mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-23 01:53:38 +08:00
6fc346a4b3
What's past an active .end directive (when that has its default purpose) is supposed to be entirely ignored. That should be true not just for regular processing, but also for "pre-processing" (aka scrubbing). A complication is that such a directive may of course occur inside a (false) conditional or a macro definition. To deal with that make sure we can continue as usual if called another time. Note however that .end inside a macro will still have the full macro body expanded; dealing with that would require further (perhaps intrusive) adjustments in sb_scrub_and_add_sb() and/or callers thereof. However, at least some of the warnings issued by do_scrub_chars() are unlikely to occur when expanding a macro. (If we needed to go that far, presumably .exitm would also want recognizing.)
1623 lines
41 KiB
C
1623 lines
41 KiB
C
/* This is the Assembler Pre-Processor
|
|
Copyright (C) 1987-2024 Free Software Foundation, Inc.
|
|
|
|
This file is part of GAS, the GNU Assembler.
|
|
|
|
GAS is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GAS is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GAS; see the file COPYING. If not, write to the Free
|
|
Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
|
|
02110-1301, USA. */
|
|
|
|
/* Modified by Allen Wirfs-Brock, Instantiations Inc 2/90. */
|
|
/* App, the assembler pre-processor. This pre-processor strips out
|
|
excess spaces, turns single-quoted characters into a decimal
|
|
constant, and turns the # in # <number> <filename> <garbage> into a
|
|
.linefile. This needs better error-handling. */
|
|
|
|
#include "as.h"
|
|
|
|
#if (__STDC__ != 1)
|
|
#ifndef const
|
|
#define const /* empty */
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef H_TICK_HEX
|
|
int enable_h_tick_hex = 0;
|
|
#endif
|
|
|
|
#ifdef TC_M68K
|
|
/* Whether we are scrubbing in m68k MRI mode. This is different from
|
|
flag_m68k_mri, because the two flags will be affected by the .mri
|
|
pseudo-op at different times. */
|
|
static int scrub_m68k_mri;
|
|
|
|
/* The pseudo-op which switches in and out of MRI mode. See the
|
|
comment in do_scrub_chars. */
|
|
static const char mri_pseudo[] = ".mri 0";
|
|
static const char *mri_state;
|
|
static char mri_last_ch;
|
|
#else
|
|
#define scrub_m68k_mri 0
|
|
#endif
|
|
|
|
#if defined TC_ARM && defined OBJ_ELF
|
|
/* The pseudo-op for which we need to special-case `@' characters.
|
|
See the comment in do_scrub_chars. */
|
|
static const char symver_pseudo[] = ".symver";
|
|
static const char * symver_state;
|
|
#endif
|
|
|
|
/* The pseudo-op (without leading dot) at which we want to (perhaps just
|
|
temporarily) stop processing. See the comments in do_scrub_chars(). */
|
|
static const char end_pseudo[] = "end ";
|
|
static const char * end_state;
|
|
|
|
/* Whether, considering the state at start of assembly, NO_PSEUDO_DOT is
|
|
active. */
|
|
static bool no_pseudo_dot;
|
|
|
|
static char last_char;
|
|
|
|
#define LEX_IS_SYMBOL_COMPONENT 1
|
|
#define LEX_IS_WHITESPACE 2
|
|
#define LEX_IS_LINE_SEPARATOR 3
|
|
#define LEX_IS_COMMENT_START 4
|
|
#define LEX_IS_LINE_COMMENT_START 5
|
|
#define LEX_IS_TWOCHAR_COMMENT_1ST 6
|
|
#define LEX_IS_STRINGQUOTE 8
|
|
#define LEX_IS_COLON 9
|
|
#define LEX_IS_NEWLINE 10
|
|
#define LEX_IS_ONECHAR_QUOTE 11
|
|
#ifdef TC_V850
|
|
#define LEX_IS_DOUBLEDASH_1ST 12
|
|
#endif
|
|
#ifdef DOUBLEBAR_PARALLEL
|
|
#define LEX_IS_DOUBLEBAR_1ST 13
|
|
#endif
|
|
#define LEX_IS_PARALLEL_SEPARATOR 14
|
|
#ifdef H_TICK_HEX
|
|
#define LEX_IS_H 15
|
|
#endif
|
|
#define IS_SYMBOL_COMPONENT(c) (lex[c] == LEX_IS_SYMBOL_COMPONENT)
|
|
#define IS_WHITESPACE(c) (lex[c] == LEX_IS_WHITESPACE)
|
|
#define IS_LINE_SEPARATOR(c) (lex[c] == LEX_IS_LINE_SEPARATOR)
|
|
#define IS_PARALLEL_SEPARATOR(c) (lex[c] == LEX_IS_PARALLEL_SEPARATOR)
|
|
#define IS_COMMENT(c) (lex[c] == LEX_IS_COMMENT_START)
|
|
#define IS_LINE_COMMENT(c) (lex[c] == LEX_IS_LINE_COMMENT_START)
|
|
#define IS_TWOCHAR_COMMENT_1ST(c) (lex[c] == LEX_IS_TWOCHAR_COMMENT_1ST)
|
|
#define IS_NEWLINE(c) (lex[c] == LEX_IS_NEWLINE)
|
|
|
|
static char lex[256] = {
|
|
[' '] = LEX_IS_WHITESPACE,
|
|
['\t'] = LEX_IS_WHITESPACE,
|
|
#ifdef CR_EOL
|
|
['\r'] = LEX_IS_LINE_SEPARATOR,
|
|
#else
|
|
['\r'] = LEX_IS_WHITESPACE,
|
|
#endif
|
|
['\n'] = LEX_IS_NEWLINE,
|
|
[':'] = LEX_IS_COLON,
|
|
['$'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['.'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['_'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['A'] = LEX_IS_SYMBOL_COMPONENT, ['a'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['B'] = LEX_IS_SYMBOL_COMPONENT, ['b'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['C'] = LEX_IS_SYMBOL_COMPONENT, ['c'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['D'] = LEX_IS_SYMBOL_COMPONENT, ['d'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['E'] = LEX_IS_SYMBOL_COMPONENT, ['e'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['F'] = LEX_IS_SYMBOL_COMPONENT, ['f'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['G'] = LEX_IS_SYMBOL_COMPONENT, ['g'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['H'] = LEX_IS_SYMBOL_COMPONENT, ['h'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['I'] = LEX_IS_SYMBOL_COMPONENT, ['i'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['J'] = LEX_IS_SYMBOL_COMPONENT, ['j'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['K'] = LEX_IS_SYMBOL_COMPONENT, ['k'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['L'] = LEX_IS_SYMBOL_COMPONENT, ['l'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['M'] = LEX_IS_SYMBOL_COMPONENT, ['m'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['N'] = LEX_IS_SYMBOL_COMPONENT, ['n'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['O'] = LEX_IS_SYMBOL_COMPONENT, ['o'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['P'] = LEX_IS_SYMBOL_COMPONENT, ['p'