/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */ /* Dynamic architecture support for GDB, the GNU debugger. Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* This file was created with the aid of ``gdbarch.sh''. The Bourne shell script ``gdbarch.sh'' creates the files ``new-gdbarch.c'' and ``new-gdbarch.h and then compares them against the existing ``gdbarch.[hc]''. Any differences found being reported. If editing this file, please also run gdbarch.sh and merge any changes into that script. Conversely, when making sweeping changes to this file, modifying gdbarch.sh and using its output may prove easier. */ #ifndef GDBARCH_H #define GDBARCH_H struct floatformat; struct ui_file; struct frame_info; struct value; struct objfile; struct obj_section; struct minimal_symbol; struct regcache; struct reggroup; struct regset; struct disassemble_info; struct target_ops; struct obstack; struct bp_target_info; struct target_desc; struct displaced_step_closure; struct core_regset_section; struct syscall; struct agent_expr; struct axs_value; struct stap_parse_info; /* The architecture associated with the connection to the target. The architecture vector provides some information that is really a property of the target: The layout of certain packets, for instance; or the solib_ops vector. Etc. To differentiate architecture accesses to per-target properties from per-thread/per-frame/per-objfile properties, accesses to per-target properties should be made through target_gdbarch. Eventually, when support for multiple targets is implemented in GDB, this global should be made target-specific. */ extern struct gdbarch *target_gdbarch; /* The following are pre-initialized by GDBARCH. */ extern const struct bfd_arch_info * gdbarch_bfd_arch_info (struct gdbarch *gdbarch); /* set_gdbarch_bfd_arch_info() - not applicable - pre-initialized. */ extern int gdbarch_byte_order (struct gdbarch *gdbarch); /* set_gdbarch_byte_order() - not applicable - pre-initialized. */ extern int gdbarch_byte_order_for_code (struct gdbarch *gdbarch); /* set_gdbarch_byte_order_for_code() - not applicable - pre-initialized. */ extern enum gdb_osabi gdbarch_osabi (struct gdbarch *gdbarch); /* set_gdbarch_osabi() - not applicable - pre-initialized. */ extern const struct target_desc * gdbarch_target_desc (struct gdbarch *gdbarch); /* set_gdbarch_target_desc() - not applicable - pre-initialized. */ /* The following are initialized by the target dependent code. */ /* The bit byte-order has to do just with numbering of bits in debugging symbols and such. Conceptually, it's quite separate from byte/word byte order. */ extern int gdbarch_bits_big_endian (struct gdbarch *gdbarch); extern void set_gdbarch_bits_big_endian (struct gdbarch *gdbarch, int bits_big_endian); /* Number of bits in a char or unsigned char for the target machine. Just like CHAR_BIT in but describes the target machine. v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0: Number of bits in a short or unsigned short for the target machine. */ extern int gdbarch_short_bit (struct gdbarch *gdbarch); extern void set_gdbarch_short_bit (struct gdbarch *gdbarch, int short_bit); /* Number of bits in an int or unsigned int for the target machine. */ extern int gdbarch_int_bit (struct gdbarch *gdbarch); extern void set_gdbarch_int_bit (struct gdbarch *gdbarch, int int_bit); /* Number of bits in a long or unsigned long for the target machine. */ extern int gdbarch_long_bit (struct gdbarch *gdbarch); extern void set_gdbarch_long_bit (struct gdbarch *gdbarch, int long_bit); /* Number of bits in a long long or unsigned long long for the target machine. */ extern int gdbarch_long_long_bit (struct gdbarch *gdbarch); extern void set_gdbarch_long_long_bit (struct gdbarch *gdbarch, int long_long_bit); /* Alignment of a long long or unsigned long long for the target machine. */ extern int gdbarch_long_long_align_bit (struct gdbarch *gdbarch); extern void set_gdbarch_long_long_align_bit (struct gdbarch *gdbarch, int long_long_align_bit); /* The ABI default bit-size and format for "half", "float", "double", and "long double". These bit/format pairs should eventually be combined into a single object. For the moment, just initialize them as a pair. Each format describes both the big and little endian layouts (if useful). */ extern int gdbarch_half_bit (struct gdbarch *gdbarch); extern void set_gdbarch_half_bit (struct gdbarch *gdbarch, int half_bit); extern const struct floatformat ** gdbarch_half_format (struct gdbarch *gdbarch); extern void set_gdbarch_half_format (struct gdbarch *gdbarch, const struct floatformat ** half_format); extern int gdbarch_float_bit (struct gdbarch *gdbarch); extern void set_gdbarch_float_bit (struct gdbarch *gdbarch, int float_bit); extern const struct floatformat ** gdbarch_float_format (struct gdbarch *gdbarch); extern void set_gdbarch_float_format (struct gdbarch *gdbarch, const struct floatformat ** float_format); extern int gdbarch_double_bit (struct gdbarch *gdbarch); extern void set_gdbarch_double_bit (struct gdbarch *gdbarch, int double_bit); extern const struct floatformat ** gdbarch_double_format (struct gdbarch *gdbarch); extern void set_gdbarch_double_format (struct gdbarch *gdbarch, const struct floatformat ** double_format); extern int gdbarch_long_double_bit (struct gdbarch *gdbarch); extern void set_gdbarch_long_double_bit (struct gdbarch *gdbarch, int long_double_bit); extern const struct floatformat ** gdbarch_long_double_format (struct gdbarch *gdbarch); extern void set_gdbarch_long_double_format (struct gdbarch *gdbarch, const struct floatformat ** long_double_format); /* For most targets, a pointer on the target and its representation as an address in GDB have the same size and "look the same". For such a target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit / addr_bit will be set from it. If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and gdbarch_address_to_pointer as well. ptr_bit is the size of a pointer on the target */ extern int gdbarch_ptr_bit (struct gdbarch *gdbarch); extern void set_gdbarch_ptr_bit (struct gdbarch *gdbarch, int ptr_bit); /* addr_bit is the size of a target address as represented in gdb */ extern int gdbarch_addr_bit (struct gdbarch *gdbarch); extern void set_gdbarch_addr_bit (struct gdbarch *gdbarch, int addr_bit); /* dwarf2_addr_size is the target address size as used in the Dwarf debug info. For .debug_frame FDEs, this is supposed to be the target address size from the associated CU header, and which is equivalent to the DWARF2_ADDR_SIZE as defined by the target specific GCC back-end. Unfortunately there is no good way to determine this value. Therefore dwarf2_addr_size simply defaults to the target pointer size. dwarf2_addr_size is not used for .eh_frame FDEs, which are generally defined using the target's pointer size so far. Note that dwarf2_addr_size only needs to be redefined by a target if the GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size, and if Dwarf versions < 4 need to be supported. */ extern int gdbarch_dwarf2_addr_size (struct gdbarch *gdbarch); extern void set_gdbarch_dwarf2_addr_size (struct gdbarch *gdbarch, int dwarf2_addr_size); /* One if `char' acts like `signed char', zero if `unsigned char'. */ extern int gdbarch_char_signed (struct gdbarch *gdbarch); extern void set_gdbarch_char_signed (struct gdbarch *gdbarch, int char_signed); extern int gdbarch_read_pc_p (struct gdbarch *gdbarch); typedef CORE_ADDR (gdbarch_read_pc_ftype) (struct regcache *regcache); extern CORE_ADDR gdbarch_read_pc (struct gdbarch *gdbarch, struct regcache *regcache); extern void set_gdbarch_read_pc (struct gdbarch *gdbarch, gdbarch_read_pc_ftype *read_pc); extern int gdbarch_write_pc_p (struct gdbarch *gdbarch); typedef void (gdbarch_write_pc_ftype) (struct regcache *regcache, CORE_ADDR val); extern void gdbarch_write_pc (struct gdbarch *gdbarch, struct regcache *regcache, CORE_ADDR val); extern void set_gdbarch_write_pc (struct gdbarch *gdbarch, gdbarch_write_pc_ftype *write_pc); /* Function for getting target's idea of a frame pointer. FIXME: GDB's whole scheme for dealing with "frames" and "frame pointers" needs a serious shakedown. */ typedef void (gdbarch_virtual_frame_pointer_ftype) (struct gdbarch *gdbarch, CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset); extern void gdbarch_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset); extern void set_gdbarch_virtual_frame_pointer (struct gdbarch *gdbarch, gdbarch_virtual_frame_pointer_ftype *virtual_frame_pointer); extern int gdbarch_pseudo_register_read_p (struct gdbarch *gdbarch); typedef enum register_status (gdbarch_pseudo_register_read_ftype) (struct gdbarch *gdbarch, struct regcache *regcache, int cookednum, gdb_byte *buf); extern enum register_status gdbarch_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, int cookednum, gdb_byte *buf); extern