/* GNU/Linux/CRIS specific low level interface, for the remote server for GDB.
Copyright (C) 1995-2020 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see . */
#include "server.h"
#include "linux-low.h"
#include "nat/gdb_ptrace.h"
/* Linux target op definitions for the CRIS architecture. */
class crisv32_target : public linux_process_target
{
public:
const regs_info *get_regs_info () override;
const gdb_byte *sw_breakpoint_from_kind (int kind, int *size) override;
protected:
void low_arch_setup () override;
bool low_cannot_fetch_register (int regno) override;
bool low_cannot_store_register (int regno) override;
bool low_supports_breakpoints () override;
CORE_ADDR low_get_pc (regcache *regcache) override;
void low_set_pc (regcache *regcache, CORE_ADDR newpc) override;
};
/* The singleton target ops object. */
static crisv32_target the_crisv32_target;
bool
crisv32_target::low_cannot_fetch_register (int regno)
{
gdb_assert_not_reached ("linux target op low_cannot_fetch_register "
"is not implemented by the target");
}
bool
crisv32_target::low_cannot_store_register (int regno)
{
gdb_assert_not_reached ("linux target op low_cannot_store_register "
"is not implemented by the target");
}
bool
crisv32_target::low_supports_breakpoints ()
{
return true;
}
CORE_ADDR
crisv32_target::low_get_pc (regcache *regcache)
{
return linux_get_pc_32bit (regcache);
}
void
crisv32_target::low_set_pc (regcache *regcache, CORE_ADDR pc)
{
linux_set_pc_32bit (regcache, pc);
}
/* Defined in auto-generated file reg-crisv32.c. */
void init_registers_crisv32 (void);
extern const struct target_desc *tdesc_crisv32;
/* CRISv32 */
#define cris_num_regs 49
#ifndef PTRACE_GET_THREAD_AREA
#define PTRACE_GET_THREAD_AREA 25
#endif
/* Note: Ignoring USP (having the stack pointer in two locations causes trouble
without any significant gain). */
/* Locations need to match . */
static int cris_regmap[] = {
1*4, 2*4, 3*4, 4*4,
5*4, 6*4, 7*4, 8*4,
9*4, 10*4, 11*4, 12*4,
13*4, 14*4, 24*4, 15*4,
-1, -1, -1, 16*4,
-1, 22*4, 23*4, 17*4,
-1, -1, 21*4, 20*4,
-1, 19*4, -1, 18*4,
25*4,
26*4, -1, -1, 29*4,
30*4, 31*4, 32*4, 33*4,
34*4, 35*4, 36*4, 37*4,
38*4, 39*4, 40*4, -1
};
static const unsigned short cris_breakpoint = 0xe938;
#define cris_breakpoint_len 2
/* Implementation of target ops method "sw_breakpoint_from_kind". */
const gdb_byte *
crisv32_target::sw_breakpoint_from_kind (int kind, int *size)
{
*size = cris_breakpoint_len;
return (const gdb_byte *) &cris_breakpoint;
}
static int
cris_breakpoint_at (CORE_ADDR where)
{
unsigned short insn;
the_target->read_memory (where, (unsigned char *) &insn,
cris_breakpoint_len);
if (insn == cris_breakpoint)
return 1;
/* If necessary, recognize more trap instructions here. GDB only uses the
one. */
return 0;
}
static void
cris_write_data_breakpoint (struct regcache *regcache,
int bp, unsigned long start, unsigned long end)
{
switch (bp)
{
case 0:
supply_register_by_name (regcache, "s3", &start);
supply_register_by_name (regcache, "s4", &end);
break;
case 1:
supply_register_by_name (regcache, "s5", &start);
supply_register_by_name (regcache, "s6", &end);
break;
case 2:
supply_register_by_name (regcache, "s7", &start);
supply_register_by_name (regcache, "s8", &end);
break;
case 3:
supply_register_by_name (regcache, "s9", &start);
supply_register_by_name (regcache, "s10", &end);
break;
case 4:
supply_register_by_name (regcache, "s11", &start);
supply_register_by_name (regcache, "s12", &end);
break;
case 5:
supply_register_by_name (regcache, "s13", &start);
supply_register_by_name (regcache, "s14", &end);
break;
}
}
static int
cris_supports_z_point_type (char z_type)
{
switch (z_type)
{
case Z_PACKET_WRITE_WP:
case Z_PACKET_READ_WP:
case Z_PACKET_ACCESS_WP:
return 1;
default:
return 0;
}
}
static int
cris_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
int len, struct raw_breakpoint *bp)
{
int bp;
unsigned long bp_ctrl;
unsigned long start, end;
unsigned long ccs;
struct regcache *regcache;
regcache = get_thread_regcache (current_thread, 1);
/* Read watchpoints are set as access watchpoints, because of GDB's
inability to deal with pure read watchpoints. */
if (type == raw_bkpt_type_read_wp)
type = raw_bkpt_type_access_wp;
/* Get the configuration register. */
collect_register_by_name (regcache, "s0", &bp_ctrl);
/* The watchpoint allocation scheme is the simplest possible.