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['Q'] = LEX_IS_SYMBOL_COMPONENT, ['q'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['R'] = LEX_IS_SYMBOL_COMPONENT, ['r'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['S'] = LEX_IS_SYMBOL_COMPONENT, ['s'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['T'] = LEX_IS_SYMBOL_COMPONENT, ['t'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['U'] = LEX_IS_SYMBOL_COMPONENT, ['u'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['V'] = LEX_IS_SYMBOL_COMPONENT, ['v'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['W'] = LEX_IS_SYMBOL_COMPONENT, ['w'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['X'] = LEX_IS_SYMBOL_COMPONENT, ['x'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['Y'] = LEX_IS_SYMBOL_COMPONENT, ['y'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['Z'] = LEX_IS_SYMBOL_COMPONENT, ['z'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['0'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['1'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['2'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['3'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['4'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['5'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['6'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['7'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['8'] = LEX_IS_SYMBOL_COMPONENT,
|
|
['9'] = LEX_IS_SYMBOL_COMPONENT,
|
|
#define INIT2(n) [n] = LEX_IS_SYMBOL_COMPONENT, \
|
|
[(n) + 1] = LEX_IS_SYMBOL_COMPONENT
|
|
#define INIT4(n) INIT2 (n), INIT2 ((n) + 2)
|
|
#define INIT8(n) INIT4 (n), INIT4 ((n) + 4)
|
|
#define INIT16(n) INIT8 (n), INIT8 ((n) + 8)
|
|
#define INIT32(n) INIT16 (n), INIT16 ((n) + 16)
|
|
#define INIT64(n) INIT32 (n), INIT32 ((n) + 32)
|
|
#define INIT128(n) INIT64 (n), INIT64 ((n) + 64)
|
|
INIT128 (128),
|
|
#undef INIT128
|
|
#undef INIT64
|
|
#undef INIT32
|
|
#undef INIT16
|
|
#undef INIT8
|
|
#undef INIT4
|
|
#undef INIT2
|
|
};
|
|
|
|
void
|
|
do_scrub_begin (int m68k_mri ATTRIBUTE_UNUSED)
|
|
{
|
|
const char *p;
|
|
|
|
/* Latch this once at start. xtensa uses a hook function, yet context isn't
|
|
meaningful for scrubbing (or else we'd need to sync scrubber behavior as
|
|
state changes). */
|
|
if (lex['/'] == 0)
|
|
no_pseudo_dot = NO_PSEUDO_DOT;
|
|
|
|
#ifdef TC_M68K
|
|
scrub_m68k_mri = m68k_mri;
|
|
|
|
if (! m68k_mri)
|
|
#endif
|
|
{
|
|
lex['"'] = LEX_IS_STRINGQUOTE;
|
|
|
|
#if ! defined (TC_HPPA)
|
|
lex['\''] = LEX_IS_ONECHAR_QUOTE;
|
|
#endif
|
|
|
|
#ifdef SINGLE_QUOTE_STRINGS
|
|
lex['\''] = LEX_IS_STRINGQUOTE;
|
|
#endif
|
|
}
|
|
|
|
/* Note: if any other character can be LEX_IS_STRINGQUOTE, the loop
|
|
in state 5 of do_scrub_chars must be changed. */
|
|
|
|
/* Note that these override the previous defaults, e.g. if ';' is a
|
|
comment char, then it isn't a line separator. */
|
|
|
|
#ifdef tc_symbol_chars
|
|
/* This macro permits the processor to specify all characters which
|
|
may appears in an operand. This will prevent the scrubber from
|
|
discarding meaningful whitespace in certain cases. The i386
|
|
backend uses this to support prefixes, which can confuse the
|
|
scrubber as to whether it is parsing operands or opcodes. */
|
|
for (p = tc_symbol_chars; *p; ++p)
|
|
lex[(unsigned char) *p] = LEX_IS_SYMBOL_COMPONENT;
|
|
#endif
|
|
|
|
/* The m68k backend wants to be able to change comment_chars. */
|
|
#ifndef tc_comment_chars
|
|
#define tc_comment_chars comment_chars
|
|
#endif
|
|
for (p = tc_comment_chars; *p; p++)
|
|
lex[(unsigned char) *p] = LEX_IS_COMMENT_START;
|
|
|
|
/* While counter intuitive to have more special purpose line comment chars
|
|
override more general purpose ordinary ones, logic in do_scrub_chars()
|
|
depends on this ordering. */
|
|
for (p = line_comment_chars; *p; p++)
|
|
lex[(unsigned char) *p] = LEX_IS_LINE_COMMENT_START;
|
|
|
|
#ifndef tc_line_separator_chars
|
|
#define tc_line_separator_chars line_separator_chars
|
|
#endif
|
|
for (p = tc_line_separator_chars; *p; p++)
|
|
lex[(unsigned char) *p] = LEX_IS_LINE_SEPARATOR;
|
|
|
|
#ifdef tc_parallel_separator_chars
|
|
/* This macro permits the processor to specify all characters which
|
|
separate parallel insns on the same line. */
|
|
for (p = tc_parallel_separator_chars; *p; p++)
|
|
lex[(unsigned char) *p] = LEX_IS_PARALLEL_SEPARATOR;
|
|
#endif
|
|
|
|
/* Only allow slash-star comments if slash is not in use. Certain
|
|
other cases are dealt with in LEX_IS_LINE_COMMENT_START handling.
|
|
FIXME: This isn't right. We should always permit them. */
|
|
if (lex['/'] == 0)
|
|
lex['/'] = LEX_IS_TWOCHAR_COMMENT_1ST;
|
|
|
|
#ifdef TC_M68K
|
|
if (m68k_mri)
|
|
{
|
|
lex['\''] = LEX_IS_STRINGQUOTE;
|
|
lex[';'] = LEX_IS_COMMENT_START;
|
|
lex['*'] = LEX_IS_LINE_COMMENT_START;
|
|
/* The MRI documentation says '!' is LEX_IS_COMMENT_START, but
|
|
then it can't be used in an expression. */
|
|
lex['!'] = LEX_IS_LINE_COMMENT_START;
|
|
}
|
|
#endif
|
|
|
|
#ifdef TC_V850
|
|
lex['-'] = LEX_IS_DOUBLEDASH_1ST;
|
|
#endif
|
|
#ifdef DOUBLEBAR_PARALLEL
|
|
lex['|'] = LEX_IS_DOUBLEBAR_1ST;
|
|
#endif
|
|
#ifdef TC_D30V
|
|
/* Must do this is we want VLIW instruction with "->" or "<-". */
|
|
lex['-'] = LEX_IS_SYMBOL_COMPONENT;
|
|
#endif
|
|
|
|
#ifdef H_TICK_HEX
|
|
if (enable_h_tick_hex)
|
|
{
|
|
lex['h'] = LEX_IS_H;
|
|
lex['H'] = LEX_IS_H;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Saved state of the scrubber. */
|
|
static int state;
|
|
static int old_state;
|
|
static const char *out_string;
|
|
static char out_buf[20];
|
|
static int add_newlines;
|
|
static char *saved_input;
|
|
static size_t saved_input_len;
|
|
static char input_buffer[32 * 1024];
|
|
|
|
/* Data structure for saving the state of app across #include's. Note that
|
|
app is called asynchronously to the parsing of the .include's, so our
|
|
state at the time .include is interpreted is completely unrelated.
