mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-23 01:53:38 +08:00
5cb0406bb6
The dictionary contains a few entries with capital letters: ... $ grep -E '[A-Z]' .git/wikipedia-common-misspellings.txt | wc -l 143 ... but they don't look too interesting in the gdb context (for instance, Habsbourg->Habsburg), so filter them out. That leaves us with entries looking only like "foobat->foobar", so add handling of capitalized words, such that we also rewrite "Foobat" to "Foobar". Tested on aarch64-linux. Verified with shellcheck. Approved-by: Kevin Buettner <kevinb@redhat.com>
3499 lines
100 KiB
C
3499 lines
100 KiB
C
/* Target-dependent code for AMD64.
|
||
|
||
Copyright (C) 2001-2024 Free Software Foundation, Inc.
|
||
|
||
Contributed by Jiri Smid, SuSE Labs.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "extract-store-integer.h"
|
||
#include "language.h"
|
||
#include "opcode/i386.h"
|
||
#include "dis-asm.h"
|
||
#include "arch-utils.h"
|
||
#include "dummy-frame.h"
|
||
#include "frame.h"
|
||
#include "frame-base.h"
|
||
#include "frame-unwind.h"
|
||
#include "inferior.h"
|
||
#include "infrun.h"
|
||
#include "cli/cli-cmds.h"
|
||
#include "gdbcore.h"
|
||
#include "objfiles.h"
|
||
#include "regcache.h"
|
||
#include "regset.h"
|
||
#include "symfile.h"
|
||
#include "disasm.h"
|
||
#include "amd64-tdep.h"
|
||
#include "i387-tdep.h"
|
||
#include "gdbsupport/x86-xstate.h"
|
||
#include <algorithm>
|
||
#include "target-descriptions.h"
|
||
#include "arch/amd64.h"
|
||
#include "producer.h"
|
||
#include "ax.h"
|
||
#include "ax-gdb.h"
|
||
#include "gdbsupport/byte-vector.h"
|
||
#include "osabi.h"
|
||
#include "x86-tdep.h"
|
||
#include "amd64-ravenscar-thread.h"
|
||
|
||
/* Note that the AMD64 architecture was previously known as x86-64.
|
||
The latter is (forever) engraved into the canonical system name as
|
||
returned by config.guess, and used as the name for the AMD64 port
|
||
of GNU/Linux. The BSD's have renamed their ports to amd64; they
|
||
don't like to shout. For GDB we prefer the amd64_-prefix over the
|
||
x86_64_-prefix since it's so much easier to type. */
|
||
|
||
/* Register information. */
|
||
|
||
static const char * const amd64_register_names[] =
|
||
{
|
||
"rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
|
||
|
||
/* %r8 is indeed register number 8. */
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
"rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
|
||
|
||
/* %st0 is register number 24. */
|
||
"st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
|
||
"fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
|
||
|
||
/* %xmm0 is register number 40. */
|
||
"xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
|
||
"xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
|
||
"mxcsr",
|
||
};
|
||
|
||
static const char * const amd64_ymm_names[] =
|
||
{
|
||
"ymm0", "ymm1", "ymm2", "ymm3",
|
||
"ymm4", "ymm5", "ymm6", "ymm7",
|
||
"ymm8", "ymm9", "ymm10", "ymm11",
|
||
"ymm12", "ymm13", "ymm14", "ymm15"
|
||
};
|
||
|
||
static const char * const amd64_ymm_avx512_names[] =
|
||
{
|
||
"ymm16", "ymm17", "ymm18", "ymm19",
|
||
"ymm20", "ymm21", "ymm22", "ymm23",
|
||
"ymm24", "ymm25", "ymm26", "ymm27",
|
||
"ymm28", "ymm29", "ymm30", "ymm31"
|
||
};
|
||
|
||
static const char * const amd64_ymmh_names[] =
|
||
{
|
||
"ymm0h", "ymm1h", "ymm2h", "ymm3h",
|
||
"ymm4h", "ymm5h", "ymm6h", "ymm7h",
|
||
"ymm8h", "ymm9h", "ymm10h", "ymm11h",
|
||
"ymm12h", "ymm13h", "ymm14h", "ymm15h"
|
||
};
|
||
|
||
static const char * const amd64_ymmh_avx512_names[] =
|
||
{
|
||
"ymm16h", "ymm17h", "ymm18h", "ymm19h",
|
||
"ymm20h", "ymm21h", "ymm22h", "ymm23h",
|
||
"ymm24h", "ymm25h", "ymm26h", "ymm27h",
|
||
"ymm28h", "ymm29h", "ymm30h", "ymm31h"
|
||
};
|
||
|
||
static const char * const amd64_k_names[] =
|
||
{
|
||
"k0", "k1", "k2", "k3",
|
||
"k4", "k5", "k6", "k7"
|
||
};
|
||
|
||
static const char * const amd64_zmmh_names[] =
|
||
{
|
||
"zmm0h", "zmm1h", "zmm2h", "zmm3h",
|
||
"zmm4h", "zmm5h", "zmm6h", "zmm7h",
|
||
"zmm8h", "zmm9h", "zmm10h", "zmm11h",
|
||
"zmm12h", "zmm13h", "zmm14h", "zmm15h",
|
||
"zmm16h", "zmm17h", "zmm18h", "zmm19h",
|
||
"zmm20h", "zmm21h", "zmm22h", "zmm23h",
|
||
"zmm24h", "zmm25h", "zmm26h", "zmm27h",
|
||
"zmm28h", "zmm29h", "zmm30h", "zmm31h"
|
||
};
|
||
|
||
static const char * const amd64_zmm_names[] =
|
||
{
|
||
"zmm0", "zmm1", "zmm2", "zmm3",
|
||
"zmm4", "zmm5", "zmm6", "zmm7",
|
||
"zmm8", "zmm9", "zmm10", "zmm11",
|
||
"zmm12", "zmm13", "zmm14", "zmm15",
|
||
"zmm16", "zmm17", "zmm18", "zmm19",
|
||
"zmm20", "zmm21", "zmm22", "zmm23",
|
||
"zmm24", "zmm25", "zmm26", "zmm27",
|
||
"zmm28", "zmm29", "zmm30", "zmm31"
|
||
};
|
||
|
||
static const char * const amd64_xmm_avx512_names[] = {
|
||
"xmm16", "xmm17", "xmm18", "xmm19",
|
||
"xmm20", "xmm21", "xmm22", "xmm23",
|
||
"xmm24", "xmm25", "xmm26", "xmm27",
|
||
"xmm28", "xmm29", "xmm30", "xmm31"
|
||
};
|
||
|
||
static const char * const amd64_pkeys_names[] = {
|
||
"pkru"
|
||
};
|
||
|
||
/* DWARF Register Number Mapping as defined in the System V psABI,
|
||
section 3.6. */
|
||
|
||
static int amd64_dwarf_regmap[] =
|
||
{
|
||
/* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
|
||
AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
|
||
AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
|
||
AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
|
||
|
||
/* Frame Pointer Register RBP. */
|
||
AMD64_RBP_REGNUM,
|
||
|
||
/* Stack Pointer Register RSP. */
|
||
AMD64_RSP_REGNUM,
|
||
|
||
/* Extended Integer Registers 8 - 15. */
|
||
AMD64_R8_REGNUM, /* %r8 */
|
||
AMD64_R9_REGNUM, /* %r9 */
|
||
AMD64_R10_REGNUM, /* %r10 */
|
||
AMD64_R11_REGNUM, /* %r11 */
|
||
AMD64_R12_REGNUM, /* %r12 */
|
||
AMD64_R13_REGNUM, /* %r13 */
|
||
AMD64_R14_REGNUM, /* %r14 */
|
||
AMD64_R15_REGNUM, /* %r15 */
|
||
|
||
/* Return Address RA. Mapped to RIP. */
|
||
AMD64_RIP_REGNUM,
|
||
|
||
/* SSE Registers 0 - 7. */
|
||
AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
|
||
AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
|
||
AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
|
||
AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
|
||
|
||
/* Extended SSE Registers 8 - 15. */
|
||
AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
|
||
AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
|
||
AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
|
||
AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
|
||
|
||
/* Floating Point Registers 0-7. */
|
||
AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
|
||
AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
|
||
AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
|
||
AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
|
||
|
||
/* MMX Registers 0 - 7.
|
||
We have to handle those registers specifically, as their register
|
||
number within GDB depends on the target (or they may even not be
|
||
available at all). */
|
||
-1, -1, -1, -1, -1, -1, -1, -1,
|
||
|
||
/* Control and Status Flags Register. */
|
||
AMD64_EFLAGS_REGNUM,
|
||
|
||
/* Selector Registers. */
|
||
AMD64_ES_REGNUM,
|
||
AMD64_CS_REGNUM,
|
||
AMD64_SS_REGNUM,
|
||
AMD64_DS_REGNUM,
|
||
AMD64_FS_REGNUM,
|
||
AMD64_GS_REGNUM,
|
||
-1,
|
||
-1,
|
||
|
||
/* Segment Base Address Registers. */
|
||
-1,
|
||
-1,
|
||
-1,
|
||
-1,
|
||
|
||
/* Special Selector Registers. */
|
||
-1,
|
||
-1,
|
||
|
||
/* Floating Point Control Registers. */
|
||
AMD64_MXCSR_REGNUM,
|
||
AMD64_FCTRL_REGNUM,
|
||
AMD64_FSTAT_REGNUM,
|
||
|
||
/* XMM16-XMM31. */
|
||
AMD64_XMM16_REGNUM + 0, AMD64_XMM16_REGNUM + 1,
|
||
AMD64_XMM16_REGNUM + 2, AMD64_XMM16_REGNUM + 3,
|
||
AMD64_XMM16_REGNUM + 4, AMD64_XMM16_REGNUM + 5,
|
||
AMD64_XMM16_REGNUM + 6, AMD64_XMM16_REGNUM + 7,
|
||
AMD64_XMM16_REGNUM + 8, AMD64_XMM16_REGNUM + 9,
|
||
AMD64_XMM16_REGNUM + 10, AMD64_XMM16_REGNUM + 11,
|
||
AMD64_XMM16_REGNUM + 12, AMD64_XMM16_REGNUM + 13,
|
||
AMD64_XMM16_REGNUM + 14, AMD64_XMM16_REGNUM + 15,
|
||
|
||
/* Reserved. */
|
||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||
|
||
/* Mask Registers. */
|
||
AMD64_K0_REGNUM + 0, AMD64_K0_REGNUM + 1,
|
||
AMD64_K0_REGNUM + 2, AMD64_K0_REGNUM + 3,
|
||
AMD64_K0_REGNUM + 4, AMD64_K0_REGNUM + 5,
|
||
AMD64_K0_REGNUM + 6, AMD64_K0_REGNUM + 7
|
||
};
|
||
|
||
static const int amd64_dwarf_regmap_len =
|
||
(sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
|
||
|
||
/* Convert DWARF register number REG to the appropriate register
|
||
number used by GDB. */
|
||
|
||
static int
|
||
amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
|
||
{
|
||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
||
int ymm0_regnum = tdep->ymm0_regnum;
|
||
int regnum = -1;
|
||
|
||
if (reg >= 0 && reg < amd64_dwarf_regmap_len)
|
||
regnum = amd64_dwarf_regmap[reg];
|
||
|
||
if (ymm0_regnum >= 0 && i386_xmm_regnum_p (gdbarch, regnum))
|
||
regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
|
||
|
||
return regnum;
|
||
}
|
||
|
||
/* Map architectural register numbers to gdb register numbers. */
|
||
|
||
static const int amd64_arch_regmap[16] =
|
||
{
|
||
AMD64_RAX_REGNUM, /* %rax */
|
||
AMD64_RCX_REGNUM, /* %rcx */
|
||
AMD64_RDX_REGNUM, /* %rdx */
|
||
AMD64_RBX_REGNUM, /* %rbx */
|
||
AMD64_RSP_REGNUM, /* %rsp */
|
||
AMD64_RBP_REGNUM, /* %rbp */
|
||
AMD64_RSI_REGNUM, /* %rsi */
|
||
AMD64_RDI_REGNUM, /* %rdi */
|
||
AMD64_R8_REGNUM, /* %r8 */
|
||
AMD64_R9_REGNUM, /* %r9 */
|
||
AMD64_R10_REGNUM, /* %r10 */
|
||
AMD64_R11_REGNUM, /* %r11 */
|
||
AMD64_R12_REGNUM, /* %r12 */
|
||
AMD64_R13_REGNUM, /* %r13 */
|
||
AMD64_R14_REGNUM, /* %r14 */
|
||
AMD64_R15_REGNUM /* %r15 */
|
||
};
|
||
|
||
static const int amd64_arch_regmap_len =
|
||
(sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
|
||
|
||
/* Convert architectural register number REG to the appropriate register
|
||
number used by GDB. */
|
||
|
||
static int
|
||
amd64_arch_reg_to_regnum (int reg)
|
||
{
|
||
gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
|
||
|
||
return amd64_arch_regmap[reg];
|
||
}
|
||
|
||
/* Register names for byte pseudo-registers. */
|
||
|
||
static const char * const amd64_byte_names[] =
|
||
{
|
||
"al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
|
||
"r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
|
||
"ah", "bh", "ch", "dh"
|
||
};
|
||
|
||
/* Number of lower byte registers. */
|
||
#define AMD64_NUM_LOWER_BYTE_REGS 16
|
||
|
||
/* Register names for word pseudo-registers. */
|
||
|
||
static const char * const amd64_word_names[] =
|
||
{
|
||
"ax", "bx", "cx", "dx", "si", "di", "bp", "",
|
||
"r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
|
||
};
|
||
|
||
/* Register names for dword pseudo-registers. */
|
||
|
||
static const char * const amd64_dword_names[] =
|
||
{
|
||
"eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
|
||
"r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
|
||
"eip"
|
||
};
|
||
|
||
/* Return the name of register REGNUM. */
|
||
|
||
static const char *
|
||
amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
|
||
{
|
||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
||
if (i386_byte_regnum_p (gdbarch, regnum))
|
||
return amd64_byte_names[regnum - tdep->al_regnum];
|
||
else if (i386_zmm_regnum_p (gdbarch, regnum))
|
||
return amd64_zmm_names[regnum - tdep->zmm0_regnum];
|
||
else if (i386_ymm_regnum_p (gdbarch, regnum))
|
||
return amd64_ymm_names[regnum - tdep->ymm0_regnum];
|
||
else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
|
||
return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
|
||
else if (i386_word_regnum_p (gdbarch, regnum))
|
||
return amd64_word_names[regnum - tdep->ax_regnum];
|
||
else if (i386_dword_regnum_p (gdbarch, regnum))
|
||
return amd64_dword_names[regnum - tdep->eax_regnum];
|
||
else
|
||
return i386_pseudo_register_name (gdbarch, regnum);
|
||
}
|
||
|
||
static value *
|
||
amd64_pseudo_register_read_value (gdbarch *gdbarch, const frame_info_ptr &next_frame,
|
||
int regnum)
|
||
{
|
||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
||
|
||
if (i386_byte_regnum_p (gdbarch, regnum))
|
||
{
|
||
int gpnum = regnum - tdep->al_regnum;
|
||
|
||
/* Extract (always little endian). */
|
||
if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
|
||
{
|
||
gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
|
||
|
||
/* Special handling for AH, BH, CH, DH. */
|
||
return pseudo_from_raw_part (next_frame, regnum, gpnum, 1);
|
||
}
|
||
else
|
||
return pseudo_from_raw_part (next_frame, regnum, gpnum, 0);
|
||
}
|
||
else if (i386_dword_regnum_p (gdbarch, regnum))
|
||
{
|
||
int gpnum = regnum - tdep->eax_regnum;
|
||
|
||
return pseudo_from_raw_part (next_frame, regnum, gpnum, 0);
|
||
}
|
||
else
|
||
return i386_pseudo_register_read_value (gdbarch, next_frame, regnum);
|
||
}
|
||
|
||
static void
|
||
amd64_pseudo_register_write (gdbarch *gdbarch, const frame_info_ptr &next_frame,
