binutils-gdb/gas/config/tc-mt.c
Jan Beulich 641cf0e2c0 gas: constify md_{short,long}opts and md_longopts_size
First of all make the declarations globally visible, such that producer
and consumer actually share them.

For the latter two simply add const (as PPC already had it,), while for
the former achieve the effect by converting to an array: There's no need
for the extra level of indirection.
2024-10-29 08:08:02 +01:00

486 lines
14 KiB
C
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* tc-mt.c -- Assembler for the Morpho Technologies mt .
Copyright (C) 2005-2024 Free Software Foundation, Inc.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "as.h"
#include "dwarf2dbg.h"
#include "subsegs.h"
#include "symcat.h"
#include "opcodes/mt-desc.h"
#include "opcodes/mt-opc.h"
#include "cgen.h"
#include "elf/common.h"
#include "elf/mt.h"
/* Structure to hold all of the different components
describing an individual instruction. */
typedef struct
{
const CGEN_INSN * insn;
const CGEN_INSN * orig_insn;
CGEN_FIELDS fields;
#if CGEN_INT_INSN_P
CGEN_INSN_INT buffer [1];
#define INSN_VALUE(buf) (*(buf))
#else
unsigned char buffer [CGEN_MAX_INSN_SIZE];
#define INSN_VALUE(buf) (buf)
#endif
char * addr;
fragS * frag;
int num_fixups;
fixS * fixups [GAS_CGEN_MAX_FIXUPS];
int indices [MAX_OPERAND_INSTANCES];
}
mt_insn;
const char comment_chars[] = ";";
const char line_comment_chars[] = "#";
const char line_separator_chars[] = "";
const char EXP_CHARS[] = "eE";
const char FLT_CHARS[] = "dD";
/* The target specific pseudo-ops which we support. */
const pseudo_typeS md_pseudo_table[] =
{
{ "word", cons, 4 },
{ NULL, NULL, 0 }
};
static int no_scheduling_restrictions = 0;
const struct option md_longopts[] =
{
#define OPTION_NO_SCHED_REST (OPTION_MD_BASE)
{ "nosched", no_argument, NULL, OPTION_NO_SCHED_REST },
#define OPTION_MARCH (OPTION_MD_BASE + 1)
{ "march", required_argument, NULL, OPTION_MARCH},
{ NULL, no_argument, NULL, 0 },
};
const size_t md_longopts_size = sizeof (md_longopts);
const char md_shortopts[] = "";
/* Mach selected from command line. */
static int mt_mach = bfd_mach_ms1;
static unsigned mt_mach_bitmask = 1 << MACH_MS1;
/* Flags to set in the elf header */
static flagword mt_flags = EF_MT_CPU_MRISC;
/* The architecture to use. */
enum mt_architectures
{
ms1_64_001,
ms1_16_002,
ms1_16_003,
ms2
};
/* MT architecture we are using for this output file. */
static enum mt_architectures mt_arch = ms1_16_002;
int
md_parse_option (int c ATTRIBUTE_UNUSED, const char * arg)
{
switch (c)
{
case OPTION_MARCH:
if (strcmp (arg, "ms1-64-001") == 0)
{
mt_flags = (mt_flags & ~EF_MT_CPU_MASK) | EF_MT_CPU_MRISC;
mt_mach = bfd_mach_ms1;
mt_mach_bitmask = 1 << MACH_MS1;
mt_arch = ms1_64_001;
}
else if (strcmp (arg, "ms1-16-002") == 0)
{
mt_flags = (mt_flags & ~EF_MT_CPU_MASK) | EF_MT_CPU_MRISC;
mt_mach = bfd_mach_ms1;
mt_mach_bitmask = 1 << MACH_MS1;
mt_arch = ms1_16_002;
}
else if (strcmp (arg, "ms1-16-003") == 0)
{
mt_flags = (mt_flags & ~EF_MT_CPU_MASK) | EF_MT_CPU_MRISC2;
mt_mach = bfd_mach_mrisc2;
mt_mach_bitmask = 1 << MACH_MS1_003;
mt_arch = ms1_16_003;
}
else if (strcmp (arg, "ms2") == 0)
{
mt_flags = (mt_flags & ~EF_MT_CPU_MASK) | EF_MT_CPU_MS2;
mt_mach = bfd_mach_mrisc2;
mt_mach_bitmask = 1 << MACH_MS2;
mt_arch = ms2;
}
break;
case OPTION_NO_SCHED_REST:
no_scheduling_restrictions = 1;
break;
default:
return 0;
}
return 1;
}
void
md_show_usage (FILE * stream)
{
fprintf (stream, _("MT specific command line options:\n"));
fprintf (stream, _(" -march=ms1-64-001 allow ms1-64-001 instructions\n"));
fprintf (stream, _(" -march=ms1-16-002 allow ms1-16-002 instructions (default)\n"));
fprintf (stream, _(" -march=ms1-16-003 allow ms1-16-003 instructions\n"));
fprintf (stream, _(" -march=ms2 allow ms2 instructions \n"));
fprintf (stream, _(" -nosched disable scheduling restrictions\n"));
}
void
md_begin (void)
{
/* Initialize the `cgen' interface. */
/* Set the machine number and endian. */
gas_cgen_cpu_desc = mt_cgen_cpu_open (CGEN_CPU_OPEN_MACHS, mt_mach_bitmask,
CGEN_CPU_OPEN_ENDIAN,
CGEN_ENDIAN_BIG,
CGEN_CPU_OPEN_END);
mt_cgen_init_asm (gas_cgen_cpu_desc);
/* This is a callback from cgen to gas to parse operands. */
cgen_set_parse_operand_fn (gas_cgen_cpu_desc, gas_cgen_parse_operand);
/* Set the ELF flags if desired. */
if (mt_flags)
bfd_set_private_flags (stdoutput, mt_flags);
/* Set the machine type. */
bfd_default_set_arch_mach (stdoutput, bfd_arch_mt, mt_mach);
literal_prefix_dollar_hex = true;
}
void
md_assemble (char * str)
{
static long delayed_load_register = 0;
static long prev_delayed_load_register = 0;
static int last_insn_had_delay_slot = 0;
static int last_insn_in_noncond_delay_slot = 0;
static int last_insn_has_load_delay = 0;
static int last_insn_was_memory_access = 0;
static int last_insn_was_io_insn = 0;
static int last_insn_was_arithmetic_or_logic = 0;
static int last_insn_was_branch_insn = 0;
static int last_insn_was_conditional_branch_insn = 0;
mt_insn insn;
char * errmsg;
/* Initialize GAS's cgen interface for a new instruction. */
gas_cgen_init_parse ();
insn.insn = mt_cgen_assemble_insn
