/* Dynamic architecture support for GDB, the GNU debugger. Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #if GDB_MULTI_ARCH #include "arch-utils.h" #include "gdbcmd.h" #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */ #else /* Just include everything in sight so that the every old definition of macro is visible. */ #include "gdb_string.h" #include "symtab.h" #include "frame.h" #include "inferior.h" #include "breakpoint.h" #include "gdb_wait.h" #include "gdbcore.h" #include "gdbcmd.h" #include "target.h" #include "annotate.h" #endif #include "regcache.h" #include "gdb_assert.h" #include "version.h" #include "floatformat.h" /* Use the program counter to determine the contents and size of a breakpoint instruction. If no target-dependent macro BREAKPOINT_FROM_PC has been defined to implement this function, assume that the breakpoint doesn't depend on the PC, and use the values of the BIG_BREAKPOINT and LITTLE_BREAKPOINT macros. Return a pointer to a string of bytes that encode a breakpoint instruction, stores the length of the string to *lenptr, and optionally adjust the pc to point to the correct memory location for inserting the breakpoint. */ unsigned char * legacy_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr) { /* {BIG_,LITTLE_}BREAKPOINT is the sequence of bytes we insert for a breakpoint. On some machines, breakpoints are handled by the target environment and we don't have to worry about them here. */ #ifdef BIG_BREAKPOINT if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) { static unsigned char big_break_insn[] = BIG_BREAKPOINT; *lenptr = sizeof (big_break_insn); return big_break_insn; } #endif #ifdef LITTLE_BREAKPOINT if (TARGET_BYTE_ORDER != BFD_ENDIAN_BIG) { static unsigned char little_break_insn[] = LITTLE_BREAKPOINT; *lenptr = sizeof (little_break_insn); return little_break_insn; } #endif #ifdef BREAKPOINT { static unsigned char break_insn[] = BREAKPOINT; *lenptr = sizeof (break_insn); return break_insn; } #endif *lenptr = 0; return NULL; } int generic_frameless_function_invocation_not (struct frame_info *fi) { return 0; } int generic_return_value_on_stack_not (struct type *type) { return 0; } CORE_ADDR generic_skip_trampoline_code (CORE_ADDR pc) { return 0; } int generic_in_solib_call_trampoline (CORE_ADDR pc, char *name) { return 0; } int generic_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) { return 0; } char * legacy_register_name (int i) { #ifdef REGISTER_NAMES static char *names[] = REGISTER_NAMES; if (i < 0 || i >= (sizeof (names) / sizeof (*names))) return NULL; else return names[i]; #else internal_error (__FILE__, __LINE__, "legacy_register_name: called."); return NULL; #endif } #if defined (CALL_DUMMY) LONGEST legacy_call_dummy_words[] = CALL_DUMMY; #else LONGEST legacy_call_dummy_words[1]; #endif int legacy_sizeof_call_dummy_words = sizeof (legacy_call_dummy_words); void generic_remote_translate_xfer_address (CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR * rem_addr, int *rem_len) { *rem_addr = gdb_addr; *rem_len = gdb_len; } int generic_prologue_frameless_p (CORE_ADDR ip) { #ifdef SKIP_PROLOGUE_FRAMELESS_P return ip == SKIP_PROLOGUE_FRAMELESS_P (ip); #else return ip == SKIP_PROLOGUE (ip); #endif } /* New/multi-arched targets should use the correct gdbarch field instead of using this global pointer. */ int legacy_print_insn (bfd_vma vma, disassemble_info *info) { return (*tm_print_insn) (vma, info); } /* Helper functions for INNER_THAN */ int core_addr_lessthan (CORE_ADDR lhs, CORE_ADDR rhs) { return (lhs < rhs); } int core_addr_greaterthan (CORE_ADDR lhs, CORE_ADDR rhs) { return (lhs > rhs); } /* Helper functions for TARGET_{FLOAT,DOUBLE}_FORMAT */ const struct floatformat * default_float_format (struct gdbarch *gdbarch) { #if GDB_MULTI_ARCH int byte_order = gdbarch_byte_order (gdbarch); #else int byte_order = TARGET_BYTE_ORDER; #endif switch (byte_order) { case BFD_ENDIAN_BIG: return &floatformat_ieee_single_big; case BFD_ENDIAN_LITTLE: return &floatformat_ieee_single_little; default: internal_error (__FILE__, __LINE__, "default_float_format: bad byte order"); } } const struct floatformat * default_double_format (struct gdbarch *gdbarch) { #if GDB_MULTI_ARCH int byte_order = gdbarch_byte_order (gdbarch); #else int byte_order = TARGET_BYTE_ORDER; #endif switch (byte_order) { case BFD_ENDIAN_BIG: return &floatformat_ieee_double_big; case BFD_ENDIAN_LITTLE: return &floatformat_ieee_double_little; default: internal_error (__FILE__, __LINE__, "default_double_format: bad byte order"); } } /* Misc helper functions for targets. */ int frame_num_args_unknown (struct frame_info *fi) { return -1; } int generic_register_convertible_not (int num) { return 0; } /* Under some ABI's that specify the `struct convention' for returning structures by value, by the time we've returned from the function, the return value is sitting there in the caller's buffer, but GDB has no way to find the address of that buffer. On such architectures, use this function as your extract_struct_value_address method. When asked to a struct returned by value in this fashion, GDB will print a nice error message, instead of garbage. */ CORE_ADDR generic_cannot_extract_struct_value_address (char *dummy) { return 0; } int default_register_sim_regno (int num) { return num; } CORE_ADDR core_addr_identity (CORE_ADDR addr) { return addr; } int no_op_reg_to_regnum (int reg) { return reg; } /* For use by frame_args_address and frame_locals_address. */ CORE_ADDR default_frame_address (struct frame_info *fi) { return fi->frame; } /* Default prepare_to_procced(). */ int default_prepare_to_proceed (int select_it) { return 0; } /* Generic prepare_to_proceed(). This one should be suitable for most targets that support threads. */ int generic_prepare_to_proceed (int select_it) { ptid_t wait_ptid; struct target_waitstatus wait_status; /* Get the last target status returned by target_wait(). */ get_last_target_status (&wait_ptid, &wait_status); /* Make sure we were stopped either at a breakpoint, or because of a Ctrl-C. */ if (wait_status.kind != TARGET_WAITKIND_STOPPED || (wait_status.value.sig != TARGET_SIGNAL_TRAP && wait_status.value.sig != TARGET_SIGNAL_INT)) { return 0; } if (!ptid_equal (wait_ptid, minus_one_ptid) && !ptid_equal (inferior_ptid, wait_ptid)) { /* Switched over from WAIT_PID. */ CORE_ADDR wait_pc = read_pc_pid (wait_ptid); if (wait_pc != read_pc ()) { if (select_it) { /* Switch back to WAIT_PID thread. */ inferior_ptid = wait_ptid; /* FIXME: This stuff came from switch_to_thread() in thread.c (which should probably be a public function). */ flush_cached_frames (); registers_changed (); stop_pc = wait_pc; select_frame (get_current_frame (), 0); } /* We return 1 to indicate that there is a breakpoint here, so we need to step over it before continuing to avoid hitting it straight away. */ if (breakpoint_here_p (wait_pc)) { return 1; } } } return 0; } void init_frame_pc_noop (int fromleaf, struct frame_info *prev) { return; } void init_frame_pc_default (int fromleaf, struct frame_info *prev) { if (fromleaf) prev->pc = SAVED_PC_AFTER_CALL (prev->next); else if (prev->next != NULL) prev->pc = FRAME_SAVED_PC (prev->next); else prev->pc = read_pc (); } int cannot_register_not (int regnum) { return 0; } /* Legacy version of target_virtual_frame_pointer(). Assumes that there is an FP_REGNUM and that it is the same, cooked or raw. */ void legacy_virtual_frame_pointer (CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset) { gdb_assert (FP_REGNUM >= 0); *frame_regnum = FP_REGNUM; *frame_offset = 0; } /* Assume the world is flat. Every register