|
||
int regnum, gdb::array_view<const gdb_byte> buf)
|
||
{
|
||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
||
|
||
if (i386_byte_regnum_p (gdbarch, regnum))
|
||
{
|
||
int gpnum = regnum - tdep->al_regnum;
|
||
|
||
if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
|
||
{
|
||
gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
|
||
pseudo_to_raw_part (next_frame, buf, gpnum, 1);
|
||
}
|
||
else
|
||
pseudo_to_raw_part (next_frame, buf, gpnum, 0);
|
||
}
|
||
else if (i386_dword_regnum_p (gdbarch, regnum))
|
||
{
|
||
int gpnum = regnum - tdep->eax_regnum;
|
||
pseudo_to_raw_part (next_frame, buf, gpnum, 0);
|
||
}
|
||
else
|
||
i386_pseudo_register_write (gdbarch, next_frame, regnum, buf);
|
||
}
|
||
|
||
/* Implement the 'ax_pseudo_register_collect' gdbarch method. */
|
||
|
||
static int
|
||
amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch,
|
||
struct agent_expr *ax, int regnum)
|
||
{
|
||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
||
|
||
if (i386_byte_regnum_p (gdbarch, regnum))
|
||
{
|
||
int gpnum = regnum - tdep->al_regnum;
|
||
|
||
if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
|
||
ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS);
|
||
else
|
||
ax_reg_mask (ax, gpnum);
|
||
return 0;
|
||
}
|
||
else if (i386_dword_regnum_p (gdbarch, regnum))
|
||
{
|
||
int gpnum = regnum - tdep->eax_regnum;
|
||
|
||
ax_reg_mask (ax, gpnum);
|
||
return 0;
|
||
}
|
||
else
|
||
return i386_ax_pseudo_register_collect (gdbarch, ax, regnum);
|
||
}
|
||
|
||
|
||
|
||
/* Register classes as defined in the psABI. */
|
||
|
||
enum amd64_reg_class
|
||
{
|
||
AMD64_INTEGER,
|
||
AMD64_SSE,
|
||
AMD64_SSEUP,
|
||
AMD64_X87,
|
||
AMD64_X87UP,
|
||
AMD64_COMPLEX_X87,
|
||
AMD64_NO_CLASS,
|
||
AMD64_MEMORY
|
||
};
|
||
|
||
/* Return the union class of CLASS1 and CLASS2. See the psABI for
|
||
details. */
|
||
|
||
static enum amd64_reg_class
|
||
amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
|
||
{
|
||
/* Rule (a): If both classes are equal, this is the resulting class. */
|
||
if (class1 == class2)
|
||
return class1;
|
||
|
||
/* Rule (b): If one of the classes is NO_CLASS, the resulting class
|
||
is the other class. */
|
||
if (class1 == AMD64_NO_CLASS)
|
||
return class2;
|
||
if (class2 == AMD64_NO_CLASS)
|
||
return class1;
|
||
|
||
/* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
|
||
if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
|
||
return AMD64_MEMORY;
|
||
|
||
/* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
|
||
if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
|
||
return AMD64_INTEGER;
|
||
|
||
/* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
|
||
MEMORY is used as class. */
|
||
if (class1 == AMD64_X87 || class1 == AMD64_X87UP
|
||
|| class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
|
||
|| class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
|
||
return AMD64_MEMORY;
|
||
|
||
/* Rule (f): Otherwise class SSE is used. */
|
||
return AMD64_SSE;
|
||
}
|
||
|
||
static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]);
|
||
|
||
/* Return true if TYPE is a structure or union with unaligned fields. */
|
||
|
||
static bool
|
||
amd64_has_unaligned_fields (struct type *type)
|
||
{
|
||
if (type->code () == TYPE_CODE_STRUCT
|
||
|| type->code () == TYPE_CODE_UNION)
|
||
{
|
||
for (int i = 0; i < type->num_fields (); i++)
|
||
{
|
||
struct type *subtype = check_typedef (type->field (i).type ());
|
||
|
||
/* Ignore static fields, empty fields (for example nested
|
||
empty structures), and bitfields (these are handled by
|
||
the caller). */
|
||
if (type->field (i).is_static ()
|
||
|| (type->field (i).bitsize () == 0
|
||
&& subtype->length () == 0)
|
||
|| type->field (i).is_packed ())
|
||
continue;
|
||
|
||
int bitpos = type->field (i).loc_bitpos ();
|
||
|
||
if (bitpos % 8 != 0)
|
||
return true;
|
||
|
||
int align = type_align (subtype);
|
||
if (align == 0)
|
||
error (_("could not determine alignment of type"));
|
||
|
||
int bytepos = bitpos / 8;
|
||
if (bytepos % align != 0)
|
||
return true;
|
||
|
||
if (amd64_has_unaligned_fields (subtype))
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Classify field I of TYPE starting at BITOFFSET according to the rules for
|
||
structures and union types, and store the result in THECLASS. */
|
||
|
||
static void
|
||
amd64_classify_aggregate_field (struct type *type, int i,
|
||
enum amd64_reg_class theclass[2],
|
||
unsigned int bitoffset)
|
||
{
|
||
struct type *subtype = check_typedef (type->field (i).type ());
|
||
enum amd64_reg_class subclass[2];
|
||
int bitsize = type->field (i).bitsize ();
|
||
|
||
if (bitsize == 0)
|
||
bitsize = subtype->length () * 8;
|
||
|
||
/* Ignore static fields, or empty fields, for example nested
|
||
empty structures.*/
|
||
if (type->field (i).is_static () || bitsize == 0)
|
||
return;
|
||
|
||
int bitpos = bitoffset + type->field (i).loc_bitpos ();
|
||
int pos = bitpos / 64;
|
||
int endpos = (bitpos + bitsize - 1) / 64;
|
||
|
||
if (subtype->code () == TYPE_CODE_STRUCT
|
||
|| subtype->code () == TYPE_CODE_UNION)
|
||
{
|
||
/* Each field of an object is classified recursively. */
|
||
int j;
|
||
for (j = 0; j < subtype->num_fields (); j++)
|
||
amd64_classify_aggregate_field (subtype, j, theclass, bitpos);
|
||
return;
|
||
}
|
||
|
||
gdb_assert (pos == 0 || pos == 1);
|
||
|
||
amd64_classify (subtype, subclass);
|
||
theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]);
|
||
if (bitsize <= 64 && pos == 0 && endpos == 1)
|
||
/* This is a bit of an odd case: We have a field that would
|
||
normally fit in one of the two eightbytes, except that
|
||
it is placed in a way that this field straddles them.
|
||
This has been seen with a structure containing an array.
|
||
|
||
The ABI is a bit unclear in this case, but we assume that
|
||
this field's class (stored in subclass[0]) must also be merged
|
||
into class[1]. In other words, our field has a piece stored
|
||
in the second eight-byte, and thus its class applies to
|
||
the second eight-byte as well.
|
||
|
||
In the case where the field length exceeds 8 bytes,
|
||
it should not be necessary to merge the field class
|
||
into class[1]. As LEN > 8, subclass[1] is necessarily
|
||
different from AMD64_NO_CLASS. If subclass[1] is equal
|
||
to subclass[0], then the normal class[1]/subclass[1]
|
||
merging will take care of everything. For subclass[1]
|
||
to be different from subclass[0], I can only see the case
|
||
where we have a SSE/SSEUP or X87/X87UP pair, which both
|
||
use up all 16 bytes of the aggregate, and are already
|
||
handled just fine (because each portion sits on its own
|
||
8-byte). */
|
||
theclass[1] = amd64_merge_classes (theclass[1], subclass[0]);
|
||
if (pos == 0)
|
||
theclass[1] = amd64_merge_classes (theclass[1], subclass[1]);
|
||
}
|
||
|
||
/* Classify TYPE according to the rules for aggregate (structures and
|
||
arrays) and union types, and store the result in CLASS. */
|
||
|
||
static void
|
||
amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2])
|
||
{
|
||
/* 1. If the size of an object is larger than two times eight bytes, or
|
||
it is a non-trivial C++ object, or it has unaligned fields, then it
|
||
has class memory.
|
||
|
||
It is important that the trivially_copyable check is before the
|
||
unaligned fields check, as C++ classes with virtual base classes
|
||
will have fields (for the virtual base classes) with non-constant
|
||
loc_bitpos attributes, which will cause an assert to trigger within
|
||
the unaligned field check. As classes with virtual bases are not
|
||
trivially copyable, checking that first avoids this problem. */
|
||
if (TYPE_HAS_DYNAMIC_LENGTH (type)
|
||
|| type->length () > 16
|
||
|| !language_pass_by_reference (type).trivially_copyable
|
||
|| amd64_has_unaligned_fields (type))
|
||
{
|
||
theclass[0] = theclass[1] = AMD64_MEMORY;
|
||
return;
|
||
}
|
||
|
||
/* 2. Both eightbytes get initialized to class NO_CLASS. */
|
||
theclass[0] = theclass[1] = AMD64_NO_CLASS;
|
||
|
||
/* 3. Each field of an object is classified recursively so that
|
||
always two fields are considered. The resulting class is
|
||
calculated according to the classes of the fields in the
|
||
eightbyte: */
|
||
|
||
if (type->code () == TYPE_CODE_ARRAY)
|
||
{
|
||
struct type *subtype = check_typedef (type->target_type ());
|
||
|
||
/* All fields in an array have the same type. */
|
||
amd64_classify (subtype, theclass);
|
||
if (type->length () > 8 && theclass[1] == AMD64_NO_CLASS)
|
||
theclass[1] = theclass[0];
|
||
}
|
||
else
|
||
{
|
||
int i;
|
||
|
||
/* Structure or union. */
|
||
gdb_assert (type->code () == TYPE_CODE_STRUCT
|
||
|| type->code () == TYPE_CODE_UNION);
|
||
|
||
for (i = 0; i < type->num_fields (); i++)
|
||
amd64_classify_aggregate_field (type, i, theclass, 0);
|
||
}
|
||
|
||
/* 4. Then a post merger cleanup is done: */
|
||
|
||
/* Rule (a): If one of the classes is MEMORY, the whole argument is
|
||
passed in memory. */
|
||
if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY)
|
||
theclass[0] = theclass[1] = AMD64_MEMORY;
|
||
|
||
/* Rule (b): If SSEUP is not preceded by SSE, it is converted to
|
||
SSE. */
|
||
if (theclass[0] == AMD64_SSEUP)
|
||
theclass[0] = AMD64_SSE;
|
||
if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE)
|
||
theclass[1] = AMD64_SSE;
|
||
}
|
||
|
||
/* Classify TYPE, and store the result in CLASS. */
|
||
|
||
static void
|
||
amd64_classify (struct type *type, enum amd64_reg_class theclass[2])
|
||
{
|
||
enum type_code code = type->code ();
|
||
int len = type->length ();
|
||
|
||
theclass[0] = theclass[1] = AMD64_NO_CLASS;
|
||
|
||
/* Arguments of types (signed and unsigned) _Bool, char, short, int,
|
||
long, long long, and pointers are in the INTEGER class. Similarly,
|
||
range types, used by languages such as Ada, are also in the INTEGER
|
||
class. */
|
||
if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
|
||
|| code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
|
||
|| code == TYPE_CODE_CHAR
|
||
|| code == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type))
|
||
&& (len == 1 || len == 2 || len == 4 || len == 8))
|
||
theclass[0] = AMD64_INTEGER;
|
||
|
||
/* Arguments of types _Float16, float, double, _Decimal32, _Decimal64 and
|
||
__m64 are in class SSE. */
|
||
else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
|
||
&& (len == 2 || len == 4 || len == 8))
|
||
/* FIXME: __m64 . */
|
||
theclass[0] = AMD64_SSE;
|
||
|
||
/* Arguments of types __float128, _Decimal128 and __m128 are split into
|
||
two halves. The least significant ones belong to class SSE, the most
|
||
significant one to class SSEUP. */
|
||
else if (code == TYPE_CODE_DECFLOAT && len == 16)
|
||
/* FIXME: __float128, __m128. */
|
||
theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP;
|
||
|
||
/* The 64-bit mantissa of arguments of type long double belongs to
|
||
class X87, the 16-bit exponent plus 6 bytes of padding belongs to
|
||
class X87UP. */
|
||
else if (code == TYPE_CODE_FLT && len == 16)
|
||
/* Class X87 and X87UP. */
|
||
theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP;
|
||
|
||
/* Arguments of complex T - where T is one of the types _Float16, float or
|
||
double - get treated as if they are implemented as:
|
||
|
||
struct complexT {
|
||
T real;
|
||
T imag;
|
||
};
|
||
|
||
*/
|
||
else if (code == TYPE_CODE_COMPLEX && (len == 8 || len == 4))
|
||
theclass[0] = AMD64_SSE;
|
||
else if (code == TYPE_CODE_COMPLEX && len == 16)
|
||
theclass[0] = theclass[1] = AMD64_SSE;
|
||
|
||
/* A variable of type complex long double is classified as type
|
||
COMPLEX_X87. */
|
||
else if (code == TYPE_CODE_COMPLEX && len == 32)
|
||
theclass[0] = AMD64_COMPLEX_X87;
|
||
|
||
/* Aggregates. */
|
||
else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
|
||
|| code == TYPE_CODE_UNION)
|
||
amd64_classify_aggregate (type, theclass);
|
||
}
|
||
|
||
static enum return_value_convention
|
||
amd64_return_value (struct gdbarch *gdbarch, struct value *function,
|
||
struct type *type, struct regcache *regcache,
|
||
struct value **read_value, const gdb_byte *writebuf)
|
||
{
|
||
enum amd64_reg_class theclass[2];
|
||
int len = type->length ();
|
||
static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
|
||
static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
|
||
int integer_reg = 0;
|
||
int sse_reg = 0;
|
||
int i;
|
||
|
||
gdb_assert (!(read_value && writebuf));
|
||
|
||
/* 1. Classify the return type with the classification algorithm. */
|
||
amd64_classify (type, theclass);
|
||
|
||
/* 2. If the type has class MEMORY, then the caller provides space
|
||
for the return value and passes the address of this storage in
|
||
%rdi as if it were the first argument to the function. In effect,
|
||
this address becomes a hidden first argument.
