/* Core dump and executable file functions below target vector, for GDB.
Copyright (C) 1986-2018 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see . */
#include "defs.h"
#include "arch-utils.h"
#include
#include
#ifdef HAVE_SYS_FILE_H
#include /* needed for F_OK and friends */
#endif
#include "frame.h" /* required by inferior.h */
#include "inferior.h"
#include "infrun.h"
#include "symtab.h"
#include "command.h"
#include "bfd.h"
#include "target.h"
#include "gdbcore.h"
#include "gdbthread.h"
#include "regcache.h"
#include "regset.h"
#include "symfile.h"
#include "exec.h"
#include "readline/readline.h"
#include "solib.h"
#include "filenames.h"
#include "progspace.h"
#include "objfiles.h"
#include "gdb_bfd.h"
#include "completer.h"
#include "filestuff.h"
#ifndef O_LARGEFILE
#define O_LARGEFILE 0
#endif
/* The core file target. */
class core_target final : public target_ops
{
public:
core_target ()
{ to_stratum = process_stratum; }
const char *shortname () override
{ return "core"; }
const char *longname () override
{ return _("Local core dump file"); }
const char *doc () override
{
return _("\
Use a core file as a target. Specify the filename of the core file.");
}
void open (const char *, int) override;
void close () override;
void detach (inferior *, int) override;
void fetch_registers (struct regcache *, int) override;
enum target_xfer_status xfer_partial (enum target_object object,
const char *annex,
gdb_byte *readbuf,
const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len,
ULONGEST *xfered_len) override;
void files_info () override;
int thread_alive (ptid_t ptid) override;
const struct target_desc *read_description () override;
const char *pid_to_str (ptid_t) override;
const char *thread_name (struct thread_info *) override;
int has_memory () override;
int has_stack () override;
int has_registers () override;
bool info_proc (const char *, enum info_proc_what) override;
};
/* See gdbcore.h. */
struct target_ops *the_core_target;
/* List of all available core_fns. On gdb startup, each core file
register reader calls deprecated_add_core_fns() to register
information on each core format it is prepared to read. */
static struct core_fns *core_file_fns = NULL;
/* The core_fns for a core file handler that is prepared to read the
core file currently open on core_bfd. */
static struct core_fns *core_vec = NULL;
/* FIXME: kettenis/20031023: Eventually this variable should
disappear. */
static struct gdbarch *core_gdbarch = NULL;
/* Per-core data. Currently, only the section table. Note that these
target sections are *not* mapped in the current address spaces' set
of target sections --- those should come only from pure executable
or shared library bfds. The core bfd sections are an
implementation detail of the core target, just like ptrace is for
unix child targets. */
static struct target_section_table *core_data;
static struct core_fns *sniff_core_bfd (bfd *);
static int gdb_check_format (bfd *);
static void core_close_cleanup (void *ignore);
static void add_to_thread_list (bfd *, asection *, void *);
static core_target core_ops;
/* An arbitrary identifier for the core inferior. */
#define CORELOW_PID 1
/* Link a new core_fns into the global core_file_fns list. Called on
gdb startup by the _initialize routine in each core file register
reader, to register information about each format the reader is
prepared to handle. */
void
deprecated_add_core_fns (struct core_fns *cf)
{
cf->next = core_file_fns;
core_file_fns = cf;
}
/* The default function that core file handlers can use to examine a
core file BFD and decide whether or not to accept the job of
reading the core file. */
int
default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
{
int result;
result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
return (result);
}
/* Walk through the list of core functions to find a set that can
handle the core file open on ABFD. Returns pointer to set that is
selected. */
static struct core_fns *
sniff_core_bfd (bfd *abfd)
{
struct core_fns *cf;
struct core_fns *yummy = NULL;