is large enough to fit a target integer. */ int generic_register_raw_size (int regnum) { gdb_assert (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS); return TARGET_INT_BIT / HOST_CHAR_BIT; } /* Assume the virtual size corresponds to the virtual type. */ int generic_register_virtual_size (int regnum) { return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (regnum)); } /* Functions to manipulate the endianness of the target. */ /* ``target_byte_order'' is only used when non- multi-arch. Multi-arch targets obtain the current byte order using the TARGET_BYTE_ORDER gdbarch method. The choice of initial value is entirely arbitrary. During startup, the function initialize_current_architecture() updates this value based on default byte-order information extracted from BFD. */ int target_byte_order = BFD_ENDIAN_BIG; int target_byte_order_auto = 1; static const char endian_big[] = "big"; static const char endian_little[] = "little"; static const char endian_auto[] = "auto"; static const char *endian_enum[] = { endian_big, endian_little, endian_auto, NULL, }; static const char *set_endian_string; /* Called by ``show endian''. */ static void show_endian (char *args, int from_tty) { if (TARGET_BYTE_ORDER_AUTO) printf_unfiltered ("The target endianness is set automatically (currently %s endian)\n", (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little")); else printf_unfiltered ("The target is assumed to be %s endian\n", (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little")); } static void set_endian (char *ignore_args, int from_tty, struct cmd_list_element *c) { if (set_endian_string == endian_auto) { target_byte_order_auto = 1; } else if (set_endian_string == endian_little) { target_byte_order_auto = 0; if (GDB_MULTI_ARCH) { struct gdbarch_info info; gdbarch_info_init (&info); info.byte_order = BFD_ENDIAN_LITTLE; if (! gdbarch_update_p (info)) { printf_unfiltered ("Little endian target not supported by GDB\n"); } } else { target_byte_order = BFD_ENDIAN_LITTLE; } } else if (set_endian_string == endian_big) { target_byte_order_auto = 0; if (GDB_MULTI_ARCH) { struct gdbarch_info info; gdbarch_info_init (&info); info.byte_order = BFD_ENDIAN_BIG; if (! gdbarch_update_p (info)) { printf_unfiltered ("Big endian target not supported by GDB\n"); } } else { target_byte_order = BFD_ENDIAN_BIG; } } else internal_error (__FILE__, __LINE__, "set_endian: bad value"); show_endian (NULL, from_tty); } /* Set the endianness from a BFD. */ static void set_endian_from_file (bfd *abfd) { int want; if (GDB_MULTI_ARCH) internal_error (__FILE__, __LINE__, "set_endian_from_file: not for multi-arch"); if (bfd_big_endian (abfd)) want = BFD_ENDIAN_BIG; else want = BFD_ENDIAN_LITTLE; if (TARGET_BYTE_ORDER_AUTO) target_byte_order = want; else if (TARGET_BYTE_ORDER != want) warning ("%s endian file does not match %s endian target.", want == BFD_ENDIAN_BIG ? "big" : "little", TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little"); } /* Functions to manipulate the architecture of the target */ enum set_arch { set_arch_auto, set_arch_manual }; int target_architecture_auto = 1; const char *set_architecture_string; /* Old way of changing the current architecture. */ extern const struct bfd_arch_info bfd_default_arch_struct; const struct bfd_arch_info *target_architecture = &bfd_default_arch_struct; int (*target_architecture_hook) (const struct bfd_arch_info *ap); static int arch_ok (const struct bfd_arch_info *arch) { if (GDB_MULTI_ARCH) internal_error (__FILE__, __LINE__, "arch_ok: not multi-arched"); /* Should be performing the more basic check that the binary is compatible with GDB. */ /* Check with the target that the architecture is valid. */ return (target_architecture_hook == NULL || target_architecture_hook (arch)); } static void set_arch (const struct bfd_arch_info *arch, enum set_arch type) { if (GDB_MULTI_ARCH) internal_error (__FILE__, __LINE__, "set_arch: not multi-arched"); switch (type) { case set_arch_auto: if (!arch_ok (arch)) warning ("Target may not support %s architecture", arch->printable_name); target_architecture = arch; break; case set_arch_manual: if (!arch_ok (arch)) { printf_unfiltered ("Target does not support `%s' architecture.