|
||
|
||
On return %rax will contain the address that has been passed in
|
||
by the caller in %rdi. */
|
||
if (theclass[0] == AMD64_MEMORY)
|
||
{
|
||
/* As indicated by the comment above, the ABI guarantees that we
|
||
can always find the return value just after the function has
|
||
returned. */
|
||
|
||
if (read_value != nullptr)
|
||
{
|
||
ULONGEST addr;
|
||
|
||
regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
|
||
*read_value = value_at_non_lval (type, addr);
|
||
}
|
||
|
||
return RETURN_VALUE_ABI_RETURNS_ADDRESS;
|
||
}
|
||
|
||
gdb_byte *readbuf = nullptr;
|
||
if (read_value != nullptr)
|
||
{
|
||
*read_value = value::allocate (type);
|
||
readbuf = (*read_value)->contents_raw ().data ();
|
||
}
|
||
|
||
/* 8. If the class is COMPLEX_X87, the real part of the value is
|
||
returned in %st0 and the imaginary part in %st1. */
|
||
if (theclass[0] == AMD64_COMPLEX_X87)
|
||
{
|
||
if (readbuf)
|
||
{
|
||
regcache->raw_read (AMD64_ST0_REGNUM, readbuf);
|
||
regcache->raw_read (AMD64_ST1_REGNUM, readbuf + 16);
|
||
}
|
||
|
||
if (writebuf)
|
||
{
|
||
i387_return_value (gdbarch, regcache);
|
||
regcache->raw_write (AMD64_ST0_REGNUM, writebuf);
|
||
regcache->raw_write (AMD64_ST1_REGNUM, writebuf + 16);
|
||
|
||
/* Fix up the tag word such that both %st(0) and %st(1) are
|
||
marked as valid. */
|
||
regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
|
||
}
|
||
|
||
return RETURN_VALUE_REGISTER_CONVENTION;
|
||
}
|
||
|
||
gdb_assert (theclass[1] != AMD64_MEMORY);
|
||
gdb_assert (len <= 16);
|
||
|
||
for (i = 0; len > 0; i++, len -= 8)
|
||
{
|
||
int regnum = -1;
|
||
int offset = 0;
|
||
|
||
switch (theclass[i])
|
||
{
|
||
case AMD64_INTEGER:
|
||
/* 3. If the class is INTEGER, the next available register
|
||
of the sequence %rax, %rdx is used. */
|
||
regnum = integer_regnum[integer_reg++];
|
||
break;
|
||
|
||
case AMD64_SSE:
|
||
/* 4. If the class is SSE, the next available SSE register
|
||
of the sequence %xmm0, %xmm1 is used. */
|
||
regnum = sse_regnum[sse_reg++];
|
||
break;
|
||
|
||
case AMD64_SSEUP:
|
||
/* 5. If the class is SSEUP, the eightbyte is passed in the
|
||
upper half of the last used SSE register. */
|
||
gdb_assert (sse_reg > 0);
|
||
regnum = sse_regnum[sse_reg - 1];
|
||
offset = 8;
|
||
break;
|
||
|
||
case AMD64_X87:
|
||
/* 6. If the class is X87, the value is returned on the X87
|
||
stack in %st0 as 80-bit x87 number. */
|
||
regnum = AMD64_ST0_REGNUM;
|
||
if (writebuf)
|
||
i387_return_value (gdbarch, regcache);
|
||
break;
|
||
|
||
case AMD64_X87UP:
|
||
/* 7. If the class is X87UP, the value is returned together
|
||
with the previous X87 value in %st0. */
|
||
gdb_assert (i > 0 && theclass[0] == AMD64_X87);
|
||
regnum = AMD64_ST0_REGNUM;
|
||
offset = 8;
|
||
len = 2;
|
||
break;
|
||
|
||
case AMD64_NO_CLASS:
|
||
continue;
|
||
|
||
default:
|
||
gdb_assert (!"Unexpected register class.");
|
||
}
|
||
|
||
gdb_assert (regnum != -1);
|
||
|
||
if (readbuf)
|
||
regcache->raw_read_part (regnum, offset, std::min (len, 8),
|
||
readbuf + i * 8);
|
||
if (writebuf)
|
||
regcache->raw_write_part (regnum, offset, std::min (len, 8),
|
||
writebuf + i * 8);
|
||
}
|
||
|
||
return RETURN_VALUE_REGISTER_CONVENTION;
|
||
}
|
||
|
||
|
||
static CORE_ADDR
|
||
amd64_push_arguments (struct regcache *regcache, int nargs, struct value **args,
|
||
CORE_ADDR sp, function_call_return_method return_method)
|
||
{
|
||
static int integer_regnum[] =
|
||
{
|
||
AMD64_RDI_REGNUM, /* %rdi */
|
||
AMD64_RSI_REGNUM, /* %rsi */
|
||
AMD64_RDX_REGNUM, /* %rdx */
|
||
AMD64_RCX_REGNUM, /* %rcx */
|
||
AMD64_R8_REGNUM, /* %r8 */
|
||
AMD64_R9_REGNUM /* %r9 */
|
||
};
|
||
static int sse_regnum[] =
|
||
{
|
||
/* %xmm0 ... %xmm7 */
|
||
AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
|
||
AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
|
||
AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
|
||
AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
|
||
};
|
||
struct value **stack_args = XALLOCAVEC (struct value *, nargs);
|
||
int num_stack_args = 0;
|
||
int num_elements = 0;
|
||
int element = 0;
|
||
int integer_reg = 0;
|
||
int sse_reg = 0;
|
||
int i;
|
||
|
||
/* Reserve a register for the "hidden" argument. */
|
||
if (return_method == return_method_struct)
|
||
integer_reg++;
|
||
|
||
for (i = 0; i < nargs; i++)
|
||
{
|
||
struct type *type = args[i]->type ();
|
||
int len = type->length ();
|
||
enum amd64_reg_class theclass[2];
|
||
int needed_integer_regs = 0;
|
||
int needed_sse_regs = 0;
|
||
int j;
|
||
|
||
/* Classify argument. */
|
||
amd64_classify (type, theclass);
|
||
|
||
/* Calculate the number of integer and SSE registers needed for
|
||
this argument. */
|
||
for (j = 0; j < 2; j++)
|
||
{
|
||
if (theclass[j] == AMD64_INTEGER)
|
||
needed_integer_regs++;
|
||
else if (theclass[j] == AMD64_SSE)
|
||
needed_sse_regs++;
|
||
}
|
||
|
||
/* Check whether enough registers are available, and if the
|
||
argument should be passed in registers at all. */
|
||
if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
|
||
|| sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
|
||
|| (needed_integer_regs == 0 && needed_sse_regs == 0))
|
||
{
|
||
/* The argument will be passed on the stack. */
|
||
num_elements += ((len + 7) / 8);
|
||
stack_args[num_stack_args++] = args[i];
|
||
}
|
||
else
|
||
{
|
||
/* The argument will be passed in registers. */
|
||
const gdb_byte *valbuf = args[i]->contents ().data ();
|
||
gdb_byte buf[8];
|
||
|
||
gdb_assert (len <= 16);
|
||
|
||
for (j = 0; len > 0; j++, len -= 8)
|
||
{
|
||
int regnum = -1;
|
||
int offset = 0;
|
||
|
||
switch (theclass[j])
|
||
{
|
||
case AMD64_INTEGER:
|
||
regnum = integer_regnum[integer_reg++];
|
||
break;
|
||
|
||
case AMD64_SSE:
|
||
regnum = sse_regnum[sse_reg++];
|
||
break;
|
||
|
||
case AMD64_SSEUP:
|
||
gdb_assert (sse_reg > 0);
|
||
regnum = sse_regnum[sse_reg - 1];
|
||
offset = 8;
|
||
break;
|
||
|
||
case AMD64_NO_CLASS:
|
||
continue;
|
||
|
||
default:
|
||
gdb_assert (!"Unexpected register class.");
|
||
}
|
||
|
||
gdb_assert (regnum != -1);
|
||
memset (buf, 0, sizeof buf);
|
||
memcpy (buf, valbuf + j * 8, std::min (len, 8));
|
||
regcache->raw_write_part (regnum, offset, 8, buf);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Allocate space for the arguments on the stack. */
|
||
sp -= num_elements * 8;
|
||
|
||
/* The psABI says that "The end of the input argument area shall be
|
||
aligned on a 16 byte boundary." */
|
||
sp &= ~0xf;
|
||
|
||
/* Write out the arguments to the stack. */
|
||
for (i = 0; i < num_stack_args; i++)
|
||
{
|
||
struct type *type = stack_args[i]->type ();
|
||
const gdb_byte *valbuf = stack_args[i]->contents ().data ();
|
||
int len = type->length ();
|
||
|
||
write_memory (sp + element * 8, valbuf, len);
|
||
element += ((len + 7) / 8);
|
||
}
|
||
|
||
/* The psABI says that "For calls that may call functions that use
|
||
varargs or stdargs (prototype-less calls or calls to functions
|
||
containing ellipsis (...) in the declaration) %al is used as
|
||
hidden argument to specify the number of SSE registers used. */
|
||
regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
|
||
return sp;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
||
struct regcache *regcache, CORE_ADDR bp_addr,
|
||
int nargs, struct value **args, CORE_ADDR sp,
|
||
function_call_return_method return_method,
|
||
CORE_ADDR struct_addr)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
gdb_byte buf[8];
|
||
|
||
/* Pass arguments. */
|
||
sp = amd64_push_arguments (regcache, nargs, args, sp, return_method);
|
||
|
||
/* Pass "hidden" argument". */
|
||
if (return_method == return_method_struct)
|
||
{
|
||
store_unsigned_integer (buf, 8, byte_order, struct_addr);
|
||
regcache->cooked_write (AMD64_RDI_REGNUM, buf);
|
||
}
|
||
|
||
/* Store return address. */
|
||
sp -= 8;
|
||
store_unsigned_integer (buf, 8, byte_order, bp_addr);
|
||
write_memory (sp, buf, 8);
|
||
|
||
/* Finally, update the stack pointer... */
|
||
store_unsigned_integer (buf, 8, byte_order, sp);
|
||
regcache->cooked_write (AMD64_RSP_REGNUM, buf);
|
||
|
||
/* ...and fake a frame pointer. */
|
||
regcache->cooked_write (AMD64_RBP_REGNUM, buf);
|
||
|
||
return sp + 16;
|
||
}
|
||
|
||
/* Displaced instruction handling. */
|
||
|
||
/* A partially decoded instruction.
|
||
This contains enough details for displaced stepping purposes. */
|
||
|
||
struct amd64_insn
|
||
{
|
||
/* The number of opcode bytes. */
|
||
int opcode_len;
|
||
/* The offset of the REX/VEX instruction encoding prefix or -1 if
|
||
not present. */
|
||
int enc_prefix_offset;
|
||
/* The offset to the first opcode byte. */
|
||
int opcode_offset;
|
||
/* The offset to the modrm byte or -1 if not present. */
|
||
int modrm_offset;
|
||
|
||
/* The raw instruction. */
|
||
gdb_byte *raw_insn;
|
||
};
|
||
|
||
struct amd64_displaced_step_copy_insn_closure
|
||
: public displaced_step_copy_insn_closure
|
||
{
|
||
amd64_displaced_step_copy_insn_closure (int insn_buf_len)
|
||
: insn_buf (insn_buf_len, 0)
|
||
{}
|
||
|
||
/* For rip-relative insns, saved copy of the reg we use instead of %rip. */
|
||
int tmp_used = 0;
|
||
int tmp_regno;
|
||
ULONGEST tmp_save;
|
||
|
||
/* Details of the instruction. */
|
||
struct amd64_insn insn_details;
|
||
|
||
/* The possibly modified insn. */
|
||
gdb::byte_vector insn_buf;
|
||
};
|
||
|
||
/* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
|
||
../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
|
||
at which point delete these in favor of libopcodes' versions). */
|
||
|
||
static const unsigned char onebyte_has_modrm[256] = {
|
||
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
|
||
/* ------------------------------- */
|
||
/* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
|
||
/* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
|
||
/* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
|
||
/* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
|
||
/* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
|
||
/* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
|
||
/* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
|
||
/* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
|
||
/* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
|
||
/* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
|
||
/* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
|
||
/* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
|
||
/* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
|
||
/* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
|
||
/* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
|
||
/* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
|
||
/* ------------------------------- */
|
||
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
|
||
};
|
||
|
||
static const unsigned char twobyte_has_modrm[256] = {
|
||
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
|
||
/* ------------------------------- */
|
||
/* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
|
||
/* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
|
||
/* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
|
||
/* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
|
||
/* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
|
||
/* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
|
||
/* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
|
||
/* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
|
||
/* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
|
||
/* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
|
||
/* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
|
||
/* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
|
||
/* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
|
||
/* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
|
||
/* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
|
||
/* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
|
||
/* ------------------------------- */
|
||
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
|
||
};
|
||
|
||
static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
|
||
|
||
static int
|
||
rex_prefix_p (gdb_byte pfx)
|
||
{
|
||
return REX_PREFIX_P (pfx);
|
||
}
|
||
|
||
/* True if PFX is the start of the 2-byte VEX prefix. */
|
||
|
||
static bool
|
||
vex2_prefix_p (gdb_byte pfx)
|
||
{
|
||
return pfx == 0xc5;
|
||
}
|
||
|
||
/* True if PFX is the start of the 3-byte VEX prefix. */
|
||
|
||
static bool
|
||
vex3_prefix_p (gdb_byte pfx)
|
||
{
|
||
return pfx == 0xc4;
|
||
}
|
||
|
||
/* Skip the legacy instruction prefixes in INSN.
|
||
We assume INSN is properly sentineled so we don't have to worry
|
||
about falling off the end of the buffer. */
|
||
|
||
static gdb_byte *
|
||
amd64_skip_prefixes (gdb_byte *insn)
|
||
{
|
||
while (1)
|
||
{
|
||
switch (*insn)
|
||
{
|
||
case DATA_PREFIX_OPCODE:
|
||
case ADDR_PREFIX_OPCODE:
|
||
case CS_PREFIX_OPCODE:
|
||
case DS_PREFIX_OPCODE:
|
||
case ES_PREFIX_OPCODE:
|
||
case FS_PREFIX_OPCODE:
|
||
case GS_PREFIX_OPCODE:
|
||
case SS_PREFIX_OPCODE:
|
||
case LOCK_PREFIX_OPCODE:
|
||
case REPE_PREFIX_OPCODE:
|
||
case REPNE_PREFIX_OPCODE:
|
||
++insn;
|
||
continue;
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
}
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Return an integer register (other than RSP) that is unused as an input
|
||
operand in INSN.
|
||
In order to not require adding a rex prefix if the insn doesn't already
|
||
have one, the result is restricted to RAX ... RDI, sans RSP.
|
||
The register numbering of the result follows architecture ordering,
|
||
e.g. RDI = 7. */
|
||
|
||
static int
|
||
amd64_get_unused_input_int_reg (const struct amd64_insn *details)
|
||
{
|
||
/* 1 bit for each reg */
|
||
int used_regs_mask = 0;
|
||
|
||
/* There can be at most 3 int regs used as inputs in an insn, and we have
|
||
7 to choose from (RAX ... RDI, sans RSP).
|
||
This allows us to take a conservative approach and keep things simple.