int matches = 0;
/* Don't sniff if we have support for register sets in
CORE_GDBARCH. */
if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
return NULL;
for (cf = core_file_fns; cf != NULL; cf = cf->next)
{
if (cf->core_sniffer (cf, abfd))
{
yummy = cf;
matches++;
}
}
if (matches > 1)
{
warning (_("\"%s\": ambiguous core format, %d handlers match"),
bfd_get_filename (abfd), matches);
}
else if (matches == 0)
error (_("\"%s\": no core file handler recognizes format"),
bfd_get_filename (abfd));
return (yummy);
}
/* The default is to reject every core file format we see. Either
BFD has to recognize it, or we have to provide a function in the
core file handler that recognizes it. */
int
default_check_format (bfd *abfd)
{
return (0);
}
/* Attempt to recognize core file formats that BFD rejects. */
static int
gdb_check_format (bfd *abfd)
{
struct core_fns *cf;
for (cf = core_file_fns; cf != NULL; cf = cf->next)
{
if (cf->check_format (abfd))
{
return (1);
}
}
return (0);
}
/* Discard all vestiges of any previous core file and mark data and
stack spaces as empty. */
static void
core_close ()
{
if (core_bfd)
{
int pid = ptid_get_pid (inferior_ptid);
inferior_ptid = null_ptid; /* Avoid confusion from thread
stuff. */
if (pid != 0)
exit_inferior_silent (pid);
/* Clear out solib state while the bfd is still open. See
comments in clear_solib in solib.c. */
clear_solib ();
if (core_data)
{
xfree (core_data->sections);
xfree (core_data);
core_data = NULL;
}
gdb_bfd_unref (core_bfd);
core_bfd = NULL;
}
core_vec = NULL;
core_gdbarch = NULL;
}
static void
core_close_cleanup (void *ignore)
{
core_close ();
}
void
core_target::close ()
{
core_close ();
}
/* Look for sections whose names start with `.reg/' so that we can
extract the list of threads in a core file. */
static void
add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
{
ptid_t ptid;
int core_tid;
int pid, lwpid;
asection *reg_sect = (asection *) reg_sect_arg;
int fake_pid_p = 0;
struct inferior *inf;
if (!startswith (bfd_section_name (abfd, asect), ".reg/"))
return;
core_tid = atoi (bfd_section_name (abfd, asect) + 5);
pid = bfd_core_file_pid (core_bfd);
if (pid == 0)
{
fake_pid_p = 1;
pid = CORELOW_PID;
}
lwpid = core_tid;
inf = current_inferior ();
if (inf->pid == 0)
{
inferior_appeared (inf, pid);
inf->fake_pid_p = fake_pid_p;
}
ptid = ptid_build (pid, lwpid, 0);
add_thread (ptid);
/* Warning, Will Robinson, looking at BFD private data! */
if (reg_sect != NULL
&& asect->filepos == reg_sect->filepos) /* Did we find .reg? */
inferior_ptid = ptid; /* Yes, make it current. */
}
/* This routine opens and sets up the core file bfd. */
void
core_target::open (const char *arg, int from_tty)
{
const char *p;
int siggy;
struct cleanup *old_chain;
int scratch_chan;
int flags;
target_preopen (from_tty);
if (!arg)
{
if (core_bfd)
error (_("No core file specified. (Use `detach' "
"to stop debugging a core file.)"));
else
error (_("No core file specified."));
}
gdb::unique_xmalloc_ptr filename (tilde_expand (arg));
if (!IS_ABSOLUTE_PATH (filename.get ()))
filename.reset (concat (current_directory, "/",
filename.get (), (char *) NULL));
flags = O_BINARY | O_LARGEFILE;
if (write_files)
flags |= O_RDWR;
else
flags |= O_RDONLY;
scratch_chan = gdb_open_cloexec (filename.get (), flags, 0);
if (scratch_chan < 0)
perror_with_name (filename.get ());
gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename.get (), gnutarget,
write_files ? FOPEN_RUB : FOPEN_RB,
scratch_chan));
if (temp_bfd == NULL)
perror_with_name (filename.get ());
if (!bfd_check_format (temp_bfd.get (), bfd_core)
&& !gdb_check_format (temp_bfd.get ()))
{
/* Do it after the err msg */
/* FIXME: should be checking for errors from bfd_close (for one
thing, on error it does not free all the storage associated
with the bfd). */
error (_("\"%s\" is not a core dump: %s"),
filename.get (), bfd_errmsg (bfd_get_error ()));
}
/* Looks semi-reasonable. Toss the old core file and work on the
new. */
unpush_target (&core_ops);
core_bfd = temp_bfd.release ();
old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