\n", arch->printable_name); } else { target_architecture_auto = 0; target_architecture = arch; } break; } if (gdbarch_debug) gdbarch_dump (current_gdbarch, gdb_stdlog); } /* Set the architecture from arch/machine (deprecated) */ void set_architecture_from_arch_mach (enum bfd_architecture arch, unsigned long mach) { const struct bfd_arch_info *wanted = bfd_lookup_arch (arch, mach); if (GDB_MULTI_ARCH) internal_error (__FILE__, __LINE__, "set_architecture_from_arch_mach: not multi-arched"); if (wanted != NULL) set_arch (wanted, set_arch_manual); else internal_error (__FILE__, __LINE__, "gdbarch: hardwired architecture/machine not recognized"); } /* Set the architecture from a BFD (deprecated) */ static void set_architecture_from_file (bfd *abfd) { const struct bfd_arch_info *wanted = bfd_get_arch_info (abfd); if (GDB_MULTI_ARCH) internal_error (__FILE__, __LINE__, "set_architecture_from_file: not multi-arched"); if (target_architecture_auto) { set_arch (wanted, set_arch_auto); } else if (wanted != target_architecture) { warning ("%s architecture file may be incompatible with %s target.", wanted->printable_name, target_architecture->printable_name); } } /* Called if the user enters ``show architecture'' without an argument. */ static void show_architecture (char *args, int from_tty) { const char *arch; arch = TARGET_ARCHITECTURE->printable_name; if (target_architecture_auto) printf_filtered ("The target architecture is set automatically (currently %s)\n", arch); else printf_filtered ("The target architecture is assumed to be %s\n", arch); } /* Called if the user enters ``set architecture'' with or without an argument. */ static void set_architecture (char *ignore_args, int from_tty, struct cmd_list_element *c) { if (strcmp (set_architecture_string, "auto") == 0) { target_architecture_auto = 1; } else if (GDB_MULTI_ARCH) { struct gdbarch_info info; gdbarch_info_init (&info); info.bfd_arch_info = bfd_scan_arch (set_architecture_string); if (info.bfd_arch_info == NULL) internal_error (__FILE__, __LINE__, "set_architecture: bfd_scan_arch failed"); if (gdbarch_update_p (info)) target_architecture_auto = 0; else printf_unfiltered ("Architecture `%s' not recognized.\n", set_architecture_string); } else { const struct bfd_arch_info *arch = bfd_scan_arch (set_architecture_string); if (arch == NULL) internal_error (__FILE__, __LINE__, "set_architecture: bfd_scan_arch failed"); set_arch (arch, set_arch_manual); } show_architecture (NULL, from_tty); } /* Set the dynamic target-system-dependent parameters (architecture, byte-order) using information found in the BFD */ void set_gdbarch_from_file (bfd *abfd) { if (GDB_MULTI_ARCH) { struct gdbarch_info info; gdbarch_info_init (&info); info.abfd = abfd; if (! gdbarch_update_p (info)) error ("Architecture of file not recognized.\n"); } else { set_architecture_from_file (abfd); set_endian_from_file (abfd); } } /* Initialize the current architecture. Update the ``set architecture'' command so that it specifies a list of valid architectures. */ #ifdef DEFAULT_BFD_ARCH extern const bfd_arch_info_type DEFAULT_BFD_ARCH; static const bfd_arch_info_type *default_bfd_arch = &DEFAULT_BFD_ARCH; #else static const bfd_arch_info_type *default_bfd_arch; #endif #ifdef DEFAULT_BFD_VEC extern const bfd_target DEFAULT_BFD_VEC; static const bfd_target *default_bfd_vec = &DEFAULT_BFD_VEC; #else static const