|
||
E.g. By avoiding RAX, we don't have to specifically watch for opcodes
|
||
that implicitly specify RAX. */
|
||
|
||
/* Avoid RAX. */
|
||
used_regs_mask |= 1 << EAX_REG_NUM;
|
||
/* Similarly avoid RDX, implicit operand in divides. */
|
||
used_regs_mask |= 1 << EDX_REG_NUM;
|
||
/* Avoid RSP. */
|
||
used_regs_mask |= 1 << ESP_REG_NUM;
|
||
|
||
/* If the opcode is one byte long and there's no ModRM byte,
|
||
assume the opcode specifies a register. */
|
||
if (details->opcode_len == 1 && details->modrm_offset == -1)
|
||
used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
|
||
|
||
/* Mark used regs in the modrm/sib bytes. */
|
||
if (details->modrm_offset != -1)
|
||
{
|
||
int modrm = details->raw_insn[details->modrm_offset];
|
||
int mod = MODRM_MOD_FIELD (modrm);
|
||
int reg = MODRM_REG_FIELD (modrm);
|
||
int rm = MODRM_RM_FIELD (modrm);
|
||
int have_sib = mod != 3 && rm == 4;
|
||
|
||
/* Assume the reg field of the modrm byte specifies a register. */
|
||
used_regs_mask |= 1 << reg;
|
||
|
||
if (have_sib)
|
||
{
|
||
int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
|
||
int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
|
||
used_regs_mask |= 1 << base;
|
||
used_regs_mask |= 1 << idx;
|
||
}
|
||
else
|
||
{
|
||
used_regs_mask |= 1 << rm;
|
||
}
|
||
}
|
||
|
||
gdb_assert (used_regs_mask < 256);
|
||
gdb_assert (used_regs_mask != 255);
|
||
|
||
/* Finally, find a free reg. */
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < 8; ++i)
|
||
{
|
||
if (! (used_regs_mask & (1 << i)))
|
||
return i;
|
||
}
|
||
|
||
/* We shouldn't get here. */
|
||
internal_error (_("unable to find free reg"));
|
||
}
|
||
}
|
||
|
||
/* Extract the details of INSN that we need. */
|
||
|
||
static void
|
||
amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
|
||
{
|
||
gdb_byte *start = insn;
|
||
int need_modrm;
|
||
|
||
details->raw_insn = insn;
|
||
|
||
details->opcode_len = -1;
|
||
details->enc_prefix_offset = -1;
|
||
details->opcode_offset = -1;
|
||
details->modrm_offset = -1;
|
||
|
||
/* Skip legacy instruction prefixes. */
|
||
insn = amd64_skip_prefixes (insn);
|
||
|
||
/* Skip REX/VEX instruction encoding prefixes. */
|
||
if (rex_prefix_p (*insn))
|
||
{
|
||
details->enc_prefix_offset = insn - start;
|
||
++insn;
|
||
}
|
||
else if (vex2_prefix_p (*insn))
|
||
{
|
||
/* Don't record the offset in this case because this prefix has
|
||
no REX.B equivalent. */
|
||
insn += 2;
|
||
}
|
||
else if (vex3_prefix_p (*insn))
|
||
{
|
||
details->enc_prefix_offset = insn - start;
|
||
insn += 3;
|
||
}
|
||
|
||
details->opcode_offset = insn - start;
|
||
|
||
if (*insn == TWO_BYTE_OPCODE_ESCAPE)
|
||
{
|
||
/* Two or three-byte opcode. */
|
||
++insn;
|
||
need_modrm = twobyte_has_modrm[*insn];
|
||
|
||
/* Check for three-byte opcode. */
|
||
switch (*insn)
|
||
{
|
||
case 0x24:
|
||
case 0x25:
|
||
case 0x38:
|
||
case 0x3a:
|
||
case 0x7a:
|
||
case 0x7b:
|
||
++insn;
|
||
details->opcode_len = 3;
|
||
break;
|
||
default:
|
||
details->opcode_len = 2;
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* One-byte opcode. */
|
||
need_modrm = onebyte_has_modrm[*insn];
|
||
details->opcode_len = 1;
|
||
}
|
||
|
||
if (need_modrm)
|
||
{
|
||
++insn;
|
||
details->modrm_offset = insn - start;
|
||
}
|
||
}
|
||
|
||
/* Update %rip-relative addressing in INSN.
|
||
|
||
%rip-relative addressing only uses a 32-bit displacement.
|
||
32 bits is not enough to be guaranteed to cover the distance between where
|
||
the real instruction is and where its copy is.
|
||
Convert the insn to use base+disp addressing.
|
||
We set base = pc + insn_length so we can leave disp unchanged. */
|
||
|
||
static void
|
||
fixup_riprel (struct gdbarch *gdbarch,
|
||
amd64_displaced_step_copy_insn_closure *dsc,
|
||
CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
|
||
{
|
||
const struct amd64_insn *insn_details = &dsc->insn_details;
|
||
int modrm_offset = insn_details->modrm_offset;
|
||
CORE_ADDR rip_base;
|
||
int insn_length;
|
||
int arch_tmp_regno, tmp_regno;
|
||
ULONGEST orig_value;
|
||
|
||
/* Compute the rip-relative address. */
|
||
insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf.data (),
|
||
dsc->insn_buf.size (), from);
|
||
rip_base = from + insn_length;
|
||
|
||
/* We need a register to hold the address.
|
||
Pick one not used in the insn.
|
||
NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
|
||
arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
|
||
tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
|
||
|
||
/* Position of the not-B bit in the 3-byte VEX prefix (in byte 1). */
|
||
static constexpr gdb_byte VEX3_NOT_B = 0x20;
|
||
|
||
/* REX.B should be unset (VEX.!B set) as we were using rip-relative
|
||
addressing, but ensure it's unset (set for VEX) anyway, tmp_regno
|
||
is not r8-r15. */
|
||
if (insn_details->enc_prefix_offset != -1)
|
||
{
|
||
gdb_byte *pfx = &dsc->insn_buf[insn_details->enc_prefix_offset];
|
||
if (rex_prefix_p (pfx[0]))
|
||
pfx[0] &= ~REX_B;
|
||
else if (vex3_prefix_p (pfx[0]))
|
||
pfx[1] |= VEX3_NOT_B;
|
||
else
|
||
gdb_assert_not_reached ("unhandled prefix");
|
||
}
|
||
|
||
regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
|
||
dsc->tmp_regno = tmp_regno;
|
||
dsc->tmp_save = orig_value;
|
||
dsc->tmp_used = 1;
|
||
|
||
/* Convert the ModRM field to be base+disp. */
|
||
dsc->insn_buf[modrm_offset] &= ~0xc7;
|
||
dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
|
||
|
||
regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
|
||
|
||
displaced_debug_printf ("%%rip-relative addressing used.");
|
||
displaced_debug_printf ("using temp reg %d, old value %s, new value %s",
|
||
dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
|
||
paddress (gdbarch, rip_base));
|
||
}
|
||
|
||
static void
|
||
fixup_displaced_copy (struct gdbarch *gdbarch,
|
||
amd64_displaced_step_copy_insn_closure *dsc,
|
||
CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
|
||
{
|
||
const struct amd64_insn *details = &dsc->insn_details;
|
||
|
||
if (details->modrm_offset != -1)
|
||
{
|
||
gdb_byte modrm = details->raw_insn[details->modrm_offset];
|
||
|
||
if ((modrm & 0xc7) == 0x05)
|
||
{
|
||
/* The insn uses rip-relative addressing.
|
||
Deal with it. */
|
||
fixup_riprel (gdbarch, dsc, from, to, regs);
|
||
}
|
||
}
|
||
}
|
||
|
||
displaced_step_copy_insn_closure_up
|
||
amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
|
||
CORE_ADDR from, CORE_ADDR to,
|
||
struct regcache *regs)
|
||
{
|
||
int len = gdbarch_max_insn_length (gdbarch);
|
||
/* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
|
||
continually watch for running off the end of the buffer. */
|
||
int fixup_sentinel_space = len;
|
||
std::unique_ptr<amd64_displaced_step_copy_insn_closure> dsc
|
||
(new amd64_displaced_step_copy_insn_closure (len + fixup_sentinel_space));
|
||
gdb_byte *buf = &dsc->insn_buf[0];
|
||
struct amd64_insn *details = &dsc->insn_details;
|
||
|
||
read_memory (from, buf, len);
|
||
|
||
/* Set up the sentinel space so we don't have to worry about running
|
||
off the end of the buffer. An excessive number of leading prefixes
|
||
could otherwise cause this. */
|
||
memset (buf + len, 0, fixup_sentinel_space);
|
||
|
||
amd64_get_insn_details (buf, details);
|
||
|
||
/* GDB may get control back after the insn after the syscall.
|
||
Presumably this is a kernel bug.
|
||
If this is a syscall, make sure there's a nop afterwards. */
|
||
{
|
||
int syscall_length;
|
||
|
||
if (amd64_syscall_p (details, &syscall_length))
|
||
buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
|
||
}
|
||
|
||
/* Modify the insn to cope with the address where it will be executed from.
|
||
In particular, handle any rip-relative addressing. */
|
||
fixup_displaced_copy (gdbarch, dsc.get (), from, to, regs);
|
||
|
||
write_memory (to, buf, len);
|
||
|
||
displaced_debug_printf ("copy %s->%s: %s",
|
||
paddress (gdbarch, from), paddress (gdbarch, to),
|
||
bytes_to_string (buf, len).c_str ());
|
||
|
||
/* This is a work around for a problem with g++ 4.8. */
|
||
return displaced_step_copy_insn_closure_up (dsc.release ());
|
||
}
|
||
|
||
static int
|
||
amd64_absolute_jmp_p (const struct amd64_insn *details)
|
||
{
|
||
const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
|
||
|
||
if (insn[0] == 0xff)
|
||
{
|
||
/* jump near, absolute indirect (/4) */
|
||
if ((insn[1] & 0x38) == 0x20)
|
||
return 1;
|
||
|
||
/* jump far, absolute indirect (/5) */
|
||
if ((insn[1] & 0x38) == 0x28)
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
|
||
|
||
static int
|
||
amd64_jmp_p (const struct amd64_insn *details)
|
||
{
|
||
const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
|
||
|
||
/* jump short, relative. */
|
||
if (insn[0] == 0xeb)
|
||
return 1;
|
||
|
||
/* jump near, relative. */
|
||
if (insn[0] == 0xe9)
|
||
return 1;
|
||
|
||
return amd64_absolute_jmp_p (details);
|
||
}
|
||
|
||
static int
|
||
amd64_absolute_call_p (const struct amd64_insn *details)
|
||
{
|
||
const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
|
||
|
||
if (insn[0] == 0xff)
|
||
{
|
||
/* Call near, absolute indirect (/2) */
|
||
if ((insn[1] & 0x38) == 0x10)
|
||
return 1;
|
||
|
||
/* Call far, absolute indirect (/3) */
|
||
if ((insn[1] & 0x38) == 0x18)
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
amd64_ret_p (const struct amd64_insn *details)
|
||
{
|
||
/* NOTE: gcc can emit "repz ; ret". */
|
||
const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
|
||
|
||
switch (insn[0])
|
||
{
|
||
case 0xc2: /* ret near, pop N bytes */
|
||
case 0xc3: /* ret near */
|
||
case 0xca: /* ret far, pop N bytes */
|
||
case 0xcb: /* ret far */
|
||
case 0xcf: /* iret */
|
||
return 1;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
static int
|
||
amd64_call_p (const struct amd64_insn *details)
|
||
{
|
||
const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
|
||
|
||
if (amd64_absolute_call_p (details))
|
||
return 1;
|
||
|
||
/* call near, relative */
|
||
if (insn[0] == 0xe8)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return non-zero if INSN is a system call, and set *LENGTHP to its
|
||
length in bytes. Otherwise, return zero. */
|
||
|
||
static int
|
||
amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
|
||
{
|
||
const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
|
||
|
||
if (insn[0] == 0x0f && insn[1] == 0x05)
|
||
{
|
||
*lengthp = 2;
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Classify the instruction at ADDR using PRED.
|
||
Throw an error if the memory can't be read. */
|
||
|
||
static int
|
||
amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
|
||
int (*pred) (const struct amd64_insn *))
|
||
{
|
||
struct amd64_insn details;
|
||
|
||
gdb::byte_vector buf (gdbarch_max_insn_length (gdbarch));
|
||
|
||
read_code (addr, buf.data (), buf.size ());
|
||
amd64_get_insn_details (buf.data (), &details);
|
||
|
||
int classification = pred (&details);
|
||
|
||
return classification;
|
||
}
|
||
|
||
/* The gdbarch insn_is_call method. */
|
||
|
||
static int
|
||
amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
|
||
{
|
||
return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
|
||
}
|
||
|
||
/* The gdbarch insn_is_ret method. */
|
||
|
||
static int
|
||
amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
|
||
{
|
||
return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
|
||
}
|
||
|
||
/* The gdbarch insn_is_jump method. */
|
||
|
||
static int
|
||
amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
|
||
{
|
||
return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
|
||
}
|
||
|
||
/* Fix up the state of registers and memory after having single-stepped
|
||
a displaced instruction. */
|
||
|
||
void
|
||
amd64_displaced_step_fixup (struct gdbarch *gdbarch,
|
||
struct displaced_step_copy_insn_closure *dsc_,
|
||
CORE_ADDR from, CORE_ADDR to,
|
||
struct regcache *regs, bool completed_p)
|
||
{
|
||
amd64_displaced_step_copy_insn_closure *dsc
|
||
= (amd64_displaced_step_copy_insn_closure *) dsc_;
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
/* The offset we applied to the instruction's address. */
|
||
ULONGEST insn_offset = to - from;
|
||
gdb_byte *insn = dsc->insn_buf.data ();
|
||
const struct amd64_insn *insn_details = &dsc->insn_details;
|
||
|
||
displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...",
|
||
paddress (gdbarch, from), paddress (gdbarch, to),
|
||
insn[0], insn[1]);
|
||
|
||
/* If we used a tmp reg, restore it. */
|
||
|
||
if (dsc->tmp_used)
|
||
{
|
||
displaced_debug_printf ("restoring reg %d to %s",
|
||
dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
|
||
regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
|
||
}
|
||
|
||
/* The list of issues to contend with here is taken from
|
||
resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
|
||
Yay for Free Software! */
|
||
|
||
/* Relocate the %rip back to the program's instruction stream,
|
||
if necessary. */
|
||
|
||
/* Except in the case of absolute or indirect jump or call
|
||
instructions, or a return instruction, the new rip is relative to
|
||
the displaced instruction; make it relative to the original insn.
|
||
Well, signal handler returns don't need relocation either, but we use the
|
||
value of %rip to recognize those; see below. */
|
||
if (!completed_p
|
||
|| (!amd64_absolute_jmp_p (insn_details)
|
||
&& !amd64_absolute_call_p (insn_details)
|
||
&& !amd64_ret_p (insn_details)))
|
||
{
|
||
int insn_len;
|
||
|
||
CORE_ADDR pc = regcache_read_pc (regs);
|
||
|
||
/* A signal trampoline system call changes the %rip, resuming
|
||
execution of the main program after the signal handler has
|
||
returned. That makes them like 'return' instructions; we
|
||
shouldn't relocate %rip.
