/* bfd back-end for HP PA-RISC SOM objects. Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc. Contributed by the Center for Software Science at the University of Utah (pa-gdb-bugs@cs.utah.edu). This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "bfd.h" #include "sysdep.h" #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) #include "libbfd.h" #include "som.h" #include "libhppa.h" #include #include #include #include #include #include #include /* After a.out.h */ #include #include /* Magic not defined in standard HP-UX header files until 8.0 */ #ifndef CPU_PA_RISC1_0 #define CPU_PA_RISC1_0 0x20B #endif /* CPU_PA_RISC1_0 */ #ifndef CPU_PA_RISC1_1 #define CPU_PA_RISC1_1 0x210 #endif /* CPU_PA_RISC1_1 */ #ifndef _PA_RISC1_0_ID #define _PA_RISC1_0_ID CPU_PA_RISC1_0 #endif /* _PA_RISC1_0_ID */ #ifndef _PA_RISC1_1_ID #define _PA_RISC1_1_ID CPU_PA_RISC1_1 #endif /* _PA_RISC1_1_ID */ #ifndef _PA_RISC_MAXID #define _PA_RISC_MAXID 0x2FF #endif /* _PA_RISC_MAXID */ #ifndef _PA_RISC_ID #define _PA_RISC_ID(__m_num) \ (((__m_num) == _PA_RISC1_0_ID) || \ ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID)) #endif /* _PA_RISC_ID */ /* SOM allows any one of the four previous relocations to be reused with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP relocations are always a single byte, using a R_PREV_FIXUP instead of some multi-byte relocation makes object files smaller. Note one side effect of using a R_PREV_FIXUP is the relocation that is being repeated moves to the front of the queue. */ struct reloc_queue { unsigned char *reloc; unsigned int size; } reloc_queue[4]; /* This fully describes the symbol types which may be attached to an EXPORT or IMPORT directive. Only SOM uses this formation (ELF has no need for it). */ typedef enum { SYMBOL_TYPE_UNKNOWN, SYMBOL_TYPE_ABSOLUTE, SYMBOL_TYPE_CODE, SYMBOL_TYPE_DATA, SYMBOL_TYPE_ENTRY, SYMBOL_TYPE_MILLICODE, SYMBOL_TYPE_PLABEL, SYMBOL_TYPE_PRI_PROG, SYMBOL_TYPE_SEC_PROG, } pa_symbol_type; /* Forward declarations */ static boolean som_mkobject PARAMS ((bfd *)); static bfd_target * som_object_setup PARAMS ((bfd *, struct header *, struct som_exec_auxhdr *)); static asection * make_unique_section PARAMS ((bfd *, CONST char *, int)); static boolean setup_sections PARAMS ((bfd *, struct header *)); static bfd_target * som_object_p PARAMS ((bfd *)); static boolean som_write_object_contents PARAMS ((bfd *)); static boolean som_slurp_string_table PARAMS ((bfd *)); static unsigned int som_slurp_symbol_table PARAMS ((bfd *)); static unsigned int som_get_symtab_upper_bound PARAMS ((bfd *)); static unsigned int som_canonicalize_reloc PARAMS ((bfd *, sec_ptr, arelent **, asymbol **)); static unsigned int som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr)); static unsigned int som_get_symtab PARAMS ((bfd *, asymbol **)); static asymbol * som_make_empty_symbol PARAMS ((bfd *)); static void som_print_symbol PARAMS ((bfd *, PTR, asymbol *, bfd_print_symbol_type)); static boolean som_new_section_hook PARAMS ((bfd *, asection *)); static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR, file_ptr, bfd_size_type)); static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture, unsigned long)); static boolean som_find_nearest_line PARAMS ((bfd *, asection *, asymbol **, bfd_vma, CONST char **, CONST char **, unsigned int *)); static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *)); static asection * som_section_from_subspace_index PARAMS ((bfd *, unsigned int)); static int log2 PARAMS ((unsigned int)); static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *)); static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *)); static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int, struct reloc_queue *)); static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int)); static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int, struct reloc_queue *)); static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *, unsigned int, struct reloc_queue *)); static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int, unsigned char *, unsigned int *, struct reloc_queue *)); static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *, unsigned int *, struct reloc_queue *)); static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *, unsigned int *, arelent *, int, struct reloc_queue *)); static unsigned long som_count_spaces PARAMS ((bfd *)); static unsigned long som_count_subspaces PARAMS ((bfd *)); static int compare_syms PARAMS ((asymbol **, asymbol **)); static unsigned long som_compute_checksum PARAMS ((bfd *)); static boolean som_prep_headers PARAMS ((bfd *)); static int som_sizeof_headers PARAMS ((bfd *, boolean)); static boolean som_write_headers PARAMS ((bfd *)); static reloc_howto_type som_hppa_howto_table[] = { {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"}, {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"}, {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"}, {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"}, {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"}, {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"}, {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"}, {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"}, {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"}, {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"}, {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"}, {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"}, {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"}, {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"}, {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"}, {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"}, {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"}, {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"}, {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"}, {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"}, {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"}, {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"}, {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"}, {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"}, {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"}, {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"}, {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"}, {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"}, {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"}, {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"}, {