core_gdbarch = gdbarch_from_bfd (core_bfd);
/* Find a suitable core file handler to munch on core_bfd */
core_vec = sniff_core_bfd (core_bfd);
validate_files ();
core_data = XCNEW (struct target_section_table);
/* Find the data section */
if (build_section_table (core_bfd,
&core_data->sections,
&core_data->sections_end))
error (_("\"%s\": Can't find sections: %s"),
bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
/* If we have no exec file, try to set the architecture from the
core file. We don't do this unconditionally since an exec file
typically contains more information that helps us determine the
architecture than a core file. */
if (!exec_bfd)
set_gdbarch_from_file (core_bfd);
push_target (&core_ops);
discard_cleanups (old_chain);
/* Do this before acknowledging the inferior, so if
post_create_inferior throws (can happen easilly if you're loading
a core file with the wrong exec), we aren't left with threads
from the previous inferior. */
init_thread_list ();
inferior_ptid = null_ptid;
/* Need to flush the register cache (and the frame cache) from a
previous debug session. If inferior_ptid ends up the same as the
last debug session --- e.g., b foo; run; gcore core1; step; gcore
core2; core core1; core core2 --- then there's potential for
get_current_regcache to return the cached regcache of the
previous session, and the frame cache being stale. */
registers_changed ();
/* Build up thread list from BFD sections, and possibly set the
current thread to the .reg/NN section matching the .reg
section. */
bfd_map_over_sections (core_bfd, add_to_thread_list,
bfd_get_section_by_name (core_bfd, ".reg"));
if (ptid_equal (inferior_ptid, null_ptid))
{
/* Either we found no .reg/NN section, and hence we have a
non-threaded core (single-threaded, from gdb's perspective),
or for some reason add_to_thread_list couldn't determine
which was the "main" thread. The latter case shouldn't
usually happen, but we're dealing with input here, which can
always be broken in different ways. */
struct thread_info *thread = first_thread_of_process (-1);
if (thread == NULL)
{
inferior_appeared (current_inferior (), CORELOW_PID);
inferior_ptid = pid_to_ptid (CORELOW_PID);
add_thread_silent (inferior_ptid);
}
else
switch_to_thread (thread->ptid);
}
post_create_inferior (&core_ops, from_tty);
/* Now go through the target stack looking for threads since there
may be a thread_stratum target loaded on top of target core by
now. The layer above should claim threads found in the BFD
sections. */
TRY
{
target_update_thread_list ();
}
CATCH (except, RETURN_MASK_ERROR)
{
exception_print (gdb_stderr, except);
}
END_CATCH
p = bfd_core_file_failing_command (core_bfd);
if (p)
printf_filtered (_("Core was generated by `%s'.\n"), p);
/* Clearing any previous state of convenience variables. */
clear_exit_convenience_vars ();
siggy = bfd_core_file_failing_signal (core_bfd);
if (siggy > 0)
{
/* If we don't have a CORE_GDBARCH to work with, assume a native
core (map gdb_signal from host signals). If we do have
CORE_GDBARCH to work with, but no gdb_signal_from_target
implementation for that gdbarch, as a fallback measure,
assume the host signal mapping. It'll be correct for native
cores, but most likely incorrect for cross-cores. */
enum gdb_signal sig = (core_gdbarch != NULL
&& gdbarch_gdb_signal_from_target_p (core_gdbarch)
? gdbarch_gdb_signal_from_target (core_gdbarch,
siggy)
: gdb_signal_from_host (siggy));
printf_filtered (_("Program terminated with signal %s, %s.\n"),
gdb_signal_to_name (sig), gdb_signal_to_string (sig));
/* Set the value of the internal variable $_exitsignal,
which holds the signal uncaught by the inferior. */
set_internalvar_integer (lookup_internalvar ("_exitsignal"),
siggy);
}
/* Fetch all registers from core file. */
target_fetch_registers (get_current_regcache (), -1);
/* Now, set up the frame cache, and print the top of stack. */
reinit_frame_cache ();
print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
/* Current thread should be NUM 1 but the user does not know that.
