/* GNU/Linux/CRIS specific low level interface, for the remote server for GDB. Copyright (C) 1995-2020 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "server.h" #include "linux-low.h" #include "nat/gdb_ptrace.h" /* Linux target op definitions for the CRIS architecture. */ class crisv32_target : public linux_process_target { public: const regs_info *get_regs_info () override; const gdb_byte *sw_breakpoint_from_kind (int kind, int *size) override; protected: void low_arch_setup () override; bool low_cannot_fetch_register (int regno) override; bool low_cannot_store_register (int regno) override; bool low_supports_breakpoints () override; CORE_ADDR low_get_pc (regcache *regcache) override; void low_set_pc (regcache *regcache, CORE_ADDR newpc) override; }; /* The singleton target ops object. */ static crisv32_target the_crisv32_target; bool crisv32_target::low_cannot_fetch_register (int regno) { gdb_assert_not_reached ("linux target op low_cannot_fetch_register " "is not implemented by the target"); } bool crisv32_target::low_cannot_store_register (int regno) { gdb_assert_not_reached ("linux target op low_cannot_store_register " "is not implemented by the target"); } bool crisv32_target::low_supports_breakpoints () { return true; } CORE_ADDR crisv32_target::low_get_pc (regcache *regcache) { return linux_get_pc_32bit (regcache); } void crisv32_target::low_set_pc (regcache *regcache, CORE_ADDR pc) { linux_set_pc_32bit (regcache, pc); } /* Defined in auto-generated file reg-crisv32.c. */ void init_registers_crisv32 (void); extern const struct target_desc *tdesc_crisv32; /* CRISv32 */ #define cris_num_regs 49 #ifndef PTRACE_GET_THREAD_AREA #define PTRACE_GET_THREAD_AREA 25 #endif /* Note: Ignoring USP (having the stack pointer in two locations causes trouble without any significant gain). */ /* Locations need to match . */ static int cris_regmap[] = { 1*4, 2*4, 3*4, 4*4, 5*4, 6*4, 7*4, 8*4, 9*4, 10*4, 11*4, 12*4, 13*4, 14*4, 24*4, 15*4, -1, -1, -1, 16*4, -1, 22*4, 23*4, 17*4, -1, -1, 21*4, 20*4, -1, 19*4, -1, 18*4, 25*4, 26*4, -1, -1, 29*4, 30*4, 31*4, 32*4, 33*4, 34*4, 35*4, 36*4, 37*4, 38*4, 39*4, 40*4, -1 }; static const unsigned short cris_breakpoint = 0xe938; #define cris_breakpoint_len 2 /* Implementation of target ops method "sw_breakpoint_from_kind". */ const gdb_byte * crisv32_target::sw_breakpoint_from_kind (int kind, int *size) { *size = cris_breakpoint_len; return (const gdb_byte *) &cris_breakpoint; } static int cris_breakpoint_at (CORE_ADDR where) { unsigned short insn; the_target->read_memory (where, (unsigned char *) &insn, cris_breakpoint_len); if (insn == cris_breakpoint) return 1; /* If necessary, recognize more trap instructions here. GDB only uses the one. */ return 0; } static void cris_write_data_breakpoint (struct regcache *regcache, int bp, unsigned long start, unsigned long end) { switch (bp) { case 0: supply_register_by_name (regcache, "s3", &start); supply_register_by_name (regcache, "s4", &end); break; case 1: supply_register_by_name (regcache, "s5", &start); supply_register_by_name (regcache, "s6", &end); break; case 2: supply_register_by_name (regcache, "s7", &start); supply_register_by_name (regcache, "s8", &end); break; case 3: supply_register_by_name (regcache, "s9", &start); supply_register_by_name (regcache, "s10", &end); break; case 4: supply_register_by_name (regcache, "s11", &start); supply_register_by_name (regcache, "s12", &end); break; case 5: supply_register_by_name (regcache, "s13", &start); supply_register_by_name (regcache, "s14", &end); break; } } static int cris_supports_z_point_type (char z_type) { switch (z_type) { case Z_PACKET_WRITE_WP: case Z_PACKET_READ_WP: case Z_PACKET_ACCESS_WP: return 1; default: return 