mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-29 04:53:56 +08:00
f2fc30156c
286 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Tom Tromey
|
f2fc30156c |
Constify some linespec functions
This changes a few linespec functions to work on "const char *" and then fixes up all the callers. This allows further constification elsewhere. gdb/ChangeLog 2017-09-27 Tom Tromey <tom@tromey.com> * tracepoint.c (info_scope_command): Constify. * python/python.c (gdbpy_decode_line): Constify. * python/py-breakpoint.c (bppy_init): Constify. * mi/mi-cmd-break.c (mi_cmd_break_insert_1): Constify. * location.h: (new_linespec_location) (string_to_event_location_basic, string_to_event_location): Constify. * location.c (new_linespec_location) (string_to_event_location_basic, string_to_event_location): Constify. * linespec.h (decode_line_with_current_source) (decode_line_with_last_displayed, linespec_lex_to_end): Constify. * linespec.c (linespec_lex_to_end) (decode_line_with_current_source) (decode_line_with_last_displayed): Constify. * guile/scm-breakpoint.c (gdbscm_register_breakpoint_x): Constify. * cli/cli-cmds.c (edit_command, list_command): Constify. * breakpoint.h (until_break_command, watch_command_wrapper) (awatch_command_wrapper, rwatch_command_wrapper) (init_ada_exception_breakpoint): Constify. * breakpoint.c (break_command_1, dprintf_command) (break_range_command, watch_command_wrapper) (rwatch_command_wrapper, awatch_command_wrapper) (until_break_command, init_ada_exception_breakpoint) (strace_marker_create_sals_from_location, trace_command) (ftrace_command, strace_command, struct tracepoint): Constify. * ax-gdb.c (agent_command_1): Constify. * ada-lang.c (ada_exception_sal): Constify. |
||
Tom Tromey
|
d1b0a7bfd3 |
Change counted_command_line to a shared_ptr
This changes counted_command_line to be a typedef for std::shared_ptr and removes the associated cleanups. In the long run I believe that cmd_list_element should also be changed to use a shared_ptr. gdb/ChangeLog 2017-09-20 Tom Tromey <tom@tromey.com> * breakpoint.c (struct counted_command_line): Remove. (breakpoint_commands): Update. (alloc_counted_command_line, incref_counted_command_line) (decref_counted_command_line, do_cleanup_counted_command_line) (make_cleanup_decref_counted_command_line): Remove. (breakpoint_set_commands, commands_command_1, ~bpstats, bpstats) (bpstat_clear_actions, bpstat_do_actions_1, watchpoint_check) (bpstat_stop_status, print_one_breakpoint_location, ~breakpoint) (save_breakpoints): Update. * breakpoint.h (counted_command_line): Now a typedef to shared_ptr. (struct breakpoint) <commands>: Now a counted_command_line. (struct bpstats) <command>: Likewise. |
||
Tom Tromey
|
04afa70c8e |
Allocate bpstats with new
This changes struct bpstats to be allocated with new and freed with delete, adding constructors and a destructor in the process. This allows the removal of one cleanup and clears the way for more to follow. gdb/ChangeLog 2017-09-20 Tom Tromey <tom@tromey.com> * breakpoint.c (~bpstats): Rename from bpstat_free. Update. (bpstat_clear): Use delete. (bpstats): New constructors. (bpstat_copy, bpstat_stop_status): Use new. (dprintf_after_condition_true): Update. * breakpoint.h (bpstats::bpstats): Add constructors. (bpstats::~bpstats): Add destructor. |
||
Simon Marchi
|
6b66338c70 |
Move command lines types/declarations to cli-script.h
I think it would make more sense if the types and function declarations related to command lines were in cli-script.h rather than defs.h, since the related function definitions are in cli-script.c. I had to add a few includes here and there. I also had to rename the "lines" parameter of command_lines_deleter::operator(), because ncurses has a "#define lines ..." that was interfering when cli-script.h is included by some TUI source files that also include ncurses header files. gdb/ChangeLog: * cli/cli-script.h (enum misc_command_type): Move from defs.h. (enum command_control_type): Likewise. (struct command_line): Likewise. (free_command_lines): Likewise. (struct command_lines_deleter): Likewise. (command_line_up): Likewise. (read_command_lines): Likewise. (read_command_lines_1): Likewise. * defs.h (enum misc_command_type): Move to cli/cli-script.h. (enum command_control_type): Likewise. (struct command_line): Likewise. (free_command_lines): Likewise. (struct command_lines_deleter): Likewise. (command_line_up): Likewise. (read_command_lines): Likewise. (read_command_lines_1): Likewise. * breakpoint.h: Include cli/cli-script.h. * extension-priv.h: Likewise. * gdbcmd.h: Likewise. |
||
Pedro Alves
|
6c5b2ebeac |
struct symtabs_and_lines -> std::vector<symtab_and_line>
This replaces "struct symtabs_and_lines" with std::vector<symtab_and_line> in most cases. This removes a number of cleanups. In some cases, the sals objects do not own the sals they point at. Instead they point at some sal that lives on the stack. Typically something like this: struct symtab_and_line sal; struct symtabs_and_lines sals; // fill in sal sals.nelts = 1; sals.sals = &sal; // use sals Instead of switching those cases to std::vector too, such usages are replaced by gdb::array_view<symtab_and_line> instead. This avoids introducing heap allocations. gdb/ChangeLog: 2017-09-04 Pedro Alves <palves@redhat.com> * ax-gdb.c (agent_command_1): Use range-for. * break-catch-throw.c (re_set_exception_catchpoint): Update. * breakpoint.c: Include "common/array-view.h". (init_breakpoint_sal, create_breakpoint_sal): Change sals parameter from struct symtabs_and_lines to array_view<symtab_and_line>. Adjust. Use range-for. Update. (breakpoint_sals_to_pc): Change sals parameter from struct symtabs_and_lines to std::vector reference. (check_fast_tracepoint_sals): Change sals parameter from struct symtabs_and_lines to std::array_view. Use range-for. (decode_static_tracepoint_spec): Return a std::vector instead of symtabs_and_lines. Update. (create_breakpoint): Update. (break_range_command, until_break_command, clear_command): Update. (base_breakpoint_decode_location, bkpt_decode_location) (bkpt_probe_create_sals_from_location) (bkpt_probe_decode_location, tracepoint_decode_location) (tracepoint_probe_decode_location) (strace_marker_create_sals_from_location): Return a std::vector instead of symtabs_and_lines. (strace_marker_create_breakpoints_sal): Update. (strace_marker_decode_location): Return a std::vector instead of symtabs_and_lines. Update. (update_breakpoint_locations): Change struct symtabs_and_lines parameters to gdb::array_view. Adjust. (location_to_sals): Return a std::vector instead of symtabs_and_lines. Update. (breakpoint_re_set_default): Use std::vector instead of struct symtabs_and_lines. (decode_location_default): Return a std::vector instead of symtabs_and_lines. Update. * breakpoint.h: Include "common/array-view.h". (struct breakpoint_ops) <decode_location>: Now returns a std::vector instead of returning a symtabs_and_lines via output parameter. (update_breakpoint_locations): Change sals parameters to use gdb::array_view. * cli/cli-cmds.c (edit_command, list_command): Update to use std::vector and gdb::array_view. (ambiguous_line_spec): Adjust to use gdb::array_view and range-for. (compare_symtabs): Rename to ... (cmp_symtabs): ... this. Change parameters to symtab_and_line const reference and adjust. (filter_sals): Rewrite using std::vector and standard algorithms. * elfread.c (elf_gnu_ifunc_resolver_return_stop): Simplify. (jump_command): Update to use std::vector. * linespec.c (struct linespec_state) <canonical_names>: Update comment. (add_sal_to_sals_basic): Delete. (add_sal_to_sals, filter_results, convert_results_to_lsals) (decode_line_2, create_sals_line_offset) (convert_address_location_to_sals, convert_linespec_to_sals) (convert_explicit_location_to_sals, parse_linespec) (event_location_to_sals, decode_line_full, decode_line_1) (decode_line_with_current_source) (decode_line_with_last_displayed, decode_objc) (decode_digits_list_mode, decode_digits_ordinary, minsym_found) (linespec_result::~linespec_result): Adjust to use std::vector instead of symtabs_and_lines. * linespec.h (linespec_sals::sals): Now a std::vector. (struct linespec_result): Use std::vector, bool, and in-class initialization. (decode_line_1, decode_line_with_current_source) (decode_line_with_last_displayed): Return std::vector. * macrocmd.c (info_macros_command): Use std::vector. * mi/mi-main.c (mi_cmd_trace_find): Use std::vector. * probe.c (parse_probes_in_pspace, parse_probes): Adjust to use std::vector. * probe.h (parse_probes): Return a std::vector. * python/python.c (gdbpy_decode_line): Use std::vector and gdb::array_view. * source.c (select_source_symtab, line_info): Use std::vector. * stack.c (func_command): Use std::vector. * symtab.h (struct symtabs_and_lines): Delete. * tracepoint.c (tfind_line_command, scope_info): Use std::vector. |
||
Tom Tromey
|
b270e6f9e0 |
Change install_breakpoint to take a std::unique_ptr
This changes install_breakpoint to take a std::unique_ptr rvalue-ref argument. This makes it clear that install_breakpoint takes ownership of the pointer, and prevents bugs like the one fixed by the previous patch. ChangeLog 2017-08-22 Tom Tromey <tom@tromey.com> * breakpoint.h (install_breakpoint): Update. * breakpoint.c (add_solib_catchpoint): Update. (install_breakpoint): Change argument to a std::unique_ptr. (create_fork_vfork_event_catchpoint): Use std::unique_ptr. (create_breakpoint_sal, create_breakpoint): Update. (watch_command_1, catch_exec_command_1) (strace_marker_create_breakpoints_sal): Use std::unique_ptr. (add_to_breakpoint_chain): Change argument to a std::unique_ptr. Return the breakpoint. (set_raw_breakpoint_without_location, set_raw_breakpoint) (new_single_step_breakpoint): Update. * break-catch-throw.c (handle_gnu_v3_exceptions): Use std::unique_ptr. * break-catch-syscall.c (create_syscall_event_catchpoint): Use std::unique_ptr. * break-catch-sig.c (create_signal_catchpoint): Use std::unique_ptr. * ada-lang.c (create_ada_exception_catchpoint): Use std::unique_ptr. |
||
Pedro Alves
|
e1e01040aa |
Fix double free when running gdb.linespec/ls-errs.exp (PR breakpoints/21553)
The problem is that b->extra_string is free'ed twice: Once in the breakpoint's dtor, and another time via make_cleanup (xfree). This patch gets rid of the cleanups, fixing the problem. Tested on x86_64 GNU/Linux. gdb/ChangeLog: 2017-06-06 Pedro Alves <palves@redhat.com> PR breakpoints/21553 * breakpoint.c (create_breakpoints_sal_default) (init_breakpoint_sal, create_breakpoint_sal): Use gdb::unique_xmalloc_ptr for string parameters. (create_breakpoint): Constify 'extra_string' and 'cond_string' parameters. Replace cleanups with gdb::unique_xmalloc_ptr. (base_breakpoint_create_breakpoints_sal) (bkpt_create_breakpoints_sal, tracepoint_create_breakpoints_sal) (strace_marker_create_breakpoints_sal) (create_breakpoints_sal_default): Use gdb::unique_xmalloc_ptr for string parameters. * breakpoint.h (breakpoint_ops::create_breakpoints_sal): Use gdb::unique_xmalloc_ptr for string parameters. (create_breakpoint): Constify 'extra_string' and 'cond_string' parameters. |
||
Simon Marchi
|
c1fc265720 |
C++ify breakpoint class hierarchy (destructors only)
Breakpoints are currently in a limbo state between C and C++. There is a pseudo class hierarchy implemented using struct fields. Taking watchpoint as an example: struct watchpoint { /* The base class. */ struct breakpoint base; ... } and it is instantianted with "new watchpoint ()". When destroyed, a destructor is first invoked through the breakpoint_ops, and then the memory is freed by calling delete through a pointer to breakpoint. Address sanitizer complains about this, for example, because we new and delete the same memory using different types. This patch takes the logical step of making breakpoint subclasses extend the breakpoint class for real, and converts their destructors to actual C++ destructors. Regtested on the buildbot. gdb/ChangeLog: * breakpoint.h (struct breakpoint_ops) <dtor>: Remove. (struct breakpoint) <~breakpoint>: New. (struct watchpoint): Inherit from breakpoint. <~watchpoint>: New. <base>: Remove. (struct tracepoint): Inherit from breakpoint. <base>: Remove. * breakpoint.c (longjmp_breakpoint_ops): Remove. (struct longjmp_breakpoint): Inherit from breakpoint. <~longjmp_breakpoint>: New. <base>: Remove. (new_breakpoint_from_type): Remove casts. (watchpoint_in_thread_scope): Remove reference to base field. (watchpoint_del_at_next_stop): Likewise. (update_watchpoint): Likewise. (watchpoint_check): Likewise. (bpstat_check_watchpoint): Likewise. (set_longjmp_breakpoint): Likewise. (struct fork_catchpoint): Inherit from breakpoint. <base>: Remove. (struct solib_catchpoint): Inherit from breakpoint. <~solib_catchpoint>: New. <base>: Remove. (dtor_catch_solib): Change to ... (solib_catchpoint::~solib_catchpoint): ... this. (breakpoint_hit_catch_solib): Remove reference to base field. (add_solib_catchpoint): Likewise. (create_fork_vfork_event_catchpoint): Likewise. (struct exec_catchpoint): Inherit from breakpoint. <~exec_catchpoint>: New. <base>: Remove. (dtor_catch_exec): Change to ... (exec_catchpoint::~exec_catchpoint): ... this. (dtor_watchpoint): Change to ... (watchpoint::~watchpoint): ... this. (watch_command_1): Remove reference to base field. (catch_exec_command_1): Likewise. (base_breakpoint_dtor): Change to ... (breakpoint::~breakpoint): ... this. (base_breakpoint_ops): Remove dtor field value. (longjmp_bkpt_dtor): Change to ... (longjmp_breakpoint::~longjmp_breakpoint): ... this. (strace_marker_create_breakpoints_sal): Remove reference to base field. (delete_breakpoint): Don't manually call breakpoint destructor. (create_tracepoint_from_upload): Remove reference to base field. (trace_pass_set_count): Likewise. (initialize_breakpoint_ops): Don't initialize momentary_breakpoint_ops, don't set dtors. * ada-lang.c (struct ada_catchpoint): Inherit from breakpoint. <~ada_catchpoint>: New. <base>: Remove. (create_excep_cond_exprs): Remove reference to base field. (dtor_exception): Change to ... (ada_catchpoint::~ada_catchpoint): ... this. (dtor_catch_exception): Remove. (dtor_catch_exception_unhandled): Remove. (dtor_catch_assert): Remove. (create_ada_exception_catchpoint): Remove reference to base field. (initialize_ada_catchpoint_ops): Don't set dtors. * break-catch-sig.c (struct signal_catchpoint): Inherit from breakpoint. <~signal_catchpoint>: New. <base>: Remove. (signal_catchpoint_dtor): Change to ... (signal_catchpoint::~signal_catchpoint): ... this. (create_signal_catchpoint): Remove reference to base field. (initialize_signal_catchpoint_ops): Don't set dtor. * break-catch-syscall.c (struct syscall_catchpoint): Inherit from breakpoint. <~syscall_catchpoint>: New. <base>: Remove. (dtor_catch_syscall): Change to ... (syscall_catchpoint::~syscall_catchpoint): ... this. (create_syscall_event_catchpoint): Remove reference to base field. (initialize_syscall_catchpoint_ops): Don't set dtor. * break-catch-throw.c (struct exception_catchpoint): Inherit from breakpoint. <~exception_catchpoint>: New. <base>: Remove. (dtor_exception_catchpoint): Change to ... (exception_catchpoint::~exception_catchpoint): ... this. (handle_gnu_v3_exceptions): Remove reference to base field. (initialize_throw_catchpoint_ops): Don't set dtor. * ctf.c (ctf_get_traceframe_address): Remove reference to base field. * remote.c (remote_get_tracepoint_status): Likewise. * tracefile-tfile.c (tfile_get_traceframe_address): Likewise. * tracefile.c (tracefile_fetch_registers): Likewise. * tracepoint.c (actions_command): Likewise. (validate_actionline): Likewise. (tfind_1): Likewise. (get_traceframe_location): Likewise. (find_matching_tracepoint_location): Likewise. (parse_tracepoint_status): Likewise. * mi/mi-cmd-break.c (mi_cmd_break_passcount): Likewise. |