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"}, {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"}, {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"}, {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"}, {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"}, {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"}, {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"}, {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"}, {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"}, {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"}, {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"}, {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"}, {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"}, {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"}, {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"}, {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"}, {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"}, {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"}, {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"}, {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"}, {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"}, {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"}, {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"}, {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"}, {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"}, {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}}; /* Initialize the SOM relocation queue. By definition the queue holds the last four multibyte fixups. */ static void som_initialize_reloc_queue (queue) struct reloc_queue *queue; { queue[0].reloc = NULL; queue[0].size = 0; queue[1].reloc = NULL; queue[1].size = 0; queue[2].reloc = NULL; queue[2].size = 0; queue[3].reloc = NULL; queue[3].size = 0; } /* Insert a new relocation into the relocation queue. */ static void som_reloc_queue_insert (p, size, queue) unsigned char *p; unsigned int size; struct reloc_queue *queue; { queue[3].reloc = queue[2].reloc; queue[3].size = queue[2].size; queue[2].reloc = queue[1].reloc; queue[2].size = queue[1].size; queue[1].reloc = queue[0].reloc; queue[1].size = queue[0].size; queue[0].reloc = p; queue[0].size = size; } /* When an entry in the relocation queue is reused, the entry moves to the front of the queue. */ static void som_reloc_queue_fix (queue, index) struct reloc_queue *queue; unsigned int index; { if (index == 0) return; if (index == 1) { unsigned char *tmp1 = queue[0].reloc; unsigned int tmp2 = queue[0].size; queue[0].reloc = queue[1].reloc; queue[0].size = queue[1].size; queue[1].reloc = tmp1; queue[1].size = tmp2; return; } if (index == 2) { unsigned char *tmp1 = queue[0].reloc; unsigned int tmp2 = queue[0].size; queue[0].reloc = queue[2].reloc; queue[0].size = queue[2].size; queue[2].reloc = queue[1].reloc; queue[2].size = queue[1].size; queue[1].reloc = tmp1; queue[1].size = tmp2; return; } if (index == 3) { unsigned char *tmp1 = queue[0].reloc; unsigned int tmp2 = queue[0].size; queue[0].reloc = queue[3].reloc; queue[0].size = queue[3].size; queue[3].reloc = queue[2].reloc; queue[3].size = queue[2].size; queue[2].reloc = queue[1].reloc; queue[2].size = queue[1].size; queue[1].reloc = tmp1; queue[1].size = tmp2; return; } abort(); } /* Search for a particular relocation in the relocation queue. */ static int som_reloc_queue_find (p, size, queue) unsigned char *p; unsigned int size; struct reloc_queue *queue; { if (!bcmp (p, queue[0].reloc, size) && size == queue[0].size) return 0; if (!bcmp (p, queue[1].reloc, size) && size == queue[1].size) return 1; if (!bcmp (p, queue[2].reloc, size) && size == queue[2].size) return 2; if (!bcmp (p, queue[3].reloc, size) && size == queue[3].size) return 3; return -1; } static unsigned char * try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue) bfd *abfd; int *subspace_reloc_sizep; unsigned char *p; unsigned int size; struct reloc_queue *queue; { int queue_index = som_reloc_queue_find (p, size, queue); if (queue_index != -1) { /* Found this in a previous fixup. Undo the fixup we just built and use R_PREV_FIXUP instead. We saved a total of size - 1 bytes in the fixup stream. */ bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p); p += 1; *subspace_reloc_sizep += 1; som_reloc_queue_fix (queue, queue_index); } else { som_reloc_queue_insert (p, size, queue); *subspace_reloc_sizep += size; p += size; } return p; } /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP bytes without any relocation. Update the size of the subspace relocation stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer into the relocation stream. */ static unsigned char * som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue) bfd *abfd; unsigned int skip; unsigned char *p; unsigned int *subspace_reloc_sizep; struct reloc_queue *queue; { /* Use a 4 byte R_NO_RELOCATION entry with a maximal value then R_PREV_FIXUPs to get the difference down to a reasonable size. */ if (skip >= 0x1000000) { skip -= 0x1000000; bfd_put_8 (abfd, R_NO_RELOCATION + 31, p); bfd_put_8 (abfd, 0xff, p + 1); bfd_put_16 (abfd, 0xffff, p + 2); p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue); while (skip >= 0x1000000) { skip -= 0x1000000; bfd_put_8 (abfd, R_PREV_FIXUP, p); p++; *subspace_reloc_sizep += 1; /* No need to adjust queue here since we are repeating the most recent fixup. */ } } /* The difference must be less than 0x1000000. Use one more R_NO_RELOCATION entry to get to the right difference. */ if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0) { /* Difference can be handled in a simple single-byte R_NO_RELOCATION entry. */ if (skip <= 0x60) { bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p); *subspace_reloc_sizep += 1; p++; } /* Handle it with a two byte R_NO_RELOCATION entry. */ else if (skip <= 0x1000) { bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p); bfd_put_8 (abfd, (skip >> 2) - 1, p + 1); p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue); } /* Handle it with a three byte R_NO_RELOCATION entry. */ else { bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p); bfd_put_16 (abfd, (skip >> 2) - 1, p + 1); p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue); } } /* Ugh. Punt and use a 4 byte entry. */ else if (skip > 0) { bfd_put_8 (abfd, R_NO_RELOCATION + 31, p); bfd_put_8 (abfd, skip >> 16, p + 1); bfd_put_16 (abfd, skip, p + 2); p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue); } return