(gas_cgen_cpu_desc, str, & insn.fields, insn.buffer, & errmsg);
if (!insn.insn)
{
as_bad ("%s", errmsg);
return;
}
/* Doesn't really matter what we pass for RELAX_P here. */
gas_cgen_finish_insn (insn.insn, insn.buffer,
CGEN_FIELDS_BITSIZE (& insn.fields), 1, NULL);
/* Handle Scheduling Restrictions. */
if (!no_scheduling_restrictions)
{
/* Detect consecutive Memory Accesses. */
if (last_insn_was_memory_access
&& CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_MEMORY_ACCESS)
&& mt_mach == ms1_64_001)
as_warn (_("instruction %s may not follow another memory access instruction."),
CGEN_INSN_NAME (insn.insn));
/* Detect consecutive I/O Instructions. */
else if (last_insn_was_io_insn
&& CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_IO_INSN))
as_warn (_("instruction %s may not follow another I/O instruction."),
CGEN_INSN_NAME (insn.insn));
/* Detect consecutive branch instructions. */
else if (last_insn_was_branch_insn
&& CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_BR_INSN))
as_warn (_("%s may not occupy the delay slot of another branch insn."),
CGEN_INSN_NAME (insn.insn));
/* Detect data dependencies on delayed loads: memory and input insns. */
if (last_insn_has_load_delay && delayed_load_register)
{
if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRSR1)
&& insn.fields.f_sr1 == delayed_load_register)
as_warn (_("operand references R%ld of previous load."),
insn.fields.f_sr1);
if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRSR2)
&& insn.fields.f_sr2 == delayed_load_register)
as_warn (_("operand references R%ld of previous load."),
insn.fields.f_sr2);
}
/* Detect JAL/RETI hazard */
if (mt_mach == ms2
&& CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_JAL_HAZARD))
{
if ((CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRSR1)
&& insn.fields.f_sr1 == delayed_load_register)
|| (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRSR2)
&& insn.fields.f_sr2 == delayed_load_register))
as_warn (_("operand references R%ld of previous instruction."),
delayed_load_register);
else if ((CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRSR1)
&& insn.fields.f_sr1 == prev_delayed_load_register)
|| (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRSR2)
&& insn.fields.f_sr2 == prev_delayed_load_register))
as_warn (_("operand references R%ld of instruction before previous."),
prev_delayed_load_register);
}
/* Detect data dependency between conditional branch instruction
and an immediately preceding arithmetic or logical instruction. */
if (last_insn_was_arithmetic_or_logic
&& !last_insn_in_noncond_delay_slot
&& (delayed_load_register != 0)
&& CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_BR_INSN)
&& mt_arch == ms1_64_001)
{
if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRSR1)
&& insn.fields.f_sr1 == delayed_load_register)
as_warn (_("conditional branch or jal insn's operand references R%ld of previous arithmetic or logic insn."),
insn.fields.f_sr1);
if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRSR2)
&& insn.fields.f_sr2 == delayed_load_register)
as_warn (_("conditional branch or jal insn's operand references R%ld of previous arithmetic or logic insn."),
insn.fields.f_sr2);
}
}
/* Keep track of details of this insn for processing next insn. */
last_insn_in_noncond_delay_slot = last_insn_was_branch_insn
&& !last_insn_was_conditional_branch_insn;
last_insn_had_delay_slot =
CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_DELAY_SLOT);
(void) last_insn_had_delay_slot;
last_insn_has_load_delay =
CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_LOAD_DELAY);
last_insn_was_memory_access =
CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_MEMORY_ACCESS);
last_insn_was_io_insn =
CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_IO_INSN);
last_insn_was_arithmetic_or_logic =
CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_AL_INSN);
last_insn_was_branch_insn =
CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_BR_INSN);
last_insn_was_conditional_branch_insn =
CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_BR_INSN)
&& CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRSR2);
prev_delayed_load_register = delayed_load_register;
if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRDR))
delayed_load_register = insn.fields.f_dr;
else if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_FRDRRR))
delayed_load_register = insn.fields.f_drrr;
else /* Insns has no destination register. */
delayed_load_register = 0;
/* Generate dwarf2 line numbers. */
dwarf2_emit_insn (4);
}
valueT
md_section_align (segT segment, valueT size)
{
int align = bfd_section_alignment (segment);
return ((size + (1 << align) - 1) & -(1 << align));
}
symbolS *
md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
{
return NULL;
}
int
md_estimate_size_before_relax (fragS * fragP ATTRIBUTE_UNUSED,
segT segment ATTRIBUTE_UNUSED)
{
as_fatal (_("md_estimate_size_before_relax\n"));
return 1;
}
/* *fragP has been relaxed to its final size, and now needs to have
the bytes inside it modified to conform to the new size.