||
Pedro Alves
|
16c4d54a71 |
Don't memset non-POD types: struct breakpoint
Eh, struct breakpoint was made non-POD just today, with commit
|
||
Pedro Alves
|
5625a28641 |
Don't memset non-POD types: struct bp_location
struct bp_location is not a POD, so we shouldn't be using memset to initialize it. Caught like this: src/gdb/breakpoint.c: In function ‘bp_location** get_first_locp_gte_addr(CORE_ADDR)’: src/gdb/breakpoint.c:950:53: error: use of deleted function ‘void* memset(T*, int, size_t) [with T = bp_location; <template-parameter-1-2> = void; size_t = long unsigned int]’ memset (&dummy_loc, 0, sizeof (struct bp_location)); ^ In file included from src/gdb/defs.h:28:0, from src/gdb/breakpoint.c:20: src/gdb/common/common-defs.h:126:7: note: declared here void *memset (T *s, int c, size_t n) = delete; ^ gdb/ChangeLog: 2017-04-25 Pedro Alves <palves@redhat.com> * ada-lang.c (ada_catchpoint_location): Now a "class". Remove "base" field and inherit from "bp_location" instead. Add non-default ctor. (allocate_location_exception): Use new non-default ctor. * breakpoint.c (get_first_locp_gte_addr): Remove memset call. (init_bp_location): Convert to ... (bp_location::bp_location): ... this new ctor, and remove memset call. (base_breakpoint_allocate_location): Use the new non-default ctor. * breakpoint.h (bp_location): Now a class. Declare default and non-default ctors. In-class initialize all members. (init_bp_location): Remove declaration. |
||
Pedro Alves
|
bfb8cf9091 |
struct breakpoint: Fix indentation
I'm going to need to touch all these fields to add in-class initialization anyway, might as well take the opportunity to finally fix this... gdb/ChangeLog: 2017-04-13 Pedro Alves <palves@redhat.com> * breakpoint.h (struct breakpoint): Reindent. |
||
Tom Tromey
|
d28cd78ad8 |
Change breakpoint event locations to event_location_up
This is a follow-up to an earlier patch. It changes breakpoint's location and location_range_end members to be of type event_location_up, then fixes up the users. gdb/ChangeLog 2017-04-12 Tom Tromey <tom@tromey.com> * remote.c (remote_download_tracepoint): Update. * python/py-breakpoint.c (bppy_get_location): Update. * guile/scm-breakpoint.c (bpscm_print_breakpoint_smob) (gdbscm_breakpoint_location): Update. * elfread.c (elf_gnu_ifunc_resolver_return_stop): Update. * breakpoint.h (struct breakpoint) <location, location_range_end>: Change type to event_location_up. * breakpoint.c (create_overlay_event_breakpoint) (create_longjmp_master_breakpoint) (create_std_terminate_master_breakpoint) (create_exception_master_breakpoint) (breakpoint_event_location_empty_p, print_breakpoint_location) (print_one_breakpoint_location, create_thread_event_breakpoint) (init_breakpoint_sal, create_breakpoint) (print_recreate_ranged_breakpoint, break_range_command) (init_ada_exception_breakpoint, say_where): Update. (base_breakpoint_dtor): Don't call delete_event_location. (bkpt_print_recreate, tracepoint_print_recreate) (dprintf_print_recreate, update_static_tracepoint) (breakpoint_re_set_default): Update. |
||
Tom Tromey
|
93921405a4 |
Introduce command_line_up
This introduces command_line_up, a unique_ptr for command_line objects, and changes many places to use it. This removes a number of cleanups. Command lines are funny in that sometimes they are reference counted. Once there is more C++-ification of some of the users, perhaps all of these can be changed to use shared_ptr instead. gdb/ChangeLog 2017-04-12 Tom Tromey <tom@tromey.com> * tracepoint.c (actions_command): Update. * python/python.c (python_command, python_interactive_command): Update. * mi/mi-cmd-break.c (mi_cmd_break_commands): Update. * guile/guile.c (guile_command): Update. * defs.h (read_command_lines, read_command_lines_1): Return command_line_up. (command_lines_deleter): New struct. (command_line_up): New typedef. * compile/compile.c (compile_code_command) (compile_print_command): Update. * cli/cli-script.h (get_command_line, copy_command_lines): Return command_line_up. (make_cleanup_free_command_lines): Remove. * cli/cli-script.c (get_command_line, read_command_lines_1) (copy_command_lines): Return command_line_up. (while_command, if_command, read_command_lines, define_command) (document_command): Update. (do_free_command_lines_cleanup, make_cleanup_free_command_lines): Remove. * breakpoint.h (breakpoint_set_commands): Change type of "commands". * breakpoint.c (breakpoint_set_commands): Change type of "commands". Update. (do_map_commands_command, update_dprintf_command_list) (create_tracepoint_from_upload): Update. |
||
Pedro Alves
|
a121b7c1ac |
-Wwrite-strings: The Rest
This is the remainder boring constification that all looks more of less borderline obvious IMO. gdb/ChangeLog: 2017-04-05 Pedro Alves <palves@redhat.com> * ada-exp.y (yyerror): Constify. * ada-lang.c (bound_name, get_selections) (ada_variant_discrim_type) (ada_variant_discrim_name, ada_value_struct_elt) (ada_lookup_struct_elt_type, is_unchecked_variant) (ada_which_variant_applies, standard_exc, ada_get_next_arg) (catch_ada_exception_command_split) (catch_ada_assert_command_split, catch_assert_command) (ada_op_name): Constify. * ada-lang.h (ada_yyerror, get_selections) (ada_variant_discrim_name, ada_value_struct_elt): Constify. * arc-tdep.c (arc_print_frame_cache): Constify. * arm-tdep.c (arm_skip_stub): Constify. * ax-gdb.c (gen_binop, gen_struct_ref_recursive, gen_struct_ref) (gen_aggregate_elt_ref): Constify. * bcache.c (print_bcache_statistics): Constify. * bcache.h (print_bcache_statistics): Constify. * break-catch-throw.c (catch_exception_command_1): * breakpoint.c (struct ep_type_description::description): Constify. (add_solib_catchpoint): Constify. (catch_fork_command_1): Add cast. (add_catch_command): Constify. * breakpoint.h (add_catch_command, add_solib_catchpoint): Constify. * bsd-uthread.c (bsd_uthread_state): Constify. * buildsym.c (patch_subfile_names): Constify. * buildsym.h (next_symbol_text_func, patch_subfile_names): Constify. * c-exp.y (yyerror): Constify. (token::oper): Constify. * c-lang.h (c_yyerror, cp_print_class_member): Constify. * c-varobj.c (cplus_describe_child): Constify. * charset.c (find_charset_names): Add cast. (find_charset_names): Constify array and add const_cast. * cli/cli-cmds.c (complete_command, cd_command): Constify. (edit_command): Constify. * cli/cli-decode.c (lookup_cmd): Constify. * cli/cli-dump.c (dump_memory_command, dump_value_command): Constify. (struct dump_context): Constify. (add_dump_command, restore_command): Constify. * cli/cli-script.c (get_command_line): Constify. * cli/cli-script.h (get_command_line): Constify. * cli/cli-utils.c (check_for_argument): Constify. * cli/cli-utils.h (check_for_argument): Constify. * coff-pe-read.c (struct read_pe_section_data): Constify. * command.h (lookup_cmd): Constify. * common/print-utils.c (decimal2str): Constify. * completer.c (gdb_print_filename): Constify. * corefile.c (set_gnutarget): Constify. * cp-name-parser.y (yyerror): Constify. * cp-valprint.c (cp_print_class_member): Constify. * cris-tdep.c (cris_register_name, crisv32_register_name): Constify. * d-exp.y (yyerror): Constify. (struct token::oper): Constify. * d-lang.h (d_yyerror): Constify. * dbxread.c (struct header_file_location::name): Constify. (add_old_header_file, add_new_header_file, last_function_name) (dbx_next_symbol_text, add_bincl_to_list) (find_corresponding_bincl_psymtab, set_namestring) (find_stab_function_addr, read_dbx_symtab, start_psymtab) (dbx_end_psymtab, read_ofile_symtab, process_one_symbol): * defs.h (command_line_input, print_address_symbolic) (deprecated_readline_begin_hook): Constify. * dwarf2read.c (anonymous_struct_prefix, dwarf_bool_name): Constify. * event-top.c (handle_line_of_input): Constify and add cast. * exceptions.c (catch_errors): Constify. * exceptions.h (catch_errors): Constify. * expprint.c (print_subexp_standard, op_string, op_name) (op_name_standard, dump_raw_expression, dump_raw_expression): * expression.h (op_name, op_string, dump_raw_expression): Constify. * f-exp.y (yyerror): Constify. (struct token::oper): Constify. (struct f77_boolean_val::name): Constify. * f-lang.c (f_word_break_characters): Constify. * f-lang.h (f_yyerror): Constify. * fork-child.c (fork_inferior): Add cast. * frv-tdep.c (struct gdbarch_tdep::register_names): Constify. (new_variant): Constify. * gdbarch.sh (pstring_ptr, pstring_list): Constify. * gdbarch.c: Regenerate. * gdbcore.h (set_gnutarget): Constify. * go-exp.y (yyerror): Constify. (token::oper): Constify. * go-lang.h (go_yyerror): Constify. * go32-nat.c (go32_sysinfo): Constify. * guile/scm-breakpoint.c (gdbscm_breakpoint_expression): Constify. * guile/scm-cmd.c (cmdscm_function): Constify. * guile/scm-param.c (pascm_param_value): Constify. * h8300-tdep.c (h8300_register_name, h8300s_register_name) (h8300sx_register_name): Constify. * hppa-tdep.c (hppa32_register_name, hppa64_register_name): Constify. * ia64-tdep.c (ia64_register_names): Constify. * infcmd.c (construct_inferior_arguments): Constify. (path_command, attach_post_wait): Constify. * language.c (show_range_command, show_case_command) (unk_lang_error): Constify. * language.h (language_defn::la_error) (language_defn::la_name_of_this): Constify. * linespec.c (decode_line_2): Constify. * linux-thread-db.c (thread_db_err_str): Constify. * lm32-tdep.c (lm32_register_name): Constify. * m2-exp.y (yyerror): Constify. * m2-lang.h (m2_yyerror): Constify. * m32r-tdep.c (m32r_register_names): Constify and make static. * m68hc11-tdep.c (m68hc11_register_names): Constify. * m88k-tdep.c (m88k_register_name): Constify. * macroexp.c (appendmem): Constify. * mdebugread.c (fdr_name, add_data_symbol, parse_type) (upgrade_type, parse_external, parse_partial_symbols) (mdebug_next_symbol_text, cross_ref, mylookup_symbol, new_psymtab) (new_symbol): Constify. * memattr.c (mem_info_command): Constify. * mep-tdep.c (register_name_from_keyword): Constify. * mi/mi-cmd-env.c (mi_cmd_env_path, _initialize_mi_cmd_env): Constify. * mi/mi-cmd-stack.c (list_args_or_locals): Constify. * mi/mi-cmd-var.c (mi_cmd_var_show_attributes): Constify. * mi/mi-main.c (captured_mi_execute_command): Constify and add cast. (mi_execute_async_cli_command): Constify. * mips-tdep.c (mips_register_name): Constify. * mn10300-tdep.c (register_name, mn10300_generic_register_name) (am33_register_name, am33_2_register_name) * moxie-tdep.c (moxie_register_names): Constify. * nat/linux-osdata.c (osdata_type): Constify fields. * nto-tdep.c (nto_parse_redirection): Constify. * objc-lang.c (lookup_struct_typedef, lookup_objc_class) (lookup_child_selector): Constify. (objc_methcall::name): Constify. * objc-lang.h (lookup_objc_class, lookup_child_selector) (lookup_struct_typedef): Constify. * objfiles.c (pc_in_section): Constify. * objfiles.h (pc_in_section): Constify. * p-exp.y (struct token::oper): Constify. (yyerror): Constify. * p-lang.h (pascal_yyerror): Constify. * parser-defs.h (op_name_standard): Constify. (op_print::string): Constify. (exp_descriptor::op_name): Constify. * printcmd.c (print_address_symbolic): Constify. * psymtab.c (print_partial_symbols): Constify. * python/py-breakpoint.c (stop_func): Constify. (bppy_get_expression): Constify. * python/py-cmd.c (cmdpy_completer::name): Constify. (cmdpy_function): Constify. * python/py-event.c (evpy_add_attribute) (gdbpy_initialize_event_generic): Constify. * python/py-event.h (evpy_add_attribute) (gdbpy_initialize_event_generic): Constify. * python/py-evts.c (add_new_registry): Constify. * python/py-finishbreakpoint.c (outofscope_func): Constify. * python/py-framefilter.c (get_py_iter_from_func): Constify. * python/py-inferior.c (get_buffer): Add cast. * python/py-param.c (parm_constant::name): Constify. * python/py-unwind.c (fprint_frame_id): Constify. * python/python.c (gdbpy_parameter_value): Constify. * remote-fileio.c (remote_fio_func_map): Make 'name' const. * remote.c (memory_packet_config::name): Constify. (show_packet_config_cmd, remote_write_bytes) (remote_buffer_add_string): * reverse.c (exec_reverse_once): Constify. * rs6000-tdep.c (variant::name, variant::description): Constify. * rust-exp.y (rustyyerror): Constify. * rust-lang.c (rust_op_name): Constify. * rust-lang.h (rustyyerror): Constify. * serial.h (serial_ops::name): Constify. * sh-tdep.c (sh_sh_register_name, sh_sh3_register_name) (sh_sh3e_register_name, sh_sh2e_register_name) (sh_sh2a_register_name, sh_sh2a_nofpu_register_name) (sh_sh_dsp_register_name, sh_sh3_dsp_register_name) (sh_sh4_register_name, sh_sh4_nofpu_register_name) (sh_sh4al_dsp_register_name): Constify. * sh64-tdep.c (sh64_register_name): Constify. * solib-darwin.c (lookup_symbol_from_bfd): Constify. * spu-tdep.c (spu_register_name, info_spu_dma_cmdlist): Constify. * stabsread.c (patch_block_stabs, read_type_number) (ref_map::stabs, ref_add, process_reference) (symbol_reference_defined, define_symbol, define_symbol) (error_type, read_type, read_member_functions, read_cpp_abbrev) (read_one_struct_field, read_struct_fields, read_baseclasses) (read_tilde_fields, read_struct_type, read_array_type) (read_enum_type, read_sun_builtin_type, read_sun_floating_type) (read_huge_number, read_range_type, read_args, common_block_start) (find_name_end): Constify. * stabsread.h (common_block_start, define_symbol) (process_one_symbol, symbol_reference_defined, ref_add): * symfile.c (get_section_index, add_symbol_file_command): * symfile.h (get_section_index): Constify. * target-descriptions.c (tdesc_type::name): Constify. (tdesc_free_type): Add cast. * target.c (find_default_run_target): (add_deprecated_target_alias, find_default_run_target) (target_announce_detach): Constify. (do_option): Constify. * target.h (add_deprecated_target_alias): Constify. * thread.c (print_thread_info_1): Constify. * top.c (deprecated_readline_begin_hook, command_line_input): Constify. (init_main): Add casts. * top.h (handle_line_of_input): Constify. * tracefile-tfile.c (tfile_write_uploaded_tsv): Constify. * tracepoint.c (tvariables_info_1, trace_status_mi): Constify. (tfind_command): Rename to ... (tfind_command_1): ... this and constify. (tfind_command): New function. (tfind_end_command, tfind_start_command): Adjust. (encode_source_string): Constify. * tracepoint.h (encode_source_string): Constify. * tui/tui-data.c (tui_partial_win_by_name): Constify. * tui/tui-data.h (tui_partial_win_by_name): Constify. * tui/tui-source.c (tui_set_source_content_nil): Constify. * tui/tui-source.h (tui_set_source_content_nil): Constify. * tui/tui-win.c (parse_scrolling_args): Constify. * tui/tui-windata.c (tui_erase_data_content): Constify. * tui/tui-windata.h (tui_erase_data_content): Constify. * tui/tui-winsource.c (tui_erase_source_content): Constify. * tui/tui.c (tui_enable): Add cast. * utils.c (defaulted_query): Constify. (init_page_info): Add cast. (puts_debug, subset_compare): Constify. * utils.h (subset_compare): Constify. * varobj.c (varobj_format_string): Constify. * varobj.h (varobj_format_string): Constify. * vax-tdep.c (vax_register_name): Constify. * windows-nat.c (windows_detach): Constify. * xcoffread.c (process_linenos, xcoff_next_symbol_text): Constify. * xml-support.c (gdb_xml_end_element): Constify. * xml-tdesc.c (tdesc_start_reg): Constify. * xstormy16-tdep.c (xstormy16_register_name): Constify. * xtensa-tdep.c (xtensa_find_register_by_name): Constify. * xtensa-tdep.h (xtensa_register_t::name): Constify. gdb/gdbserver/ChangeLog: 2017-04-05 Pedro Alves <palves@redhat.com> * gdbreplay.c (sync_error): Constify. * linux-x86-low.c (push_opcode): Constify. |
||
Pedro Alves
|
63160a4350 |
-Wwrite-strings: Some constification in gdb/breakpoint.c
The main motivation here is avoiding having to write a couple casts like these: if (!arg) - arg = ""; + arg = (char *) ""; in catch_exception_command_1 and catch_exec_command_1. That requires making ep_parse_optional_if_clause and check_for_argument take pointers to const strings. I then tried propagating the resulting constification all the way, but that was spiraling out of control, so instead I settled for keeping const and non-const overloads. gdb/ChangeLog: 2017-04-05 Pedro Alves <palves@redhat.com> * break-catch-throw.c (handle_gnu_v3_exceptions): Constify 'cond_string' parameter. (extract_exception_regexp): Constify 'string' parameter. (catch_exception_command_1): Constify. * breakpoint.c (init_catchpoint) (create_fork_vfork_event_catchpoint): Constify 'cond_string' parameter. (ep_parse_optional_if_clause, catch_fork_command_1) (catch_exec_command_1): Constify. * breakpoint.h (init_catchpoint): Constify 'cond_string' parameter. (ep_parse_optional_if_clause): Constify. * cli/cli-utils.c (remove_trailing_whitespace) (check_for_argument): Constify. * cli/cli-utils.h (remove_trailing_whitespace): Constify and add non-const overload. (check_for_argument): Likewise. |
||
Joel Brobecker
|
61baf725ec |
update copyright year range in GDB files
This applies the second part of GDB's End of Year Procedure, which updates the copyright year range in all of GDB's files. gdb/ChangeLog: Update copyright year range in all GDB files. |
||
Pedro Alves
|
3cde5c42d1 |
Eliminate agent_expr_p; VEC -> std::vector in struct bp_target_info
After the previous patch, we end up with these two types with quite similar, and potentially confusing names: typedef gdb::unique_ptr<agent_expr> agent_expr_up; /* Pointer to an agent_expr structure. */ typedef struct agent_expr *agent_expr_p; The latter is only necessary to put agent_expr pointers in VECs. So just eliminate it and use std::vector instead. gdb/ChangeLog: 2016-11-08 Pedro Alves <palves@redhat.com> * ax.h (agent_expr_p): Delete. (DEF_VEC_P (agent_expr_p)): Delete. * breakpoint.c (build_target_condition_list) (build_target_command_list): Adjust to use of std::vector. (bp_location_dtor): Remove now unnecessary VEC_free calls. * breakpoint.h: Include <vector>. (struct bp_target_info) <conditions, tcommands>: Now std::vector's. * remote.c (remote_add_target_side_condition): bp_tgt->conditions is now a std::vector; adjust. (remote_add_target_side_commands, remote_insert_breakpoint): bp_tgt->tcommands is now a std::vector; adjust. |
||
Pedro Alves
|
833177a4a5 |
'struct agent_expr *' -> unique_ptr<agent_expr>
This patch makes the gen_* functions return a unique_ptr instead of raw pointer: typedef gdb::unique_ptr<agent_expr> agent_expr_up; and then adjusts the codebase throughout to stop using make_cleanup_free_agent_expr. The cond_bytecode and cmd_bytecode fields of struct bp_location are owning pointers, so they're changed to be unique_ptr's instead of raw pointers. gdb/ChangeLog: 2016-11-08 Pedro Alves <palves@redhat.com> * ax-gdb.c (is_nontrivial_conversion): Use agent_expr_up. (gen_trace_for_var, gen_trace_for_expr, gen_eval_for_expr) (gen_trace_for_return_address, gen_printf): Use and return an agent_expr_up. Don't use make_cleanup_free_agent_expr. (agent_eval_command_one, maint_agent_printf_command): Use agent_expr_up. Don't use make_cleanup_free_agent_expr. * ax-gdb.h (gen_trace_for_expr, gen_trace_for_var) (gen_trace_for_return_address, gen_eval_for_expr, gen_printf): Use agent_expr_up. * ax-general.c (new_agent_expr): Rename to ... (agent_expr::agent_expr): ... this, and now a constructor. (free_agent_expr): Rename to ... (agent_expr::~agent_exp): ... this, and now a destructor. (do_free_agent_expr_cleanup, make_cleanup_free_agent_expr): Delete. * ax.h (struct agent_expr): Add ctor/dtor. (agent_expr_up): New typedef. (new_agent_expr, free_agent_expr, make_cleanup_free_agent_expr): Delete declarations. * breakpoint.c (parse_cond_to_aexpr): Use and return an agent_expr_up. Don't use make_cleanup_free_agent_expr. (build_target_condition_list): Adjust to use agent_expr_up. (parse_cmd_to_aexpr): Use and return an agent_expr_up. Don't use make_cleanup_free_agent_expr. (build_target_command_list): Adjust to use agent_expr_up. (force_breakpoint_reinsertion): Adjust to use agent_expr_up. (bp_location_dtor): Remove unnecessary free_agent_expr and xfree calls. * breakpoint.h (struct bp_target_info) <cond_bytecode, cmd_bytecode>: Now agent_expr_up's. * remote.c (remote_download_tracepoint): Adjust to use agent_expr_up and remove use of make_cleanup_free_agent_expr. * tracepoint.c (validate_actionline, collect_symbol): Adjust to use agent_expr_up and remove uses of make_cleanup_free_agent_expr. (collection_list::~collection_list): Call delete instead of free_agent_expr. (encode_actions_1): Adjust to use agent_expr_up and remove uses of make_cleanup_free_agent_expr. (add_aexpr): Change parameter type to agent_expr_up; Return a raw agent_expr pointer. |
||
Pedro Alves
|
4d01a485d2 |
'struct expression *' -> gdb::unique_xmalloc_ptr<expression>
This patch makes parse_expression and friends return a unique_ptr instead of raw pointer [1]: typedef gdb::unique_malloc_ptr<expression> expression_up; and then adjusts the codebase throughout to stop using cleanups to manage lifetime of expression pointers. Whenever I found a structure owning an expression pointer, I made it store a unique_ptr instead of a raw pointer, which then requires using new/delete of the holding structure, instead of XNEW/xfree. [1] - I'd like to set the rule that types named with an "_up" suffix are unique_ptr typedefs. Note I used gdb::unique_xmalloc_ptr instead of gdb::unique_ptr, simply because we still use xmalloc instead of new to allocate expression objects. Once that's changed, all we need to do is change the expression_up typedef and the smart pointer will then call delete instead of xfree. gdb/ChangeLog: 2016-11-08 Pedro Alves <palves@redhat.com> * ada-lang.c (ada_read_renaming_var_value): Use expression_up. (struct ada_catchpoint_location) <excep_cond_expr>: Now an expression_up. (ada_catchpoint_location_dtor): Reset excep_cond_expr instead of using xfree. (create_excep_cond_exprs): Use expression_up