If a program is single threaded gdb in general does not mention
anything about threads. That is why the test is >= 2. */
if (thread_count () >= 2)
{
TRY
{
thread_command (NULL, from_tty);
}
CATCH (except, RETURN_MASK_ERROR)
{
exception_print (gdb_stderr, except);
}
END_CATCH
}
}
void
core_target::detach (inferior *inf, int from_tty)
{
unpush_target (this);
reinit_frame_cache ();
if (from_tty)
printf_filtered (_("No core file now.\n"));
}
/* Try to retrieve registers from a section in core_bfd, and supply
them to core_vec->core_read_registers, as the register set numbered
WHICH.
If ptid's lwp member is zero, do the single-threaded
thing: look for a section named NAME. If ptid's lwp
member is non-zero, do the multi-threaded thing: look for a section
named "NAME/LWP", where LWP is the shortest ASCII decimal
representation of ptid's lwp member.
HUMAN_NAME is a human-readable name for the kind of registers the
NAME section contains, for use in error messages.
If REQUIRED is non-zero, print an error if the core file doesn't
have a section by the appropriate name. Otherwise, just do
nothing. */
static void
get_core_register_section (struct regcache *regcache,
const struct regset *regset,
const char *name,
int min_size,
int which,
const char *human_name,
int required)
{
struct bfd_section *section;
bfd_size_type size;
char *contents;
bool variable_size_section = (regset != NULL
&& regset->flags & REGSET_VARIABLE_SIZE);
thread_section_name section_name (name, regcache->ptid ());
section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
if (! section)
{
if (required)
warning (_("Couldn't find %s registers in core file."),
human_name);
return;
}
size = bfd_section_size (core_bfd, section);
if (size < min_size)
{
warning (_("Section `%s' in core file too small."),
section_name.c_str ());
return;
}
if (size != min_size && !variable_size_section)
{
warning (_("Unexpected size of section `%s' in core file."),
section_name.c_str ());
}
contents = (char *) alloca (size);
if (! bfd_get_section_contents (core_bfd, section, contents,
(file_ptr) 0, size))
{
warning (_("Couldn't read %s registers from `%s' section in core file."),
human_name, section_name.c_str ());
return;
}
if (regset != NULL)
{
regset->supply_regset (regset, regcache, -1, contents, size);
return;
}
gdb_assert (core_vec);
core_vec->core_read_registers (regcache, contents, size, which,
((CORE_ADDR)
bfd_section_vma (core_bfd, section)));
}
/* Callback for get_core_registers that handles a single core file
register note section. */
static void
get_core_registers_cb (const char *sect_name, int size,
const struct regset *regset,
const char *human_name, void *cb_data)
{
struct regcache *regcache = (struct regcache *) cb_data;
int required = 0;
if (strcmp (sect_name, ".reg") == 0)
{
required = 1;
if (human_name == NULL)
human_name = "general-purpose";
}
else if (strcmp (sect_name, ".reg2") == 0)
{
if (human_name == NULL)
human_name = "floating-point";
}
/* The 'which' parameter is only used when no regset is provided.
Thus we just set it to -1. */
get_core_register_section (regcache, regset, sect_name,
size, -1, human_name, required);
}
/* Get the registers out of a core file. This is the machine-
independent part. Fetch_core_registers is the machine-dependent
part, typically implemented in the xm-file for each
architecture. */
/* We just get all the registers, so we don't use regno. */
void
core_target::fetch_registers (struct regcache *regcache, int regno)
{
int i;
struct gdbarch *gdbarch;
if (!(core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
&& (core_vec == NULL || core_vec->core_read_registers == NULL))
{
fprintf_filtered (gdb_stderr,
"Can't fetch registers from this type of core file\n");
return;
}
gdbarch = regcache->arch ();
if (gdbarch_iterate_over_regset_sections_p (gdbarch))
gdbarch_iterate_over_regset_sections (gdbarch,
get_core_registers_cb,
(void *) regcache, NULL);
