
|
||
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||
set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||
set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
|
||
set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
|
||
set_gdbarch_sp_regnum (gdbarch, 15);
|
||
set_gdbarch_pc_regnum (gdbarch, 16);
|
||
set_gdbarch_fp0_regnum (gdbarch, -1);
|
||
set_gdbarch_num_pseudo_regs (gdbarch, 0);
|
||
|
||
set_gdbarch_register_type (gdbarch, sh_default_register_type);
|
||
set_gdbarch_register_reggroup_p (gdbarch, sh_register_reggroup_p);
|
||
|
||
set_gdbarch_breakpoint_kind_from_pc (gdbarch, sh_breakpoint_kind_from_pc);
|
||
set_gdbarch_sw_breakpoint_from_kind (gdbarch, sh_sw_breakpoint_from_kind);
|
||
|
||
set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
|
||
|
||
set_gdbarch_return_value (gdbarch, sh_return_value_nofpu);
|
||
|
||
set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
|
||
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
||
|
||
set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
|
||
set_gdbarch_return_in_first_hidden_param_p (gdbarch,
|
||
sh_return_in_first_hidden_param_p);
|
||
|
||
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
|
||
|
||
set_gdbarch_frame_align (gdbarch, sh_frame_align);
|
||
frame_base_set_default (gdbarch, &sh_frame_base);
|
||
|
||
set_gdbarch_stack_frame_destroyed_p (gdbarch, sh_stack_frame_destroyed_p);
|
||
|
||
dwarf2_frame_set_init_reg (gdbarch, sh_dwarf2_frame_init_reg);
|
||
|
||
set_gdbarch_iterate_over_regset_sections
|
||
(gdbarch, sh_iterate_over_regset_sections);
|
||
|
||
switch (info.bfd_arch_info->mach)
|
||
{
|
||
case bfd_mach_sh:
|
||
set_gdbarch_register_name (gdbarch, sh_sh_register_name);
|
||
break;
|
||
|
||
case bfd_mach_sh2:
|
||
set_gdbarch_register_name (gdbarch, sh_sh_register_name);
|
||
break;
|
||
|
||
case bfd_mach_sh2e:
|
||
/* doubles on sh2e and sh3e are actually 4 byte. */
|
||
set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
|
||
|
||
set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
|
||
set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
|
||
set_gdbarch_fp0_regnum (gdbarch, 25);
|
||
set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
|
||
set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
|
||
break;
|
||
|
||
case bfd_mach_sh2a:
|
||
set_gdbarch_register_name (gdbarch, sh_sh2a_register_name);
|
||
set_gdbarch_register_type (gdbarch, sh_sh2a_register_type);
|
||
set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
|
||
|
||
set_gdbarch_fp0_regnum (gdbarch, 25);
|
||
set_gdbarch_num_pseudo_regs (gdbarch, 9);
|
||
set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
|
||
set_gdbarch_deprecated_pseudo_register_write (gdbarch,
|
||
sh_pseudo_register_write);
|
||
set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
|
||
set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
|
||
break;
|
||
|
||
case bfd_mach_sh2a_nofpu:
|
||
set_gdbarch_register_name (gdbarch, sh_sh2a_nofpu_register_name);
|
||
set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
|
||
|
||
set_gdbarch_num_pseudo_regs (gdbarch, 1);
|
||
set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
|
||
set_gdbarch_deprecated_pseudo_register_write (gdbarch,
|
||
sh_pseudo_register_write);
|
||
break;
|
||
|
||
case bfd_mach_sh_dsp:
|
||
set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
|
||
set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
|
||
break;
|
||
|
||
case bfd_mach_sh3:
|
||
case bfd_mach_sh3_nommu:
|
||
case bfd_mach_sh2a_nofpu_or_sh3_nommu:
|
||
set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
|
||
break;
|
||
|
||
case bfd_mach_sh3e:
|
||
case bfd_mach_sh2a_or_sh3e:
|
||
/* doubles on sh2e and sh3e are actually 4 byte. */
|
||
set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
|
||
|
||
set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
|
||
set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
|
||
set_gdbarch_fp0_regnum (gdbarch, 25);
|
||
set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
|
||
set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
|
||
break;
|
||
|
||
case bfd_mach_sh3_dsp:
|
||
set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
|
||
set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
|
||
break;
|
||
|
||
case bfd_mach_sh4:
|
||
case bfd_mach_sh4a:
|
||
case bfd_mach_sh2a_or_sh4:
|
||
set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
|
||
set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
|
||
set_gdbarch_fp0_regnum (gdbarch, 25);
|
||
set_gdbarch_num_pseudo_regs (gdbarch, 13);
|
||
set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
|
||
set_gdbarch_deprecated_pseudo_register_write (gdbarch,
|
||
sh_pseudo_register_write);
|
||
set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
|
||
set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
|
||
break;
|
||
|
||
case bfd_mach_sh4_nofpu:
|
||
case bfd_mach_sh4a_nofpu:
|
||
case bfd_mach_sh4_nommu_nofpu:
|
||
case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu:
|
||
set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
|
||
break;
|
||
|
||
case bfd_mach_sh4al_dsp:
|
||
set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
|
||
set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
|
||
break;
|
||
|
||
default:
|
||
set_gdbarch_register_name (gdbarch, sh_sh_register_name);
|
||
break;
|
||
}
|
||
|
||
/* Hook in ABI-specific overrides, if they have been registered. */
|
||
gdbarch_init_osabi (info, gdbarch);
|
||
|
||
dwarf2_append_unwinders (gdbarch);
|
||
frame_unwind_append_unwinder (gdbarch, &sh_stub_unwind);
|
||
frame_unwind_append_unwinder (gdbarch, &sh_frame_unwind);
|
||
|
||
return gdbarch;
|
||
}
|
||
|
||
void _initialize_sh_tdep ();
|
||
void
|
||
_initialize_sh_tdep ()
|
||
{
|
||
gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
|
||
|
||
add_setshow_prefix_cmd ("sh", no_class,
|
||
_("SH specific commands."),
|
||
_("SH specific commands."),
|
||
&setshcmdlist, &showshcmdlist,
|
||
&setlist, &showlist);
|
||
|
||
add_setshow_enum_cmd ("calling-convention", class_vars, sh_cc_enum,
|
||
&sh_active_calling_convention,
|
||
_("Set calling convention used when calling target "
|
||
"functions from GDB."),
|
||
_("Show calling convention used when calling target "
|
||
"functions from GDB."),
|
||
_("gcc - Use GCC calling convention (default).\n"
|
||
"renesas - Enforce Renesas calling convention."),
|
||
NULL, NULL,
|
||
&setshcmdlist, &showshcmdlist);
|
||
}
|