|
|
That's why we have to save it all. */
|
|
|
|
struct app_save
|
|
{
|
|
int state;
|
|
int old_state;
|
|
const char * out_string;
|
|
char out_buf[sizeof (out_buf)];
|
|
int add_newlines;
|
|
char * saved_input;
|
|
size_t saved_input_len;
|
|
const char * end_state;
|
|
#ifdef TC_M68K
|
|
int scrub_m68k_mri;
|
|
const char * mri_state;
|
|
char mri_last_ch;
|
|
#endif
|
|
#if defined TC_ARM && defined OBJ_ELF
|
|
const char * symver_state;
|
|
#endif
|
|
char last_char;
|
|
};
|
|
|
|
char *
|
|
app_push (void)
|
|
{
|
|
struct app_save *saved;
|
|
|
|
saved = XNEW (struct app_save);
|
|
saved->state = state;
|
|
saved->old_state = old_state;
|
|
saved->out_string = out_string;
|
|
memcpy (saved->out_buf, out_buf, sizeof (out_buf));
|
|
saved->add_newlines = add_newlines;
|
|
if (saved_input == NULL)
|
|
saved->saved_input = NULL;
|
|
else
|
|
{
|
|
saved->saved_input = XNEWVEC (char, saved_input_len);
|
|
memcpy (saved->saved_input, saved_input, saved_input_len);
|
|
saved->saved_input_len = saved_input_len;
|
|
}
|
|
saved->end_state = end_state;
|
|
#ifdef TC_M68K
|
|
saved->scrub_m68k_mri = scrub_m68k_mri;
|
|
saved->mri_state = mri_state;
|
|
saved->mri_last_ch = mri_last_ch;
|
|
#endif
|
|
#if defined TC_ARM && defined OBJ_ELF
|
|
saved->symver_state = symver_state;
|
|
#endif
|
|
saved->last_char = last_char;
|
|
|
|
/* do_scrub_begin() is not useful, just wastes time. */
|
|
|
|
state = 0;
|
|
saved_input = NULL;
|
|
add_newlines = 0;
|
|
|
|
return (char *) saved;
|
|
}
|
|
|
|
void
|
|
app_pop (char *arg)
|
|
{
|
|
struct app_save *saved = (struct app_save *) arg;
|
|
|
|
/* There is no do_scrub_end (). */
|
|
state = saved->state;
|
|
old_state = saved->old_state;
|
|
out_string = saved->out_string;
|
|
memcpy (out_buf, saved->out_buf, sizeof (out_buf));
|
|
add_newlines = saved->add_newlines;
|
|
if (saved->saved_input == NULL)
|
|
saved_input = NULL;
|
|
else
|
|
{
|
|
gas_assert (saved->saved_input_len <= sizeof (input_buffer));
|
|
memcpy (input_buffer, saved->saved_input, saved->saved_input_len);
|
|
saved_input = input_buffer;
|
|
saved_input_len = saved->saved_input_len;
|
|
free (saved->saved_input);
|
|
}
|
|
end_state = saved->end_state;
|
|
#ifdef TC_M68K
|
|
scrub_m68k_mri = saved->scrub_m68k_mri;
|
|
mri_state = saved->mri_state;
|
|
mri_last_ch = saved->mri_last_ch;
|
|
#endif
|
|
#if defined TC_ARM && defined OBJ_ELF
|
|
symver_state = saved->symver_state;
|
|
#endif
|
|
last_char = saved->last_char;
|
|
|
|
free (arg);
|
|
}
|
|
|
|
/* @@ This assumes that \n &c are the same on host and target. This is not
|
|
necessarily true. */
|
|
|
|
static int
|
|
process_escape (int ch)
|
|
{
|
|
switch (ch)
|
|
{
|
|
case 'b':
|
|
return '\b';
|
|
case 'f':
|
|
return '\f';
|
|
case 'n':
|
|
return '\n';
|
|
case 'r':
|
|
return '\r';
|
|
case 't':
|
|
return '\t';
|
|
case '\'':
|
|
return '\'';
|
|
case '"':
|
|
return '\"';
|
|
default:
|
|
return ch;
|
|
}
|
|
}
|
|
|
|
#define MULTIBYTE_WARN_COUNT_LIMIT 10
|
|
static unsigned int multibyte_warn_count = 0;
|
|
|
|
bool
|
|
scan_for_multibyte_characters (const unsigned char * start,
|
|
const unsigned char * end,
|
|
bool warn)
|
|
{
|
|
if (end <= start)
|
|
return false;
|
|
|
|
if (warn && multibyte_warn_count > MULTIBYTE_WARN_COUNT_LIMIT)
|
|
return false;
|
|
|
|
bool found = false;
|
|
|
|
while (start < end)
|
|
{
|
|
unsigned char c;
|
|
|
|
if ((c = * start++) <= 0x7f)
|
|
continue;
|
|
|
|
if (!warn)
|
|
return true;
|
|
|
|
found = true;
|
|
|
|
const char * filename;
|
|
unsigned int lineno;
|
|
|
|
filename = as_where (& lineno);
|
|
if (filename == NULL)
|
|
as_warn (_("multibyte character (%#x) encountered in input"), c);
|
|
else if (lineno == 0)
|
|
as_warn (_("multibyte character (%#x) encountered in %s"), c, filename);
|
|
else
|
|
as_warn (_("multibyte character (%#x) encountered in %s at or near line %u"), c, filename, lineno);
|
|
|
|
if (++ multibyte_warn_count == MULTIBYTE_WARN_COUNT_LIMIT)
|
|
{
|
|
as_warn (_("further multibyte character warnings suppressed"));
|
|
break;
|
|
}
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
/* This function is called to process input characters. The GET
|
|
parameter is used to retrieve more input characters. GET should
|
|
set its parameter to point to a buffer, and return the length of
|
|
the buffer; it should return 0 at end of file. The scrubbed output
|
|
characters are put into the buffer starting at TOSTART; the TOSTART
|
|
buffer is TOLEN bytes in length. The function returns the number
|
|
of scrubbed characters put into TOSTART. This will be TOLEN unless
|
|
end of file was seen. This function is arranged as a state
|
|
machine, and saves its state so that it may return at any point.
|
|
This is the way the old code used to work. */
|
|
|
|
size_t
|
|
do_scrub_chars (size_t (*get) (char *, size_t), char *tostart, size_t tolen,
|
|
bool check_multibyte)
|
|
{
|
|
char *to = tostart;
|
|
char *toend = tostart + tolen;
|
|
char *from;
|
|
char *fromend;
|
|
size_t fromlen;
|
|
int ch, ch2 = 0;
|
|
/* Character that started the string we're working on. */
|
|
static char quotechar;
|
|
|
|
/*State 0: beginning of normal line
|
|
1: After first whitespace on line (flush more white)
|
|
2: After first non-white (opcode) on line (keep 1white)
|
|
3: after second white on line (into operands) (flush white)
|
|
4: after putting out a .linefile, put out digits
|
|
5: parsing a string, then go to old-state
|
|
6: putting out \ escape in a "d string.
|
|
7: no longer used
|
|
8: no longer used
|
|
9: After seeing symbol char in state 3 (keep 1white after symchar)
|
|
10: After seeing whitespace in state 9 (keep white before symchar)
|
|
11: After seeing a symbol character in state 0 (eg a label definition)
|
|
-1: output string in out_string and go to the state in old_state
|
|
12: no longer used
|
|
#ifdef DOUBLEBAR_PARALLEL
|
|
13: After seeing a vertical bar, looking for a second
|
|
vertical bar as a parallel expression separator.