else
{
get_core_register_section (regcache, NULL,
".reg", 0, 0, "general-purpose", 1);
get_core_register_section (regcache, NULL,
".reg2", 0, 2, "floating-point", 0);
}
/* Mark all registers not found in the core as unavailable. */
for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
if (regcache_register_status (regcache, i) == REG_UNKNOWN)
regcache_raw_supply (regcache, i, NULL);
}
void
core_target::files_info ()
{
print_section_info (core_data, core_bfd);
}
struct spuid_list
{
gdb_byte *buf;
ULONGEST offset;
LONGEST len;
ULONGEST pos;
ULONGEST written;
};
static void
add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
{
struct spuid_list *list = (struct spuid_list *) list_p;
enum bfd_endian byte_order
= bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
int fd, pos = 0;
sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
if (pos == 0)
return;
if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
{
store_unsigned_integer (list->buf + list->pos - list->offset,
4, byte_order, fd);
list->written += 4;
}
list->pos += 4;
}
enum target_xfer_status
core_target::xfer_partial (enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
{
switch (object)
{
case TARGET_OBJECT_MEMORY:
return section_table_xfer_memory_partial (readbuf, writebuf,
offset, len, xfered_len,
core_data->sections,
core_data->sections_end,
NULL);
case TARGET_OBJECT_AUXV:
if (readbuf)
{
/* When the aux vector is stored in core file, BFD
represents this with a fake section called ".auxv". */
struct bfd_section *section;
bfd_size_type size;
section = bfd_get_section_by_name (core_bfd, ".auxv");
if (section == NULL)
return TARGET_XFER_E_IO;
size = bfd_section_size (core_bfd, section);
if (offset >= size)
return TARGET_XFER_EOF;
size -= offset;
if (size > len)
size = len;
if (size == 0)
return TARGET_XFER_EOF;
if (!bfd_get_section_contents (core_bfd, section, readbuf,
(file_ptr) offset, size))
{
warning (_("Couldn't read NT_AUXV note in core file."));
return TARGET_XFER_E_IO;
}
*xfered_len = (ULONGEST) size;
return TARGET_XFER_OK;
}
return TARGET_XFER_E_IO;
case TARGET_OBJECT_WCOOKIE:
if (readbuf)
{
/* When the StackGhost cookie is stored in core file, BFD
represents this with a fake section called
".wcookie". */
struct bfd_section *section;
bfd_size_type size;
section = bfd_get_section_by_name (core_bfd, ".wcookie");
if (section == NULL)
return TARGET_XFER_E_IO;
size = bfd_section_size (core_bfd, section);
if (offset >= size)
return TARGET_XFER_EOF;
size -= offset;
if (size > len)
size = len;
if (size == 0)
return TARGET_XFER_EOF;
if (!bfd_get_section_contents (core_bfd, section, readbuf,
(file_ptr) offset, size))
{
warning (_("Couldn't read StackGhost cookie in core file."));
return TARGET_XFER_E_IO;
}
*xfered_len = (ULONGEST) size;
return TARGET_XFER_OK;
}
return TARGET_XFER_E_IO;
case TARGET_OBJECT_LIBRARIES:
if (core_gdbarch
&& gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
{
if (writebuf)
return TARGET_XFER_E_IO;
else
{
*xfered_len = gdbarch_core_xfer_shared_libraries (core_gdbarch,
readbuf,
offset, len);
if (*xfered_len == 0)
return TARGET_XFER_EOF;
else
return TARGET_XFER_OK;
}
}
/* FALL THROUGH */
case TARGET_OBJECT_LIBRARIES_AIX:
if (core_gdbarch
&& gdbarch_core_xfer_shared_libraries_aix_p (core_gdbarch))
{
if (writebuf)
return TARGET_XFER_E_IO;
else
{
*xfered_len
= gdbarch_core_xfer_shared_libraries_aix (core_gdbarch,
readbuf, offset,
len);
if (*xfered_len == 0)
return TARGET_XFER_EOF;
else
return TARGET_XFER_OK;
}
}
/* FALL THROUGH */
case TARGET_OBJECT_SPU:
if (readbuf && annex)
{
/* When the SPU contexts are stored in a core file, BFD
represents this with a fake section called
"SPU/". */
struct bfd_section *section;
bfd_size_type size;
char sectionstr[100];
xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
section = bfd_get_section_by_name (core_bfd, sectionstr);
if (section == NULL)
return TARGET_XFER_E_IO;