Called after relaxation is finished.
fragP->fr_type == rs_machine_dependent.
fragP->fr_subtype is the subtype of what the address relaxed to. */
void
md_convert_frag (bfd * abfd ATTRIBUTE_UNUSED,
segT sec ATTRIBUTE_UNUSED,
fragS * fragP ATTRIBUTE_UNUSED)
{
}
/* Functions concerning relocs. */
long
md_pcrel_from_section (fixS *fixP, segT sec)
{
if (fixP->fx_addsy != (symbolS *) NULL
&& (!S_IS_DEFINED (fixP->fx_addsy)
|| S_GET_SEGMENT (fixP->fx_addsy) != sec))
/* The symbol is undefined (or is defined but not in this section).
Let the linker figure it out. */
return 0;
/* Return the address of the opcode - cgen adjusts for opcode size
itself, to be consistent with the disassembler, which must do
so. */
return fixP->fx_where + fixP->fx_frag->fr_address;
}
/* Return the bfd reloc type for OPERAND of INSN at fixup FIXP.
Returns BFD_RELOC_NONE if no reloc type can be found.
*FIXP may be modified if desired. */
bfd_reloc_code_real_type
md_cgen_lookup_reloc (const CGEN_INSN * insn ATTRIBUTE_UNUSED,
const CGEN_OPERAND * operand,
fixS * fixP ATTRIBUTE_UNUSED)
{
bfd_reloc_code_real_type result;
result = BFD_RELOC_NONE;
switch (operand->type)
{
case MT_OPERAND_IMM16O:
result = BFD_RELOC_16_PCREL;
fixP->fx_pcrel = 1;
/* fixP->fx_no_overflow = 1; */
break;
case MT_OPERAND_IMM16:
case MT_OPERAND_IMM16Z:
/* These may have been processed at parse time. */
if (fixP->fx_cgen.opinfo != 0)
result = fixP->fx_cgen.opinfo;
fixP->fx_no_overflow = 1;
break;
case MT_OPERAND_LOOPSIZE:
result = BFD_RELOC_MT_PCINSN8;
fixP->fx_pcrel = 1;
/* Adjust for the delay slot, which is not part of the loop */
fixP->fx_offset -= 8;
break;
default:
result = BFD_RELOC_NONE;
break;
}
return result;
}
/* Write a value out to the object file, using the appropriate endianness. */
void
md_number_to_chars (char * buf, valueT val, int n)
{
number_to_chars_bigendian (buf, val, n);
}
const char *
md_atof (int type, char * litP, int * sizeP)
{
return ieee_md_atof (type, litP, sizeP, false);
}
/* See whether we need to force a relocation into the output file. */
int
mt_force_relocation (fixS * fixp ATTRIBUTE_UNUSED)
{
return 0;
}
void
mt_apply_fix (fixS *fixP, valueT *valueP, segT seg)
{
if ((fixP->fx_pcrel != 0) && (fixP->fx_r_type == BFD_RELOC_32))
fixP->fx_r_type = BFD_RELOC_32_PCREL;
gas_cgen_md_apply_fix (fixP, valueP, seg);
}
bool
mt_fix_adjustable (fixS * fixP)
{
if ((int) fixP->fx_r_type >= (int) BFD_RELOC_UNUSED)
{
const CGEN_INSN *insn = NULL;
int opindex = (int) fixP->fx_r_type - (int) BFD_RELOC_UNUSED;
const CGEN_OPERAND *operand;
operand = cgen_operand_lookup_by_num(gas_cgen_cpu_desc, opindex);
md_cgen_lookup_reloc (insn, operand, fixP);
}
if (fixP->fx_addsy == NULL)
return true;
/* Prevent all adjustments to global symbols. */
if (S_IS_EXTERNAL (fixP->fx_addsy))
return false;
if (S_IS_WEAK (fixP->fx_addsy))
return false;
return true;
}