For example, if a region is watched for read and
a write watch is requested, a new watchpoint will
be used. Also, if a watch for a region that is already
covered by one or more existing watchpoints, a new
watchpoint will be used. */
/* First, find a free data watchpoint. */
for (bp = 0; bp < 6; bp++)
{
/* Each data watchpoint's control registers occupy 2 bits
(hence the 3), starting at bit 2 for D0 (hence the 2)
with 4 bits between for each watchpoint (yes, the 4). */
if (!(bp_ctrl & (0x3 << (2 + (bp * 4)))))
break;
}
if (bp > 5)
{
/* We're out of watchpoints. */
return -1;
}
/* Configure the control register first. */
if (type == raw_bkpt_type_read_wp || type == raw_bkpt_type_access_wp)
{
/* Trigger on read. */
bp_ctrl |= (1 << (2 + bp * 4));
}
if (type == raw_bkpt_type_write_wp || type == raw_bkpt_type_access_wp)
{
/* Trigger on write. */
bp_ctrl |= (2 << (2 + bp * 4));
}
/* Setup the configuration register. */
supply_register_by_name (regcache, "s0", &bp_ctrl);
/* Setup the range. */
start = addr;
end = addr + len - 1;
/* Configure the watchpoint register. */
cris_write_data_breakpoint (regcache, bp, start, end);
collect_register_by_name (regcache, "ccs", &ccs);
/* Set the S1 flag to enable watchpoints. */
ccs |= (1 << 19);
supply_register_by_name (regcache, "ccs", &ccs);
return 0;
}
static int
cris_remove_point (enum raw_bkpt_type type, CORE_ADDR addr, int len,
struct raw_breakpoint *bp)
{
int bp;
unsigned long bp_ctrl;
unsigned long start, end;
struct regcache *regcache;
unsigned long bp_d_regs[12];
regcache = get_thread_regcache (current_thread, 1);
/* Read watchpoints are set as access watchpoints, because of GDB's
inability to deal with pure read watchpoints. */
if (type == raw_bkpt_type_read_wp)
type = raw_bkpt_type_access_wp;
/* Get the configuration register. */
collect_register_by_name (regcache, "s0", &bp_ctrl);
/* Try to find a watchpoint that is configured for the
specified range, then check that read/write also matches. */
/* Ugly pointer arithmetic, since I cannot rely on a
single switch (addr) as there may be several watchpoints with
the same start address for example. */
/* Get all range registers to simplify search. */
collect_register_by_name (regcache, "s3", &bp_d_regs[0]);
collect_register_by_name (regcache, "s4", &bp_d_regs[1]);
collect_register_by_name (regcache, "s5", &bp_d_regs[2]);
collect_register_by_name (regcache, "s6", &bp_d_regs[3]);
collect_register_by_name (regcache, "s7", &bp_d_regs[4]);
collect_register_by_name (regcache, "s8", &bp_d_regs[5]);
collect_register_by_name (regcache, "s9", &bp_d_regs[6]);
collect_register_by_name (regcache, "s10", &bp_d_regs[7]);
collect_register_by_name (regcache, "s11", &bp_d_regs[8]);
collect_register_by_name (regcache, "s12", &bp_d_regs[9]);
collect_register_by_name (regcache, "s13", &bp_d_regs[10]);
collect_register_by_name (regcache, "s14", &bp_d_regs[11]);
for (bp = 0; bp < 6; bp++)
{
if (bp_d_regs[bp * 2] == addr
&& bp_d_regs[bp * 2 + 1] == (addr + len - 1)) {
/* Matching range. */
int bitpos = 2 + bp * 4;
int rw_bits;
/* Read/write bits for this BP. */
rw_bits = (bp_ctrl & (0x3 << bitpos)) >> bitpos;
if ((type == raw_bkpt_type_read_wp && rw_bits == 0x1)
|| (type == raw_bkpt_type_write_wp && rw_bits == 0x2)
|| (type == raw_bkpt_type_access_wp && rw_bits == 0x3))
{
/* Read/write matched. */
break;
}
}
}
if (bp > 5)
{
/* No watchpoint matched. */
return -1;
}
/* Found a matching watchpoint. Now, deconfigure it by