p; } /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend from a BFD relocation. Update the size of the subspace relocation stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer into the relocation stream. */ static unsigned char * som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue) bfd *abfd; int addend; unsigned char *p; unsigned int *subspace_reloc_sizep; struct reloc_queue *queue; { if ((unsigned)(addend) + 0x80 < 0x100) { bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p); bfd_put_8 (abfd, addend, p + 1); p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue); } else if ((unsigned) (addend) + 0x8000 < 0x10000) { bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p); bfd_put_16 (abfd, addend, p + 1); p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue); } else if ((unsigned) (addend) + 0x800000 < 0x1000000) { bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p); bfd_put_8 (abfd, addend >> 16, p + 1); bfd_put_16 (abfd, addend, p + 2); p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue); } else { bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p); bfd_put_32 (abfd, addend, p + 1); p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue); } return p; } /* Handle a single function call relocation. */ static unsigned char * som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue) bfd *abfd; unsigned char *p; unsigned int *subspace_reloc_sizep; arelent *bfd_reloc; int sym_num; struct reloc_queue *queue; { int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend); int rtn_bits = arg_bits & 0x3; int type, done = 0; /* You'll never believe all this is necessary to handle relocations for function calls. Having to compute and pack the argument relocation bits is the real nightmare. If you're interested in how this works, just forget it. You really do not want to know about this braindamage. */ /* First see if this can be done with a "simple" relocation. Simple relocations have a symbol number < 0x100 and have simple encodings of argument relocations. */ if (sym_num < 0x100) { switch (arg_bits) { case 0: case 1: type = 0; break; case 1 << 8: case 1 << 8 | 1: type = 1; break; case 1 << 8 | 1 << 6: case 1 << 8 | 1 << 6 | 1: type = 2; break; case 1 << 8 | 1 << 6 | 1 << 4: case 1 << 8 | 1 << 6 | 1 << 4 | 1: type = 3; break; case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2: case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1: type = 4; break; default: /* Not one of the easy encodings. This will have to be handled by the more complex code below. */ type = -1; break; } if (type != -1) { /* Account for the return value too. */ if (rtn_bits) type += 5; /* Emit a 2 byte relocation. Then see if it can be handled with a relocation which is already in the relocation queue. */ bfd_put_8 (abfd, bfd_reloc->howto->type + type, p); bfd_put_8 (abfd, sym_num, p + 1); p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue); done = 1; } } /* If this could not be handled with a simple relocation, then do a hard one. Hard relocations occur if the symbol number was too high or if the encoding of argument relocation bits is too complex. */ if (! done) { /* Don't ask about these magic sequences. I took them straight from gas-1.36 which took them from the a.out man page. */ type = rtn_bits; if ((arg_bits >> 6 & 0xf) == 0xe) type += 9 * 40; else type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40; if ((arg_bits >> 2 & 0xf) == 0xe) type += 9 * 4; else type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4; /* Output the first two bytes of the relocation. These describe the length of the relocation and encoding style. */ bfd_put_8 (abfd, bfd_reloc->howto->type + 10 + 2 * (sym_num >= 0x100) + (type >= 0x100), p); bfd_put_8 (abfd, type, p + 1); /* Now output the symbol index and see if this bizarre relocation just happened to be in the relocation queue. */ if (sym_num < 0x100) { bfd_put_8 (abfd, sym_num, p + 2); p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue); } else { bfd_put_8 (abfd, sym_num >> 16, p + 2); bfd_put_16 (abfd, sym_num, p + 3); p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue); } } return p; } /* Return the logarithm of X, base 2, considering X unsigned. Abort if X is not a power of two -- this should never happen (FIXME: It will happen on corrupt executables. GDB should give an error, not a coredump, in that case). */ static int log2 (x) unsigned int x; { int log = 0; /* Test for 0 or a power of 2. */ if (x == 0 || x != (x & -x)) abort(); while ((x >>= 1) != 0) log++; return log; } static bfd_reloc_status_type hppa_som_reloc (abfd, reloc_entry, symbol_in, data, input_section, output_bfd) bfd *abfd; arelent *reloc_entry; asymbol *symbol_in; PTR data; asection *input_section; bfd *output_bfd; { if (output_bfd) { reloc_entry->address += input_section->output_offset; return bfd_reloc_ok; } return bfd_reloc_ok; } /* Given a generic HPPA relocation type, the instruction format, and a field selector, return an appropriate SOM reloation. FIXME. Need to handle %RR, %LR and the like as field selectors. These will need to generate multiple SOM relocations. */ int ** hppa_som_gen_reloc_type (abfd, base_type, format, field) bfd *abfd; int base_type; int format; int field; { int *final_type, **final_types; final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 2); final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int)); final_types[0] = final_type; final_types[1] = NULL; /* Default to the basic relocation passed in. */ *final_type = base_type; switch (base_type) { case R_HPPA: /* PLABELs get their own relocation type. */ if (field == e_psel || field == e_lpsel || field == e_rpsel) { /* A PLABEL relocation that has a size of 32 bits must be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */ if (format == 32) *final_type = R_DATA_PLABEL; else *final_type = R_CODE_PLABEL; } /* A relocatoin in the data space is always a full 32bits. */ else if (format == 32) *final_type = R_DATA_ONE_SYMBOL; break; case R_HPPA_GOTOFF: /* More PLABEL special cases. */ if (field == e_psel || field == e_lpsel || field == e_rpsel) *final_type = R_DATA_PLABEL; break; case R_HPPA_NONE: case R_HPPA_ABS_CALL: case R_HPPA_PCREL_CALL: case R_HPPA_COMPLEX: case R_HPPA_COMPLEX_PCREL_CALL: case R_HPPA_COMPLEX_ABS_CALL: /* Right now we can default all these. */ break; } return final_types; } /* Return the address of the correct entry in the PA SOM relocation howto table. */ static reloc_howto_type * som_bfd_reloc_type_lookup (arch, code) bfd_arch_info_type *arch; bfd_reloc_code_real_type