and gdb::move. (allocate_location_exception): Use new instead of XNEW. (should_stop_exception): Likewise. Adjust to use expression_up. (create_ada_exception_catchpoint): Use new instead of XNEW. * ax-gdb.c (agent_eval_command_one): Use expression_up instead of cleanups. (maint_agent_printf_command): Use expression_up. * break-catch-sig.c (create_signal_catchpoint): Use new instead of XNEW. * break-catch-syscall.c (create_syscall_event_catchpoint): Likewise. * break-catch-throw.c (handle_gnu_v3_exceptions): Use new instead of XCNEW. Use gdb::unique_ptr instead of cleanups. * breakpoint.c (set_breakpoint_condition, update_watchpoint) (parse_cmd_to_aexpr, watchpoint_check) (bpstat_check_breakpoint_conditions, watchpoint_locations_match): Adjust to use expression_up. (init_bp_location): Adjust. (free_bp_location): Use delete instead of xfree. (set_raw_breakpoint_without_location, set_raw_breakpoint) (add_solib_catchpoint, create_fork_vfork_event_catchpoint) (new_single_step_breakpoint, create_breakpoint_sal): Use new instead of XNEW. (find_condition_and_thread): Adjust to use expression_up. (create_breakpoint): Use new instead of XNEW. (dtor_watchpoint): Don't xfree expression pointers, they're unique_ptr's now. (insert_watchpoint, remove_watchpoint): Adjust. (watch_command_1): Use expression_up. Use new instead of XCNEW. (catch_exec_command_1): Use new instead of XNEW. (bp_location_dtor): Don't xfree expression pointers, they're unique_ptr's now. (base_breakpoint_allocate_location) (strace_marker_create_breakpoints_sal): Use new instead of XNEW. (delete_breakpoint): Use delete instead of xfree. * breakpoint.h (struct bp_location) <cond>: Now an unique_ptr<expression> instead of a raw pointer. (struct watchpoint) <exp, cond_exp>: Likewise. * cli/cli-script.c (execute_control_command): Use expression_up instead of cleanups. * dtrace-probe.c (dtrace_process_dof_probe): Use expression_up. * eval.c (parse_and_eval_address, parse_and_eval_long) (parse_and_eval, parse_to_comma_and_eval, parse_and_eval_type): Use expression_up instead of cleanups. * expression.h (expression_up): New typedef. (parse_expression, parse_expression_with_language, parse_exp_1): Change return type to expression_up. * mi/mi-main.c (mi_cmd_data_evaluate_expression) (print_variable_or_computed): Use expression_up. * objc-lang.c (print_object_command): Use expression_up instead of cleanups. * parse.c (parse_exp_1, parse_exp_in_context) (parse_exp_in_context_1, parse_expression) (parse_expression_with_language): Return an expression_up instead of a raw pointer. (parse_expression_for_completion): Use expression_up. * printcmd.c (struct display) <exp>: Now an expression_up instead of a raw pointer. (print_command_1, output_command_const, set_command, x_command): Use expression_up instead of cleanups. (display_command): Likewise. Use new instead of XNEW. (free_display): Use delete instead of xfree. (do_one_display): Adjust to use expression_up. * remote.c (remote_download_tracepoint): Likewise. * stack.c (return_command): Likewise. * tracepoint.c (validate_actionline, encode_actions_1): Use expression_up instead of cleanups. * typeprint.c (whatis_exp, maintenance_print_type): Likewise. * value.c (init_if_undefined_command): Likewise. * varobj.c (struct varobj_root) <exp>: Now an expression_up instead of a raw pointer. (varobj_create): Adjust. (varobj_set_value): Use an expression_up instead of cleanups. (new_root_variable): Use new instead of XNEW. (free_variable): Use delete instead of xfree. (value_of_root_1): Use std::swap. |
||
Pedro Alves
|
896b6bda69 |
breakpoint.c:commands_command_1 constification and cleanup
This is constification needed for next patch. Adjust commands_command_1 to use std::string too because the "arg" parameter is currently overwritten and then passed to make_cleanup. The constification alone would trigger a compile error in the make_cleanup call otherwise (passing const char * to void * parameter). Using std::string gets rid of the cleanup in the first place, resulting in simpler code. gdb/ChangeLog: 2016-11-08 Pedro Alves <palves@redhat.com> * breakpoint.c (struct commands_info) <arg>: Constify. (commands_command_1): Constify 'arg' parameter. Use std::string and string_printf. (commands_from_control_command): Constify 'arg' parameter. (map_breakpoint_numbers): Constify 'args' parameter. * breakpoint.h (commands_from_control_command): Constify 'arg' parameter. |
||
Yao Qi
|
93f9a11fbd |
gdbarch software_single_step returns VEC (CORE_ADDR) *
This patch changes gdbarch method software_single_step to return a vector of addresses on which GDB should insert breakpoints, and don't insert breakpoints. Instead, the caller of gdbarch_software_single_step inserts breakpoints if the returned vector is not NULL. gdb: 2016-11-08 Yao Qi <yao.qi@linaro.org> * aarch64-tdep.c (aarch64_software_single_step): Return VEC (CORE_ADDR) *. Return NULL instead of 0. Don't call insert_single_step_breakpoint. * alpha-tdep.c (alpha_deal_with_atomic_sequence): Likewise. (alpha_software_single_step): Likewise. * alpha-tdep.h (alpha_software_single_step): Update declaration. * arm-linux-tdep.c (arm_linux_software_single_step): Return VEC (CORE_ADDR) *. Return NULL instead of 0. * arm-tdep.c (arm_software_single_step): Return NULL instead of 0. * arm-tdep.h (arm_software_single_step): Update declaration. * breakpoint.c (insert_single_step_breakpoints): New function. * breakpoint.h (insert_single_step_breakpoints): Declare. * cris-tdep.c (cris_software_single_step): Return VEC (CORE_ADDR) *. Don't call insert_single_step_breakpoint. * gdbarch.sh (software_single_step): Change it to return VEC (CORE_ADDR) *. * gdbarch.c, gdbarch.h: Regenerated. * infrun.c (maybe_software_singlestep): Adjust. * mips-tdep.c (mips_deal_with_atomic_sequence): Return VEC (CORE_ADDR) *. Don't call insert_single_step_breakpoint. (micromips_deal_with_atomic_sequence): Likewise. (deal_with_atomic_sequence): Likewise. (mips_software_single_step): Likewise. * mips-tdep.h (mips_software_single_step): Update declaration. * moxie-tdep.c (moxie_software_single_step): Likewise. * nios2-tdep.c (nios2_software_single_step): Likewise. * ppc-tdep.h (ppc_deal_with_atomic_sequence): Update declaration. * record-full.c (record_full_resume): Adjust. (record_full_wait_1): Likewise. * rs6000-aix-tdep.c (rs6000_software_single_step): Return VEC (CORE_ADDR) *. Don't call insert_single_step_breakpoint. * rs6000-tdep.c (ppc_deal_with_atomic_sequence): Return VEC (CORE_ADDR) *. Don't call insert_single_step_breakpoint. * s390-linux-tdep.c (s390_software_single_step): Likewise. * sparc-tdep.c (sparc_software_single_step): Likewise. * spu-tdep.c (spu_software_single_step): Likewise. * tic6x-tdep.c (tic6x_software_single_step): Likewise. |
||
Yao Qi
|
579c6ad983 |
Rename placed_size to kind
This patch renames placed_size to kind. gdb: 2016-11-03 Yao Qi <yao.qi@linaro.org> * breakpoint.h (struct bp_target_info) <placed_size>: Remove. <kind>: New field. Update all users. |
||
Pedro Alves
|
bfd282882d |
Convert tid_range_parser and get_number_or_range to classes