both disabling read/write in bp_ctrl and zeroing its
start/end addresses. */
bp_ctrl &= ~(3 << (2 + (bp * 4)));
/* Setup the configuration register. */
supply_register_by_name (regcache, "s0", &bp_ctrl);
start = end = 0;
/* Configure the watchpoint register. */
cris_write_data_breakpoint (regcache, bp, start, end);
/* Note that we don't clear the S1 flag here. It's done when continuing. */
return 0;
}
static int
cris_stopped_by_watchpoint (void)
{
unsigned long exs;
struct regcache *regcache = get_thread_regcache (current_thread, 1);
collect_register_by_name (regcache, "exs", &exs);
return (((exs & 0xff00) >> 8) == 0xc);
}
static CORE_ADDR
cris_stopped_data_address (void)
{
unsigned long eda;
struct regcache *regcache = get_thread_regcache (current_thread, 1);
collect_register_by_name (regcache, "eda", &eda);
/* FIXME: Possibly adjust to match watched range. */
return eda;
}
ps_err_e
ps_get_thread_area (struct ps_prochandle *ph,
lwpid_t lwpid, int idx, void **base)
{
if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0)
return PS_ERR;
/* IDX is the bias from the thread pointer to the beginning of the
thread descriptor. It has to be subtracted due to implementation
quirks in libthread_db. */
*base = (void *) ((char *) *base - idx);
return PS_OK;
}
static void
cris_fill_gregset (struct regcache *regcache, void *buf)
{
int i;
for (i = 0; i < cris_num_regs; i++)
{
if (cris_regmap[i] != -1)
collect_register (regcache, i, ((char *) buf) + cris_regmap[i]);
}
}
static void
cris_store_gregset (struct regcache *regcache, const void *buf)
{
int i;
for (i = 0; i < cris_num_regs; i++)
{
if (cris_regmap[i] != -1)
supply_register (regcache, i, ((char *) buf) + cris_regmap[i]);
}
}
void
crisv32_target::low_arch_setup ()
{
current_process ()->tdesc = tdesc_crisv32;
}
/* Support for hardware single step. */
static int
cris_supports_hardware_single_step (void)
{
return 1;
}
static struct regset_info cris_regsets[] = {
{ PTRACE_GETREGS, PTRACE_SETREGS, 0, cris_num_regs * 4,
GENERAL_REGS, cris_fill_gregset, cris_store_gregset },
NULL_REGSET
};
static struct regsets_info cris_regsets_info =
{
cris_regsets, /* regsets */
0, /* num_regsets */
NULL, /* disabled_regsets */
};
static struct usrregs_info cris_usrregs_info =
{
cris_num_regs,
cris_regmap,
};
static struct regs_info myregs_info =
{
NULL, /* regset_bitmap */
&cris_usrregs_info,
&cris_regsets_info
};
const regs_info *
crisv32_target::get_regs_info ()
{
return &myregs_info;
}
struct linux_target_ops the_low_target = {
NULL, /* get_next_pcs */
0,
cris_breakpoint_at,
cris_supports_z_point_type,
cris_insert_point,
cris_remove_point,
cris_stopped_by_watchpoint,
cris_stopped_data_address,
NULL, /* collect_ptrace_register */
NULL, /* supply_ptrace_register */
NULL, /* siginfo_fixup */
NULL, /* new_process */
NULL, /* delete_process */
NULL, /* new_thread */
NULL, /* delete_thread */
NULL, /* new_fork */
NULL, /* prepare_to_resume */
NULL, /* process_qsupported */
NULL, /* supports_tracepoints */
NULL, /* get_thread_area */
NULL, /* install_fast_tracepoint_jump_pad */
NULL, /* emit_ops */
NULL, /* get_min_fast_tracepoint_insn_len */
NULL, /* supports_range_stepping */
cris_supports_hardware_single_step,
};
/* The linux target ops object. */
linux_process_target *the_linux_target = &the_crisv32_target;
void
initialize_low_arch (void)
{
init_registers_crisv32 ();
initialize_regsets_info (&cris_regsets_info);
}