|
|
#endif
|
|
#ifdef TC_PREDICATE_START_CHAR
|
|
14: After seeing a predicate start character at state 0, looking
|
|
for a predicate end character as predicate.
|
|
15: After seeing a predicate start character at state 1, looking
|
|
for a predicate end character as predicate.
|
|
#endif
|
|
#ifdef TC_Z80
|
|
16: After seeing an 'a' or an 'A' at the start of a symbol
|
|
17: After seeing an 'f' or an 'F' in state 16
|
|
#endif
|
|
*/
|
|
|
|
/* I added states 9 and 10 because the MIPS ECOFF assembler uses
|
|
constructs like ``.loc 1 20''. This was turning into ``.loc
|
|
120''. States 9 and 10 ensure that a space is never dropped in
|
|
between characters which could appear in an identifier. Ian
|
|
Taylor, ian@cygnus.com.
|
|
|
|
I added state 11 so that something like "Lfoo add %r25,%r26,%r27" works
|
|
correctly on the PA (and any other target where colons are optional).
|
|
Jeff Law, law@cs.utah.edu.
|
|
|
|
I added state 13 so that something like "cmp r1, r2 || trap #1" does not
|
|
get squashed into "cmp r1,r2||trap#1", with the all important space
|
|
between the 'trap' and the '#1' being eliminated. nickc@cygnus.com */
|
|
|
|
/* This macro gets the next input character. */
|
|
|
|
#define GET() \
|
|
(from < fromend \
|
|
? * (unsigned char *) (from++) \
|
|
: (saved_input = NULL, \
|
|
fromlen = (*get) (input_buffer, sizeof input_buffer), \
|
|
from = input_buffer, \
|
|
fromend = from + fromlen, \
|
|
(fromlen == 0 \
|
|
? EOF \
|
|
: * (unsigned char *) (from++))))
|
|
|
|
/* This macro pushes a character back on the input stream. */
|
|
|
|
#define UNGET(uch) (*--from = (uch))
|
|
|
|
/* This macro puts a character into the output buffer. If this
|
|
character fills the output buffer, this macro jumps to the label
|
|
TOFULL. We use this rather ugly approach because we need to
|
|
handle two different termination conditions: EOF on the input
|
|
stream, and a full output buffer. It would be simpler if we
|
|
always read in the entire input stream before processing it, but
|
|
I don't want to make such a significant change to the assembler's
|
|
memory usage. */
|
|
|
|
#define PUT(pch) \
|
|
do \
|
|
{ \
|
|
*to++ = (pch); \
|
|
if (to >= toend) \
|
|
goto tofull; \
|
|
} \
|
|
while (0)
|
|
|
|
if (saved_input != NULL)
|
|
{
|
|
from = saved_input;
|
|
fromend = from + saved_input_len;
|
|
}
|
|
else
|
|
{
|
|
fromlen = (*get) (input_buffer, sizeof input_buffer);
|
|
if (fromlen == 0)
|
|
return 0;
|
|
from = input_buffer;
|
|
fromend = from + fromlen;
|
|
|
|
if (check_multibyte)
|
|
(void) scan_for_multibyte_characters ((const unsigned char *) from,
|
|
(const unsigned char* ) fromend,
|
|
true /* Generate warnings. */);
|
|
}
|
|
|
|
while (1)
|
|
{
|
|
/* The cases in this switch end with continue, in order to
|
|
branch back to the top of this while loop and generate the
|
|
next output character in the appropriate state. */
|
|
switch (state)
|
|
{
|
|
case -1:
|
|
ch = *out_string++;
|
|
if (*out_string == '\0')
|
|
{
|
|
state = old_state;
|
|
old_state = 3;
|
|
}
|
|
PUT (ch);
|
|
continue;
|
|
|
|
case 4:
|
|
ch = GET ();
|
|
if (ch == EOF)
|
|
goto fromeof;
|
|
else if (ch >= '0' && ch <= '9')
|
|
PUT (ch);
|
|
else
|
|
{
|
|
while (ch != EOF && IS_WHITESPACE (ch))
|
|
ch = GET ();
|
|
if (ch == '"')
|
|
{
|
|
quotechar = ch;
|
|
state = 5;
|
|
old_state = 3;
|
|
PUT (ch);
|
|
}
|
|
else
|
|
{
|
|
while (ch != EOF && ch != '\n')
|
|
ch = GET ();
|
|
state = 0;
|
|
PUT (ch);
|
|
}
|
|
}
|
|
continue;
|
|
|
|
case 5:
|
|
/* We are going to copy everything up to a quote character,
|
|
with special handling for a backslash. We try to
|
|
optimize the copying in the simple case without using the
|
|
GET and PUT macros. */
|
|
{
|
|
char *s;
|
|
ptrdiff_t len;
|
|
|
|
for (s = from; s < fromend; s++)
|
|
{
|
|
ch = *s;
|
|
if (ch == '\\'
|
|
|| ch == quotechar
|
|
|| ch == '\n')
|
|
break;
|
|
}
|
|
len = s - from;
|
|
if (len > toend - to)
|
|
len = toend - to;
|
|
if (len > 0)
|
|
{
|
|
memcpy (to, from, len);
|
|
to += len;
|
|
from += len;
|
|
if (to >= toend)
|
|
goto tofull;
|
|
}
|
|
}
|
|
|
|
ch = GET ();
|
|
if (ch == EOF)
|
|
{
|
|
/* This buffer is here specifically so
|
|
that the UNGET below will work. */
|
|
static char one_char_buf[1];
|
|
|
|
as_warn (_("end of file in string; '%c' inserted"), quotechar);
|
|
state = old_state;
|
|
from = fromend = one_char_buf + 1;
|
|
fromlen = 1;
|
|
UNGET ('\n');
|
|
PUT (quotechar);
|
|
}
|
|
else if (ch == quotechar)
|
|
{
|
|
state = old_state;
|
|
PUT (ch);
|
|
}
|
|
else if (TC_STRING_ESCAPES && ch == '\\')
|
|
{
|
|
state = 6;
|
|
PUT (ch);
|
|
}
|
|
else if (scrub_m68k_mri && ch == '\n')
|
|
{
|
|
/* Just quietly terminate the string. This permits lines like
|
|
bne label loop if we haven't reach end yet. */
|
|
state = old_state;
|
|
UNGET (ch);
|
|
PUT ('\'');
|
|
}
|
|
else
|
|
{
|
|
PUT (ch);
|
|
}
|
|
continue;
|
|
|
|
case 6:
|
|
state = 5;
|
|
ch = GET ();
|
|
switch (ch)
|
|
{
|
|
/* Handle strings broken across lines, by turning '\n' into