void set_gdbarch_pseudo_register_read (struct gdbarch *gdbarch, gdbarch_pseudo_register_read_ftype *pseudo_register_read); /* Read a register into a new struct value. If the register is wholly or partly unavailable, this should call mark_value_bytes_unavailable as appropriate. If this is defined, then pseudo_register_read will never be called. */ extern int gdbarch_pseudo_register_read_value_p (struct gdbarch *gdbarch); typedef struct value * (gdbarch_pseudo_register_read_value_ftype) (struct gdbarch *gdbarch, struct regcache *regcache, int cookednum); extern struct value * gdbarch_pseudo_register_read_value (struct gdbarch *gdbarch, struct regcache *regcache, int cookednum); extern void set_gdbarch_pseudo_register_read_value (struct gdbarch *gdbarch, gdbarch_pseudo_register_read_value_ftype *pseudo_register_read_value); extern int gdbarch_pseudo_register_write_p (struct gdbarch *gdbarch); typedef void (gdbarch_pseudo_register_write_ftype) (struct gdbarch *gdbarch, struct regcache *regcache, int cookednum, const gdb_byte *buf); extern void gdbarch_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, int cookednum, const gdb_byte *buf); extern void set_gdbarch_pseudo_register_write (struct gdbarch *gdbarch, gdbarch_pseudo_register_write_ftype *pseudo_register_write); extern int gdbarch_num_regs (struct gdbarch *gdbarch); extern void set_gdbarch_num_regs (struct gdbarch *gdbarch, int num_regs); /* This macro gives the number of pseudo-registers that live in the register namespace but do not get fetched or stored on the target. These pseudo-registers may be aliases for other registers, combinations of other registers, or they may be computed by GDB. */ extern int gdbarch_num_pseudo_regs (struct gdbarch *gdbarch); extern void set_gdbarch_num_pseudo_regs (struct gdbarch *gdbarch, int num_pseudo_regs); /* Assemble agent expression bytecode to collect pseudo-register REG. Return -1 if something goes wrong, 0 otherwise. */ extern int gdbarch_ax_pseudo_register_collect_p (struct gdbarch *gdbarch); typedef int (gdbarch_ax_pseudo_register_collect_ftype) (struct gdbarch *gdbarch, struct agent_expr *ax, int reg); extern int gdbarch_ax_pseudo_register_collect (struct gdbarch *gdbarch, struct agent_expr *ax, int reg); extern void set_gdbarch_ax_pseudo_register_collect (struct gdbarch *gdbarch, gdbarch_ax_pseudo_register_collect_ftype *ax_pseudo_register_collect); /* Assemble agent expression bytecode to push the value of pseudo-register REG on the interpreter stack. Return -1 if something goes wrong, 0 otherwise. */ extern int gdbarch_ax_pseudo_register_push_stack_p (struct gdbarch *gdbarch); typedef int (gdbarch_ax_pseudo_register_push_stack_ftype) (struct gdbarch *gdbarch, struct agent_expr *ax, int reg); extern int gdbarch_ax_pseudo_register_push_stack (struct gdbarch *gdbarch, struct agent_expr *ax, int reg); extern void set_gdbarch_ax_pseudo_register_push_stack (struct gdbarch *gdbarch, gdbarch_ax_pseudo_register_push_stack_ftype *ax_pseudo_register_push_stack); /* GDB's standard (or well known) register numbers. These can map onto a real register or a pseudo (computed) register or not be defined at all (-1). gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP. */ extern int gdbarch_sp_regnum (struct gdbarch *gdbarch); extern void set_gdbarch_sp_regnum (struct gdbarch *gdbarch, int sp_regnum); extern int gdbarch_pc_regnum (struct gdbarch *gdbarch); extern void set_gdbarch_pc_regnum (struct gdbarch *gdbarch, int pc_regnum); extern int gdbarch_ps_regnum (struct gdbarch *gdbarch); extern void set_gdbarch_ps_regnum (struct gdbarch *gdbarch, int ps_regnum); extern int gdbarch_fp0_regnum (struct gdbarch *gdbarch); extern void set_gdbarch_fp0_regnum (struct gdbarch *gdbarch, int fp0_regnum); /* Convert stab register number (from `r' declaration) to a gdb REGNUM. */ typedef int (gdbarch_stab_reg_to_regnum_ftype) (struct gdbarch *gdbarch, int stab_regnr); extern int gdbarch_stab_reg_to_regnum (struct gdbarch *gdbarch, int stab_regnr); extern void set_gdbarch_stab_reg_to_regnum (struct gdbarch *gdbarch, gdbarch_stab_reg_to_regnum_ftype *stab_reg_to_regnum); /* Provide a default mapping from a ecoff register number to a gdb REGNUM. */ typedef int (gdbarch_ecoff_reg_to_regnum_ftype) (struct gdbarch *gdbarch, int ecoff_regnr); extern int gdbarch_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int ecoff_regnr); extern void set_gdbarch_ecoff_reg_to_regnum (struct gdbarch *gdbarch, gdbarch_ecoff_reg_to_regnum_ftype *ecoff_reg_to_regnum); /* Convert from an sdb register number to an internal gdb register number. */ typedef int (gdbarch_sdb_reg_to_regnum_ftype) (struct gdbarch *gdbarch, int sdb_regnr); extern int gdbarch_sdb_reg_to_regnum (struct gdbarch *gdbarch, int sdb_regnr); extern void set_gdbarch_sdb_reg_to_regnum (struct gdbarch *gdbarch, gdbarch_sdb_reg_to_regnum_ftype *sdb_reg_to_regnum); /* Provide a default mapping from a DWARF2 register number to a gdb REGNUM. */ typedef int (gdbarch_dwarf2_reg_to_regnum_ftype) (struct gdbarch *gdbarch, int dwarf2_regnr); extern int gdbarch_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int dwarf2_regnr); extern void set_gdbarch_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, gdbarch_dwarf2_reg_to_regnum_ftype *dwarf2_reg_to_regnum); typedef const char * (gdbarch_register_name_ftype) (struct gdbarch *gdbarch, int regnr); extern const char * gdbarch_register_name (struct gdbarch *gdbarch, int regnr); extern void set_gdbarch_register_name (struct gdbarch *gdbarch, gdbarch_register_name_ftype *register_name); /* Return the type of a register specified by the architecture. Only the register cache should call this function directly; others should use "register_type". */ extern int gdbarch_register_type_p (struct gdbarch *gdbarch); typedef struct type * (gdbarch_register_type_ftype) (struct gdbarch *gdbarch, int reg_nr); extern struct type * gdbarch_register_type (struct gdbarch *gdbarch, int reg_nr); extern void set_gdbarch_register_type (struct gdbarch *gdbarch, gdbarch_register_type_ftype *register_type); /* See gdbint.texinfo, and PUSH_DUMMY_CALL. */ extern int gdbarch_dummy_id_p (struct gdbarch *gdbarch); typedef struct frame_id (gdbarch_dummy_id_ftype) (struct gdbarch *gdbarch, struct frame_info *this_frame); extern struct frame_id gdbarch_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame); extern void set_gdbarch_dummy_id (struct gdbarch *gdbarch, gdbarch_dummy_id_ftype *dummy_id); /* Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete deprecated_fp_regnum. */ extern int gdbarch_deprecated_fp_regnum (struct gdbarch *gdbarch); extern void set_gdbarch_deprecated_fp_regnum (struct gdbarch *gdbarch, int deprecated_fp_regnum); /* See gdbint.texinfo. See infcall.c. */ extern int gdbarch_push_dummy_call_p (struct gdbarch *gdbarch); typedef CORE_ADDR (gdbarch_push_dummy_call_ftype) (struct gdbarch *gdbarch, struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr); extern CORE_ADDR gdbarch_push_dummy_call (struct gdbarch *gdbarch, struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr); extern void set_gdbarch_push_dummy_call (struct gdbarch *gdbarch, gdbarch_push_dummy_call_ftype *push_dummy_call); extern int gdbarch_call_dummy_location (struct gdbarch *gdbarch); extern void set_gdbarch_call_dummy_location (struct gdbarch *gdbarch, int call_dummy_location); extern int gdbarch_push_dummy_code_p (struct gdbarch *gdbarch); typedef CORE_ADDR (gdbarch_push_dummy_code_ftype) (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache); extern CORE_ADDR gdbarch_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache); extern void set_gdbarch_push_dummy_code (struct gdbarch *gdbarch, gdbarch_push_dummy_code_ftype *push_dummy_code); typedef void (gdbarch_print_registers_info_ftype) (struct gdbarch *gdbarch, struct ui_file *file, struct frame_info *frame, int regnum, int all); extern void gdbarch_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file, struct frame_info *frame, int regnum, int all); extern void set_gdbarch_print_registers_info (struct gdbarch *gdbarch, gdbarch_print_registers_info_ftype *print_registers_info); extern int gdbarch_print_float_info_p (struct gdbarch *gdbarch); typedef void (gdbarch_print_float_info_ftype) (struct gdbarch *gdbarch, struct ui_file *file, struct frame_info *frame, const char *args); extern void gdbarch_print_float_info (struct gdbarch *gdbarch, struct ui_file *file, struct frame_info *frame, const char *args); extern void set_gdbarch_print_float_info (struct gdbarch *gdbarch, gdbarch_print_float_info_ftype *print_float_info); extern int gdbarch_print_vector_info_p (struct gdbarch *gdbarch); typedef void (gdbarch_print_vector_info_ftype) (struct gdbarch *gdbarch, struct ui_file *file, struct frame_info *frame, const char *args); extern void gdbarch_print_vector_info (struct gdbarch *gdbarch, struct ui_file *file, struct frame_info *frame, const char *args); extern void set_gdbarch_print_vector_info (struct gdbarch *gdbarch, gdbarch_print_vector_info_ftype *print_vector_info); /* MAP a GDB RAW register number onto a simulator register number. See also include/...