|
||
|
||
But most system calls don't, and we do need to relocate %rip.
|
||
|
||
Our heuristic for distinguishing these cases: if stepping
|
||
over the system call instruction left control directly after
|
||
the instruction, the we relocate --- control almost certainly
|
||
doesn't belong in the displaced copy. Otherwise, we assume
|
||
the instruction has put control where it belongs, and leave
|
||
it unrelocated. Goodness help us if there are PC-relative
|
||
system calls. */
|
||
if (amd64_syscall_p (insn_details, &insn_len)
|
||
/* GDB can get control back after the insn after the syscall.
|
||
Presumably this is a kernel bug. Fixup ensures it's a nop, we
|
||
add one to the length for it. */
|
||
&& (pc < to || pc > (to + insn_len + 1)))
|
||
displaced_debug_printf ("syscall changed %%rip; not relocating");
|
||
else
|
||
{
|
||
CORE_ADDR rip = pc - insn_offset;
|
||
|
||
/* If we just stepped over a breakpoint insn, we don't backup
|
||
the pc on purpose; this is to match behaviour without
|
||
stepping. */
|
||
|
||
regcache_write_pc (regs, rip);
|
||
|
||
displaced_debug_printf ("relocated %%rip from %s to %s",
|
||
paddress (gdbarch, pc),
|
||
paddress (gdbarch, rip));
|
||
}
|
||
}
|
||
|
||
/* If the instruction was PUSHFL, then the TF bit will be set in the
|
||
pushed value, and should be cleared. We'll leave this for later,
|
||
since GDB already messes up the TF flag when stepping over a
|
||
pushfl. */
|
||
|
||
/* If the instruction was a call, the return address now atop the
|
||
stack is the address following the copied instruction. We need
|
||
to make it the address following the original instruction. */
|
||
if (completed_p && amd64_call_p (insn_details))
|
||
{
|
||
ULONGEST rsp;
|
||
ULONGEST retaddr;
|
||
const ULONGEST retaddr_len = 8;
|
||
|
||
regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
|
||
retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
|
||
retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL;
|
||
write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
|
||
|
||
displaced_debug_printf ("relocated return addr at %s to %s",
|
||
paddress (gdbarch, rsp),
|
||
paddress (gdbarch, retaddr));
|
||
}
|
||
}
|
||
|
||
/* If the instruction INSN uses RIP-relative addressing, return the
|
||
offset into the raw INSN where the displacement to be adjusted is
|
||
found. Returns 0 if the instruction doesn't use RIP-relative
|
||
addressing. */
|
||
|
||
static int
|
||
rip_relative_offset (struct amd64_insn *insn)
|
||
{
|
||
if (insn->modrm_offset != -1)
|
||
{
|
||
gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
|
||
|
||
if ((modrm & 0xc7) == 0x05)
|
||
{
|
||
/* The displacement is found right after the ModRM byte. */
|
||
return insn->modrm_offset + 1;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static void
|
||
append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
|
||
{
|
||
target_write_memory (*to, buf, len);
|
||
*to += len;
|
||
}
|
||
|
||
static void
|
||
amd64_relocate_instruction (struct gdbarch *gdbarch,
|
||
CORE_ADDR *to, CORE_ADDR oldloc)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
int len = gdbarch_max_insn_length (gdbarch);
|
||
/* Extra space for sentinels. */
|
||
int fixup_sentinel_space = len;
|
||
gdb::byte_vector buf (len + fixup_sentinel_space);
|
||
struct amd64_insn insn_details;
|
||
int offset = 0;
|
||
LONGEST rel32, newrel;
|
||
gdb_byte *insn;
|
||
int insn_length;
|
||
|
||
read_memory (oldloc, buf.data (), len);
|
||
|
||
/* Set up the sentinel space so we don't have to worry about running
|
||
off the end of the buffer. An excessive number of leading prefixes
|
||
could otherwise cause this. */
|
||
memset (buf.data () + len, 0, fixup_sentinel_space);
|
||
|
||
insn = buf.data ();
|
||
amd64_get_insn_details (insn, &insn_details);
|
||
|
||
insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
|
||
|
||
/* Skip legacy instruction prefixes. */
|
||
insn = amd64_skip_prefixes (insn);
|
||
|
||
/* Adjust calls with 32-bit relative addresses as push/jump, with
|
||
the address pushed being the location where the original call in
|
||
the user program would return to. */
|
||
if (insn[0] == 0xe8)
|
||
{
|
||
gdb_byte push_buf[32];
|
||
CORE_ADDR ret_addr;
|
||
int i = 0;
|
||
|
||
/* Where "ret" in the original code will return to. */
|
||
ret_addr = oldloc + insn_length;
|
||
|
||
/* If pushing an address higher than or equal to 0x80000000,
|
||
avoid 'pushq', as that sign extends its 32-bit operand, which
|
||
would be incorrect. */
|
||
if (ret_addr <= 0x7fffffff)
|
||
{
|
||
push_buf[0] = 0x68; /* pushq $... */
|
||
store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
|
||
i = 5;
|
||
}
|
||
else
|
||
{
|
||
push_buf[i++] = 0x48; /* sub $0x8,%rsp */
|
||
push_buf[i++] = 0x83;
|
||
push_buf[i++] = 0xec;
|
||
push_buf[i++] = 0x08;
|
||
|
||
push_buf[i++] = 0xc7; /* movl $imm,(%rsp) */
|
||
push_buf[i++] = 0x04;
|
||
push_buf[i++] = 0x24;
|
||
store_unsigned_integer (&push_buf[i], 4, byte_order,
|
||
ret_addr & 0xffffffff);
|
||
i += 4;
|
||
|
||
push_buf[i++] = 0xc7; /* movl $imm,4(%rsp) */
|
||
push_buf[i++] = 0x44;
|
||
push_buf[i++] = 0x24;
|
||
push_buf[i++] = 0x04;
|
||
store_unsigned_integer (&push_buf[i], 4, byte_order,
|
||
ret_addr >> 32);
|
||
i += 4;
|
||
}
|
||
gdb_assert (i <= sizeof (push_buf));
|
||
/* Push the push. */
|
||
append_insns (to, i, push_buf);
|
||
|
||
/* Convert the relative call to a relative jump. */
|
||
insn[0] = 0xe9;
|
||
|
||
/* Adjust the destination offset. */
|
||
rel32 = extract_signed_integer (insn + 1, 4, byte_order);
|
||
newrel = (oldloc - *to) + rel32;
|
||
store_signed_integer (insn + 1, 4, byte_order, newrel);
|
||
|
||
displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
|
||
hex_string (rel32), paddress (gdbarch, oldloc),
|
||
hex_string (newrel), paddress (gdbarch, *to));
|
||
|
||
/* Write the adjusted jump into its displaced location. */
|
||
append_insns (to, 5, insn);
|
||
return;
|
||
}
|
||
|
||
offset = rip_relative_offset (&insn_details);
|
||
if (!offset)
|
||
{
|
||
/* Adjust jumps with 32-bit relative addresses. Calls are
|
||
already handled above. */
|
||
if (insn[0] == 0xe9)
|
||
offset = 1;
|
||
/* Adjust conditional jumps. */
|
||
else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
|
||
offset = 2;
|
||
}
|
||
|
||
if (offset)
|
||
{
|
||
rel32 = extract_signed_integer (insn + offset, 4, byte_order);
|
||
newrel = (oldloc - *to) + rel32;
|
||
store_signed_integer (insn + offset, 4, byte_order, newrel);
|
||
displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
|
||
hex_string (rel32), paddress (gdbarch, oldloc),
|
||
hex_string (newrel), paddress (gdbarch, *to));
|
||
}
|
||
|
||
/* Write the adjusted instruction into its displaced location. */
|
||
append_insns (to, insn_length, buf.data ());
|
||
}
|
||
|
||
|
||
/* The maximum number of saved registers. This should include %rip. */
|
||
#define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
|
||
|
||
struct amd64_frame_cache
|
||
{
|
||
/* Base address. */
|
||
CORE_ADDR base;
|
||
int base_p;
|
||
CORE_ADDR sp_offset;
|
||
CORE_ADDR pc;
|
||
|
||
/* Saved registers. */
|
||
CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
|
||
CORE_ADDR saved_sp;
|
||
int saved_sp_reg;
|
||
|
||
/* Do we have a frame? */
|
||
int frameless_p;
|
||
};
|
||
|
||
/* Initialize a frame cache. */
|
||
|
||
static void
|
||
amd64_init_frame_cache (struct amd64_frame_cache *cache)
|
||
{
|
||
int i;
|
||
|
||
/* Base address. */
|
||
cache->base = 0;
|
||
cache->base_p = 0;
|
||
cache->sp_offset = -8;
|
||
cache->pc = 0;
|
||
|
||
/* Saved registers. We initialize these to -1 since zero is a valid
|
||
offset (that's where %rbp is supposed to be stored).
|
||
The values start out as being offsets, and are later converted to
|
||
addresses (at which point -1 is interpreted as an address, still meaning
|
||
"invalid"). */
|
||
for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
|
||
cache->saved_regs[i] = -1;
|
||
cache->saved_sp = 0;
|
||
cache->saved_sp_reg = -1;
|
||
|
||
/* Frameless until proven otherwise. */
|
||
cache->frameless_p = 1;
|
||
}
|
||
|
||
/* Allocate and initialize a frame cache. */
|
||
|
||
static struct amd64_frame_cache *
|
||
amd64_alloc_frame_cache (void)
|
||
{
|
||
struct amd64_frame_cache *cache;
|
||
|
||
cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
|
||
amd64_init_frame_cache (cache);
|
||
return cache;
|
||
}
|
||
|
||
/* GCC 4.4 and later, can put code in the prologue to realign the
|
||
stack pointer. Check whether PC points to such code, and update
|
||
CACHE accordingly. Return the first instruction after the code
|
||
sequence or CURRENT_PC, whichever is smaller. If we don't
|
||
recognize the code, return PC. */
|
||
|
||
static CORE_ADDR
|
||
amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
|
||
struct amd64_frame_cache *cache)
|
||
{
|
||
/* There are 2 code sequences to re-align stack before the frame
|
||
gets set up:
|
||
|
||
1. Use a caller-saved saved register:
|
||
|
||
leaq 8(%rsp), %reg
|
||
andq $-XXX, %rsp
|
||
pushq -8(%reg)
|
||
|
||
2. Use a callee-saved saved register:
|
||
|
||
pushq %reg
|
||
leaq 16(%rsp), %reg
|
||
andq $-XXX, %rsp
|
||
pushq -8(%reg)
|
||
|
||
"andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
|
||
|
||
0x48 0x83 0xe4 0xf0 andq $-16, %rsp
|
||
0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
|
||
*/
|
||
|
||
gdb_byte buf[18];
|
||
int reg, r;
|
||
int offset, offset_and;
|
||
|
||
if (target_read_code (pc, buf, sizeof buf))
|
||
return pc;
|
||
|
||
/* Check caller-saved saved register. The first instruction has
|
||
to be "leaq 8(%rsp), %reg". */
|
||
if ((buf[0] & 0xfb) == 0x48
|
||
&& buf[1] == 0x8d
|
||
&& buf[3] == 0x24
|
||
&& buf[4] == 0x8)
|
||
{
|
||
/* MOD must be binary 10 and R/M must be binary 100. */
|
||
if ((buf[2] & 0xc7) != 0x44)
|
||
return pc;
|
||
|
||
/* REG has register number. */
|
||
reg = (buf[2] >> 3) & 7;
|
||
|
||
/* Check the REX.R bit. */
|
||
if (buf[0] == 0x4c)
|
||
reg += 8;
|
||
|
||
offset = 5;
|
||
}
|
||
else
|
||
{
|
||
/* Check callee-saved saved register. The first instruction
|
||
has to be "pushq %reg". */
|
||
reg = 0;
|
||
if ((buf[0] & 0xf8) == 0x50)
|
||
offset = 0;
|
||
else if ((buf[0] & 0xf6) == 0x40
|
||
&& (buf[1] & 0xf8) == 0x50)
|
||
{
|
||
/* Check the REX.B bit. */
|
||
if ((buf[0] & 1) != 0)
|
||
reg = 8;
|
||
|
||
offset = 1;
|
||
}
|
||
else
|
||
return pc;
|
||
|
||
/* Get register. */
|
||
reg += buf[offset] & 0x7;
|
||
|
||
offset++;
|
||
|
||
/* The next instruction has to be "leaq 16(%rsp), %reg". */
|
||
if ((buf[offset] & 0xfb) != 0x48
|
||
|| buf[offset + 1] != 0x8d
|
||
|| buf[offset + 3] != 0x24
|
||
|| buf[offset + 4] != 0x10)
|
||
return pc;
|
||
|
||
/* MOD must be binary 10 and R/M must be binary 100. */
|
||
if ((buf[offset + 2] & 0xc7) != 0x44)
|
||
return pc;
|
||
|
||
/* REG has register number. */
|
||
r = (buf[offset + 2] >> 3) & 7;
|
||
|
||
/* Check the REX.R bit. */
|
||
if (buf[offset] == 0x4c)
|
||
r += 8;
|
||
|
||
/* Registers in pushq and leaq have to be the same. */
|
||
if (reg != r)
|
||
return pc;
|
||
|
||
offset += 5;
|
||
}
|
||
|
||
/* Rigister can't be %rsp nor %rbp. */
|
||
if (reg == 4 || reg == 5)
|
||
return pc;
|
||
|
||
/* The next instruction has to be "andq $-XXX, %rsp". */
|
||
if (buf[offset] != 0x48
|
||
|| buf[offset + 2] != 0xe4
|
||
|| (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
|
||
return pc;
|
||
|
||
offset_and = offset;
|
||
offset += buf[offset + 1] == 0x81 ? 7 : 4;
|
||
|
||
/* The next instruction has to be "pushq -8(%reg)". */
|
||
r = 0;
|
||
if (buf[offset] == 0xff)
|
||
offset++;
|
||
else if ((buf[offset] & 0xf6) == 0x40
|
||
&& buf[offset + 1] == 0xff)
|
||
{
|
||
/* Check the REX.B bit. */
|
||
if ((buf[offset] & 0x1) != 0)
|
||
r = 8;
|
||
offset += 2;
|
||
}
|
||
else
|
||
return pc;
|
||
|
||
/* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
|
||
01. */
|
||
if (buf[offset + 1] != 0xf8
|
||
|| (buf[offset] & 0xf8) != 0x70)
|
||
return pc;
|
||
|
||
/* R/M has register. */
|
||
r += buf[offset] & 7;
|
||
|
||
/* Registers in leaq and pushq have to be the same. */
|
||
if (reg != r)
|
||
return pc;
|
||
|
||
if (current_pc > pc + offset_and)
|
||
cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
|
||
|
||
return std::min (pc + offset + 2, current_pc);
|
||
}
|
||
|
||
/* Similar to amd64_analyze_stack_align for x32. */
|
||
|
||
static CORE_ADDR
|
||
amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
|
||
struct amd64_frame_cache *cache)
|
||
{
|
||
/* There are 2 code sequences to re-align stack before the frame
|
||
gets set up:
|
||
|
||
1. Use a caller-saved saved register:
|
||
|
||
leaq 8(%rsp), %reg
|
||
andq $-XXX, %rsp
|
||
pushq -8(%reg)
|
||
|
||
or
|
||
|
||
[addr32] leal 8(%rsp), %reg
|
||
andl $-XXX, %esp
|
||
[addr32] pushq -8(%reg)
|
||
|
||
2. Use a callee-saved saved register:
|
||
|
||
pushq %reg
|
||
leaq 16(%rsp), %reg
|
||
andq $-XXX, %rsp
|
||
pushq -8(%reg)
|
||
|
||
or
|
||
|
||
pushq %reg
|
||
[addr32] leal 16(%rsp), %reg
|
||
andl $-XXX, %esp
|
||
[addr32] pushq -8(%reg)
|
||
|
||
"andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
|
||
|
||
0x48 0x83 0xe4 0xf0 andq $-16, %rsp
|
||
0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
|
||
|
||
"andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
|
||
|
||
0x83 0xe4 0xf0 andl $-16, %esp
|
||
0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
|
||
*/
|
||
|
||
gdb_byte buf[19];
|
||
int reg, r;
|
||
int offset, offset_and;
|
||
|
||
if (target_read_memory (pc, buf, sizeof buf))
|
||
return pc;
|
||