|
|
'\\' and 'n'. */
|
|
case '\n':
|
|
UNGET ('n');
|
|
add_newlines++;
|
|
PUT ('\\');
|
|
continue;
|
|
|
|
case EOF:
|
|
as_warn (_("end of file in string; '%c' inserted"), quotechar);
|
|
PUT (quotechar);
|
|
continue;
|
|
|
|
/* These two are used inside macros. */
|
|
case '@':
|
|
case '+':
|
|
break;
|
|
|
|
case '"':
|
|
case '\\':
|
|
case 'b':
|
|
case 'f':
|
|
case 'n':
|
|
case 'r':
|
|
case 't':
|
|
case 'v':
|
|
case 'x':
|
|
case 'X':
|
|
case '0':
|
|
case '1':
|
|
case '2':
|
|
case '3':
|
|
case '4':
|
|
case '5':
|
|
case '6':
|
|
case '7':
|
|
break;
|
|
|
|
default:
|
|
#ifdef ONLY_STANDARD_ESCAPES
|
|
as_warn (_("unknown escape '\\%c' in string; ignored"), ch);
|
|
#endif
|
|
break;
|
|
}
|
|
PUT (ch);
|
|
continue;
|
|
|
|
#ifdef DOUBLEBAR_PARALLEL
|
|
case 13:
|
|
ch = GET ();
|
|
if (ch != '|')
|
|
abort ();
|
|
|
|
/* Reset back to state 1 and pretend that we are parsing a
|
|
line from just after the first white space. */
|
|
state = 1;
|
|
PUT ('|');
|
|
continue;
|
|
#endif
|
|
#ifdef TC_Z80
|
|
case 16:
|
|
/* We have seen an 'a' at the start of a symbol, look for an 'f'. */
|
|
ch = GET ();
|
|
if (ch == 'f' || ch == 'F')
|
|
{
|
|
state = 17;
|
|
PUT (ch);
|
|
}
|
|
else
|
|
{
|
|
if (ch != EOF)
|
|
UNGET (ch);
|
|
state = 9;
|
|
break;
|
|
}
|
|
/* Fall through. */
|
|
case 17:
|
|
/* We have seen "af" at the start of a symbol,
|
|
a ' here is a part of that symbol. */
|
|
ch = GET ();
|
|
state = 9;
|
|
if (ch == '\'')
|
|
/* Change to avoid warning about unclosed string. */
|
|
PUT ('`');
|
|
else if (ch != EOF)
|
|
UNGET (ch);
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
/* OK, we are somewhere in states 0 through 4 or 9 through 11. */
|
|
|
|
/* flushchar: */
|
|
ch = GET ();
|
|
|
|
#ifdef TC_PREDICATE_START_CHAR
|
|
if (ch == TC_PREDICATE_START_CHAR && (state == 0 || state == 1))
|
|
{
|
|
state += 14;
|
|
PUT (ch);
|
|
continue;
|
|
}
|
|
else if (state == 14 || state == 15)
|
|
{
|
|
if (ch == TC_PREDICATE_END_CHAR)
|
|
{
|
|
state -= 14;
|
|
PUT (ch);
|
|
ch = GET ();
|
|
}
|
|
else
|
|
{
|
|
PUT (ch);
|
|
continue;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
recycle:
|
|
|
|
/* We need to watch out for .end directives: We should in particular not
|
|
issue diagnostics for anything after an active one. */
|
|
if (end_state == NULL)
|
|
{
|
|
if ((state == 0 || state == 1)
|
|
&& (ch == '.'
|
|
|| (no_pseudo_dot && ch == end_pseudo[0])))
|
|
end_state = end_pseudo + (ch != '.');
|
|
}
|
|
else if (ch != '\0'
|
|
&& (*end_state == ch
|
|
/* Avoid triggering on directives like .endif or .endr. */
|
|
|| (*end_state == ' ' && !IS_SYMBOL_COMPONENT (ch))))
|
|
{
|
|
if (IS_NEWLINE (ch) || IS_LINE_SEPARATOR (ch))
|
|
goto end_end;
|
|
++end_state;
|
|
}
|
|
else if (*end_state != '\0')
|
|
/* We did not get the expected character, or we didn't
|
|
get a valid terminating character after seeing the
|
|
entire pseudo-op, so we must go back to the beginning. */
|
|
end_state = NULL;
|
|
else if (IS_NEWLINE (ch) || IS_LINE_SEPARATOR (ch))
|
|
{
|
|
end_end:
|
|
/* We've read the entire pseudo-op. If this is the end of the line,
|
|
bail out now by (ab)using the output-full path. This allows the
|
|
caller to process input up to here and terminate processing if this
|
|
directive is actually active (not on the false branch of a
|
|
conditional and not in a macro definition). */
|
|
end_state = NULL;
|
|
state = 0;
|
|
PUT (ch);
|
|
goto tofull;
|
|
}
|
|
|
|
#if defined TC_ARM && defined OBJ_ELF
|
|
/* We need to watch out for .symver directives. See the comment later
|
|
in this function. */
|
|
if (symver_state == NULL)
|
|
{
|
|
if ((state == 0 || state == 1)
|
|
&& strchr (tc_comment_chars, '@') != NULL
|
|
&& ch == symver_pseudo[0])
|
|
symver_state = symver_pseudo + 1;
|
|
}
|
|
else
|
|
{
|
|
/* We advance to the next state if we find the right
|
|
character. */
|
|
if (ch != '\0' && (*symver_state == ch))
|
|
++symver_state;
|
|
else if (*symver_state != '\0')
|
|
/* We did not get the expected character, or we didn't
|
|
get a valid terminating character after seeing the
|
|
entire pseudo-op, so we must go back to the beginning. */
|
|
symver_state = NULL;
|
|
else
|
|
{
|
|
/* We've read the entire pseudo-op. If this is the end
|
|
of the line, go back to the beginning. */
|
|
if (IS_NEWLINE (ch) || IS_LINE_SEPARATOR (ch))
|
|
symver_state = NULL;
|
|
}
|
|
}
|
|
#endif /* TC_ARM && OBJ_ELF */
|
|
|
|
#ifdef TC_M68K
|
|
/* We want to have pseudo-ops which control whether we are in
|
|
MRI mode or not. Unfortunately, since m68k MRI mode affects
|
|
the scrubber, that means that we need a special purpose
|
|
recognizer here. */
|
|
if (mri_state == NULL)
|
|
{
|
|
if ((state == 0 || state == 1)
|
|
&& ch == mri_pseudo[0])
|
|
mri_state = mri_pseudo + 1;
|
|
}
|
|
else
|
|
{
|
|
/* We advance to the next state if we find the right
|
|
character, or if we need a space character and we get any
|
|
whitespace character, or if we need a '0' and we get a