-sim.h. */ typedef int (gdbarch_register_sim_regno_ftype) (struct gdbarch *gdbarch, int reg_nr); extern int gdbarch_register_sim_regno (struct gdbarch *gdbarch, int reg_nr); extern void set_gdbarch_register_sim_regno (struct gdbarch *gdbarch, gdbarch_register_sim_regno_ftype *register_sim_regno); typedef int (gdbarch_cannot_fetch_register_ftype) (struct gdbarch *gdbarch, int regnum); extern int gdbarch_cannot_fetch_register (struct gdbarch *gdbarch, int regnum); extern void set_gdbarch_cannot_fetch_register (struct gdbarch *gdbarch, gdbarch_cannot_fetch_register_ftype *cannot_fetch_register); typedef int (gdbarch_cannot_store_register_ftype) (struct gdbarch *gdbarch, int regnum); extern int gdbarch_cannot_store_register (struct gdbarch *gdbarch, int regnum); extern void set_gdbarch_cannot_store_register (struct gdbarch *gdbarch, gdbarch_cannot_store_register_ftype *cannot_store_register); /* setjmp/longjmp support. */ extern int gdbarch_get_longjmp_target_p (struct gdbarch *gdbarch); typedef int (gdbarch_get_longjmp_target_ftype) (struct frame_info *frame, CORE_ADDR *pc); extern int gdbarch_get_longjmp_target (struct gdbarch *gdbarch, struct frame_info *frame, CORE_ADDR *pc); extern void set_gdbarch_get_longjmp_target (struct gdbarch *gdbarch, gdbarch_get_longjmp_target_ftype *get_longjmp_target); extern int gdbarch_believe_pcc_promotion (struct gdbarch *gdbarch); extern void set_gdbarch_believe_pcc_promotion (struct gdbarch *gdbarch, int believe_pcc_promotion); typedef int (gdbarch_convert_register_p_ftype) (struct gdbarch *gdbarch, int regnum, struct type *type); extern int gdbarch_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type); extern void set_gdbarch_convert_register_p (struct gdbarch *gdbarch, gdbarch_convert_register_p_ftype *convert_register_p); typedef int (gdbarch_register_to_value_ftype) (struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep); extern int gdbarch_register_to_value (struct gdbarch *gdbarch, struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep); extern void set_gdbarch_register_to_value (struct gdbarch *gdbarch, gdbarch_register_to_value_ftype *register_to_value); typedef void (gdbarch_value_to_register_ftype) (struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf); extern void gdbarch_value_to_register (struct gdbarch *gdbarch, struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf); extern void set_gdbarch_value_to_register (struct gdbarch *gdbarch, gdbarch_value_to_register_ftype *value_to_register); /* Construct a value representing the contents of register REGNUM in frame FRAME, interpreted as type TYPE. The routine needs to allocate and return a struct value with all value attributes (but not the value contents) filled in. */ typedef struct value * (gdbarch_value_from_register_ftype) (struct type *type, int regnum, struct frame_info *frame); extern struct value * gdbarch_value_from_register (struct gdbarch *gdbarch, struct type *type, int regnum, struct frame_info *frame); extern void set_gdbarch_value_from_register (struct gdbarch *gdbarch, gdbarch_value_from_register_ftype *value_from_register); typedef CORE_ADDR (gdbarch_pointer_to_address_ftype) (struct gdbarch *gdbarch, struct type *type, const gdb_byte *buf); extern CORE_ADDR gdbarch_pointer_to_address (struct gdbarch *gdbarch, struct type *type, const gdb_byte *buf); extern void set_gdbarch_pointer_to_address (struct gdbarch *gdbarch, gdbarch_pointer_to_address_ftype *pointer_to_address); typedef void (gdbarch_address_to_pointer_ftype) (struct gdbarch *gdbarch, struct type *type, gdb_byte *buf, CORE_ADDR addr); extern void gdbarch_address_to_pointer (struct gdbarch *gdbarch, struct type *type, gdb_byte *buf, CORE_ADDR addr); extern void set_gdbarch_address_to_pointer (struct gdbarch *gdbarch, gdbarch_address_to_pointer_ftype *address_to_pointer); extern int gdbarch_integer_to_address_p (struct gdbarch *gdbarch); typedef CORE_ADDR (gdbarch_integer_to_address_ftype) (struct gdbarch *gdbarch, struct type *type, const gdb_byte *buf); extern CORE_ADDR gdbarch_integer_to_address (struct gdbarch *gdbarch, struct type *type, const gdb_byte *buf); extern void set_gdbarch_integer_to_address (struct gdbarch *gdbarch, gdbarch_integer_to_address_ftype *integer_to_address); /* Return the return-value convention that will be used by FUNCTYPE to return a value of type VALTYPE. FUNCTYPE may be NULL in which case the return convention is computed based only on VALTYPE. If READBUF is not NULL, extract the return value and save it in this buffer. If WRITEBUF is not NULL, it contains a return value which will be stored into the appropriate register. This can be used when we want to force the value returned by a function (see the "return" command for instance). */ extern int gdbarch_return_value_p (struct gdbarch *gdbarch); typedef enum return_value_convention (gdbarch_return_value_ftype) (struct gdbarch *gdbarch, struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf); extern enum return_value_convention gdbarch_return_value (struct gdbarch *gdbarch, struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf); extern void set_gdbarch_return_value (struct gdbarch *gdbarch, gdbarch_return_value_ftype *return_value); typedef CORE_ADDR (gdbarch_skip_prologue_ftype) (struct gdbarch *gdbarch, CORE_ADDR ip); extern CORE_ADDR gdbarch_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip); extern void set_gdbarch_skip_prologue (struct gdbarch *gdbarch, gdbarch_skip_prologue_ftype *skip_prologue); extern int gdbarch_skip_main_prologue_p (struct gdbarch *gdbarch); typedef CORE_ADDR (gdbarch_skip_main_prologue_ftype) (struct gdbarch *gdbarch, CORE_ADDR ip); extern CORE_ADDR gdbarch_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR ip); extern void set_gdbarch_skip_main_prologue (struct gdbarch *gdbarch, gdbarch_skip_main_prologue_ftype *skip_main_prologue); typedef int (gdbarch_inner_than_ftype) (CORE_ADDR lhs, CORE_ADDR rhs); extern int gdbarch_inner_than (struct gdbarch *gdbarch, CORE_ADDR lhs, CORE_ADDR rhs); extern void set_gdbarch_inner_than (struct gdbarch *gdbarch, gdbarch_inner_than_ftype *inner_than); typedef const gdb_byte * (gdbarch_breakpoint_from_pc_ftype) (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr); extern const gdb_byte * gdbarch_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr); extern void set_gdbarch_breakpoint_from_pc (struct gdbarch *gdbarch, gdbarch_breakpoint_from_pc_ftype *breakpoint_from_pc); /* Return the adjusted address and kind to use for Z0/Z1 packets. KIND is usually the memory length of the breakpoint, but may have a different target-specific meaning. */ typedef void (gdbarch_remote_breakpoint_from_pc_ftype) (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *kindptr); extern void gdbarch_remote_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *kindptr); extern void set_gdbarch_remote_breakpoint_from_pc (struct gdbarch *gdbarch, gdbarch_remote_breakpoint_from_pc_ftype *remote_breakpoint_from_pc); extern int gdbarch_adjust_breakpoint_address_p (struct gdbarch *gdbarch); typedef CORE_ADDR (gdbarch_adjust_breakpoint_address_ftype) (struct gdbarch *gdbarch, CORE_ADDR bpaddr); extern CORE_ADDR gdbarch_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr); extern void set_gdbarch_adjust_breakpoint_address (struct gdbarch *gdbarch, gdbarch_adjust_breakpoint_address_ftype *adjust_breakpoint_address); typedef int (gdbarch_memory_insert_breakpoint_ftype) (struct gdbarch *gdbarch, struct bp_target_info *bp_tgt); extern int gdbarch_memory_insert_breakpoint (struct gdbarch *gdbarch, struct bp_target_info *bp_tgt); extern void set_gdbarch_memory_insert_breakpoint (struct gdbarch *gdbarch, gdbarch_memory_insert_breakpoint_ftype *memory_insert_breakpoint); typedef int (gdbarch_memory_remove_breakpoint_ftype) (struct gdbarch *gdbarch, struct bp_target_info *bp_tgt); extern int gdbarch_memory_remove_breakpoint (struct gdbarch *gdbarch, struct bp_target_info *bp_tgt); extern void set_gdbarch_memory_remove_breakpoint (struct gdbarch *gdbarch, gdbarch_memory_remove_breakpoint_ftype *memory_remove_breakpoint); extern CORE_ADDR gdbarch_decr_pc_after_break (struct gdbarch *gdbarch); extern void set_gdbarch_decr_pc_after_break (struct gdbarch *gdbarch, CORE_ADDR decr_pc_after_break); /* A function can be addressed by either it's "pointer" (possibly a descriptor address) or "entry point" (first executable instruction). The method "convert_from_func_ptr_addr" converting the former to the latter. gdbarch_deprecated_function_start_offset is being used to implement a simplified subset of that functionality - the function's address corresponds to the "function pointer" and the function's start corresponds to the "function entry point" - and hence is redundant. */ extern CORE_ADDR gdbarch_deprecated_function_start_offset (struct gdbarch *gdbarch); extern void set_gdbarch_deprecated_function_start_offset (struct gdbarch *gdbarch, CORE_ADDR deprecated_function_start_offset); /* Return the remote protocol register number associated with this register. Normally the identity mapping. */ typedef int (gdbarch_remote_register_number_ftype) (struct gdbarch *gdbarch, int regno); extern int gdbarch_remote_register_number (struct gdbarch *gdbarch, int regno); extern void set_gdbarch_remote_register_number (struct gdbarch *gdbarch, gdbarch_remote_register_number_ftype *remote_register_number); /* Fetch the target specific address used to represent a load module. */ extern int gdbarch_fetch_tls_load_module_address_p (struct gdbarch *gdbarch); typedef CORE_ADDR (gdbarch_fetch_tls_load_module_address_ftype) (struct objfile *objfile); extern CORE_ADDR gdbarch_fetch_tls_load_module_address (struct gdbarch *gdbarch, struct objfile *objfile); extern void set_gdbarch_fetch_tls_load_module_address (struct gdbarch *gdbarch, gdbarch_fetch_tls_load_module_address_ftype *fetch_tls_load_module_address); extern CORE_ADDR gdbarch_frame_args_skip (struct gdbarch *gdbarch); extern void set_gdbarch_frame_args_skip (struct gdbarch *gdbarch, CORE_ADDR frame_args_skip); extern int gdbarch_unwind_pc_p (struct gdbarch *gdbarch); typedef CORE_ADDR (gdbarch_unwind_pc_ftype) (struct gdbarch *gdbarch, struct frame_info *next_frame); extern CORE_ADDR gdbarch_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame); extern void set_gdbarch_unwind_pc (struct gdbarch *gdbarch, gdbarch_unwind_pc_ftype *unwind_pc); extern int gdbarch_unwind_sp_p (struct gdbarch *gdbarch); typedef CORE_ADDR (gdbarch_unwind_sp_ftype) (struct gdbarch *gdbarch, struct frame_info *next_frame); extern CORE_ADDR gdbarch_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame); extern void set_gdbarch_unwind_sp (struct gdbarch *gdbarch, gdbarch_unwind_sp_ftype *unwind_sp); /* DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame frame-base. Enable frame-base before frame-unwind. */ extern int gdbarch_frame_num_args_p (struct gdbarch *gdbarch); typedef int (gdbarch_frame_num_args_ftype) (struct frame_info *frame); extern int gdbarch_frame_num_args (struct gdbarch *gdbarch, struct frame_info *frame); extern void set_gdbarch_frame_num_args (struct gdbarch *gdbarch, gdbarch_frame_num_args_ftype *frame_num_args); extern int gdbarch_frame_align_p (struct gdbarch *gdbarch); typedef CORE_ADDR (gdbarch_frame_align_ftype) (struct gdbarch *gdbarch, CORE_ADDR address); extern CORE_ADDR gdbarch_frame_align (struct gdbarch *gdbarch, CORE_ADDR address); extern void set_gdbarch_frame_align (struct gdbarch *gdbarch, gdbarch_frame_align_ftype *frame_align); typedef int (gdbarch_stabs_argument_has_addr_ftype) (struct gdbarch *gdbarch, struct type *type); extern int gdbarch_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type); extern void set_gdbarch_stabs_argument_has_addr (struct gdbarch *gdbarch, gdbarch_stabs_argument_has_addr_ftype *stabs_argument_has_addr); extern int gdbarch_frame_red_zone_size (struct gdbarch *gdbarch); extern void set_gdbarch_frame_red_zone_size (struct gdbarch *gdbarch, int frame_red_zone_size); typedef CORE_ADDR (gdbarch_convert_from_func_ptr_addr_ftype) (struct gdbarch *gdbarch, CORE_ADDR addr, struct target_ops *targ); extern CORE_ADDR gdbarch_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr, struct target_ops *targ); extern void set_gdbarch_convert_from_func_ptr_addr (struct gdbarch *gdbarch, gdbarch_convert_from_func_ptr_addr_ftype *convert_from_func_ptr_addr); /* On some machines there are bits in addresses which are not really part of the address, but are used by the kernel, the hardware, etc. for special purposes. gdbarch_addr_bits_remove takes out any such bits so we get a "real" address such as one would find in a symbol table. This is used only for addresses of instructions, and even then I'm not sure it's used in all contexts. It exists to deal with there being a few stray bits in the PC which would mislead us, not as some sort of generic thing to handle alignment or segmentation (it's possible it should be in TARGET_READ_PC instead). */ typedef CORE_ADDR (gdbarch_addr_bits_remove_ftype) (struct gdbarch *gdbarch, CORE_ADDR addr); extern CORE_ADDR gdbarch_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr); extern void set_gdbarch_addr_bits_remove (struct gdbarch *gdbarch, gdbarch_addr_bits_remove_ftype *addr_bits_remove); /* It is not at all clear why gdbarch_smash_text_address is not folded into gdbarch_addr_bits_remove. */ typedef CORE_ADDR (gdbarch_smash_text_address_ftype) (struct gdbarch *gdbarch, CORE_ADDR addr); extern CORE_ADDR gdbarch_smash_text_address (struct gdbarch *gdbarch, CORE_ADDR addr); extern void set_gdbarch_smash_text_address (struct gdbarch *gdbarch, gdbarch_smash_text_address_ftype *smash_text_address); /* FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if the target needs software single step. An ISA method to implement it. FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints using the breakpoint system instead of blatting memory directly (as with rs6000). FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can single step. If not, then implement single step using breakpoints. A return value of 1 means that the software_single_step breakpoints were inserted; 0 means they were not. */ extern int gdbarch_software_single_step_p (struct gdbarch *gdbarch); typedef int (gdbarch_software_single_step_ftype) (struct frame_info *frame); extern int gdbarch_software_single_step (struct gdbarch *gdbarch, struct frame_info *frame); extern void set_gdbarch_software_single_step (struct gdbarch *gdbarch, gdbarch_software_single_step_ftype *software_single_step); /* Return non-zero if the processor is executing a delay slot and a further single-step is needed before the instruction finishes. */ extern int gdbarch_single_step_through_delay_p (struct gdbarch *gdbarch); typedef int (gdbarch_single_step_through_delay_ftype) (struct gdbarch *gdbarch, struct frame_info *frame); extern int gdbarch_single_step_through_delay (struct gdbarch *gdbarch, struct frame_info *frame); extern void set_gdbarch_single_step_through_delay (struct gdbarch *gdbarch, gdbarch_single_step_through_delay_ftype *single_step_through_delay); /* FIXME: cagney/2003-08-28: Need to find a better way of selecting the disassembler. Perhaps objdump can handle it? */ typedef int (gdbarch_print_insn_ftype) (bfd_vma vma, struct disassemble_info *info); extern int gdbarch_print_insn (struct gdbarch *gdbarch, bfd_vma vma, struct disassemble_info *info); extern void set_gdbarch_print_insn (struct gdbarch *gdbarch, gdbarch_print_insn_ftype *print_insn); typedef CORE_ADDR (gdbarch_skip_trampoline_code_ftype) (struct frame_info *frame, CORE_ADDR pc); extern CORE_ADDR gdbarch_skip_trampoline_code (struct gdbarch *gdbarch, struct frame_info *frame, CORE_ADDR pc); extern void set_gdbarch_skip_trampoline_code (struct gdbarch *gdbarch, gdbarch_skip_trampoline_code_ftype *skip_trampoline_code); /* If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER evaluates non-zero, this is the address where the debugger will place a step-resume breakpoint to get us past the dynamic linker. */ typedef CORE_ADDR (gdbarch_skip_solib_resolver_ftype) (struct gdbarch *gdbarch, CORE_ADDR pc); extern CORE_ADDR gdbarch_skip_solib_resolver (struct gdbarch *gdbarch, CORE_ADDR pc); extern void set_gdbarch_skip_solib_resolver (struct gdbarch *gdbarch, gdbarch_skip_solib_resolver_ftype *skip_solib_resolver); /* Some systems also have trampoline code for returning from shared libs. */ typedef int (gdbarch_in_solib_return_trampoline_ftype) (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name); extern int gdbarch_in_solib_return_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name); extern void set_gdbarch_in_solib_return_trampoline (struct gdbarch *gdbarch, gdbarch_in_solib_return_trampoline_ftype *in_solib_return_trampoline); /* A target might have problems with watchpoints as soon as the stack frame of the current function has been destroyed. This mostly happens as the first action in a funtion's epilogue. in_function_epilogue_p() is defined to return a non-zero value if either the given addr is one instruction after the stack destroying instruction up to the trailing return instruction or if we can figure out that the stack frame has already been invalidated regardless of the value of addr. Targets which don't suffer from that problem could just let this functionality untouched. */ typedef int (gdbarch_in_function_epilogue_p_ftype) (struct gdbarch *gdbarch, CORE_ADDR addr); extern int gdbarch_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR addr); extern void set_gdbarch_in_function_epilogue_p (struct gdbarch *gdbarch, gdbarch_in_function_epilogue_p_ftype *in_function_epilogue_p); typedef void (gdbarch_elf_make_msymbol_special_ftype) (asymbol *sym, struct minimal_symbol *msym); extern void gdbarch_elf_make_msymbol_special (struct gdbarch *gdbarch, asymbol *sym, struct minimal_symbol *msym); extern void set_gdbarch_elf_make_msymbol_special (struct gdbarch *gdbarch, gdbarch_elf_make_msymbol_special_ftype *elf_make_msymbol_special); typedef void (gdbarch_coff_make_msymbol_special_ftype) (int val, struct minimal_symbol *msym); extern void gdbarch_coff_make_msymbol_special (struct gdbarch *gdbarch, int val, struct minimal_symbol *msym); extern void set_gdbarch_coff_make_msymbol_special (struct gdbarch *gdbarch, gdbarch_coff_make_msymbol_special_ftype *coff_make_msymbol_special); extern int gdbarch_cannot_step_breakpoint (struct gdbarch *gdbarch); extern void set_gdbarch_cannot_step_breakpoint (struct gdbarch *gdbarch, int cannot_step_breakpoint); extern int gdbarch_have_nonsteppable_watchpoint (struct gdbarch *gdbarch); extern void set_gdbarch_have_nonsteppable_watchpoint (struct gdbarch *gdbarch, int have_nonsteppable_watchpoint); extern int gdbarch_address_class_type_flags_p (struct gdbarch *gdbarch); typedef int (gdbarch_address_class_type_flags_ftype) (int byte_size, int dwarf2_addr_class); extern int gdbarch_address_class_type_flags (struct gdbarch *gdbarch, int byte_size, int dwarf2_addr_class); extern void set_gdbarch_address_class_type_flags (struct gdbarch *gdbarch, gdbarch_address_class_type_flags_ftype *address_class_type_flags); extern int gdbarch_address_class_type_flags_to_name_p (struct gdbarch *gdbarch); typedef const char * (gdbarch_address_class_type_flags_to_name_ftype) (struct gdbarch *gdbarch, int type_flags); extern const char * gdbarch_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags); extern void set_gdbarch_address_class_type_flags_to_name (struct gdbarch *gdbarch, gdbarch_address_class_type_flags_to_name_ftype *address_class_type_flags_to_name); extern int gdbarch_address_class_name_to_type_flags_p (struct gdbarch *gdbarch); typedef int (gdbarch_address_class_name_to_type_flags_ftype) (struct gdbarch *gdbarch, const char *name, int *type_flags_ptr); extern int gdbarch_address_class_name_to_type_flags (struct gdbarch *gdbarch, const char *name, int *type_flags_ptr); extern void set_gdbarch_address_class_name_to_type_flags (struct gdbarch *gdbarch, gdbarch_address_class_name_to_type_flags_ftype *address_class_name_to_type_flags); /* Is a register in a group */ typedef int (gdbarch_register_reggroup_p_ftype) (struct gdbarch *gdbarch, int regnum, struct reggroup *reggroup); extern int gdbarch_register_reggroup_p (struct gdbarch *gdbarch, int regnum, struct reggroup *reggroup); extern void set_gdbarch_register_reggroup_p (struct gdbarch *gdbarch, gdbarch_register_reggroup_p_ftype *register_reggroup_p); /* Fetch the pointer to the ith function argument. */ extern int gdbarch_fetch_pointer_argument_p (struct gdbarch *gdbarch); typedef CORE_ADDR (gdbarch_fetch_pointer_argument_ftype) (struct frame_info *frame, int argi, struct type *type); extern CORE_ADDR gdbarch_fetch_pointer_argument (struct gdbarch *gdbarch, struct frame_info *frame, int argi, struct type *type); extern void set_gdbarch_fetch_pointer_argument (struct gdbarch *gdbarch, gdbarch_fetch_pointer_argument_ftype *fetch_pointer_argument); /* Return the appropriate register set for a core file section with name SECT_NAME and size SECT_SIZE. */ extern int gdbarch_regset_from_core_section_p (struct gdbarch *gdbarch); typedef const struct regset * (gdbarch_regset_from_core_section_ftype) (struct gdbarch *gdbarch, const char *sect_name, size_t sect_size); extern const struct regset * gdbarch_regset_from_core_section (struct gdbarch *gdbarch, const char *sect_name, size_t sect_size); extern void set_gdbarch_regset_from_core_section (struct gdbarch *gdbarch, gdbarch_regset_from_core_section_ftype *regset_from_core_section); /* Supported register notes in a core file. */ extern struct core_regset_section * gdbarch_core_regset_sections (struct gdbarch *gdbarch); extern void set_gdbarch_core_regset_sections (struct gdbarch *gdbarch, struct core_regset_section * core_regset_sections); /* Create core file notes */ extern int gdbarch_make_corefile_notes_p (struct gdbarch *gdbarch); typedef char * (gdbarch_make_corefile_notes_ftype) (struct gdbarch *gdbarch, bfd *obfd, int *note_size); extern char * gdbarch_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size); extern void set_gdbarch_make_corefile_notes (struct gdbarch *gdbarch, gdbarch_make_corefile_notes_ftype *make_corefile_notes); /* Find core file memory regions */ extern int gdbarch_find_memory_regions_p (struct gdbarch *gdbarch); typedef int (gdbarch_find_memory_regions_ftype) (struct gdbarch *gdbarch, find_memory_region_ftype func, void *data); extern int gdbarch_find_memory_regions (struct gdbarch *gdbarch, find_memory_region_ftype func, void *data); extern void set_gdbarch_find_memory_regions (struct gdbarch *gdbarch, gdbarch_find_memory_regions_ftype *find_memory_regions); /* Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from core file into buffer READBUF with length LEN. */ extern int gdbarch_core_xfer_shared_libraries_p (struct gdbarch *gdbarch); typedef LONGEST (gdbarch_core_xfer_shared_libraries_ftype) (struct gdbarch *gdbarch, gdb_byte *readbuf, ULONGEST offset, LONGEST len); extern LONGEST gdbarch_core_xfer_shared_libraries (struct gdbarch *gdbarch, gdb_byte *readbuf, ULONGEST offset, LONGEST len); extern void set_gdbarch_core_xfer_shared_libraries (struct gdbarch *gdbarch, gdbarch_core_xfer_shared_libraries_ftype *core_xfer_shared_libraries); /* How the core target converts a PTID from a core file to a string. */ extern int gdbarch_core_pid_to_str_p (struct gdbarch *gdbarch); typedef char * (gdbarch_core_pid_to_str_ftype) (struct gdbarch *gdbarch, ptid_t ptid); extern char * gdbarch_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid); extern void set_gdbarch_core_pid_to_str (struct gdbarch *gdbarch, gdbarch_core_pid_to_str_ftype *core_pid_to_str); /* BFD target to use when generating a core file. */ extern int gdbarch_gcore_bfd_target_p (struct gdbarch *gdbarch); extern const char * gdbarch_gcore_bfd_target (struct gdbarch *gdbarch); extern void set_gdbarch_gcore_bfd_target (struct gdbarch *gdbarch, const char * gcore_bfd_target); /* If the elements of C++ vtables are in-place function descriptors rather than normal function pointers (which may point to code or a descriptor), set this to one. */ extern int gdbarch_vtable_function_descriptors (struct gdbarch *gdbarch); extern void set_gdbarch_vtable_function_descriptors (struct gdbarch *gdbarch, int vtable_function_descriptors); /* Set if the least significant bit of the delta is used instead of the least significant bit of the pfn for pointers to virtual member functions. */ extern int gdbarch_vbit_in_delta (struct gdbarch *gdbarch); extern void set_gdbarch_vbit_in_delta (struct gdbarch *gdbarch, int vbit_in_delta); /* Advance PC to next instruction in order to skip a permanent breakpoint. */ extern int gdbarch_skip_permanent_breakpoint_p (struct gdbarch *gdbarch); typedef void (gdbarch_skip_permanent_breakpoint_ftype) (struct regcache *regcache); extern void gdbarch_skip_permanent_breakpoint (struct gdbarch *gdbarch, struct regcache *regcache); extern void set_gdbarch_skip_permanent_breakpoint (struct gdbarch *gdbarch, gdbarch_skip_permanent_breakpoint_ftype *skip_permanent_breakpoint); /* The maximum length of an instruction on this architecture in bytes. */ extern int gdbarch_max_insn_length_p (struct gdbarch *gdbarch); extern ULONGEST gdbarch_max_insn_length (struct gdbarch *gdbarch); extern void set_gdbarch_max_insn_length (struct gdbarch *gdbarch, ULONGEST max_insn_length); /* Copy the instruction at FROM to TO, and make any adjustments necessary to single-step it at that address. REGS holds the state the thread's registers will have before executing the copied instruction; the PC in REGS will refer to FROM, not the copy at TO. The caller should update it to point at TO later. Return a pointer to data of the architecture's choice to be passed to gdbarch_displaced_step_fixup. Or, return NULL to indicate that the instruction's effects have been completely simulated, with the resulting state written back to REGS. For a general explanation of displaced stepping and how GDB uses it, see the comments in infrun.c. The TO area is only guaranteed to have space for gdbarch_max_insn_length (arch) bytes, so this function must not write more bytes than that to that area. If you do not provide this function, GDB assumes that the architecture does not support displaced stepping. If your architecture doesn't need to adjust instructions before single-stepping