|
||
/* Skip optional addr32 prefix. */
|
||
offset = buf[0] == 0x67 ? 1 : 0;
|
||
|
||
/* Check caller-saved saved register. The first instruction has
|
||
to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
|
||
if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
|
||
&& buf[offset + 1] == 0x8d
|
||
&& buf[offset + 3] == 0x24
|
||
&& buf[offset + 4] == 0x8)
|
||
{
|
||
/* MOD must be binary 10 and R/M must be binary 100. */
|
||
if ((buf[offset + 2] & 0xc7) != 0x44)
|
||
return pc;
|
||
|
||
/* REG has register number. */
|
||
reg = (buf[offset + 2] >> 3) & 7;
|
||
|
||
/* Check the REX.R bit. */
|
||
if ((buf[offset] & 0x4) != 0)
|
||
reg += 8;
|
||
|
||
offset += 5;
|
||
}
|
||
else
|
||
{
|
||
/* Check callee-saved saved register. The first instruction
|
||
has to be "pushq %reg". */
|
||
reg = 0;
|
||
if ((buf[offset] & 0xf6) == 0x40
|
||
&& (buf[offset + 1] & 0xf8) == 0x50)
|
||
{
|
||
/* Check the REX.B bit. */
|
||
if ((buf[offset] & 1) != 0)
|
||
reg = 8;
|
||
|
||
offset += 1;
|
||
}
|
||
else if ((buf[offset] & 0xf8) != 0x50)
|
||
return pc;
|
||
|
||
/* Get register. */
|
||
reg += buf[offset] & 0x7;
|
||
|
||
offset++;
|
||
|
||
/* Skip optional addr32 prefix. */
|
||
if (buf[offset] == 0x67)
|
||
offset++;
|
||
|
||
/* The next instruction has to be "leaq 16(%rsp), %reg" or
|
||
"leal 16(%rsp), %reg". */
|
||
if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
|
||
|| buf[offset + 1] != 0x8d
|
||
|| buf[offset + 3] != 0x24
|
||
|| buf[offset + 4] != 0x10)
|
||
return pc;
|
||
|
||
/* MOD must be binary 10 and R/M must be binary 100. */
|
||
if ((buf[offset + 2] & 0xc7) != 0x44)
|
||
return pc;
|
||
|
||
/* REG has register number. */
|
||
r = (buf[offset + 2] >> 3) & 7;
|
||
|
||
/* Check the REX.R bit. */
|
||
if ((buf[offset] & 0x4) != 0)
|
||
r += 8;
|
||
|
||
/* Registers in pushq and leaq have to be the same. */
|
||
if (reg != r)
|
||
return pc;
|
||
|
||
offset += 5;
|
||
}
|
||
|
||
/* Rigister can't be %rsp nor %rbp. */
|
||
if (reg == 4 || reg == 5)
|
||
return pc;
|
||
|
||
/* The next instruction may be "andq $-XXX, %rsp" or
|
||
"andl $-XXX, %esp". */
|
||
if (buf[offset] != 0x48)
|
||
offset--;
|
||
|
||
if (buf[offset + 2] != 0xe4
|
||
|| (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
|
||
return pc;
|
||
|
||
offset_and = offset;
|
||
offset += buf[offset + 1] == 0x81 ? 7 : 4;
|
||
|
||
/* Skip optional addr32 prefix. */
|
||
if (buf[offset] == 0x67)
|
||
offset++;
|
||
|
||
/* The next instruction has to be "pushq -8(%reg)". */
|
||
r = 0;
|
||
if (buf[offset] == 0xff)
|
||
offset++;
|
||
else if ((buf[offset] & 0xf6) == 0x40
|
||
&& buf[offset + 1] == 0xff)
|
||
{
|
||
/* Check the REX.B bit. */
|
||
if ((buf[offset] & 0x1) != 0)
|
||
r = 8;
|
||
offset += 2;
|
||
}
|
||
else
|
||
return pc;
|
||
|
||
/* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
|
||
01. */
|
||
if (buf[offset + 1] != 0xf8
|
||
|| (buf[offset] & 0xf8) != 0x70)
|
||
return pc;
|
||
|
||
/* R/M has register. */
|
||
r += buf[offset] & 7;
|
||
|
||
/* Registers in leaq and pushq have to be the same. */
|
||
if (reg != r)
|
||
return pc;
|
||
|
||
if (current_pc > pc + offset_and)
|
||
cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
|
||
|
||
return std::min (pc + offset + 2, current_pc);
|
||
}
|
||
|
||
/* Do a limited analysis of the prologue at PC and update CACHE
|
||
accordingly. Bail out early if CURRENT_PC is reached. Return the
|
||
address where the analysis stopped.
|
||
|
||
We will handle only functions beginning with:
|
||
|
||
pushq %rbp 0x55
|
||
movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
|
||
|
||
or (for the X32 ABI):
|
||
|
||
pushq %rbp 0x55
|
||
movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
|
||
|
||
The `endbr64` instruction can be found before these sequences, and will be
|
||
skipped if found.
|
||
|
||
Any function that doesn't start with one of these sequences will be
|
||
assumed to have no prologue and thus no valid frame pointer in
|
||
%rbp. */
|
||
|
||
static CORE_ADDR
|
||
amd64_analyze_prologue (struct gdbarch *gdbarch,
|
||
CORE_ADDR pc, CORE_ADDR current_pc,
|
||
struct amd64_frame_cache *cache)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
/* The `endbr64` instruction. */
|
||
static const gdb_byte endbr64[4] = { 0xf3, 0x0f, 0x1e, 0xfa };
|
||
/* There are two variations of movq %rsp, %rbp. */
|
||
static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
|
||
static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
|
||
/* Ditto for movl %esp, %ebp. */
|
||
static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
|
||
static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
|
||
|
||
gdb_byte buf[3];
|
||
gdb_byte op;
|
||
|
||
if (current_pc <= pc)
|
||
return current_pc;
|
||
|
||
if (gdbarch_ptr_bit (gdbarch) == 32)
|
||
pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
|
||
else
|
||
pc = amd64_analyze_stack_align (pc, current_pc, cache);
|
||
|
||
op = read_code_unsigned_integer (pc, 1, byte_order);
|
||
|
||
/* Check for the `endbr64` instruction, skip it if found. */
|
||
if (op == endbr64[0])
|
||
{
|
||
read_code (pc + 1, buf, 3);
|
||
|
||
if (memcmp (buf, &endbr64[1], 3) == 0)
|
||
pc += 4;
|
||
|
||
op = read_code_unsigned_integer (pc, 1, byte_order);
|
||
}
|
||
|
||
if (current_pc <= pc)
|
||
return current_pc;
|
||
|
||
if (op == 0x55) /* pushq %rbp */
|
||
{
|
||
/* Take into account that we've executed the `pushq %rbp' that
|
||
starts this instruction sequence. */
|
||
cache->saved_regs[AMD64_RBP_REGNUM] = 0;
|
||
cache->sp_offset += 8;
|
||
|
||
/* If that's all, return now. */
|
||
if (current_pc <= pc + 1)
|
||
return current_pc;
|
||
|
||
read_code (pc + 1, buf, 3);
|
||
|
||
/* Check for `movq %rsp, %rbp'. */
|
||
if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
|
||
|| memcmp (buf, mov_rsp_rbp_2, 3) == 0)
|
||
{
|
||
/* OK, we actually have a frame. */
|
||
cache->frameless_p = 0;
|
||
return pc + 4;
|
||
}
|
||
|
||
/* For X32, also check for `movl %esp, %ebp'. */
|
||
if (gdbarch_ptr_bit (gdbarch) == 32)
|
||
{
|
||
if (memcmp (buf, mov_esp_ebp_1, 2) == 0
|
||
|| memcmp (buf, mov_esp_ebp_2, 2) == 0)
|
||
{
|
||
/* OK, we actually have a frame. */
|
||
cache->frameless_p = 0;
|
||
return pc + 3;
|
||
}
|
||
}
|
||
|
||
return pc + 1;
|
||
}
|
||
|
||
return pc;
|
||
}
|
||
|
||
/* Work around false termination of prologue - GCC PR debug/48827.
|
||
|
||
START_PC is the first instruction of a function, PC is its minimal already
|
||
determined advanced address. Function returns PC if it has nothing to do.
|
||
|
||
84 c0 test %al,%al
|
||
74 23 je after
|
||
<-- here is 0 lines advance - the false prologue end marker.
|
||
0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
|
||
0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
|
||
0f 29 55 90 movaps %xmm2,-0x70(%rbp)
|
||
0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
|
||
0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
|
||
0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
|
||
0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
|
||
0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
|
||
after: */
|
||
|
||
static CORE_ADDR
|
||
amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
|
||
{
|
||
struct symtab_and_line start_pc_sal, next_sal;
|
||
gdb_byte buf[4 + 8 * 7];
|
||
int offset, xmmreg;
|
||
|
||
if (pc == start_pc)
|
||
return pc;
|
||
|
||
start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
|
||
if (start_pc_sal.symtab == NULL
|
||
|| producer_is_gcc_ge_4 (start_pc_sal.symtab->compunit ()
|
||
->producer ()) < 6
|
||
|| start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
|
||
return pc;
|
||
|
||
next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
|
||
if (next_sal.line != start_pc_sal.line)
|
||
return pc;
|
||
|
||
/* START_PC can be from overlayed memory, ignored here. */
|
||
if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
|
||
return pc;
|
||
|
||
/* test %al,%al */
|
||
if (buf[0] != 0x84 || buf[1] != 0xc0)
|
||
return pc;
|
||
/* je AFTER */
|
||
if (buf[2] != 0x74)
|
||
return pc;
|
||
|
||
offset = 4;
|
||
for (xmmreg = 0; xmmreg < 8; xmmreg++)
|
||
{
|
||
/* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
|
||
if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
|
||
|| (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
|
||
return pc;
|
||
|
||
/* 0b01?????? */
|
||
if ((buf[offset + 2] & 0xc0) == 0x40)
|
||
{
|
||
/* 8-bit displacement. */
|
||
offset += 4;
|
||
}
|
||
/* 0b10?????? */
|
||
else if ((buf[offset + 2] & 0xc0) == 0x80)
|
||
{
|
||
/* 32-bit displacement. */
|
||
offset += 7;
|
||
}
|
||
else
|
||
return pc;
|
||
}
|
||
|
||
/* je AFTER */
|
||
if (offset - 4 != buf[3])
|
||
return pc;
|
||
|
||
return next_sal.end;
|
||
}
|
||
|
||
/* Return PC of first real instruction. */
|
||
|
||
static CORE_ADDR
|
||
amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
|
||
{
|
||
struct amd64_frame_cache cache;
|
||
CORE_ADDR pc;
|
||
CORE_ADDR func_addr;
|
||
|
||
if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
|
||
{
|
||
CORE_ADDR post_prologue_pc
|
||
= skip_prologue_using_sal (gdbarch, func_addr);
|
||
struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
|
||
|
||
/* LLVM backend (Clang/Flang) always emits a line note before the
|
||
prologue and another one after. We trust clang and newer Intel
|
||
compilers to emit usable line notes. */
|
||
if (post_prologue_pc
|
||
&& (cust != NULL
|
||
&& cust->producer () != nullptr
|
||
&& (producer_is_llvm (cust->producer ())
|
||
|| producer_is_icc_ge_19 (cust->producer ()))))
|
||
return std::max (start_pc, post_prologue_pc);
|
||
}
|
||
|
||
amd64_init_frame_cache (&cache);
|
||
pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
|
||
&cache);
|
||
if (cache.frameless_p)
|
||
return start_pc;
|
||
|
||
return amd64_skip_xmm_prologue (pc, start_pc);
|
||
}
|
||
|
||
|
||
/* Normal frames. */
|
||
|
||
static void
|
||
amd64_frame_cache_1 (const frame_info_ptr &this_frame,
|
||
struct amd64_frame_cache *cache)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
gdb_byte buf[8];
|
||
int i;
|
||
|
||
cache->pc = get_frame_func (this_frame);
|
||
if (cache->pc != 0)
|
||
amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
|
||
cache);
|
||
|
||
if (cache->frameless_p)
|
||
{
|
||
/* We didn't find a valid frame. If we're at the start of a
|
||
function, or somewhere half-way its prologue, the function's
|
||
frame probably hasn't been fully setup yet. Try to
|
||
reconstruct the base address for the stack frame by looking
|
||
at the stack pointer. For truly "frameless" functions this
|
||
might work too. */
|
||
|
||
if (cache->saved_sp_reg != -1)
|
||
{
|
||
/* Stack pointer has been saved. */
|
||
get_frame_register (this_frame, cache->saved_sp_reg, buf);
|
||
cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
|
||
|
||
/* We're halfway aligning the stack. */
|
||
cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
|
||
cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
|
||
|
||
/* This will be added back below. */
|
||
cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
|
||
}
|
||
else
|
||
{
|
||
get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
|
||
cache->base = extract_unsigned_integer (buf, 8, byte_order)
|
||
+ cache->sp_offset;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
|
||
cache->base = extract_unsigned_integer (buf, 8, byte_order);
|
||
}
|
||
|
||
/* Now that we have the base address for the stack frame we can
|
||
calculate the value of %rsp in the calling frame. */
|
||
cache->saved_sp = cache->base + 16;
|
||
|
||
/* For normal frames, %rip is stored at 8(%rbp). If we don't have a
|
||
frame we find it at the same offset from the reconstructed base
|
||
address. If we're halfway aligning the stack, %rip is handled
|
||
differently (see above). */
|
||
if (!cache->frameless_p || cache->saved_sp_reg == -1)
|
||
cache->saved_regs[AMD64_RIP_REGNUM] = 8;
|
||
|
||
/* Adjust all the saved registers such that they contain addresses
|
||
instead of offsets. */
|
||
for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
|
||
if (cache->saved_regs[i] != -1)
|
||
cache->saved_regs[i] += cache->base;
|
||
|
||
cache->base_p = 1;
|
||
}
|
||
|
||
static struct amd64_frame_cache *
|
||
amd64_frame_cache (const frame_info_ptr &this_frame, void **this_cache)
|
||
{
|
||
struct amd64_frame_cache *cache;
|
||
|
||
if (*this_cache)
|
||
return (struct amd64_frame_cache *) *this_cache;
|
||
|
||
cache = amd64_alloc_frame_cache ();
|
||
*this_cache = cache;
|
||
|
||
try
|
||
{
|
||
amd64_frame_cache_1 (this_frame, cache);
|
||
}
|
||
catch (const gdb_exception_error &ex)
|
||
{
|
||
if (ex.error != NOT_AVAILABLE_ERROR)
|
||
throw;
|
||
}
|
||
|
||
return cache;
|
||
}
|
||
|
||
static enum unwind_stop_reason
|
||
amd64_frame_unwind_stop_reason (const frame_info_ptr &this_frame,
|
||
void **this_cache)
|
||
{
|
||
struct amd64_frame_cache *cache =
|
||
amd64_frame_cache (this_frame, this_cache);
|
||
|
||
if (!cache->base_p)
|
||
return UNWIND_UNAVAILABLE;
|
||
|
||
/* This marks the outermost frame. */
|
||
if (cache->base == 0)
|
||
return UNWIND_OUTERMOST;
|
||
|
||
return UNWIND_NO_REASON;
|
||
}
|
||
|
||
static void
|
||
amd64_frame_this_id (const frame_info_ptr &this_frame, void **this_cache,
|
||
struct frame_id *this_id)
|
||
{
|
||
struct amd64_frame_cache *cache =
|
||
amd64_frame_cache (this_frame, this_cache);
|
||
|
||
if (!cache->base_p)
|
||
(*this_id) = frame_id_build_unavailable_stack (cache->pc);
|
||
else if (cache->base == 0)
|
||
{
|
||
/* This marks the outermost frame. */