This converts tid_range_parser and get_number_or_range to be classes. The various tid_range_parser_* and get_number_or_range_* functions become methods on the respective classes. Then it updates the users to follow. The rationale for the change is that this provides better encapsulation. For example, this forced me to think of a better interface between tid_range_parser and get_number_or_range, since the former peeked into the latter's internals a bit too much. That ended up resulting mostly in these two not-just-straight-1-1 changes: void -tid_range_parser_skip (struct tid_range_parser *parser) +tid_range_parser::skip_range () { ... - tid_range_parser_init (parser, parser->range_parser.end_ptr, - parser->default_inferior); + m_range_parser.skip_range (); + init (m_range_parser.string (), m_default_inferior); } and: /* If we successfully parsed a thread number or finished parsing a thread range, switch back to assuming the next TID is inferior-qualified. */ - if (parser->range_parser.end_ptr == NULL - || parser->range_parser.string == parser->range_parser.end_ptr) + if (!m_range_parser.in_range ()) { For the same reason (encapsulation), this moves the enum tid_range_state definition to within the tid_parser class's scope, since that is private implementation detail. While at it, switch to use "bool" for booleans. gdb/ChangeLog: 2016-10-13 Pedro Alves <palves@redhat.com> Tom Tromey <tom@tromey.com> * tid-parse.h (tid_range_parser): New class. (enum tid_range_state): Move into tid_range_parser's scope. Remove TID_RANGE_ prefix from all values. (tid_range_parser_get_tid, tid_range_parser_get_tid_range) (tid_range_parser_star_range, tid_range_parser_finished) (tid_range_parser_skip, tid_range_parser_qualified): Don't declare. (tid_is_in_list): Update comment. * tid-parse.c (tid_range_parser::tid_range_parser): New. (init, finished, get_string, skip, tid_is_qualified) (get_tid_or_range, get_tid_range, get_tid, star_range): Rename; turn into methods. (tid_is_in_list): Adjust. * cli/cli-utils.h (number_or_range_parser): New class. (init_number_or_range, get_number_or_range) (number_range_setup_range): Don't declare. * cli/cli-utils.c (number_or_range_parser::number_or_range_parser): New. (init_number_or_range, get_number_or_range) (number_range_setup_range): Rename; turn into methods. (number_is_in_list): Adjust. * breakpoint.c (map_breakpoint_numbers): Adjust. Use bool. (trace_pass_command, get_tracepoint_by_number): Adjust. * breakpoint.h (get_tracepoint_by_number): Adjust. * inferior.c (detach_inferior_command, kill_inferior_command) (remove_inferior_command): Adjust. * linespec.c (decode_line_2): Adjust. * memattr.c (mem_enable_command, mem_disable_command) (mem_delete_command): Adjust. * printcmd.c (map_display_numbers): Adjust. * reverse.c (delete_bookmark_command, bookmarks_info): Adjust. * thread.c (thread_apply_command): Adjust. |
||
Pedro Alves
|
7397181903 |
Plumb enum remove_bp_reason all the way to target_remove_breakpoint
So the target knows whether we're detaching breakpoints. Nothing uses the parameter in this patch yet. gdb/ChangeLog: 2016-08-10 Pedro Alves <palves@redhat.com> PR gdb/19187 * break-catch-sig.c (signal_catchpoint_remove_location): Adjust interface. * break-catch-syscall.c (remove_catch_syscall): * breakpoint.c (enum remove_bp_reason): Moved to breakpoint.h. (remove_breakpoint_1): Pass 'reason' down. (remove_catch_fork, remove_catch_vfork, remove_catch_solib) (remove_catch_exec, remove_watchpoint, remove_masked_watchpoint) (base_breakpoint_remove_location, bkpt_remove_location) (bkpt_probe_remove_location, bkpt_probe_remove_location): Adjust interface. * breakpoint.h (enum remove_bp_reason): Moved here from breakpoint.c. (struct breakpoint_ops) <remove_location>: Add 'reason' parameter. * corelow.c (core_remove_breakpoint): New function. (init_core_ops): Install it as to_remove_breakpoint method. * exec.c (exec_remove_breakpoint): New function. (init_exec_ops): Install it as to_remove_breakpoint method. * mem-break.c (memory_remove_breakpoint): Adjust interface. * record-btrace.c (record_btrace_remove_breakpoint): Adjust interface. * record-full.c (record_full_remove_breakpoint) (record_full_core_remove_breakpoint): Adjust interface. * remote.c (remote_remove_breakpoint): Adjust interface. * target-debug.h (target_debug_print_enum_remove_bp_reason): New macro. * target-delegates.c: Regenerate. * target.c (target_remove_breakpoint): Add 'reason' parameter. * target.h (struct target_ops) <to_remove_breakpoint>: Add 'reason' parameter. (target_remove_breakpoint, memory_remove_breakpoint): Add 'reason' parameter. |
||
Tom Tromey
|
93daf339a4 |
PR python/17698 - add Breakpoint.pending
This patch adds a "pending" attribute to gdb.Breakpoint. Built and regtested on x86-64 Fedora 23. 2016-07-13 Tom Tromey <tom@tromey.com> PR python/17698: * NEWS: Update. * python/py-breakpoint.c (bppy_get_pending): New function. (breakpoint_object_getset): Add entry for "pending". * breakpoint.h (pending_breakpoint_p): Declare. * breakpoint.c (pending_breakpoint_p): New function. 2016-07-13 Tom Tromey <tom@tromey.com> PR python/17698: * python.texi (Breakpoints In Python): Document Breakpoint.pending. 2016-07-13 Tom Tromey <tom@tromey.com> PR python/17698: * gdb.python/py-breakpoint.exp (test_bkpt_basic): Add "pending" test. (test_watchpoints): Likewise. (test_bkpt_pending): New proc. |
||
Pedro Alves
|
c2f4122d5c |
Limit breakpoint re-set to the current program space
Currently, we always re-set all locations of all breakpoints. This commit makes us re-set only locations of the current program space. If we loaded symbols to a program space (e.g., "file" command or some shared library was loaded), GDB must run through all breakpoints and determine if any new locations need to be added to the breakpoint. However, there's no reason to recreate locations for _other_ program spaces, as those haven't changed. Similarly, when we create a new inferior, through e.g., a fork, GDB must run through all breakpoints and determine if any new locations need to be added to the breakpoint. There's no reason to destroy the locations of the parent inferior and other inferiors. We know those won't change. In addition to being inneficient, resetting breakpoints of inferiors that are currently running is problematic, because: - some targets can't read memory while the inferior is running. - the inferior might exit while we're re-setting its breakpoints, which may confuse prologue skipping. I went through all the places where we call breakpoint_re_set, and it seems to me that all can be changed to only re-set locations of the current program space. The patch that reversed threads order in "info threads" etc. happened to make gdb.threads/fork-plus-thread.exp expose this problem when testing on x86/-m32. The problem was latent and masked out by chance by the code-cache: https://sourceware.org/ml/gdb-patches/2016-01/msg00213.html Tested on x86-64 F20, native (-m64/-m32) and extended-remote gdbserver. Fixes the regression discussed in the url above with --target_board=unix/-m32: -FAIL: gdb.threads/fork-plus-threads.exp: detach-on-fork=off: inferior 1 exited +PASS: gdb.threads/fork-plus-threads.exp: detach-on-fork=off: inferior 1 exited -FAIL: gdb.threads/fork-plus-threads.exp: detach-on-fork=off: no threads left (timeout) -FAIL: gdb.threads/fork-plus-threads.exp: detach-on-fork=off: only inferior 1 left (the program exited) +PASS: gdb.threads/fork-plus-threads.exp: detach-on-fork=off: no threads left +PASS: gdb.threads/fork-plus-threads.exp: detach-on-fork=off: only inferior 1 left gdb/ChangeLog: 2016-01-19 Pedro Alves <palves@redhat.com> * ax-gdb.c (agent_command_1): Adjust call to decode_line_full. * break-catch-throw.c (re_set_exception_catchpoint): Pass the current program space down to linespec decoding and breakpoint location updating. * breakpoint.c (parse_breakpoint_sals): Adjust calls to decode_line_full. (until_break_command): Adjust calls to