code; { if ((int) code < (int) R_NO_RELOCATION + 255) { BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code); return &som_hppa_howto_table[(int) code]; } return (reloc_howto_type *) 0; } /* Perform some initialization for an object. Save results of this initialization in the BFD. */ static bfd_target * som_object_setup (abfd, file_hdrp, aux_hdrp) bfd *abfd; struct header *file_hdrp; struct som_exec_auxhdr *aux_hdrp; { asection *text, *data, *bss; /* som_mkobject will set bfd_error if som_mkobject fails. */ if (som_mkobject (abfd) != true) return 0; /* Make the standard .text, .data, and .bss sections so that tools which assume those names work (size for example). They will have no contents, but the sizes and such will reflect those of the $CODE$, $DATA$, and $BSS$ subspaces respectively. FIXME: Should check return status from bfd_make_section calls below. */ text = bfd_make_section (abfd, ".text"); data = bfd_make_section (abfd, ".data"); bss = bfd_make_section (abfd, ".bss"); text->_raw_size = aux_hdrp->exec_tsize; data->_raw_size = aux_hdrp->exec_dsize; bss->_raw_size = aux_hdrp->exec_bsize; text->flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_CODE); data->flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS); bss->flags = (SEC_ALLOC | SEC_IS_COMMON); /* The virtual memory addresses of the sections */ text->vma = aux_hdrp->exec_tmem; data->vma = aux_hdrp->exec_dmem; bss->vma = aux_hdrp->exec_bfill; /* The file offsets of the sections */ text->filepos = aux_hdrp->exec_tfile; data->filepos = aux_hdrp->exec_dfile; /* The file offsets of the relocation info */ text->rel_filepos = 0; data->rel_filepos = 0; /* Set BFD flags based on what information is available in the SOM. */ abfd->flags = NO_FLAGS; if (! file_hdrp->entry_offset) abfd->flags |= HAS_RELOC; else abfd->flags |= EXEC_P; if (file_hdrp->symbol_total) abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS; bfd_get_start_address (abfd) = aux_hdrp->exec_entry; bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0); bfd_get_symcount (abfd) = file_hdrp->symbol_total; /* Initialize the saved symbol table and string table to NULL. Save important offsets and sizes from the SOM header into the BFD. */ obj_som_stringtab (abfd) = (char *) NULL; obj_som_symtab (abfd) = (som_symbol_type *) NULL; obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size; obj_som_sym_filepos (abfd) = file_hdrp->symbol_location; obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location; obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location; return abfd->xvec; } /* Create a new BFD section for NAME. If NAME already exists, then create a new unique name, with NAME as the prefix. This exists because SOM .o files may have more than one $CODE$ subspace. */ static asection * make_unique_section (abfd, name, num) bfd *abfd; CONST char *name; int num; { asection *sect; char *newname; char altname[100]; sect = bfd_make_section (abfd, name); while (!sect) { sprintf (altname, "%s-%d", name, num++); sect = bfd_make_section (abfd, altname); } newname = bfd_alloc (abfd, strlen (sect->name) + 1); strcpy (newname, sect->name); sect->name = newname; return sect; } /* Convert all of the space and subspace info into BFD sections. Each space contains a number of subspaces, which in turn describe the mapping between regions of the exec file, and the address space that the program runs in. BFD sections which correspond to spaces will overlap the sections for the associated subspaces. */ static boolean setup_sections (abfd, file_hdr) bfd *abfd; struct header *file_hdr; { char *space_strings; int space_index; unsigned int total_subspaces = 0; /* First, read in space names */ space_strings = alloca (file_hdr->space_strings_size); if (!space_strings) return false; if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0) return false; if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd) != file_hdr->space_strings_size) return false; /* Loop over all of the space dictionaries, building up sections */ for (space_index = 0; space_index < file_hdr->space_total; space_index++) { struct space_dictionary_record space; struct subspace_dictionary_record subspace, save_subspace; int subspace_index; asection *space_asect; /* Read the space dictionary element */ if (bfd_seek (abfd, file_hdr->space_location + space_index * sizeof space, SEEK_SET) < 0) return false; if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space) return false; /* Setup the space name string */ space.name.n_name = space.name.n_strx + space_strings; /* Make a section out of it */ space_asect = make_unique_section (abfd, space.name.n_name, space_index); if (!space_asect) return false; /* Now, read in the first subspace for this space */ if (bfd_seek (abfd, file_hdr->subspace_location + space.subspace_index * sizeof subspace, SEEK_SET) < 0) return false; if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace) return false; /* Seek back to the start of the subspaces for loop below */ if (bfd_seek (abfd, file_hdr->subspace_location + space.subspace_index * sizeof subspace, SEEK_SET) < 0) return false; /* Setup the start address and file loc from the first subspace record */ space_asect->vma = subspace.subspace_start; space_asect->filepos = subspace.file_loc_init_value; space_asect->alignment_power = log2 (subspace.alignment); /* Initialize save_subspace so we can reliably determine if this loop placed any useful values into it. */ bzero (&save_subspace, sizeof (struct subspace_dictionary_record)); /* Loop over the rest of the subspaces, building up more sections */ for (subspace_index = 0; subspace_index < space.subspace_quantity; subspace_index++) { asection *subspace_asect; /* Read in the next subspace */ if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace) return false; /* Setup the subspace name string */ subspace.name.n_name = subspace.name.n_strx + space_strings; /* Make a section out of this subspace */ subspace_asect = make_unique_section (abfd, subspace.name.n_name, space.subspace_index + subspace_index); if (!subspace_asect) return false; /* Keep an easy mapping between subspaces and sections. */ som_section_data (subspace_asect)->subspace_index = total_subspaces++; /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified by the access_control_bits in the subspace header. */ switch (subspace.access_control_bits >> 4) { /* Readonly data. */ case 0x0: subspace_asect->flags |= SEC_DATA | SEC_READONLY; break; /* Normal data. */ case 0x1: subspace_asect->flags |= SEC_DATA; break; /* Readonly code and the gateways. Gateways have other attributes which do not map into anything BFD knows about. */ case 0x2: case 0x4: case 0x5: case 0x6: case 0x7: subspace_asect->flags |= SEC_CODE | SEC_READONLY; break; /* dynamic (writable) code. */ case 0x3: subspace_asect->flags |= SEC_CODE; break; } if (subspace.dup_common || subspace.is_common) subspace_asect->flags |= SEC_IS_COMMON; else subspace_asect->flags |= SEC_HAS_CONTENTS; if (subspace.is_loadable) subspace_asect->flags |= SEC_ALLOC | SEC_LOAD; if (subspace.code_only) subspace_asect->flags |= SEC_CODE; /* This subspace has relocations. The fixup_request_quantity is a byte count for the number of entries in the relocation stream; it is not the actual number of relocations in the subspace. */ if (subspace.fixup_request_quantity != 0) { subspace_asect->flags |= SEC_RELOC; subspace_asect->rel_filepos = subspace.fixup_request_index; som_section_data (subspace_asect)->reloc_size = subspace.fixup_request_quantity; /* We can not determine this yet. When we read in the relocation table the correct value will be filled in. */ subspace_asect->reloc_count = -1; } /* Update save_subspace if appropriate. */ if (subspace.file_loc_init_value > save_subspace.file_loc_init_value) save_subspace = subspace; subspace_asect->vma = subspace.subspace_start; subspace_asect->_cooked_size = subspace.subspace_length; subspace_asect->_raw_size = subspace.initialization_length; subspace_asect->alignment_power = log2 (subspace.alignment); subspace_asect->filepos = subspace.file_loc_init_value; } /* Yow! there is no subspace within the space which actually has initialized information in it; this should never happen as far as I know. */ if (!save_subspace.file_loc_init_value) abort (); /* Setup the sizes for the space section based upon the info in the last subspace of the space. */ space_asect->_cooked_size = save_subspace.subspace_start - space_asect->vma + save_subspace.subspace_length; space_asect->_raw_size = save_subspace.file_loc_init_value - space_asect->filepos + save_subspace.initialization_length; } return true; } /* Read in a SOM object and make it into a BFD. */ static bfd_target * som_object_p (abfd) bfd *abfd; { struct header file_hdr; struct som_exec_auxhdr aux_hdr; if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE) { bfd_error = system_call_error; return 0; } if (!_PA_RISC_ID (file_hdr.system_id)) { bfd_error = wrong_format; return 0; } switch (file_hdr.a_magic) { case RELOC_MAGIC: case EXEC_MAGIC: case SHARE_MAGIC: case DEMAND_MAGIC: #ifdef DL_MAGIC case DL_MAGIC: #endif #ifdef SHL_MAGIC case SHL_MAGIC: #endif #ifdef EXECLIBMAGIC case EXECLIBMAGIC: #endif break; default: bfd_error = wrong_format; return 0; } if (file_hdr.version_id != VERSION_ID && file_hdr.version_id != NEW_VERSION_ID) { bfd_error = wrong_format; return 0; } /* If the aux_header_size field in the file header is zero, then this object is an incomplete executable (a .o file). Do not try to read a non-existant auxiliary header. */ bzero (&aux_hdr, sizeof (struct som_exec_auxhdr)); if (file_hdr.aux_header_size != 0) { if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE) { bfd_error = wrong_format; return 0; } } if (!setup_sections (abfd, &file_hdr)) { /* setup_sections does not bubble up a bfd error code. */ bfd_error = bad_value; return 0; } /* This appears to be a valid SOM object. Do some initialization. */ return som_object_setup (abfd, &file_hdr, &aux_hdr); } /* Create a SOM object. */ static boolean som_mkobject (abfd) bfd *abfd; { /* Allocate memory to hold backend information. */ abfd->tdata.som_data = (struct som_data_struct *) bfd_zalloc (abfd, sizeof (struct som_data_struct)); if (abfd->tdata.som_data == NULL) { bfd_error = no_memory; return false; } obj_som_file_hdr (abfd) = bfd_zalloc (abfd, sizeof (struct header)); if (obj_som_file_hdr (abfd) == NULL) { bfd_error = no_memory; return false; } return true; } /* Initialize some information in the file header. This routine makes not attempt at doing the right thing for a full executable; it is only meant to handle relocatable objects. */ static boolean som_prep_headers (abfd) bfd *abfd; { struct header *file_hdr = obj_som_file_hdr (abfd); asection *section; /* FIXME. This should really be conditional based on whether or not PA1.1 instructions/registers have been used. */ file_hdr->system_id = HP9000S800_ID; /* FIXME. Only correct for building relocatable objects. */ if (abfd->flags & EXEC_P) abort (); else file_hdr->a_magic = RELOC_MAGIC; /* Only new format SOM is supported. */ file_hdr->version_id = NEW_VERSION_ID; /* These fields are optional, and embedding timestamps is not always a wise thing to do, it makes comparing objects during a multi-stage bootstrap difficult. */ file_hdr->file_time.secs = 0; file_hdr->file_time.nanosecs = 0; if (abfd->flags & EXEC_P) abort (); else { file_hdr->entry_space = 0; file_hdr->entry_subspace = 0; file_hdr->entry_offset = 0; } /* FIXME. I do not know if we ever need to put anything other than zero in this field. */ file_hdr->presumed_dp = 0; /* Now iterate over the sections translating information from BFD sections to SOM spaces/subspaces. */ for (section = abfd->sections; section != NULL; section = section->next) { /* Ignore anything which has not been marked as a space or subspace. */ if (som_section_data (section)->is_space == 0 && som_section_data (section)->is_subspace == 0) continue; if (som_section_data (section)->is_space) { /* Set space attributes. Note most attributes of SOM spaces are set based on the subspaces it contains. */ som_section_data (section)->space_dict.loader_fix_index = -1; som_section_data (section)->space_dict.init_pointer_index = -1; } else { /* Set subspace attributes. Basic stuff is done here, additional attributes are filled in later as more information becomes available. */ if (section->flags & SEC_IS_COMMON) { som_section_data (section)->subspace_dict.dup_common = 1; som_section_data (section)->subspace_dict.is_common = 1; } if (section->flags & SEC_ALLOC) som_section_data (section)->subspace_dict.is_loadable = 1; if (section->flags & SEC_CODE) som_section_data (section)->subspace_dict.code_only = 1; som_section_data (section)->subspace_dict.subspace_start = section->vma; som_section_data (section)->subspace_dict.subspace_length = bfd_section_size (abfd, section); som_section_data (section)->subspace_dict.initialization_length = bfd_section_size (abfd, section); som_section_data (section)->subspace_dict.alignment = 1 << section->alignment_power; } } return true; } /* Count and return the number of spaces attached to the given BFD. */ static unsigned long som_count_spaces (abfd) bfd *abfd; { int count = 0; asection *section; for (section = abfd->sections; section != NULL; section = section->next) count += som_section_data (section)->is_space; return count; } /* Count the number of subspaces attached to the given BFD. */ static unsigned long som_count_subspaces (abfd) bfd *abfd; { int count = 0; asection *section; for (section = abfd->sections; section != NULL; section = section->next) count += som_section_data (section)->is_subspace; return count; } /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2. We desire symbols to be ordered starting with the symbol with the highest relocation count down to the symbol with the lowest relocation count. Doing so compacts the relocation stream. */ static int compare_syms (sym1, sym2) asymbol **sym1; asymbol **sym2; { unsigned int count1, count2; /* Get relocation count for each symbol. Note that the count is stored in the udata pointer for section symbols! */ if ((*sym1)->flags & BSF_SECTION_SYM) count1 = (int)(*sym1)->udata; else count1 = (*som_symbol_data ((*sym1)))->reloc_count; if ((*sym2)->flags & BSF_SECTION_SYM) count2 = (int)(*sym2)->udata; else count2 = (*som_symbol_data ((*sym2)))->reloc_count; /* Return the appropriate value. */ if (count1 < count2) return 1; else if (count1 > count2) return -1; return 0; } /* Finally, scribble out the various headers to the disk. */ static boolean som_write_headers (abfd) bfd *abfd; { int num_spaces = som_count_spaces (abfd); int i; int subspace_index = 0; file_ptr location; asection *section; /* Subspaces are written first so that we can set up information about them in their containing spaces as the subspace is written. */ /* Seek to the start of the subspace dictionary records. */ location = obj_som_file_hdr (abfd)->subspace_location; bfd_seek (abfd, location, SEEK_SET); section = abfd->sections; /* Now for each loadable space write out records for its subspaces. */ for (i = 0; i < num_spaces; i++) { asection *subsection; /* Find a space. */ while (som_section_data (section)->is_space == 0) section = section->next; /* Now look for all its subspaces. */ for (subsection = abfd->sections; subsection != NULL; subsection = subsection->next) { /* Skip any section which does not correspond to a space or subspace. Or does not have SEC_ALLOC set (and therefore has no real bits on the disk). */ if (som_section_data (subsection)->is_subspace == 0 || som_section_data (subsection)->containing_space != section || (subsection->flags & SEC_ALLOC) == 0) continue; /* If this is the first subspace for this space, then save the index of the subspace in its containing space. Also set "is_loadable" in the containing space. */ if (som_section_data (section)->space_dict.subspace_quantity == 0) { som_section_data (section)->space_dict.is_loadable = 1; som_section_data (section)->space_dict.subspace_index = subspace_index; } /* Increment the number of subspaces seen and the number of subspaces contained within the current space. */ subspace_index++; som_section_data (section)->space_dict.subspace_quantity++; /* Mark the index of the current space within the subspace's dictionary record. */ som_section_data (subsection)->subspace_dict.space_index = i; /* Dump the current subspace header. */ if (bfd_write ((PTR) &som_section_data (subsection)->subspace_dict, sizeof (struct subspace_dictionary_record), 1, abfd) != sizeof (struct subspace_dictionary_record)) { bfd_error = system_call_error; return false; } } /* Goto the next section. */ section = section->next; } /* Now repeat the process for unloadable subspaces. */ section = abfd->sections; /* Now for each space write out records for its subspaces. */ for (i = 0; i < num_spaces; i++) { asection *subsection; /* Find a space. */ while (som_section_data (section)->is_space == 0) section = section->next; /* Now look for all its subspaces. */ for (subsection = abfd->sections; subsection != NULL; subsection = subsection->next) { /* Skip any section which does not correspond to a space or subspace, or which SEC_ALLOC set (and therefore handled in the loadable spaces/subspaces code above. */ if (som_section_data (subsection)->is_subspace == 0 || som_section_data (subsection)->containing_space != section || (subsection->flags & SEC_ALLOC) != 0) continue; /* If this is the first subspace for this space, then save the index of the subspace in its containing space. Clear "is_loadable". */ if (som_section_data (section)->space_dict.subspace_quantity == 0) { som_section_data (section)->space_dict.is_loadable = 0; som_section_data (section)->space_dict.subspace_index = subspace_index; } /* Increment the number of subspaces seen and the number of subspaces contained within the current space. */ som_section_data (section)->space_dict.subspace_quantity++; subspace_index++; /* Mark the index of the current space within the subspace's dictionary record. */ som_section_data (subsection)->subspace_dict.space_index = i; /* Dump this subspace header. */ if (bfd_write ((PTR) &som_section_data (subsection)->subspace_dict, sizeof (struct subspace_dictionary_record), 1, abfd) != sizeof (struct subspace_dictionary_record)) { bfd_error = system_call_error; return false; } } /* Goto the next section. */ section = section->next; } /* All the subspace dictiondary records are written, and all the fields are set up in the space dictionary records. Seek to the right location and start writing the space dictionary records. */ location = obj_som_file_hdr (abfd)->space_location; bfd_seek (abfd, location, SEEK_SET); section = abfd->sections; for (i = 0; i < num_spaces; i++) { /* Find a space. */ while (som_section_data (section)->is_space == 0) section = section->next; /* Dump its header */ if (bfd_write ((PTR) &som_section_data (section)->space_dict, sizeof (struct space_dictionary_record), 1, abfd) != sizeof (struct space_dictionary_record)) { bfd_error = system_call_error; return false; } /* Goto the next section. */ section = section->next; } /* Only thing left to do is write out the file header. It is always at location zero. Seek there and write it. */ bfd_seek (abfd, (file_ptr) 0, SEEK_SET); if (bfd_write ((PTR) obj_som_file_hdr (abfd), sizeof (struct header), 1, abfd) != sizeof (struct header)) { bfd_error = system_call_error; return false; } return true; } static unsigned long som_compute_checksum (abfd) bfd *abfd; { unsigned long