bfd_target *default_bfd_vec; #endif void initialize_current_architecture (void) { const char **arches = gdbarch_printable_names (); /* determine a default architecture and byte order. */ struct gdbarch_info info; gdbarch_info_init (&info); /* Find a default architecture. */ if (info.bfd_arch_info == NULL && default_bfd_arch != NULL) info.bfd_arch_info = default_bfd_arch; if (info.bfd_arch_info == NULL) { /* Choose the architecture by taking the first one alphabetically. */ const char *chosen = arches[0]; const char **arch; for (arch = arches; *arch != NULL; arch++) { if (strcmp (*arch, chosen) < 0) chosen = *arch; } if (chosen == NULL) internal_error (__FILE__, __LINE__, "initialize_current_architecture: No arch"); info.bfd_arch_info = bfd_scan_arch (chosen); if (info.bfd_arch_info == NULL) internal_error (__FILE__, __LINE__, "initialize_current_architecture: Arch not found"); } /* Take several guesses at a byte order. */ if (info.byte_order == BFD_ENDIAN_UNKNOWN && default_bfd_vec != NULL) { /* Extract BFD's default vector's byte order. */ switch (default_bfd_vec->byteorder) { case BFD_ENDIAN_BIG: info.byte_order = BFD_ENDIAN_BIG; break; case BFD_ENDIAN_LITTLE: info.byte_order = BFD_ENDIAN_LITTLE; break; default: break; } } if (info.byte_order == BFD_ENDIAN_UNKNOWN) { /* look for ``*el-*'' in the target name. */ const char *chp; chp = strchr (target_name, '-'); if (chp != NULL && chp - 2 >= target_name && strncmp (chp - 2, "el", 2) == 0) info.byte_order = BFD_ENDIAN_LITTLE; } if (info.byte_order == BFD_ENDIAN_UNKNOWN) { /* Wire it to big-endian!!! */ info.byte_order = BFD_ENDIAN_BIG; } if (GDB_MULTI_ARCH) { if (! gdbarch_update_p (info)) { internal_error (__FILE__, __LINE__, "initialize_current_architecture: Selection of initial architecture failed"); } } else { /* If the multi-arch logic comes up with a byte-order (from BFD) use it for the non-multi-arch case. */ if (info.byte_order != BFD_ENDIAN_UNKNOWN) target_byte_order = info.byte_order; initialize_non_multiarch (); } /* Create the ``set architecture'' command appending ``auto'' to the list of architectures. */ { struct cmd_list_element *c; /* Append ``auto''. */ int nr; for (nr = 0; arches[nr] != NULL; nr++); arches = xrealloc (arches, sizeof (char*) * (nr + 2)); arches[nr + 0] = "auto"; arches[nr + 1] = NULL; /* FIXME: add_set_enum_cmd() uses an array of ``char *'' instead of ``const char *''. We just happen to know that the casts are safe. */ c = add_set_enum_cmd ("architecture", class_support, arches, &set_architecture_string, "Set architecture of target.", &setlist); set_cmd_sfunc (c, set_architecture); add_alias_cmd ("processor", "architecture", class_support, 1, &setlist); /* Don't use set_from_show - need to print both auto/manual and current setting. */ add_cmd ("architecture", class_support, show_architecture, "Show the current target architecture", &showlist); } } /* Initialize a gdbarch info to values that will be automatically overridden. Note: Originally, this ``struct info'' was initialized using memset(0). Unfortunatly, that ran into problems, namely BFD_ENDIAN_BIG is zero. An explicit initialization function that can explicitly set each field to a well defined value is used. */ void gdbarch_info_init (struct gdbarch_info *info) { memset (info, 0, sizeof (struct gdbarch_info)); info->byte_order = BFD_ENDIAN_UNKNOWN; } /* */ extern initialize_file_ftype _initialize_gdbarch_utils; void _initialize_gdbarch_utils (void) { struct cmd_list_element *c; c = add_set_enum_cmd ("endian", class_support, endian_enum, &set_endian_string, "Set endianness of target.", &setlist); set_cmd_sfunc (c, set_endian); /* Don't use set_from_show - need to print both auto/manual and current setting. */ add_cmd ("endian", class_support, show_endian, "Show the current byte-order", &showlist); }