|
|
'1' (this is so that we only need one state to handle
|
|
``.mri 0'' and ``.mri 1''). */
|
|
if (ch != '\0'
|
|
&& (*mri_state == ch
|
|
|| (*mri_state == ' '
|
|
&& IS_WHITESPACE (ch))
|
|
|| (*mri_state == '0'
|
|
&& ch == '1')))
|
|
{
|
|
mri_last_ch = ch;
|
|
++mri_state;
|
|
}
|
|
else if (*mri_state != '\0'
|
|
|| (!IS_WHITESPACE (ch)
|
|
&& !IS_LINE_SEPARATOR (ch)
|
|
&& !IS_NEWLINE (ch)))
|
|
{
|
|
/* We did not get the expected character, or we didn't
|
|
get a valid terminating character after seeing the
|
|
entire pseudo-op, so we must go back to the
|
|
beginning. */
|
|
mri_state = NULL;
|
|
}
|
|
else
|
|
{
|
|
/* We've read the entire pseudo-op. mips_last_ch is
|
|
either '0' or '1' indicating whether to enter or
|
|
leave MRI mode. */
|
|
do_scrub_begin (mri_last_ch == '1');
|
|
mri_state = NULL;
|
|
|
|
/* We continue handling the character as usual. The
|
|
main gas reader must also handle the .mri pseudo-op
|
|
to control expression parsing and the like. */
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (ch == EOF)
|
|
{
|
|
if (state != 0)
|
|
{
|
|
as_warn (_("end of file not at end of a line; newline inserted"));
|
|
state = 0;
|
|
PUT ('\n');
|
|
}
|
|
goto fromeof;
|
|
}
|
|
|
|
switch (lex[ch])
|
|
{
|
|
case LEX_IS_WHITESPACE:
|
|
do
|
|
{
|
|
ch = GET ();
|
|
}
|
|
while (ch != EOF && IS_WHITESPACE (ch));
|
|
if (ch == EOF)
|
|
goto fromeof;
|
|
|
|
if (state == 0)
|
|
{
|
|
/* Preserve a single whitespace character at the
|
|
beginning of a line. */
|
|
state = 1;
|
|
UNGET (ch);
|
|
PUT (' ');
|
|
break;
|
|
}
|
|
|
|
#ifdef KEEP_WHITE_AROUND_COLON
|
|
if (lex[ch] == LEX_IS_COLON)
|
|
{
|
|
/* Only keep this white if there's no white *after* the
|
|
colon. */
|
|
ch2 = GET ();
|
|
if (ch2 != EOF)
|
|
UNGET (ch2);
|
|
if (!IS_WHITESPACE (ch2))
|
|
{
|
|
state = 9;
|
|
UNGET (ch);
|
|
PUT (' ');
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Prune trailing whitespace. */
|
|
if (IS_COMMENT (ch)
|
|
|| (IS_LINE_COMMENT (ch)
|
|
&& (state < 1 || strchr (tc_comment_chars, ch)))
|
|
|| IS_NEWLINE (ch)
|
|
|| IS_LINE_SEPARATOR (ch)
|
|
|| IS_PARALLEL_SEPARATOR (ch))
|
|
{
|
|
if (scrub_m68k_mri)
|
|
{
|
|
/* In MRI mode, we keep these spaces. */
|
|
UNGET (ch);
|
|
PUT (' ');
|
|
break;
|
|
}
|
|
goto recycle;
|
|
}
|
|
#ifdef DOUBLESLASH_LINE_COMMENTS
|
|
if (IS_TWOCHAR_COMMENT_1ST (ch))
|
|
{
|
|
ch2 = GET ();
|
|
if (ch2 != EOF)
|
|
UNGET (ch2);
|
|
if (ch2 == '/')
|
|
goto recycle;
|
|
}
|
|
#endif
|
|
|
|
/* If we're in state 2 or 11, we've seen a non-white
|
|
character followed by whitespace. If the next character
|
|
is ':', this is whitespace after a label name which we
|
|
normally must ignore. In MRI mode, though, spaces are
|
|
not permitted between the label and the colon. */
|
|
if ((state == 2 || state == 11)
|
|
&& lex[ch] == LEX_IS_COLON
|
|
&& ! scrub_m68k_mri)
|
|
{
|
|
state = 1;
|
|
PUT (ch);
|
|
break;
|
|
}
|
|
|
|
switch (state)
|
|
{
|
|
case 1:
|
|
/* We can arrive here if we leave a leading whitespace
|
|
character at the beginning of a line. */
|
|
goto recycle;
|
|
case 2:
|
|
state = 3;
|
|
if (to + 1 < toend)
|
|
{
|
|
/* Optimize common case by skipping UNGET/GET. */
|
|
PUT (' '); /* Sp after opco */
|
|
goto recycle;
|
|
}
|
|
UNGET (ch);
|
|
PUT (' ');
|
|
break;
|
|
case 3:
|
|
#ifndef TC_KEEP_OPERAND_SPACES
|
|
/* For TI C6X, we keep these spaces as they may separate
|
|
functional unit specifiers from operands. */
|
|
if (scrub_m68k_mri)
|
|
#endif
|
|
{
|
|
/* In MRI mode, we keep these spaces. */
|
|
UNGET (ch);
|
|
PUT (' ');
|
|
break;
|
|
}
|
|
goto recycle; /* Sp in operands */
|
|
case 9:
|
|
case 10:
|
|
#ifndef TC_KEEP_OPERAND_SPACES
|
|
if (scrub_m68k_mri)
|
|
#endif
|
|
{
|
|
/* In MRI mode, we keep these spaces. */
|
|
state = 3;
|
|
UNGET (ch);
|
|
PUT (' ');
|
|
break;
|
|
}
|
|
state = 10; /* Sp after symbol char */
|
|
goto recycle;
|
|
case 11:
|
|
if (LABELS_WITHOUT_COLONS || flag_m68k_mri)
|
|
state = 1;
|
|
else
|
|
{
|
|
/* We know that ch is not ':', since we tested that
|
|
case above. Therefore this is not a label, so it
|
|
must be the opcode, and we've just seen the
|
|
whitespace after it. */
|
|
state = 3;
|
|
}
|
|
UNGET (ch);
|
|
PUT (' '); /* Sp after label definition. */
|
|
break;
|
|
default:
|
|
BAD_CASE (state);
|
|
}
|
|
break;
|
|
|
|
case LEX_IS_TWOCHAR_COMMENT_1ST:
|
|
ch2 = GET ();
|
|
if (ch2 == '*')
|
|
{
|
|
twochar_comment:
|
|
for (;;)
|
|
{
|
|
do
|
|
{
|
|
ch2 = GET ();
|
|
if (ch2 != EOF && IS_NEWLINE (ch2))
|
|
add_newlines++;
|
|
}
|
|
while (ch2 != EOF && ch2 != '*');
|
|
|
|
while (ch2 == '*')
|
|
ch2 = GET ();
|
|
|
|
if (ch2 == EOF || ch2 == '/')
|
|
break;
|
|
|
|
/* This UNGET will ensure that we count newlines
|
|
correctly. */
|
|
UNGET (ch2);
|
|
}
|
|
|
|
if (ch2 == EOF)
|
|
as_warn (_("end of file in multiline comment"));
|
|
|
|
ch = ' ';
|
|
goto recycle;
|
|
}
|
|
#ifdef DOUBLESLASH_LINE_COMMENTS
|
|
else if (ch2 == '/')
|
|
{
|
|
do
|
|
{
|
|
ch = GET ();
|
|
}
|
|