them, consider using simple_displaced_step_copy_insn here. */ extern int gdbarch_displaced_step_copy_insn_p (struct gdbarch *gdbarch); typedef struct displaced_step_closure * (gdbarch_displaced_step_copy_insn_ftype) (struct gdbarch *gdbarch, CORE_ADDR from, CORE_ADDR to, struct regcache *regs); extern struct displaced_step_closure * gdbarch_displaced_step_copy_insn (struct gdbarch *gdbarch, CORE_ADDR from, CORE_ADDR to, struct regcache *regs); extern void set_gdbarch_displaced_step_copy_insn (struct gdbarch *gdbarch, gdbarch_displaced_step_copy_insn_ftype *displaced_step_copy_insn); /* Return true if GDB should use hardware single-stepping to execute the displaced instruction identified by CLOSURE. If false, GDB will simply restart execution at the displaced instruction location, and it is up to the target to ensure GDB will receive control again (e.g. by placing a software breakpoint instruction into the displaced instruction buffer). The default implementation returns false on all targets that provide a gdbarch_software_single_step routine, and true otherwise. */ typedef int (gdbarch_displaced_step_hw_singlestep_ftype) (struct gdbarch *gdbarch, struct displaced_step_closure *closure); extern int gdbarch_displaced_step_hw_singlestep (struct gdbarch *gdbarch, struct displaced_step_closure *closure); extern void set_gdbarch_displaced_step_hw_singlestep (struct gdbarch *gdbarch, gdbarch_displaced_step_hw_singlestep_ftype *displaced_step_hw_singlestep); /* Fix up the state resulting from successfully single-stepping a displaced instruction, to give the result we would have gotten from stepping the instruction in its original location. REGS is the register state resulting from single-stepping the displaced instruction. CLOSURE is the result from the matching call to gdbarch_displaced_step_copy_insn. If you provide gdbarch_displaced_step_copy_insn.but not this function, then GDB assumes that no fixup is needed after single-stepping the instruction. For a general explanation of displaced stepping and how GDB uses it, see the comments in infrun.c. */ extern int gdbarch_displaced_step_fixup_p (struct gdbarch *gdbarch); typedef void (gdbarch_displaced_step_fixup_ftype) (struct gdbarch *gdbarch, struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs); extern void gdbarch_displaced_step_fixup (struct gdbarch *gdbarch, struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs); extern void set_gdbarch_displaced_step_fixup (struct gdbarch *gdbarch, gdbarch_displaced_step_fixup_ftype *displaced_step_fixup); /* Free a closure returned by gdbarch_displaced_step_copy_insn. If you provide gdbarch_displaced_step_copy_insn, you must provide this function as well. If your architecture uses closures that don't need to be freed, then you can use simple_displaced_step_free_closure here. For a general explanation of displaced stepping and how GDB uses it, see the comments in infrun.c. */ typedef void (gdbarch_displaced_step_free_closure_ftype) (struct gdbarch *gdbarch, struct displaced_step_closure *closure); extern void gdbarch_displaced_step_free_closure (struct gdbarch *gdbarch, struct displaced_step_closure *closure); extern void set_gdbarch_displaced_step_free_closure (struct gdbarch *gdbarch, gdbarch_displaced_step_free_closure_ftype *displaced_step_free_closure); /* Return the address of an appropriate place to put displaced instructions while we step over them. There need only be one such place, since we're only stepping one thread over a breakpoint at a time. For a general explanation of displaced stepping and how GDB uses it, see the comments in infrun.c. */ typedef CORE_ADDR (gdbarch_displaced_step_location_ftype) (struct gdbarch *gdbarch); extern CORE_ADDR gdbarch_displaced_step_location (struct gdbarch *gdbarch); extern void set_gdbarch_displaced_step_location (struct gdbarch *gdbarch, gdbarch_displaced_step_location_ftype *displaced_step_location); /* Relocate an instruction to execute at a different address. OLDLOC is the address in the inferior memory where the instruction to relocate is currently at. On input, TO points to the destination where we want the instruction to be copied (and possibly adjusted) to. On output, it points to one past the end of the resulting instruction(s). The effect of executing the instruction at TO shall be the same as if executing it at FROM. For example, call instructions that implicitly push the return address on the stack should be adjusted to return to the instruction after OLDLOC; relative branches, and other PC-relative instructions need the offset adjusted; etc. */ extern int gdbarch_relocate_instruction_p (struct gdbarch *gdbarch); typedef void (gdbarch_relocate_instruction_ftype) (struct gdbarch *gdbarch, CORE_ADDR *to, CORE_ADDR from); extern void gdbarch_relocate_instruction (struct gdbarch *gdbarch, CORE_ADDR *to, CORE_ADDR from); extern void set_gdbarch_relocate_instruction (struct gdbarch *gdbarch, gdbarch_relocate_instruction_ftype *relocate_instruction); /* Refresh overlay mapped state for section OSECT. */ extern int gdbarch_overlay_update_p (struct gdbarch *gdbarch); typedef void (gdbarch_overlay_update_ftype) (struct obj_section *osect); extern void gdbarch_overlay_update (struct gdbarch *gdbarch, struct obj_section *osect); extern void set_gdbarch_overlay_update (struct gdbarch *gdbarch, gdbarch_overlay_update_ftype *overlay_update); extern int gdbarch_core_read_description_p (struct gdbarch *gdbarch); typedef const struct target_desc * (gdbarch_core_read_description_ftype) (struct gdbarch *gdbarch, struct target_ops *target, bfd *abfd); extern const struct target_desc * gdbarch_core_read_description (struct gdbarch *gdbarch, struct target_ops *target, bfd *abfd); extern void set_gdbarch_core_read_description (struct gdbarch *gdbarch, gdbarch_core_read_description_ftype *core_read_description); /* Handle special encoding of static variables in stabs debug info. */ extern int gdbarch_static_transform_name_p (struct gdbarch *gdbarch); typedef const char * (gdbarch_static_transform_name_ftype) (const char *name); extern const char * gdbarch_static_transform_name (struct gdbarch *gdbarch, const char *name); extern void set_gdbarch_static_transform_name (struct gdbarch *gdbarch, gdbarch_static_transform_name_ftype *static_transform_name); /* Set if the address in N_SO or N_FUN stabs may be zero. */ extern int gdbarch_sofun_address_maybe_missing (struct gdbarch *gdbarch); extern void set_gdbarch_sofun_address_maybe_missing (struct gdbarch *gdbarch, int sofun_address_maybe_missing); /* Parse the instruction at ADDR storing in the record execution log the registers REGCACHE and memory ranges that will be affected when the instruction executes, along with their current values. Return -1 if something goes wrong, 0 otherwise. */ extern int gdbarch_process_record_p (struct gdbarch *gdbarch); typedef int (gdbarch_process_record_ftype) (struct gdbarch *gdbarch, struct regcache *regcache, CORE_ADDR addr); extern int gdbarch_process_record (struct gdbarch *gdbarch, struct regcache *regcache, CORE_ADDR addr); extern void set_gdbarch_process_record (struct gdbarch *gdbarch, gdbarch_process_record_ftype *process_record); /* Save process state after a signal. Return -1 if something goes wrong, 0 otherwise. */ extern int gdbarch_process_record_signal_p (struct gdbarch *gdbarch); typedef int (gdbarch_process_record_signal_ftype) (struct gdbarch *gdbarch, struct regcache *regcache, enum target_signal signal); extern int gdbarch_process_record_signal (struct gdbarch *gdbarch, struct regcache *regcache, enum target_signal signal); extern void set_gdbarch_process_record_signal (struct gdbarch *gdbarch, gdbarch_process_record_signal_ftype *process_record_signal); /* Signal translation: translate inferior's signal (host's) number into GDB's representation. */ typedef enum target_signal (gdbarch_target_signal_from_host_ftype) (struct gdbarch *gdbarch, int signo); extern enum target_signal gdbarch_target_signal_from_host (struct gdbarch *gdbarch, int signo); extern void set_gdbarch_target_signal_from_host (struct gdbarch *gdbarch, gdbarch_target_signal_from_host_ftype *target_signal_from_host); /* Signal translation: translate GDB's signal number into inferior's host signal number. */ typedef int (gdbarch_target_signal_to_host_ftype) (struct gdbarch *gdbarch, enum target_signal ts); extern int gdbarch_target_signal_to_host (struct gdbarch *gdbarch, enum target_signal ts); extern void set_gdbarch_target_signal_to_host (struct gdbarch *gdbarch, gdbarch_target_signal_to_host_ftype *target_signal_to_host); /* Extra signal info inspection. Return a type suitable to inspect extra signal information. */ extern int gdbarch_get_siginfo_type_p (struct gdbarch *gdbarch); typedef struct type * (gdbarch_get_siginfo_type_ftype) (struct gdbarch *gdbarch); extern struct type * gdbarch_get_siginfo_type (struct gdbarch *gdbarch); extern void set_gdbarch_get_siginfo_type (struct gdbarch *gdbarch, gdbarch_get_siginfo_type_ftype *get_siginfo_type); /* Record architecture-specific information from the symbol table. */ extern int gdbarch_record_special_symbol_p (struct gdbarch *gdbarch); typedef void (gdbarch_record_special_symbol_ftype) (struct gdbarch *gdbarch, struct objfile *objfile, asymbol *sym); extern void gdbarch_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile, asymbol *sym); extern void set_gdbarch_record_special_symbol (struct gdbarch *gdbarch, gdbarch_record_special_symbol_ftype *record_special_symbol); /* Function for the 'catch syscall' feature. Get architecture-specific system calls information from registers. */ extern int gdbarch_get_syscall_number_p (struct gdbarch *gdbarch); typedef LONGEST (gdbarch_get_syscall_number_ftype) (struct gdbarch *gdbarch, ptid_t ptid); extern LONGEST gdbarch_get_syscall_number (struct gdbarch *gdbarch, ptid_t ptid); extern void set_gdbarch_get_syscall_number (struct gdbarch *gdbarch, gdbarch_get_syscall_number_ftype *get_syscall_number); /* SystemTap related fields and functions. Prefix used to mark an integer constant on the architecture's assembly For example, on x86 integer constants are written as: $10 ;; integer constant 10 in this case, this prefix would be the character `$'. */ extern const char * gdbarch_stap_integer_prefix (struct gdbarch *gdbarch); extern void set_gdbarch_stap_integer_prefix (struct gdbarch *gdbarch, const char * stap_integer_prefix); /* Suffix used to mark an integer constant on the architecture's assembly. */ extern const char * gdbarch_stap_integer_suffix (struct gdbarch *gdbarch); extern void set_gdbarch_stap_integer_suffix (struct gdbarch *gdbarch, const char * stap_integer_suffix); /* Prefix used to mark a register name on the architecture's assembly. For example, on x86 the register name is written as: %eax ;; register eax in this case, this prefix would be the character `%'. */ extern const char * gdbarch_stap_register_prefix (struct gdbarch *gdbarch); extern void set_gdbarch_stap_register_prefix (struct gdbarch *gdbarch, const char * stap_register_prefix); /* Suffix used to mark a register name on the architecture's assembly */ extern const char * gdbarch_stap_register_suffix (struct gdbarch *gdbarch); extern void set_gdbarch_stap_register_suffix (struct gdbarch *gdbarch, const char * stap_register_suffix); /* Prefix used to mark a register indirection on the architecture's assembly. For example, on x86 the register indirection is written as: (%eax) ;; indirecting eax in this case, this prefix would be the charater `('. Please note that we use the indirection prefix also for register displacement, e.g., `4(%eax)' on x86. */ extern const char * gdbarch_stap_register_indirection_prefix (struct gdbarch *gdbarch); extern void set_gdbarch_stap_register_indirection_prefix (struct gdbarch *gdbarch, const char * stap_register_indirection_prefix); /* Suffix used to mark a register indirection on the architecture's assembly. For example, on x86 the register indirection is written as: (%eax) ;; indirecting eax in this case, this prefix would be the charater `)'. Please note that we use the indirection suffix also for register displacement, e.g., `4(%eax)' on x86. */ extern const char * gdbarch_stap_register_indirection_suffix (struct gdbarch *gdbarch); extern void set_gdbarch_stap_register_indirection_suffix (struct gdbarch *gdbarch, const char * stap_register_indirection_suffix); /* Prefix used to name a register using GDB's nomenclature. For example, on PPC a register is represented by a number in the assembly language (e.g., `10' is the 10th general-purpose register). However, inside GDB this same register has an `r' appended to its name, so the 10th register would be represented as `r10' internally. */ extern const char * gdbarch_stap_gdb_register_prefix (struct gdbarch *gdbarch); extern void set_gdbarch_stap_gdb_register_prefix (struct gdbarch *gdbarch, const char * stap_gdb_register_prefix); /* Suffix used to name a register using GDB's nomenclature. */ extern const char * gdbarch_stap_gdb_register_suffix (struct gdbarch *gdbarch); extern void set_gdbarch_stap_gdb_register_suffix (struct gdbarch *gdbarch, const char * stap_gdb_register_suffix); /* Check if S is a single operand. Single operands can be: - Literal integers, e.g. `$10' on x86 - Register access, e.g. `%eax' on x86 - Register indirection, e.g. `(%eax)' on x86 - Register displacement, e.g. `4(%eax)' on x86 This function should check for these patterns on the string and return 1 if some were found, or zero otherwise. Please try to match as much info as you can from the string, i.e., if you have to match something like `(%', do not match just the `('. */ extern int gdbarch_stap_is_single_operand_p (struct gdbarch *gdbarch); typedef int (gdbarch_stap_is_single_operand_ftype) (struct gdbarch *gdbarch, const char *s); extern int gdbarch_stap_is_single_operand (struct gdbarch *gdbarch, const char *s); extern void set_gdbarch_stap_is_single_operand (struct gdbarch *gdbarch, gdbarch_stap_is_single_operand_ftype *stap_is_single_operand); /* Function used to handle a "special case" in the parser. A "special case" is considered to be an unknown token, i.e., a token that the parser does not know how to parse. A good example of special case would be ARM's register displacement syntax: [R0, #4] ;; displacing R0 by 4 Since the parser assumes that a register displacement is of the form: it means that it will not be able to recognize and parse this odd syntax. Therefore, we should add a special case function that will handle this token. This function should generate the proper expression form of the expression using GDB's internal expression mechanism (e.g., `write_exp_elt_opcode' and so on). It should also return 1 if the parsing was successful, or zero if the token was not recognized as a special token (in this case, returning zero means that the special parser is deferring the parsing to the generic parser), and should advance the buffer pointer (p->arg). */ extern int gdbarch_stap_parse_special_token_p (struct gdbarch *gdbarch); typedef int (gdbarch_stap_parse_special_token_ftype) (struct gdbarch *gdbarch, struct stap_parse_info *p); extern int gdbarch_stap_parse_special_token (struct gdbarch *gdbarch, struct stap_parse_info *p); extern void set_gdbarch_stap_parse_special_token (struct gdbarch *gdbarch, gdbarch_stap_parse_special_token_ftype *stap_parse_special_token); /* True if the list of shared libraries is one and only for all processes, as opposed to a list of shared libraries per inferior. This usually means that all processes, although may or may not share an address space, will see the same set of symbols at the same addresses. */ extern int gdbarch_has_global_solist (struct gdbarch *gdbarch); extern void set_gdbarch_has_global_solist (struct gdbarch *gdbarch, int has_global_solist); /* On some targets, even though each inferior has its own private address space, the debug interface takes care of making breakpoints visible to all address spaces automatically. For such cases, this property should be set to true. */ extern int gdbarch_has_global_breakpoints (struct gdbarch *gdbarch); extern void set_gdbarch_has_global_breakpoints (struct gdbarch *gdbarch, int has_global_breakpoints); /* True if inferiors share an address space (e.g., uClinux). */ typedef int (gdbarch_has_shared_address_space_ftype) (struct gdbarch *gdbarch); extern int gdbarch_has_shared_address_space (struct gdbarch *gdbarch); extern void set_gdbarch_has_shared_address_space (struct gdbarch *gdbarch, gdbarch_has_shared_address_space_ftype *has_shared_address_space); /* True if a fast tracepoint can be set at an address. */ typedef int (gdbarch_fast_tracepoint_valid_at_ftype) (struct gdbarch *gdbarch, CORE_ADDR addr, int *isize, char **msg); extern int gdbarch_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr, int *isize, char **msg); extern void set_gdbarch_fast_tracepoint_valid_at (struct gdbarch *gdbarch, gdbarch_fast_tracepoint_valid_at_ftype *fast_tracepoint_valid_at); /* Return the "auto" target charset. */ typedef const char * (gdbarch_auto_charset_ftype) (void); extern const char * gdbarch_auto_charset (struct gdbarch *gdbarch); extern void set_gdbarch_auto_charset (struct gdbarch *gdbarch, gdbarch_auto_charset_ftype *auto_charset); /* Return the "auto" target wide charset. */ typedef const char * (gdbarch_auto_wide_charset_ftype) (void); extern const char * gdbarch_auto_wide_charset (struct gdbarch *gdbarch); extern void set_gdbarch_auto_wide_charset (struct gdbarch *gdbarch, gdbarch_auto_wide_charset_ftype *auto_wide_charset); /* If non-empty, this is a file extension that will be opened in place of the file extension reported by the shared library list. This is most useful for toolchains that use a post-linker