|
||
return;
|
||
}
|
||
else
|
||
(*this_id) = frame_id_build (cache->base + 16, cache->pc);
|
||
}
|
||
|
||
static struct value *
|
||
amd64_frame_prev_register (const frame_info_ptr &this_frame, void **this_cache,
|
||
int regnum)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
struct amd64_frame_cache *cache =
|
||
amd64_frame_cache (this_frame, this_cache);
|
||
|
||
gdb_assert (regnum >= 0);
|
||
|
||
if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
|
||
return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
|
||
|
||
if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
|
||
return frame_unwind_got_memory (this_frame, regnum,
|
||
cache->saved_regs[regnum]);
|
||
|
||
return frame_unwind_got_register (this_frame, regnum, regnum);
|
||
}
|
||
|
||
static const struct frame_unwind amd64_frame_unwind =
|
||
{
|
||
"amd64 prologue",
|
||
NORMAL_FRAME,
|
||
amd64_frame_unwind_stop_reason,
|
||
amd64_frame_this_id,
|
||
amd64_frame_prev_register,
|
||
NULL,
|
||
default_frame_sniffer
|
||
};
|
||
|
||
/* Generate a bytecode expression to get the value of the saved PC. */
|
||
|
||
static void
|
||
amd64_gen_return_address (struct gdbarch *gdbarch,
|
||
struct agent_expr *ax, struct axs_value *value,
|
||
CORE_ADDR scope)
|
||
{
|
||
/* The following sequence assumes the traditional use of the base
|
||
register. */
|
||
ax_reg (ax, AMD64_RBP_REGNUM);
|
||
ax_const_l (ax, 8);
|
||
ax_simple (ax, aop_add);
|
||
value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
|
||
value->kind = axs_lvalue_memory;
|
||
}
|
||
|
||
|
||
/* Signal trampolines. */
|
||
|
||
/* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
|
||
64-bit variants. This would require using identical frame caches
|
||
on both platforms. */
|
||
|
||
static struct amd64_frame_cache *
|
||
amd64_sigtramp_frame_cache (const frame_info_ptr &this_frame, void **this_cache)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
struct amd64_frame_cache *cache;
|
||
CORE_ADDR addr;
|
||
gdb_byte buf[8];
|
||
int i;
|
||
|
||
if (*this_cache)
|
||
return (struct amd64_frame_cache *) *this_cache;
|
||
|
||
cache = amd64_alloc_frame_cache ();
|
||
|
||
try
|
||
{
|
||
get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
|
||
cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
|
||
|
||
addr = tdep->sigcontext_addr (this_frame);
|
||
gdb_assert (tdep->sc_reg_offset);
|
||
gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
|
||
for (i = 0; i < tdep->sc_num_regs; i++)
|
||
if (tdep->sc_reg_offset[i] != -1)
|
||
cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
|
||
|
||
cache->base_p = 1;
|
||
}
|
||
catch (const gdb_exception_error &ex)
|
||
{
|
||
if (ex.error != NOT_AVAILABLE_ERROR)
|
||
throw;
|
||
}
|
||
|
||
*this_cache = cache;
|
||
return cache;
|
||
}
|
||
|
||
static enum unwind_stop_reason
|
||
amd64_sigtramp_frame_unwind_stop_reason (const frame_info_ptr &this_frame,
|
||
void **this_cache)
|
||
{
|
||
struct amd64_frame_cache *cache =
|
||
amd64_sigtramp_frame_cache (this_frame, this_cache);
|
||
|
||
if (!cache->base_p)
|
||
return UNWIND_UNAVAILABLE;
|
||
|
||
return UNWIND_NO_REASON;
|
||
}
|
||
|
||
static void
|
||
amd64_sigtramp_frame_this_id (const frame_info_ptr &this_frame,
|
||
void **this_cache, struct frame_id *this_id)
|
||
{
|
||
struct amd64_frame_cache *cache =
|
||
amd64_sigtramp_frame_cache (this_frame, this_cache);
|
||
|
||
if (!cache->base_p)
|
||
(*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
|
||
else if (cache->base == 0)
|
||
{
|
||
/* This marks the outermost frame. */
|
||
return;
|
||
}
|
||
else
|
||
(*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
|
||
}
|
||
|
||
static struct value *
|
||
amd64_sigtramp_frame_prev_register (const frame_info_ptr &this_frame,
|
||
void **this_cache, int regnum)
|
||
{
|
||
/* Make sure we've initialized the cache. */
|
||
amd64_sigtramp_frame_cache (this_frame, this_cache);
|
||
|
||
return amd64_frame_prev_register (this_frame, this_cache, regnum);
|
||
}
|
||
|
||
static int
|
||
amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
|
||
const frame_info_ptr &this_frame,
|
||
void **this_cache)
|
||
{
|
||
gdbarch *arch = get_frame_arch (this_frame);
|
||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
|
||
|
||
/* We shouldn't even bother if we don't have a sigcontext_addr
|
||
handler. */
|
||
if (tdep->sigcontext_addr == NULL)
|
||
return 0;
|
||
|
||
if (tdep->sigtramp_p != NULL)
|
||
{
|
||
if (tdep->sigtramp_p (this_frame))
|
||
return 1;
|
||
}
|
||
|
||
if (tdep->sigtramp_start != 0)
|
||
{
|
||
CORE_ADDR pc = get_frame_pc (this_frame);
|
||
|
||
gdb_assert (tdep->sigtramp_end != 0);
|
||
if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static const struct frame_unwind amd64_sigtramp_frame_unwind =
|
||
{
|
||
"amd64 sigtramp",
|
||
SIGTRAMP_FRAME,
|
||
amd64_sigtramp_frame_unwind_stop_reason,
|
||
amd64_sigtramp_frame_this_id,
|
||
amd64_sigtramp_frame_prev_register,
|
||
NULL,
|
||
amd64_sigtramp_frame_sniffer
|
||
};
|
||
|
||
|
||
static CORE_ADDR
|
||
amd64_frame_base_address (const frame_info_ptr &this_frame, void **this_cache)
|
||
{
|
||
struct amd64_frame_cache *cache =
|
||
amd64_frame_cache (this_frame, this_cache);
|
||
|
||
return cache->base;
|
||
}
|
||
|
||
static const struct frame_base amd64_frame_base =
|
||
{
|
||
&amd64_frame_unwind,
|
||
amd64_frame_base_address,
|
||
amd64_frame_base_address,
|
||
amd64_frame_base_address
|
||
};
|
||
|
||
/* Implement core of the stack_frame_destroyed_p gdbarch method. */
|
||
|
||
static int
|
||
amd64_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch, CORE_ADDR pc)
|
||
{
|
||
gdb_byte insn;
|
||
|
||
std::optional<CORE_ADDR> epilogue = find_epilogue_using_linetable (pc);
|
||
|
||
/* PC is pointing at the next instruction to be executed. If it is
|
||
equal to the epilogue start, it means we're right before it starts,
|
||
so the stack is still valid. */
|
||
if (epilogue)
|
||
return pc > epilogue;
|
||
|
||
if (target_read_memory (pc, &insn, 1))
|
||
return 0; /* Can't read memory at pc. */
|
||
|
||
if (insn != 0xc3) /* 'ret' instruction. */
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Normal frames, but in a function epilogue. */
|
||
|
||
/* Implement the stack_frame_destroyed_p gdbarch method.
|
||
|
||
The epilogue is defined here as the 'ret' instruction, which will
|
||
follow any instruction such as 'leave' or 'pop %ebp' that destroys
|
||
the function's stack frame. */
|
||
|
||
static int
|
||
amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
|
||
{
|
||
struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
|
||
|
||
if (cust != nullptr && cust->producer () != nullptr
|
||
&& producer_is_llvm (cust->producer ()))
|
||
return amd64_stack_frame_destroyed_p_1 (gdbarch, pc);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
amd64_epilogue_frame_sniffer_1 (const struct frame_unwind *self,
|
||
const frame_info_ptr &this_frame,
|
||
void **this_prologue_cache, bool override_p)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
CORE_ADDR pc = get_frame_pc (this_frame);
|
||
|
||
if (frame_relative_level (this_frame) != 0)
|
||
/* We're not in the inner frame, so assume we're not in an epilogue. */
|
||
return 0;
|
||
|
||
bool unwind_valid_p
|
||
= compunit_epilogue_unwind_valid (find_pc_compunit_symtab (pc));
|
||
if (override_p)
|
||
{
|
||
if (unwind_valid_p)
|
||
/* Don't override the symtab unwinders, skip
|
||
"amd64 epilogue override". */
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
if (!unwind_valid_p)
|
||
/* "amd64 epilogue override" unwinder already ran, skip
|
||
"amd64 epilogue". */
|
||
return 0;
|
||
}
|
||
|
||
/* Check whether we're in an epilogue. */
|
||
return amd64_stack_frame_destroyed_p_1 (gdbarch, pc);
|
||
}
|
||
|
||
static int
|
||
amd64_epilogue_override_frame_sniffer (const struct frame_unwind *self,
|
||
const frame_info_ptr &this_frame,
|
||
void **this_prologue_cache)
|
||
{
|
||
return amd64_epilogue_frame_sniffer_1 (self, this_frame, this_prologue_cache,
|
||
true);
|
||
}
|
||
|
||
static int
|
||
amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
|
||
const frame_info_ptr &this_frame,
|
||
void **this_prologue_cache)
|
||
{
|
||
return amd64_epilogue_frame_sniffer_1 (self, this_frame, this_prologue_cache,
|
||
false);
|
||
}
|
||
|
||
static struct amd64_frame_cache *
|
||
amd64_epilogue_frame_cache (const frame_info_ptr &this_frame, void **this_cache)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
struct amd64_frame_cache *cache;
|
||
gdb_byte buf[8];
|
||
|
||
if (*this_cache)
|
||
return (struct amd64_frame_cache *) *this_cache;
|
||
|
||
cache = amd64_alloc_frame_cache ();
|
||
*this_cache = cache;
|
||
|
||
try
|
||
{
|
||
/* Cache base will be %rsp plus cache->sp_offset (-8). */
|
||
get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
|
||
cache->base = extract_unsigned_integer (buf, 8,
|
||
byte_order) + cache->sp_offset;
|
||
|
||
/* Cache pc will be the frame func. */
|
||
cache->pc = get_frame_func (this_frame);
|
||
|
||
/* The previous value of %rsp is cache->base plus 16. */
|
||
cache->saved_sp = cache->base + 16;
|
||
|
||
/* The saved %rip will be at cache->base plus 8. */
|
||
cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
|
||
|
||
cache->base_p = 1;
|
||
}
|
||
catch (const gdb_exception_error &ex)
|
||
{
|
||
if (ex.error != NOT_AVAILABLE_ERROR)
|
||
throw;
|
||
}
|
||
|
||
return cache;
|
||
}
|
||
|
||
static enum unwind_stop_reason
|
||
amd64_epilogue_frame_unwind_stop_reason (const frame_info_ptr &this_frame,
|
||
void **this_cache)
|
||
{
|
||
struct amd64_frame_cache *cache
|
||
= amd64_epilogue_frame_cache (this_frame, this_cache);
|
||
|
||
if (!cache->base_p)
|
||
return UNWIND_UNAVAILABLE;
|
||
|
||
return UNWIND_NO_REASON;
|
||
}
|
||
|
||
static void
|
||
amd64_epilogue_frame_this_id (const frame_info_ptr &this_frame,
|
||
void **this_cache,
|
||
struct frame_id *this_id)
|
||
{
|
||
struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
|
||
this_cache);
|
||
|
||
if (!cache->base_p)
|
||
(*this_id) = frame_id_build_unavailable_stack (cache->pc);
|
||
else
|
||
(*this_id) = frame_id_build (cache->base + 16, cache->pc);
|
||
}
|
||
|
||
static const struct frame_unwind amd64_epilogue_override_frame_unwind =
|
||
{
|
||
"amd64 epilogue override",
|
||
NORMAL_FRAME,
|
||
amd64_epilogue_frame_unwind_stop_reason,
|
||
amd64_epilogue_frame_this_id,
|
||
amd64_frame_prev_register,
|
||
NULL,
|
||
amd64_epilogue_override_frame_sniffer
|
||
};
|
||
|
||
static const struct frame_unwind amd64_epilogue_frame_unwind =
|
||
{
|
||
"amd64 epilogue",
|
||
NORMAL_FRAME,
|
||
amd64_epilogue_frame_unwind_stop_reason,
|
||
amd64_epilogue_frame_this_id,
|
||
amd64_frame_prev_register,
|
||
NULL,
|
||
amd64_epilogue_frame_sniffer
|
||
};
|
||
|
||
static struct frame_id
|
||
amd64_dummy_id (struct gdbarch *gdbarch, const frame_info_ptr &this_frame)
|
||
{
|
||
CORE_ADDR fp;
|
||
|
||
fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
|
||
|
||
return frame_id_build (fp + 16, get_frame_pc (this_frame));
|
||
}
|
||
|
||
/* 16 byte align the SP per frame requirements. */
|
||
|
||
static CORE_ADDR
|
||
amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
||
{
|
||
return sp & -(CORE_ADDR)16;
|
||
}
|
||
|
||
|
||
/* Supply register REGNUM from the buffer specified by FPREGS and LEN
|
||
in the floating-point register set REGSET to register cache
|
||
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
|
||
|
||
static void
|
||
amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
|
||
int regnum, const void *fpregs, size_t len)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
||
|
||
gdb_assert (len >= tdep->sizeof_fpregset);
|
||
amd64_supply_fxsave (regcache, regnum, fpregs);
|
||
}
|
||
|
||
/* Collect register REGNUM from the register cache REGCACHE and store
|
||
it in the buffer specified by FPREGS and LEN as described by the
|
||
floating-point register set REGSET. If REGNUM is -1, do this for
|
||
all registers in REGSET. */
|
||
|
||
static void
|
||
amd64_collect_fpregset (const struct regset *regset,
|
||
const struct regcache *regcache,
|
||
int regnum, void *fpregs, size_t len)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
||
|
||
gdb_assert (len >= tdep->sizeof_fpregset);
|
||
amd64_collect_fxsave (regcache, regnum, fpregs);
|
||
}
|
||
|
||
const struct regset amd64_fpregset =
|
||
{
|
||
NULL, amd64_supply_fpregset, amd64_collect_fpregset
|
||
};
|
||
|
||
|
||
/* Figure out where the longjmp will land. Slurp the jmp_buf out of
|
||
%rdi. We expect its value to be a pointer to the jmp_buf structure
|
||
from which we extract the address that we will land at. This
|
||
address is copied into PC. This routine returns non-zero on
|
||
success. */
|
||
|
||
static int
|
||
amd64_get_longjmp_target (const frame_info_ptr &frame, CORE_ADDR *pc)
|
||
{
|
||
gdb_byte buf[8];
|
||
CORE_ADDR jb_addr;
|
||
struct gdbarch *gdbarch = get_frame_arch (frame);
|
||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
||
int jb_pc_offset = tdep->jb_pc_offset;
|
||
int len = builtin_type (gdbarch)->builtin_func_ptr->length ();
|
||
|
||
/* If JB_PC_OFFSET is -1, we have no way to find out where the
|
||
longjmp will land. */
|
||
if (jb_pc_offset == -1)
|
||
return 0;
|
||
|
||
get_frame_register (frame, AMD64_RDI_REGNUM, buf);
|
||
jb_addr= extract_typed_address
|
||
(buf, builtin_type (gdbarch)->builtin_data_ptr);
|
||
if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
|
||
return 0;
|
||
|
||
*pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
|
||
|
||
return 1;
|
||
}
|
||
|
||