0; } } static int cris_insert_point (enum raw_bkpt_type type, CORE_ADDR addr, int len, struct raw_breakpoint *bp) { int bp; unsigned long bp_ctrl; unsigned long start, end; unsigned long ccs; struct regcache *regcache; regcache = get_thread_regcache (current_thread, 1); /* Read watchpoints are set as access watchpoints, because of GDB's inability to deal with pure read watchpoints. */ if (type == raw_bkpt_type_read_wp) type = raw_bkpt_type_access_wp; /* Get the configuration register. */ collect_register_by_name (regcache, "s0", &bp_ctrl); /* The watchpoint allocation scheme is the simplest possible. For example, if a region is watched for read and a write watch is requested, a new watchpoint will be used. Also, if a watch for a region that is already covered by one or more existing watchpoints, a new watchpoint will be used. */ /* First, find a free data watchpoint. */ for (bp = 0; bp < 6; bp++) { /* Each data watchpoint's control registers occupy 2 bits (hence the 3), starting at bit 2 for D0 (hence the 2) with 4 bits between for each watchpoint (yes, the 4). */ if (!(bp_ctrl & (0x3 << (2 + (bp * 4))))) break; } if (bp > 5) { /* We're out of watchpoints. */ return -1; } /* Configure the control register first. */ if (type == raw_bkpt_type_read_wp || type == raw_bkpt_type_access_wp) { /* Trigger on read. */ bp_ctrl |= (1 << (2 + bp * 4)); } if (type == raw_bkpt_type_write_wp || type == raw_bkpt_type_access_wp) { /* Trigger on write. */ bp_ctrl |= (2 << (2 + bp * 4)); } /* Setup the configuration register. */ supply_register_by_name (regcache, "s0", &bp_ctrl); /* Setup the range. */ start = addr; end = addr + len - 1; /* Configure the watchpoint register. */ cris_write_data_breakpoint (regcache, bp, start, end); collect_register_by_name (regcache, "ccs", &ccs); /* Set the S1 flag to enable watchpoints. */ ccs |= (1 << 19); supply_register_by_name (regcache, "ccs", &ccs); return 0; } static int cris_remove_point (enum raw_bkpt_type type, CORE_ADDR addr, int len, struct raw_breakpoint *bp) { int bp; unsigned long bp_ctrl; unsigned long start, end; struct regcache *regcache; unsigned long bp_d_regs[12]; regcache = get_thread_regcache (current_thread, 1); /* Read watchpoints are set as access watchpoints, because of GDB's inability to deal with pure read watchpoints. */ if (type == raw_bkpt_type_read_wp) type = raw_bkpt_type_access_wp; /* Get the configuration register. */ collect_register_by_name (regcache, "s0", &bp_ctrl); /* Try to find a watchpoint that is configured for the specified range, then check that read/write also matches. */ /* Ugly pointer arithmetic, since I cannot rely on a single switch (addr) as there may be several watchpoints with the same start address for example. */ /* Get all range registers to simplify search. */ collect_register_by_name (regcache, "s3", &bp_d_regs[0]); collect_register_by_name (regcache, "s4", &bp_d_regs[1]); collect_register_by_name (regcache, "s5", &bp_d_regs[2]); collect_register_by_name (regcache, "s6", &bp_d_regs[3]); collect_register_by_name (regcache, "s7", &bp_d_regs[4]); collect_register_by_name (regcache, "s8", &bp_d_regs[5]); collect_register_by_name (regcache, "s9", &bp_d_regs[6]); collect_register_by_name (regcache, "s10", &bp_d_regs[7]); collect_register_by_name (regcache, "s11", &bp_d_regs[8]); collect_register_by_name (regcache, "s12", &bp_d_regs[9]); collect_register_by_name (regcache, "s13", &bp_d_regs[10]); collect_register_by_name (regcache, "s14", &bp_d_regs[11]); for (bp = 0; bp < 6; bp++) { if (bp_d_regs[bp * 2] == addr && bp_d_regs[bp * 2 + 1] == (addr + len - 1)) { /* Matching range. */ int bitpos = 2 + bp * 4; int rw_bits; /* Read/write bits for this BP. */ rw_bits = (bp_ctrl & (0x3 << bitpos)) >> bitpos; if ((type == raw_bkpt_type_read_wp && rw_bits == 0x1) || (type == raw_bkpt_type_write_wp && rw_bits == 0x2) || (type == raw_bkpt_type_access_wp && rw_bits == 0x3)) { /* Read/write matched. */ break; } } } if (bp > 5) { /* No watchpoint matched. */ return -1; } /* Found a matching watchpoint. Now, deconfigure it by both disabling read/write in bp_ctrl and zeroing its start/end addresses. */ bp_ctrl &= ~(3 << (2 + (bp * 4))); /* Setup the configuration register. */ supply_register_by_name (regcache, "s0", &bp_ctrl); start = end = 0; /* Configure the watchpoint register. */ cris_write_data_breakpoint (regcache, bp, start, end); /* Note that we don't clear the S1 flag here. It's done when continuing. */ return 0; } static int cris_stopped_by_watchpoint (void) { unsigned long exs; struct regcache *regcache = get_thread_regcache (current_thread, 1); collect_register_by_name (regcache, "exs", &exs); return (((exs & 0xff00) >> 8) == 0xc); } static CORE_ADDR cris_stopped_data_address (void) { unsigned long eda; struct regcache *regcache = get_thread_regcache (current_thread, 1); collect_register_by_name (regcache, "eda", &eda); /* FIXME: Possibly adjust to match watched range. */ return eda; } ps_err_e ps_get_thread_area (struct ps_prochandle *ph, lwpid_t lwpid, int idx, void **base) { if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0) return PS_ERR; /* IDX is the bias from the thread pointer to the beginning of the thread descriptor. It has to be subtracted due to implementation quirks in libthread_db. */ *base = (void *) ((char *) *base - idx); return PS_OK; } static void cris_fill_gregset (struct regcache *regcache, void *buf) { int i; for (i = 0; i < cris_num_regs; i++) { if (cris_regmap[i] != -1) collect_register (regcache, i, ((char *) buf) + cris_regmap[i]); } } static void cris_store_gregset (struct regcache *regcache, const void *buf) { int i; for (i = 0; i < cris_num_regs; i++) { if (cris_regmap[i] != -1) supply_register (regcache, i, ((char *) buf) + cris_regmap[i]); } } void crisv32_target::low_arch_setup () { current_process ()->tdesc = tdesc_crisv32; } /* Support for hardware single step. */ static int cris_supports_hardware_single_step (void) { return 1; } static struct regset_info cris_regsets[] = { { PTRACE_GETREGS, PTRACE_SETREGS, 0, cris_num_regs * 4, GENERAL_REGS, cris_fill_gregset, cris_store_gregset }, NULL_REGSET }; static struct regsets_info cris_regsets_info = { cris_regsets, /* regsets */ 0, /* num_regsets */ NULL, /* disabled_regsets */ }; static struct usrregs_info cris_usrregs_info = { cris_num_regs, cris_regmap, }; static struct regs_info myregs_info = { NULL, /* regset_bitmap */ &cris_usrregs_info, &cris_regsets_info }; const regs_info * crisv32_target::get_regs_info () { return &myregs_info; } struct linux_target_ops the_low_target = { NULL, /* get_next_pcs */ 0, cris_breakpoint_at, cris_supports_z_point_type, cris_insert_point, cris_remove_point, cris_stopped_by_watchpoint, cris_stopped_data_address, NULL, /* collect_ptrace_register */ NULL, /* supply_ptrace_register */ NULL, /* siginfo_fixup */ NULL, /* new_process */ NULL, /* delete_process */ NULL, /* new_thread */ NULL, /* delete_thread */ NULL, /* new_fork */ NULL, /* prepare_to_resume */ NULL, /* process_qsupported */ NULL, /* supports_tracepoints */ NULL, /* get_thread_area */ NULL, /* install_fast_tracepoint_jump_pad */ NULL, /* emit_ops */ NULL, /* get_min_fast_tracepoint_insn_len */ NULL, /* supports_range_stepping */ cris_supports_hardware_single_step, }; /* The linux target ops object. */ linux_process_target *the_linux_target = &the_crisv32_target; void initialize_low_arch (void) { init_registers_crisv32 (); initialize_regsets_info (&cris_regsets_info); }