size = bfd_section_size (core_bfd, section);
if (offset >= size)
return TARGET_XFER_EOF;
size -= offset;
if (size > len)
size = len;
if (size == 0)
return TARGET_XFER_EOF;
if (!bfd_get_section_contents (core_bfd, section, readbuf,
(file_ptr) offset, size))
{
warning (_("Couldn't read SPU section in core file."));
return TARGET_XFER_E_IO;
}
*xfered_len = (ULONGEST) size;
return TARGET_XFER_OK;
}
else if (readbuf)
{
/* NULL annex requests list of all present spuids. */
struct spuid_list list;
list.buf = readbuf;
list.offset = offset;
list.len = len;
list.pos = 0;
list.written = 0;
bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
if (list.written == 0)
return TARGET_XFER_EOF;
else
{
*xfered_len = (ULONGEST) list.written;
return TARGET_XFER_OK;
}
}
return TARGET_XFER_E_IO;
case TARGET_OBJECT_SIGNAL_INFO:
if (readbuf)
{
if (core_gdbarch
&& gdbarch_core_xfer_siginfo_p (core_gdbarch))
{
LONGEST l = gdbarch_core_xfer_siginfo (core_gdbarch, readbuf,
offset, len);
if (l >= 0)
{
*xfered_len = l;
if (l == 0)
return TARGET_XFER_EOF;
else
return TARGET_XFER_OK;
}
}
}
return TARGET_XFER_E_IO;
default:
return this->beneath->xfer_partial (object, annex, readbuf,
writebuf, offset, len,
xfered_len);
}
}
/* Okay, let's be honest: threads gleaned from a core file aren't
exactly lively, are they? On the other hand, if we don't claim
that each & every one is alive, then we don't get any of them
to appear in an "info thread" command, which is quite a useful
behaviour.
*/
int
core_target::thread_alive (ptid_t ptid)
{
return 1;
}
/* Ask the current architecture what it knows about this core file.
That will be used, in turn, to pick a better architecture. This
wrapper could be avoided if targets got a chance to specialize
core_ops. */
const struct target_desc *
core_target::read_description ()
{
if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch))
{
const struct target_desc *result;
result = gdbarch_core_read_description (core_gdbarch, this, core_bfd);
if (result != NULL)
return result;
}
return this->beneath->read_description ();
}
const char *
core_target::pid_to_str (ptid_t ptid)
{
static char buf[64];
struct inferior *inf;
int pid;
/* The preferred way is to have a gdbarch/OS specific
implementation. */
if (core_gdbarch
&& gdbarch_core_pid_to_str_p (core_gdbarch))
return gdbarch_core_pid_to_str (core_gdbarch, ptid);
/* Otherwise, if we don't have one, we'll just fallback to
"process", with normal_pid_to_str. */
/* Try the LWPID field first. */
pid = ptid_get_lwp (ptid);
if (pid != 0)
return normal_pid_to_str (pid_to_ptid (pid));
/* Otherwise, this isn't a "threaded" core -- use the PID field, but
only if it isn't a fake PID. */
inf = find_inferior_ptid (ptid);
if (inf != NULL && !inf->fake_pid_p)
return normal_pid_to_str (ptid);
/* No luck. We simply don't have a valid PID to print. */
xsnprintf (buf, sizeof buf, "");
return buf;
}
const char *
core_target::thread_name (struct thread_info *thr)
{
if (core_gdbarch
&& gdbarch_core_thread_name_p (core_gdbarch))
return gdbarch_core_thread_name (core_gdbarch, thr);
return NULL;
}
int
core_target::has_memory ()
{
return (core_bfd != NULL);
}
int
core_target::has_stack ()
{
return (core_bfd != NULL);
}
int
core_target::has_registers ()
{
return (core_bfd != NULL);
}
/* Implement the to_info_proc method. */
bool
core_target::info_proc (const char *args, enum info_proc_what request)
{
struct gdbarch *gdbarch = get_current_arch ();
/* Since this is the core file target, call the 'core_info_proc'
method on gdbarch, not 'info_proc'. */
if (gdbarch_core_info_proc_p (gdbarch))
gdbarch_core_info_proc (gdbarch, args, request);
return true;
}
void
_initialize_corelow (void)
{
if (the_core_target != NULL)
internal_error (__FILE__, __LINE__,
_("core target already exists (\"%s\")."),
the_core_target->longname ());
the_core_target = &core_ops;
add_target_with_completer (&core_ops, filename_completer);
}