tool, where the names of the files run on the target differ in extension compared to the names of the files GDB should load for debug info. */ extern const char * gdbarch_solib_symbols_extension (struct gdbarch *gdbarch); extern void set_gdbarch_solib_symbols_extension (struct gdbarch *gdbarch, const char * solib_symbols_extension); /* If true, the target OS has DOS-based file system semantics. That is, absolute paths include a drive name, and the backslash is considered a directory separator. */ extern int gdbarch_has_dos_based_file_system (struct gdbarch *gdbarch); extern void set_gdbarch_has_dos_based_file_system (struct gdbarch *gdbarch, int has_dos_based_file_system); /* Generate bytecodes to collect the return address in a frame. Since the bytecodes run on the target, possibly with GDB not even connected, the full unwinding machinery is not available, and typically this function will issue bytecodes for one or more likely places that the return address may be found. */ typedef void (gdbarch_gen_return_address_ftype) (struct gdbarch *gdbarch, struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope); extern void gdbarch_gen_return_address (struct gdbarch *gdbarch, struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope); extern void set_gdbarch_gen_return_address (struct gdbarch *gdbarch, gdbarch_gen_return_address_ftype *gen_return_address); /* Implement the "info proc" command. */ extern int gdbarch_info_proc_p (struct gdbarch *gdbarch); typedef void (gdbarch_info_proc_ftype) (struct gdbarch *gdbarch, char *args, enum info_proc_what what); extern void gdbarch_info_proc (struct gdbarch *gdbarch, char *args, enum info_proc_what what); extern void set_gdbarch_info_proc (struct gdbarch *gdbarch, gdbarch_info_proc_ftype *info_proc); /* Definition for an unknown syscall, used basically in error-cases. */ #define UNKNOWN_SYSCALL (-1) extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch); /* Mechanism for co-ordinating the selection of a specific architecture. GDB targets (*-tdep.c) can register an interest in a specific architecture. Other GDB components can register a need to maintain per-architecture data. The mechanisms below ensures that there is only a loose connection between the set-architecture command and the various GDB components. Each component can independently register their need to maintain architecture specific data with gdbarch. Pragmatics: Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It didn't scale. The more traditional mega-struct containing architecture specific data for all the various GDB components was also considered. Since GDB is built from a variable number of (fairly independent) components it was determined that the global aproach was not applicable. */ /* Register a new architectural family with GDB. Register support for the specified ARCHITECTURE with GDB. When gdbarch determines that the specified architecture has been selected, the corresponding INIT function is called. -- The INIT function takes two parameters: INFO which contains the information available to gdbarch about the (possibly new) architecture; ARCHES which is a list of the previously created ``struct gdbarch'' for this architecture. The INFO parameter is, as far as possible, be pre-initialized with information obtained from INFO.ABFD or the global defaults. The ARCHES parameter is a linked list (sorted most recently used) of all the previously created architures for this architecture family. The (possibly NULL) ARCHES->gdbarch can used to access values from the previously selected architecture for this architecture family. The INIT function shall return any of: NULL - indicating that it doesn't recognize the selected architecture; an existing ``struct gdbarch'' from the ARCHES list - indicating that the new architecture is just a synonym for an earlier architecture (see gdbarch_list_lookup_by_info()); a newly created ``struct gdbarch'' - that describes the selected architecture (see gdbarch_alloc()). The DUMP_TDEP function shall print out all target specific values. Care should be taken to ensure that the function works in both the multi-arch and non- multi-arch cases. */ struct gdbarch_list { struct gdbarch *gdbarch; struct gdbarch_list *next; }; struct gdbarch_info { /* Use default: NULL (ZERO). */ const struct bfd_arch_info *bfd_arch_info; /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */ int byte_order; int byte_order_for_code; /* Use default: NULL (ZERO). */ bfd *abfd; /* Use default: NULL (ZERO). */ struct gdbarch_tdep_info *tdep_info; /* Use default: GDB_OSABI_UNINITIALIZED (-1). */ enum gdb_osabi osabi; /* Use default: NULL (ZERO). */ const struct target_desc *target_desc; }; typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches); typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file); /* DEPRECATED - use gdbarch_register() */ extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *); extern void gdbarch_register (enum bfd_architecture architecture, gdbarch_init_ftype *, gdbarch_dump_tdep_ftype *); /* Return a freshly allocated, NULL terminated, array of the valid architecture names. Since architectures are registered during the _initialize phase this function only returns useful information once initialization has been completed. */ extern const char **gdbarch_printable_names (void); /* Helper function. Search the list of ARCHES for a GDBARCH that matches the information provided by INFO. */ extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info); /* Helper function. Create a preliminary ``struct gdbarch''. Perform basic initialization using values obtained from the INFO and TDEP parameters. set_gdbarch_*() functions are called to complete the initialization of the object. */ extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep); /* Helper function. Free a partially-constructed ``struct gdbarch''. It is assumed that the caller freeds the ``struct gdbarch_tdep''. */ extern void gdbarch_free (struct gdbarch *); /* Helper function. Allocate memory from the ``struct gdbarch'' obstack. The memory is freed when the corresponding architecture is also freed. */ extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size); #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE))) #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE))) /* Helper function. Force an update of the current architecture. The actual architecture selected is determined by INFO, ``(gdb) set architecture'' et.al., the existing architecture and BFD's default architecture. INFO should be initialized to zero and then selected fields should be updated. Returns non-zero if the update succeeds. */ extern int gdbarch_update_p (struct gdbarch_info info); /* Helper function. Find an architecture matching info. INFO should be initialized using gdbarch_info_init, relevant fields set, and then finished using gdbarch_info_fill. Returns the corresponding architecture, or NULL if no matching architecture was found. */ extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info); /* Helper function. Set the global "target_gdbarch" to "gdbarch". FIXME: kettenis/20031124: Of the functions that follow, only gdbarch_from_bfd is supposed to survive. The others will dissappear since in the future GDB will (hopefully) be truly multi-arch. However, for now we're still stuck with the concept of a single active architecture. */ extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch); /* Register per-architecture data-pointer. Reserve space for a per-architecture data-pointer. An identifier for the reserved data-pointer is returned. That identifer should be saved in a local static variable. Memory for the per-architecture data shall be allocated using gdbarch_obstack_zalloc. That memory will be deleted when the corresponding architecture object is deleted. When a previously created architecture is re-selected, the per-architecture data-pointer for that previous architecture is restored. INIT() is not re-called. Multiple registrarants for any architecture are allowed (and strongly encouraged). */ struct gdbarch_data; typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack); extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init); typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch); extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init); extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data, void *pointer); extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *); /* Set the dynamic target-system-dependent parameters (architecture, byte-order, ...) using information found in the BFD. */ extern void set_gdbarch_from_file (bfd *); /* Initialize the current architecture to the "first" one we find on our list. */ extern void initialize_current_architecture (void); /* gdbarch trace variable */ extern int gdbarch_debug; extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file); #endif