checksum, count, i; unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd); checksum = 0; count = sizeof (struct header) / sizeof (unsigned long); for (i = 0; i < count; i++) checksum ^= *(buffer + i); return checksum; } boolean som_write_object_contents (abfd) bfd *abfd; { fprintf (stderr, "som_write_object_contents unimplemented\n"); fflush (stderr); abort (); return (false); } /* Read and save the string table associated with the given BFD. */ static boolean som_slurp_string_table (abfd) bfd *abfd; { char *stringtab; /* Use the saved version if its available. */ if (obj_som_stringtab (abfd) != NULL) return true; /* Allocate and read in the string table. */ stringtab = bfd_zalloc (abfd, obj_som_stringtab_size (abfd)); if (stringtab == NULL) { bfd_error = no_memory; return false; } if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0) { bfd_error = system_call_error; return false; } if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd) != obj_som_stringtab_size (abfd)) { bfd_error = system_call_error; return false; } /* Save our results and return success. */ obj_som_stringtab (abfd) = stringtab; return true; } /* Return the amount of data (in bytes) required to hold the symbol table for this object. */ static unsigned int som_get_symtab_upper_bound (abfd) bfd *abfd; { if (!som_slurp_symbol_table (abfd)) return 0; return (bfd_get_symcount (abfd) + 1) * (sizeof (som_symbol_type *)); } /* Convert from a SOM subspace index to a BFD section. */ static asection * som_section_from_subspace_index (abfd, index) bfd *abfd; unsigned int index; { asection *section; for (section = abfd->sections; section != NULL; section = section->next) if (som_section_data (section)->subspace_index == index) return section; /* Should never happen. */ abort(); } /* Read and save the symbol table associated with the given BFD. */ static unsigned int som_slurp_symbol_table (abfd) bfd *abfd; { int symbol_count = bfd_get_symcount (abfd); int symsize = sizeof (struct symbol_dictionary_record); char *stringtab; struct symbol_dictionary_record *buf, *bufp, *endbufp; som_symbol_type *sym, *symbase; /* Return saved value if it exists. */ if (obj_som_symtab (abfd) != NULL) return true; /* Sanity checking. Make sure there are some symbols and that we can read the string table too. */ if (symbol_count == 0) { bfd_error = no_symbols; return false; } if (!som_slurp_string_table (abfd)) return false; stringtab = obj_som_stringtab (abfd); symbase = (som_symbol_type *) bfd_zalloc (abfd, symbol_count * sizeof (som_symbol_type)); if (symbase == NULL) { bfd_error = no_memory; return false; } /* Read in the external SOM representation. */ buf = alloca (symbol_count * symsize); if (buf == NULL) { bfd_error = no_memory; return false; } if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0) { bfd_error = system_call_error; return false; } if (bfd_read (buf, symbol_count * symsize, 1, abfd) != symbol_count * symsize) { bfd_error = no_symbols; return (false); } /* Iterate over all the symbols and internalize them. */ endbufp = buf + symbol_count; for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp) { /* I don't think we care about these. */ if (bufp->symbol_type == ST_SYM_EXT || bufp->symbol_type == ST_ARG_EXT) continue; /* Some reasonable defaults. */ sym->symbol.the_bfd = abfd; sym->symbol.name = bufp->name.n_strx + stringtab; sym->symbol.value = bufp->symbol_value; sym->symbol.section = 0; sym->symbol.flags = 0; switch (bufp->symbol_type) { case ST_ENTRY: sym->symbol.flags |= BSF_FUNCTION; sym->symbol.value &= ~0x3; break; case ST_PRI_PROG: case ST_SEC_PROG: case ST_STUB: case ST_MILLICODE: case ST_CODE: sym->symbol.value &= ~0x3; default: break; } /* Handle scoping and section information. */ switch (bufp->symbol_scope) { /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols, so the section associated with this symbol can't be known. */ case SS_EXTERNAL: case SS_UNSAT: sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL); break; case SS_UNIVERSAL: sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL); sym->symbol.section = som_section_from_subspace_index (abfd, bufp->symbol_info); sym->symbol.value -= sym->symbol.section->vma; break; #if 0 /* SS_GLOBAL and SS_LOCAL are two names for the same thing. Sound dumb? It is. */ case SS_GLOBAL: #endif case SS_LOCAL: sym->symbol.flags |= BSF_LOCAL; sym->symbol.section = som_section_from_subspace_index (abfd, bufp->symbol_info); sym->symbol.value -= sym->symbol.section->vma; break; } /* Mark symbols left around by the debugger. */ if (strlen (sym->symbol.name) >= 3 && sym->symbol.name[0] == 'L' && (sym->symbol.name[2] == '$' || sym->symbol.name[3] == '$')) sym->symbol.flags |= BSF_DEBUGGING; /* Note increment at bottom of loop, since we skip some symbols we can not include it as part of the for statement. */ sym++; } /* Save our results and return success. */ obj_som_symtab (abfd) = symbase; return (true); } /* Canonicalize a SOM symbol table. Return the number of entries in the symbol table. */ static unsigned int som_get_symtab (abfd, location) bfd *abfd; asymbol **location; { int i; som_symbol_type *symbase; if (!som_slurp_symbol_table (abfd)) return 0; i = bfd_get_symcount (abfd); symbase = obj_som_symtab (abfd); for (; i > 0; i--, location++, symbase++) *location = &symbase->symbol; /* Final null pointer. */ *location = 0; return (bfd_get_symcount (abfd)); } /* Make a SOM symbol. There is nothing special to do here. */ static asymbol * som_make_empty_symbol (abfd) bfd *abfd; { som_symbol_type *new = (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type)); if (new == NULL) { bfd_error = no_memory; return 0; } new->symbol.the_bfd = abfd; return &new->symbol; } /* Print symbol information. */ static void som_print_symbol (ignore_abfd, afile, symbol, how) bfd *ignore_abfd; PTR afile; asymbol *symbol; bfd_print_symbol_type how; { FILE *file = (FILE *) afile; switch (how) { case bfd_print_symbol_name: fprintf (file, "%s", symbol->name); break; case bfd_print_symbol_more: fprintf (file, "som "); fprintf_vma (file, symbol->value); fprintf (file, " %lx", (long) symbol->flags); break; case bfd_print_symbol_all: { CONST char *section_name; section_name = symbol->section ? symbol->section->name : "(*none*)"; bfd_print_symbol_vandf ((PTR) file, symbol); fprintf (file, " %s\t%s", section_name, symbol->name); break; } } } static unsigned int som_get_reloc_upper_bound (abfd, asect) bfd *abfd; sec_ptr asect; { fprintf (stderr, "som_get_reloc_upper_bound unimplemented\n"); fflush (stderr); abort (); return (0); } static unsigned int som_canonicalize_reloc (abfd, section, relptr, symbols) bfd *abfd; sec_ptr section; arelent **relptr; asymbol **symbols; { fprintf (stderr, "som_canonicalize_reloc unimplemented\n"); fflush (stderr); abort (); } extern bfd_target som_vec; /* A hook to set up object file dependent section information. */ static boolean som_new_section_hook (abfd, newsect) bfd *abfd; asection *newsect; { newsect->used_by_bfd = (struct som_section_data_struct *) bfd_zalloc (abfd, sizeof (struct som_section_data_struct)); newsect->alignment_power = 3; /* Initialize the subspace_index field to -1 so that it does not match a subspace with an index of 0. */ som_section_data (newsect)->subspace_index = -1; /* We allow more than three sections internally */ return true; } /* Set backend info for sections which can not be described in the BFD data structures. */ void bfd_som_set_section_attributes (section, defined, private, sort_key, spnum) asection *section; char defined; char private; unsigned char sort_key; int spnum; { struct space_dictionary_record *space_dict; som_section_data (section)->is_space = 1; space_dict = &som_section_data (section)->space_dict; space_dict->is_defined = defined; space_dict->is_private = private; space_dict->sort_key = sort_key; space_dict->space_number = spnum; } /* Set backend info for subsections which can not be described in the BFD data structures. */ void bfd_som_set_subsection_attributes (section, container, access, sort_key, quadrant) asection *section; asection *container; int access; unsigned char sort_key; int quadrant; { struct subspace_dictionary_record *subspace_dict; som_section_data (section)->is_subspace = 1; subspace_dict = &som_section_data (section)->subspace_dict; subspace_dict->access_control_bits = access; subspace_dict->sort_key = sort_key; subspace_dict->quadrant = quadrant; som_section_data (section)->containing_space = container; } /* Set the full SOM symbol type. SOM needs far more symbol information than any other object file format I'm aware of. It is mandatory to be able to know if a symbol is an entry point, millicode, data, code, absolute, storage request, or procedure label. If you get the symbol type wrong your program will not link. */ void bfd_som_set_symbol_type (symbol, type) asymbol *symbol; unsigned int type; { (*som_symbol_data (symbol))->som_type = type; } /* Attach 64bits of unwind information to a symbol (which hopefully is a function of some kind!). It would be better to keep this in the R_ENTRY relocation, but there is not enough space. */ void bfd_som_attach_unwind_info (symbol, unwind_desc) asymbol *symbol; char *unwind_desc; { (*som_symbol_data (symbol))->unwind = unwind_desc; } static boolean som_set_section_contents (abfd, section, location, offset, count) bfd *abfd; sec_ptr section; PTR location; file_ptr offset; bfd_size_type count; { fprintf (stderr, "som_set_section_contents unimplimented\n"); fflush (stderr); abort (); return false; } static boolean som_set_arch_mach (abfd, arch, machine) bfd *abfd; enum bfd_architecture arch; unsigned long machine; { /* Allow any architecture to be supported by the SOM backend */ return bfd_default_set_arch_mach (abfd, arch, machine); } static boolean som_find_nearest_line (abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr) bfd *abfd; asection *section; asymbol **symbols; bfd_vma offset; CONST char **filename_ptr; CONST char **functionname_ptr; unsigned int *line_ptr; { fprintf (stderr, "som_find_nearest_line unimplemented\n"); fflush (stderr); abort (); return (false); } static int som_sizeof_headers (abfd, reloc) bfd *abfd; boolean reloc; { fprintf (stderr, "som_sizeof_headers unimplemented\n"); fflush (stderr); abort (); return (0); } /* Return information about SOM symbol SYMBOL in RET. */ static void som_get_symbol_info (ignore_abfd, symbol, ret) bfd *ignore_abfd; /* Ignored. */ asymbol *symbol; symbol_info *ret; { bfd_symbol_info (symbol, ret); } /* End of miscellaneous support functions. */ #define som_bfd_debug_info_start bfd_void #define som_bfd_debug_info_end bfd_void #define som_bfd_debug_info_accumulate (PROTO(void,(*),(bfd*, struct sec *))) bfd_void #define som_openr_next_archived_file bfd_generic_openr_next_archived_file #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt #define som_slurp_armap bfd_false #define som_slurp_extended_name_table _bfd_slurp_extended_name_table #define som_truncate_arname (void (*)())bfd_nullvoidptr #define som_write_armap 0 #define som_get_lineno (struct lineno_cache_entry *(*)())bfd_nullvoidptr #define som_close_and_cleanup bfd_generic_close_and_cleanup #define som_get_section_contents bfd_generic_get_section_contents #define som_bfd_get_relocated_section_contents \ bfd_generic_get_relocated_section_contents #define som_bfd_relax_section bfd_generic_relax_section #define som_bfd_seclet_link bfd_generic_seclet_link #define som_bfd_reloc_type_lookup \ ((CONST struct reloc_howto_struct *(*) PARAMS ((bfd *, bfd_reloc_code_real_type))) bfd_nullvoidptr) #define som_bfd_make_debug_symbol \ ((asymbol *(*) PARAMS ((bfd *, void *, unsigned long))) bfd_nullvoidptr) /* Core file support is in the hpux-core backend. */ #define som_core_file_failing_command _bfd_dummy_core_file_failing_command #define som_core_file_failing_signal _bfd_dummy_core_file_failing_signal #define som_core_file_matches_executable_p _bfd_dummy_core_file_matches_executable_p bfd_target som_vec = { "som", /* name */ bfd_target_som_flavour, true, /* target byte order */ true, /* target headers byte order */ (HAS_RELOC | EXEC_P | /* object flags */ HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED), (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */ /* leading_symbol_char: is the first char of a user symbol predictable, and if so what is it */ 0, ' ', /* ar_pad_char */ 16, /* ar_max_namelen */ 3, /* minimum alignment */ bfd_getb64, bfd_getb_signed_64, bfd_putb64, bfd_getb32, bfd_getb_signed_32, bfd_putb32, bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */ bfd_getb64, bfd_getb_signed_64, bfd_putb64, bfd_getb32, bfd_getb_signed_32, bfd_putb32, bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */ {_bfd_dummy_target, som_object_p, /* bfd_check_format */ bfd_generic_archive_p, _bfd_dummy_target }, { bfd_false, som_mkobject, _bfd_generic_mkarchive, bfd_false }, { bfd_false, som_write_object_contents, _bfd_write_archive_contents, bfd_false, }, #undef som JUMP_TABLE (som), (PTR) 0 }; #endif /* HOST_HPPAHPUX || HOST_HPPABSD */