while (ch != EOF && !IS_NEWLINE (ch));
|
|
if (ch == EOF)
|
|
as_warn ("end of file in comment; newline inserted");
|
|
state = 0;
|
|
PUT ('\n');
|
|
break;
|
|
}
|
|
#endif
|
|
else
|
|
{
|
|
if (ch2 != EOF)
|
|
UNGET (ch2);
|
|
if (state == 9 || state == 10)
|
|
state = 3;
|
|
PUT (ch);
|
|
}
|
|
break;
|
|
|
|
case LEX_IS_STRINGQUOTE:
|
|
quotechar = ch;
|
|
if (state == 10)
|
|
{
|
|
/* Preserve the whitespace in foo "bar". */
|
|
UNGET (ch);
|
|
state = 3;
|
|
PUT (' ');
|
|
|
|
/* PUT didn't jump out. We could just break, but we
|
|
know what will happen, so optimize a bit. */
|
|
ch = GET ();
|
|
old_state = 9;
|
|
}
|
|
else if (state == 3)
|
|
old_state = 9;
|
|
else if (state == 0)
|
|
old_state = 11; /* Now seeing label definition. */
|
|
else
|
|
old_state = state;
|
|
state = 5;
|
|
PUT (ch);
|
|
break;
|
|
|
|
case LEX_IS_ONECHAR_QUOTE:
|
|
#ifdef H_TICK_HEX
|
|
if (state == 9 && enable_h_tick_hex)
|
|
{
|
|
char c;
|
|
|
|
c = GET ();
|
|
as_warn ("'%c found after symbol", c);
|
|
UNGET (c);
|
|
}
|
|
#endif
|
|
if (state == 10)
|
|
{
|
|
/* Preserve the whitespace in foo 'b'. */
|
|
UNGET (ch);
|
|
state = 3;
|
|
PUT (' ');
|
|
break;
|
|
}
|
|
ch = GET ();
|
|
if (ch == EOF)
|
|
{
|
|
as_warn (_("end of file after a one-character quote; \\0 inserted"));
|
|
ch = 0;
|
|
}
|
|
if (ch == '\\')
|
|
{
|
|
ch = GET ();
|
|
if (ch == EOF)
|
|
{
|
|
as_warn (_("end of file in escape character"));
|
|
ch = '\\';
|
|
}
|
|
else
|
|
ch = process_escape (ch);
|
|
}
|
|
sprintf (out_buf, "%d", (int) (unsigned char) ch);
|
|
|
|
/* None of these 'x constants for us. We want 'x'. */
|
|
if ((ch = GET ()) != '\'')
|
|
{
|
|
#ifdef REQUIRE_CHAR_CLOSE_QUOTE
|
|
as_warn (_("missing close quote; (assumed)"));
|
|
#else
|
|
if (ch != EOF)
|
|
UNGET (ch);
|
|
#endif
|
|
}
|
|
if (strlen (out_buf) == 1)
|
|
{
|
|
PUT (out_buf[0]);
|
|
break;
|
|
}
|
|
if (state == 9)
|
|
old_state = 3;
|
|
else
|
|
old_state = state;
|
|
state = -1;
|
|
out_string = out_buf;
|
|
PUT (*out_string++);
|
|
break;
|
|
|
|
case LEX_IS_COLON:
|
|
#ifdef KEEP_WHITE_AROUND_COLON
|
|
state = 9;
|
|
#else
|
|
if (state == 9 || state == 10)
|
|
state = 3;
|
|
else if (state != 3)
|
|
state = 1;
|
|
#endif
|
|
PUT (ch);
|
|
break;
|
|
|
|
case LEX_IS_NEWLINE:
|
|
/* Roll out a bunch of newlines from inside comments, etc. */
|
|
if (add_newlines)
|
|
{
|
|
--add_newlines;
|
|
UNGET (ch);
|
|
}
|
|
/* Fall through. */
|
|
|
|
case LEX_IS_LINE_SEPARATOR:
|
|
state = 0;
|
|
PUT (ch);
|
|
break;
|
|
|
|
case LEX_IS_PARALLEL_SEPARATOR:
|
|
state = 1;
|
|
PUT (ch);
|
|
break;
|
|
|
|
#ifdef TC_V850
|
|
case LEX_IS_DOUBLEDASH_1ST:
|
|
ch2 = GET ();
|
|
if (ch2 != '-')
|
|
{
|
|
if (ch2 != EOF)
|
|
UNGET (ch2);
|
|
goto de_fault;
|
|
}
|
|
/* Read and skip to end of line. */
|
|
do
|
|
{
|
|
ch = GET ();
|
|
}
|
|
while (ch != EOF && ch != '\n');
|
|
|
|
if (ch == EOF)
|
|
as_warn (_("end of file in comment; newline inserted"));
|
|
|
|
state = 0;
|
|
PUT ('\n');
|
|
break;
|
|
#endif
|
|
#ifdef DOUBLEBAR_PARALLEL
|
|
case LEX_IS_DOUBLEBAR_1ST:
|
|
ch2 = GET ();
|
|
if (ch2 != EOF)
|
|
UNGET (ch2);
|
|
if (ch2 != '|')
|
|
goto de_fault;
|
|
|
|
/* Handle '||' in two states as invoking PUT twice might
|
|
result in the first one jumping out of this loop. We'd
|
|
then lose track of the state and one '|' char. */
|
|
state = 13;
|
|
PUT ('|');
|
|
break;
|
|
#endif
|
|
case LEX_IS_LINE_COMMENT_START:
|
|
/* FIXME-someday: The two character comment stuff was badly
|
|
thought out. On i386, we want '/' as line comment start
|
|
AND we want C style comments. hence this hack. The
|
|
whole lexical process should be reworked. xoxorich. */
|
|
if (ch == '/')
|
|
{
|
|
ch2 = GET ();
|
|
if (ch2 == '*')
|
|
goto twochar_comment;
|
|
if (ch2 != EOF)
|
|
UNGET (ch2);
|
|
}
|
|
|
|
if (state == 0 || state == 1) /* Only comment at start of line. */
|
|
{
|
|
int startch;
|
|
|
|
startch = ch;
|
|
|
|
do
|
|
{
|
|
ch = GET ();
|
|
}
|
|
while (ch != EOF && IS_WHITESPACE (ch));
|
|
|
|
if (ch == EOF)
|
|
{
|
|
as_warn (_("end of file in comment; newline inserted"));
|
|
PUT ('\n');
|
|
break;
|
|
}
|
|
|
|
if (ch < '0' || ch > '9' || state != 0 || startch != '#')
|
|
{
|
|
/* Not a cpp line. */
|
|
while (ch != EOF && !IS_NEWLINE (ch))
|
|
ch = GET ();
|
|
if (ch == EOF)
|
|
{
|
|
as_warn (_("end of file in comment; newline inserted"));
|
|
PUT ('\n');
|
|
}
|
|
else /* IS_NEWLINE (ch) */
|
|
{
|
|
/* To process non-zero add_newlines. */
|
|
UNGET (ch);
|
|
}
|
|
state = 0;
|
|
break;
|
|
}
|
|
/* Looks like `# 123 "filename"' from cpp. */
|
|
UNGET (ch);
|
|
old_state = 4;
|
|
state = -1;
|
|
if (scrub_m68k_mri)
|
|
out_string = "\tlinefile ";
|
|
else
|
|
out_string = "\t.linefile ";
|
|
PUT (*out_string++);
|
|
break;
|
|
}
|
|
|
|
#ifdef TC_D10V
|
|
/* All insns end in a char for which LEX_IS_SYMBOL_COMPONENT is true.
|
|
Trap is the only short insn that has a first operand that is
|
|
neither register nor label.
|
|
We must prevent exef0f ||trap #1 to degenerate to exef0f ||trap#1 .