static const int amd64_record_regmap[] =
|
||
{
|
||
AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
|
||
AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
|
||
AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
|
||
AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
|
||
AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
|
||
AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM,
|
||
AMD64_XMM0_REGNUM
|
||
};
|
||
|
||
/* Implement the "in_indirect_branch_thunk" gdbarch function. */
|
||
|
||
static bool
|
||
amd64_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
|
||
{
|
||
return x86_in_indirect_branch_thunk (pc, amd64_register_names,
|
||
AMD64_RAX_REGNUM,
|
||
AMD64_RIP_REGNUM);
|
||
}
|
||
|
||
void
|
||
amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
|
||
const target_desc *default_tdesc)
|
||
{
|
||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
||
const struct target_desc *tdesc = info.target_desc;
|
||
static const char *const stap_integer_prefixes[] = { "$", NULL };
|
||
static const char *const stap_register_prefixes[] = { "%", NULL };
|
||
static const char *const stap_register_indirection_prefixes[] = { "(",
|
||
NULL };
|
||
static const char *const stap_register_indirection_suffixes[] = { ")",
|
||
NULL };
|
||
|
||
/* AMD64 generally uses `fxsave' instead of `fsave' for saving its
|
||
floating-point registers. */
|
||
tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
|
||
tdep->fpregset = &amd64_fpregset;
|
||
|
||
if (! tdesc_has_registers (tdesc))
|
||
tdesc = default_tdesc;
|
||
tdep->tdesc = tdesc;
|
||
|
||
tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
|
||
tdep->register_names = amd64_register_names;
|
||
|
||
if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
|
||
{
|
||
tdep->zmmh_register_names = amd64_zmmh_names;
|
||
tdep->k_register_names = amd64_k_names;
|
||
tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
|
||
tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
|
||
|
||
tdep->num_zmm_regs = 32;
|
||
tdep->num_xmm_avx512_regs = 16;
|
||
tdep->num_ymm_avx512_regs = 16;
|
||
|
||
tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
|
||
tdep->k0_regnum = AMD64_K0_REGNUM;
|
||
tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
|
||
tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
|
||
}
|
||
|
||
if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
|
||
{
|
||
tdep->ymmh_register_names = amd64_ymmh_names;
|
||
tdep->num_ymm_regs = 16;
|
||
tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
|
||
}
|
||
|
||
if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments") != NULL)
|
||
{
|
||
tdep->fsbase_regnum = AMD64_FSBASE_REGNUM;
|
||
}
|
||
|
||
if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys") != NULL)
|
||
{
|
||
tdep->pkeys_register_names = amd64_pkeys_names;
|
||
tdep->pkru_regnum = AMD64_PKRU_REGNUM;
|
||
tdep->num_pkeys_regs = 1;
|
||
}
|
||
|
||
tdep->num_byte_regs = 20;
|
||
tdep->num_word_regs = 16;
|
||
tdep->num_dword_regs = 16;
|
||
/* Avoid wiring in the MMX registers for now. */
|
||
tdep->num_mmx_regs = 0;
|
||
|
||
set_gdbarch_pseudo_register_read_value (gdbarch,
|
||
amd64_pseudo_register_read_value);
|
||
set_gdbarch_pseudo_register_write (gdbarch, amd64_pseudo_register_write);
|
||
set_gdbarch_ax_pseudo_register_collect (gdbarch,
|
||
amd64_ax_pseudo_register_collect);
|
||
|
||
set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
|
||
|
||
/* AMD64 has an FPU and 16 SSE registers. */
|
||
tdep->st0_regnum = AMD64_ST0_REGNUM;
|
||
tdep->num_xmm_regs = 16;
|
||
|
||
/* This is what all the fuss is about. */
|
||
set_gdbarch_long_bit (gdbarch, 64);
|
||
set_gdbarch_long_long_bit (gdbarch, 64);
|
||
set_gdbarch_ptr_bit (gdbarch, 64);
|
||
|
||
/* In contrast to the i386, on AMD64 a `long double' actually takes
|
||
up 128 bits, even though it's still based on the i387 extended
|
||
floating-point format which has only 80 significant bits. */
|
||
set_gdbarch_long_double_bit (gdbarch, 128);
|
||
|
||
set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
|
||
|
||
/* Register numbers of various important registers. */
|
||
set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
|
||
set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
|
||
set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
|
||
set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
|
||
|
||
/* The "default" register numbering scheme for AMD64 is referred to
|
||
as the "DWARF Register Number Mapping" in the System V psABI.
|
||
The preferred debugging format for all known AMD64 targets is
|
||
actually DWARF2, and GCC doesn't seem to support DWARF (that is
|
||
DWARF-1), but we provide the same mapping just in case. This
|
||
mapping is also used for stabs, which GCC does support. */
|
||
set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
|
||
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
|
||
|
||
/* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
|
||
be in use on any of the supported AMD64 targets. */
|
||
|
||
/* Call dummy code. */
|
||
set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
|
||
set_gdbarch_frame_align (gdbarch, amd64_frame_align);
|
||
set_gdbarch_frame_red_zone_size (gdbarch, 128);
|
||
|
||
set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
|
||
set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
|
||
set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
|
||
|
||
set_gdbarch_return_value_as_value (gdbarch, amd64_return_value);
|
||
|
||
set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
|
||
|
||
tdep->record_regmap = amd64_record_regmap;
|
||
|
||
set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
|
||
|
||
/* Hook the function epilogue frame unwinder. This unwinder is
|
||
appended to the list first, so that it supersedes the other
|
||
unwinders in function epilogues. */
|
||
frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_override_frame_unwind);
|
||
|
||
frame_unwind_append_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
|
||
|
||
/* Hook the prologue-based frame unwinders. */
|
||
frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
|
||
frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
|
||
frame_base_set_default (gdbarch, &amd64_frame_base);
|
||
|
||
set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
|
||
|
||
set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
|
||
|
||
set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
|
||
|
||
set_gdbarch_stack_frame_destroyed_p (gdbarch, amd64_stack_frame_destroyed_p);
|
||
|
||
/* SystemTap variables and functions. */
|
||
set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
|
||
set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
|
||
set_gdbarch_stap_register_indirection_prefixes (gdbarch,
|
||
stap_register_indirection_prefixes);
|
||
set_gdbarch_stap_register_indirection_suffixes (gdbarch,
|
||
stap_register_indirection_suffixes);
|
||
set_gdbarch_stap_is_single_operand (gdbarch,
|
||
i386_stap_is_single_operand);
|
||
set_gdbarch_stap_parse_special_token (gdbarch,
|
||
i386_stap_parse_special_token);
|
||
set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
|
||
set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
|
||
set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
|
||
|
||
set_gdbarch_in_indirect_branch_thunk (gdbarch,
|
||
amd64_in_indirect_branch_thunk);
|
||
|
||
register_amd64_ravenscar_ops (gdbarch);
|
||
}
|
||
|
||
/* Initialize ARCH for x86-64, no osabi. */
|
||
|
||
static void
|
||
amd64_none_init_abi (gdbarch_info info, gdbarch *arch)
|
||
{
|
||
amd64_init_abi (info, arch, amd64_target_description (X86_XSTATE_SSE_MASK,
|
||
true));
|
||
}
|
||
|
||
static struct type *
|
||
amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
|
||
{
|
||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
||
|
||
switch (regnum - tdep->eax_regnum)
|
||
{
|
||
case AMD64_RBP_REGNUM: /* %ebp */
|
||
case AMD64_RSP_REGNUM: /* %esp */
|
||
return builtin_type (gdbarch)->builtin_data_ptr;
|
||
case AMD64_RIP_REGNUM: /* %eip */
|
||
return builtin_type (gdbarch)->builtin_func_ptr;
|
||
}
|
||
|
||
return i386_pseudo_register_type (gdbarch, regnum);
|
||
}
|
||
|
||
void
|
||
amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
|
||
const target_desc *default_tdesc)
|
||
{
|
||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
||
|
||
amd64_init_abi (info, gdbarch, default_tdesc);
|
||
|
||
tdep->num_dword_regs = 17;
|
||
set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
|
||
|
||
set_gdbarch_long_bit (gdbarch, 32);
|
||
set_gdbarch_ptr_bit (gdbarch, 32);
|
||
}
|
||
|
||
/* Initialize ARCH for x64-32, no osabi. */
|
||
|
||
static void
|
||
amd64_x32_none_init_abi (gdbarch_info info, gdbarch *arch)
|
||
{
|
||
amd64_x32_init_abi (info, arch,
|
||
amd64_target_description (X86_XSTATE_SSE_MASK, true));
|
||
}
|
||
|
||
/* Return the target description for a specified XSAVE feature mask. */
|
||
|
||
const struct target_desc *
|
||
amd64_target_description (uint64_t xcr0, bool segments)
|
||
{
|
||
static target_desc *amd64_tdescs \
|
||
[2/*AVX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
|
||
target_desc **tdesc;
|
||
|
||
tdesc = &amd64_tdescs[(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
|
||
[(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
|
||
[(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
|
||
[segments ? 1 : 0];
|
||
|
||
if (*tdesc == NULL)
|
||
*tdesc = amd64_create_target_description (xcr0, false, false,
|
||
segments);
|
||
|
||
return *tdesc;
|
||
}
|
||
|
||
void _initialize_amd64_tdep ();
|
||
void
|
||
_initialize_amd64_tdep ()
|
||
{
|
||
gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_NONE,
|
||
amd64_none_init_abi);
|
||
gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x64_32, GDB_OSABI_NONE,
|
||
amd64_x32_none_init_abi);
|
||
}
|
||
|
||
|
||
/* The 64-bit FXSAVE format differs from the 32-bit format in the
|
||
sense that the instruction pointer and data pointer are simply
|
||
64-bit offsets into the code segment and the data segment instead
|
||
of a selector offset pair. The functions below store the upper 32
|
||
bits of these pointers (instead of just the 16-bits of the segment
|
||
selector). */
|
||
|
||
/* Fill register REGNUM in REGCACHE with the appropriate
|
||
floating-point or SSE register value from *FXSAVE. If REGNUM is
|
||
-1, do this for all registers. This function masks off any of the
|
||
reserved bits in *FXSAVE. */
|
||
|
||
void
|
||
amd64_supply_fxsave (struct regcache *regcache, int regnum,
|
||
const void *fxsave)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
||
|
||
i387_supply_fxsave (regcache, regnum, fxsave);
|
||
|
||
if (fxsave
|
||
&& gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
|
||
{
|
||
const gdb_byte *regs = (const gdb_byte *) fxsave;
|
||
|
||
if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
|
||
regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
|
||
if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
|
||
regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
|
||
}
|
||
}
|
||
|
||
/* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
|
||
|
||
void
|
||
amd64_supply_xsave (struct regcache *regcache, int regnum,
|
||
const void *xsave)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
||
|
||
i387_supply_xsave (regcache, regnum, xsave);
|
||
|
||
if (xsave
|
||
&& gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
|
||
{
|
||
const gdb_byte *regs = (const gdb_byte *) xsave;
|
||
ULONGEST clear_bv;
|
||
|
||
clear_bv = i387_xsave_get_clear_bv (gdbarch, xsave);
|
||
|
||
/* If the FISEG and FOSEG registers have not been initialised yet
|
||
(their CLEAR_BV bit is set) then their default values of zero will
|
||
have already been setup by I387_SUPPLY_XSAVE. */
|
||
if (!(clear_bv & X86_XSTATE_X87))
|
||
{
|
||
if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
|
||
regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
|
||
if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
|
||
regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Fill register REGNUM (if it is a floating-point or SSE register) in
|
||
*FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
|
||
all registers. This function doesn't touch any of the reserved
|
||
bits in *FXSAVE. */
|
||
|
||
void
|
||
amd64_collect_fxsave (const struct regcache *regcache, int regnum,
|
||
void *fxsave)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
||
gdb_byte *regs = (gdb_byte *) fxsave;
|
||
|
||
i387_collect_fxsave (regcache, regnum, fxsave);
|
||
|
||
if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
|
||
{
|
||
if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
|
||
regcache->raw_collect (I387_FISEG_REGNUM (tdep), regs + 12);
|
||
if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
|
||
regcache->raw_collect (I387_FOSEG_REGNUM (tdep), regs + 20);
|
||
}
|
||
}
|
||
|
||
/* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
|
||
|
||
void
|
||
amd64_collect_xsave (const struct regcache *regcache, int regnum,
|
||
void *xsave, int gcore)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
||
gdb_byte *regs = (gdb_byte *) xsave;
|
||
|
||
i387_collect_xsave (regcache, regnum, xsave, gcore);
|
||
|
||
if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
|
||
{
|
||
if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
|
||
regcache->raw_collect (I387_FISEG_REGNUM (tdep),
|
||
regs + 12);
|
||
if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
|
||
regcache->raw_collect (I387_FOSEG_REGNUM (tdep),
|
||
regs + 20);
|
||
}
|
||
}
|