|
|
We can't make '#' LEX_IS_SYMBOL_COMPONENT because it is
|
|
already LEX_IS_LINE_COMMENT_START. However, it is the
|
|
only character in line_comment_chars for d10v, hence we
|
|
can recognize it as such. */
|
|
/* An alternative approach would be to reset the state to 1 when
|
|
we see '||', '<'- or '->', but that seems to be overkill. */
|
|
if (state == 10)
|
|
PUT (' ');
|
|
#endif
|
|
/* We have a line comment character which is not at the
|
|
start of a line. If this is also a normal comment
|
|
character, fall through. Otherwise treat it as a default
|
|
character. */
|
|
if (strchr (tc_comment_chars, ch) == NULL)
|
|
goto de_fault;
|
|
if (scrub_m68k_mri
|
|
&& (ch == '!' || ch == '*' || ch == '#'))
|
|
goto de_fault;
|
|
/* Fall through. */
|
|
case LEX_IS_COMMENT_START:
|
|
#if defined TC_ARM && defined OBJ_ELF
|
|
/* On the ARM, `@' is the comment character.
|
|
Unfortunately this is also a special character in ELF .symver
|
|
directives (and .type, though we deal with those another way).
|
|
So we check if this line is such a directive, and treat
|
|
the character as default if so. This is a hack. */
|
|
if ((symver_state != NULL) && (*symver_state == 0))
|
|
goto de_fault;
|
|
#endif
|
|
|
|
/* Care is needed not to damage occurrences of \<comment-char>
|
|
by stripping the <comment-char> onwards. Yuck. */
|
|
if ((to > tostart ? to[-1] : last_char) == '\\')
|
|
/* Do not treat the <comment-char> as a start-of-comment. */
|
|
goto de_fault;
|
|
|
|
#ifdef WARN_COMMENTS
|
|
if (!found_comment)
|
|
found_comment_file = as_where (&found_comment);
|
|
#endif
|
|
do
|
|
{
|
|
ch = GET ();
|
|
}
|
|
while (ch != EOF && !IS_NEWLINE (ch));
|
|
if (ch == EOF)
|
|
as_warn (_("end of file in comment; newline inserted"));
|
|
state = 0;
|
|
PUT ('\n');
|
|
break;
|
|
|
|
#ifdef H_TICK_HEX
|
|
case LEX_IS_H:
|
|
/* Look for strings like H'[0-9A-Fa-f] and if found, replace
|
|
the H' with 0x to make them gas-style hex characters. */
|
|
if (enable_h_tick_hex)
|
|
{
|
|
char quot;
|
|
|
|
quot = GET ();
|
|
if (quot == '\'')
|
|
{
|
|
UNGET ('x');
|
|
ch = '0';
|
|
}
|
|
else
|
|
UNGET (quot);
|
|
}
|
|
#endif
|
|
/* Fall through. */
|
|
|
|
case LEX_IS_SYMBOL_COMPONENT:
|
|
if (state == 10)
|
|
{
|
|
/* This is a symbol character following another symbol
|
|
character, with whitespace in between. We skipped
|
|
the whitespace earlier, so output it now. */
|
|
UNGET (ch);
|
|
state = 3;
|
|
PUT (' ');
|
|
break;
|
|
}
|
|
|
|
#ifdef TC_Z80
|
|
/* "af'" is a symbol containing '\''. */
|
|
if (state == 3 && (ch == 'a' || ch == 'A'))
|
|
{
|
|
state = 16;
|
|
PUT (ch);
|
|
ch = GET ();
|
|
if (ch == 'f' || ch == 'F')
|
|
{
|
|
state = 17;
|
|
PUT (ch);
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
state = 9;
|
|
if (ch == EOF || !IS_SYMBOL_COMPONENT (ch))
|
|
{
|
|
if (ch != EOF)
|
|
UNGET (ch);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
if (state == 3)
|
|
state = 9;
|
|
|
|
/* This is a common case. Quickly copy CH and all the
|
|
following symbol component or normal characters. */
|
|
if (to + 1 < toend
|
|
#ifdef TC_M68K
|
|
&& mri_state == NULL
|
|
#endif
|
|
#if defined TC_ARM && defined OBJ_ELF
|
|
&& symver_state == NULL
|
|
#endif
|
|
&& end_state == NULL)
|
|
{
|
|
char *s;
|
|
ptrdiff_t len;
|
|
|
|
for (s = from; s < fromend; s++)
|
|
{
|
|
int type;
|
|
|
|
ch2 = *(unsigned char *) s;
|
|
type = lex[ch2];
|
|
if (type != 0
|
|
&& type != LEX_IS_SYMBOL_COMPONENT)
|
|
break;
|
|
}
|
|
|
|
if (s > from)
|
|
/* Handle the last character normally, for
|
|
simplicity. */
|
|
--s;
|
|
|
|
len = s - from;
|
|
|
|
if (len > (toend - to) - 1)
|
|
len = (toend - to) - 1;
|
|
|
|
if (len > 0)
|
|
{
|
|
PUT (ch);
|
|
memcpy (to, from, len);
|
|
to += len;
|
|
from += len;
|
|
if (to >= toend)
|
|
goto tofull;
|
|
ch = GET ();
|
|
}
|
|
}
|
|
|
|
/* Fall through. */
|
|
default:
|
|
de_fault:
|
|
/* Some relatively `normal' character. */
|
|
if (state == 0)
|
|
{
|
|
state = 11; /* Now seeing label definition. */
|
|
}
|
|
else if (state == 1)
|
|
{
|
|
state = 2; /* Ditto. */
|
|
}
|
|
else if (state == 9)
|
|
{
|
|
if (!IS_SYMBOL_COMPONENT (ch))
|
|
state = 3;
|
|
}
|
|
else if (state == 10)
|
|
{
|
|
if (ch == '\\')
|
|
{
|
|
/* Special handling for backslash: a backslash may
|
|
be the beginning of a formal parameter (of a
|
|
macro) following another symbol character, with
|
|
whitespace in between. If that is the case, we
|
|
output a space before the parameter. Strictly
|
|
speaking, correct handling depends upon what the
|
|
macro parameter expands into; if the parameter
|
|
expands into something which does not start with
|
|
an operand character, then we don't want to keep
|
|
the space. We don't have enough information to
|
|
make the right choice, so here we are making the
|
|
choice which is more likely to be correct. */
|
|
if (to + 1 >= toend)
|
|
{
|
|
/* If we're near the end of the buffer, save the
|
|
character for the next time round. Otherwise
|
|
we'll lose our state. */
|
|
UNGET (ch);
|
|
goto tofull;
|
|
}
|
|
*to++ = ' ';
|
|
}
|
|
|
|
state = 3;
|
|
}
|
|
PUT (ch);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*NOTREACHED*/
|
|
|
|
fromeof:
|
|
/* We have reached the end of the input. */
|
|
if (to > tostart)
|
|
last_char = to[-1];
|
|
return to - tostart;
|
|
|
|
tofull:
|
|
/* The output buffer is full. Save any input we have not yet
|
|
processed. */
|
|
if (fromend > from)
|
|
{
|
|
saved_input = from;
|
|
saved_input_len = fromend - from;
|
|
}
|
|
else
|
|
saved_input = NULL;
|
|
|
|
if (to > tostart)
|
|
last_char = to[-1];
|
|
return to - tostart;
|
|
}
|
|
|
|
/* Return amount of pending input. */
|
|
|
|
size_t
|
|
do_scrub_pending (void)
|
|
{
|
|
size_t len = 0;
|
|
if (saved_input)
|
|
len += saved_input_len;
|
|
if (state == -1)
|
|
len += strlen (out_string);
|
|
return len;
|
|
}
|