decode_line_1. (base_breakpoint_decode_location, bkpt_decode_location): Add 'search_pspace' parameter. Pass it along. (bkpt_probe_create_sals_from_location): Adjust calls to parse_probes. (tracepoint_decode_location, tracepoint_probe_decode_location) (strace_marker_decode_location): Add 'search_pspace' parameter. Pass it along. (all_locations_are_pending): Rewrite to take a breakpoint and program space as arguments instead. (hoist_existing_locations): New function. (update_breakpoint_locations): Add 'filter_pspace' parameter. Use hoist_existing_locations instead of always removing all locations, and adjust to all_locations_are_pending change. (location_to_sals): Add 'search_pspace' parameter. Pass it along. Don't disable the breakpoint if there are other locations in another program space. (breakpoint_re_set_default): Adjust to pass down the current program space as filter program space. (decode_location_default): Add 'search_pspace' parameter and pass it along. (prepare_re_set_context): Don't switch program space here. (breakpoint_re_set): Use save_current_space_and_thread instead of save_current_program_space. * breakpoint.h (struct breakpoint_ops) <decode_location>: Add 'search_pspace' parameter. (update_breakpoint_locations): Add 'filter_pspace' parameter. * cli/cli-cmds.c (edit_command, list_command): Adjust calls to decode_line_1. * elfread.c (elf_gnu_ifunc_resolver_return_stop): Pass the current program space as filter program space. * linespec.c (struct linespec_state) <search_pspace>: New field. (create_sals_line_offset, convert_explicit_location_to_sals) (parse_linespec): Pass the search program space down. (linespec_state_constructor): Add 'search_pspace' parameter. Store it. (linespec_parser_new): Add 'search_pspace' parameter and pass it along. (linespec_lex_to_end): Adjust. (decode_line_full, decode_line_1): Add 'search_pspace' parameter and pass it along. (decode_line_with_last_displayed): Adjust. (collect_symtabs_from_filename, symtabs_from_filename): New 'search_pspace' parameter. Use it. (find_function_symbols): Pass the search program space down. * linespec.h (decode_line_1, decode_line_full): Add 'search_pspace' parameter. * probe.c (parse_probes_in_pspace): New function, factored out from ... (parse_probes): ... this. Add 'search_pspace' parameter and use it. * probe.h (parse_probes): Add pspace' parameter. * python/python.c (gdbpy_decode_line): Adjust. * tracepoint.c (scope_info): Adjust. |
||
Pedro Alves
|
f303dbd60d |
Fix PR threads/19422 - show which thread caused stop
This commit changes GDB like this: - Program received signal SIGINT, Interrupt. + Thread 1 "main" received signal SIGINT, Interrupt. - Breakpoint 1 at 0x40087a: file threads.c, line 87. + Thread 3 "bar" hit Breakpoint 1 at 0x40087a: file threads.c, line 87. ... once the program goes multi-threaded. Until GDB sees a second thread spawn, the output is still the same as before, per the discussion back in 2012: https://www.sourceware.org/ml/gdb/2012-11/msg00010.html This helps non-stop mode, where you can't easily tell which thread hit a breakpoint or received a signal: (gdb) info threads Id Target Id Frame * 1 Thread 0x7ffff7fc1740 (LWP 19362) "main" (running) 2 Thread 0x7ffff7fc0700 (LWP 19366) "foo" (running) 3 Thread 0x7ffff77bf700 (LWP 19367) "bar" (running) (gdb) Program received signal SIGUSR1, User defined signal 1. 0x0000003616a09237 in pthread_join (threadid=140737353877248, thread_return=0x7fffffffd5b8) at pthread_join.c:92 92 lll_wait_tid (pd->tid); (gdb) b threads.c:87 Breakpoint 1 at 0x40087a: file threads.c, line 87. (gdb) Breakpoint 1, thread_function1 (arg=0x1) at threads.c:87 87 usleep (1); /* Loop increment. */ The best the user can do is run "info threads" and try to figure things out. It actually also affects all-stop mode, in case of "handle SIG print nostop": ... Program received signal SIGUSR1, User defined signal 1. Program received signal SIGUSR1, User defined signal 1. Program received signal SIGUSR1, User defined signal 1. Program received signal SIGUSR1, User defined signal 1. ... The above doesn't give any clue that these were different threads getting the SIGUSR1 signal. I initially thought of lowercasing "breakpoint" in "Thread 3 hit Breakpoint 1" but then after trying it I realized that leaving "Breakpoint" uppercase helps the eye quickly find the relevant information. It's also easier to implement not showing anything about threads until the program goes multi-threaded this way. Here's a larger example session in non-stop mode: (gdb) c -a& Continuing. (gdb) interrupt -a (gdb) Thread 1 "main" stopped. 0x0000003616a09237 in pthread_join (threadid=140737353877248, thread_return=0x7fffffffd5b8) at pthread_join.c:92 92 lll_wait_tid (pd->tid); Thread 2 "foo" stopped. 0x0000003615ebc6ed in nanosleep () at ../sysdeps/unix/syscall-template.S:81 81 T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS) Thread 3 "bar" stopped. 0x0000003615ebc6ed in nanosleep () at ../sysdeps/unix/syscall-template.S:81 81 T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS) b threads.c:87 Breakpoint 4 at 0x40087a: file threads.c, line 87. (gdb) b threads.c:67 Breakpoint 5 at 0x400811: file threads.c, line 67. (gdb) c -a& Continuing. (gdb) Thread 3 "bar" hit Breakpoint 4, thread_function1 (arg=0x1) at threads.c:87 87 usleep (1); /* Loop increment. */ Thread 2 "foo" hit Breakpoint 5, thread_function0 (arg=0x0) at threads.c:68 68 (*myp) ++; info threads Id Target Id Frame * 1 Thread 0x7ffff7fc1740 (LWP 31957) "main" (running) 2 Thread 0x7ffff7fc0700 (LWP 31961) "foo" thread_function0 (arg=0x0) at threads.c:68 3 Thread 0x7ffff77bf700 (LWP 31962) "bar" thread_function1 (arg=0x1) at threads.c:87 (gdb) shell kill -SIGINT 31957 (gdb) Thread 1 "main" received signal SIGINT, Interrupt. 0x0000003616a09237 in pthread_join (threadid=140737353877248, thread_return=0x7fffffffd5b8) at pthread_join.c:92 92 lll_wait_tid (pd->tid); info threads Id Target Id Frame * 1 Thread 0x7ffff7fc1740 (LWP 31957) "main" 0x0000003616a09237 in pthread_join (threadid=140737353877248, thread_return=0x7fffffffd5b8) at pthread_join.c:92 2 Thread 0x7ffff7fc0700 (LWP 31961) "foo" thread_function0 (arg=0x0) at threads.c:68 3 Thread 0x7ffff77bf700 (LWP 31962) "bar" thread_function1 (arg=0x1) at threads.c:87 (gdb) t 2 [Switching to thread 2, Thread 0x7ffff7fc0700 (LWP 31961)] #0 thread_function0 (arg=0x0) at threads.c:68 68 (*myp) ++; (gdb) catch syscall Catchpoint 6 (any syscall) (gdb) c& Continuing. (gdb) Thread 2 "foo" hit Catchpoint 6 (call to syscall nanosleep), 0x0000003615ebc6ed in nanosleep () at ../sysdeps/unix/syscall-template.S:81 81 T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS) I'll work on documentation next if this looks agreeable. This patch applies on top of the star wildcards thread IDs series: https://sourceware.org/ml/gdb-patches/2016-01/msg00291.html For convenience, I've pushed this to the users/palves/show-which-thread-caused-stop branch. gdb/doc/ChangeLog: 2016-01-18 Pedro Alves <palves@redhat.com> * gdb.texinfo (Threads): Mention that GDB displays the ID and name of the thread that hit a breakpoint or received a signal. gdb/ChangeLog: 2016-01-18 Pedro Alves <palves@redhat.com> * NEWS: Mention that GDB now displays the ID and name of the thread that hit a breakpoint or received a signal. * break-catch-sig.c (signal_catchpoint_print_it): Use maybe_print_thread_hit_breakpoint. * break-catch-syscall.c (print_it_catch_syscall): Likewise. * break-catch-throw.c (print_it_exception_catchpoint): Likewise. * breakpoint.c (maybe_print_thread_hit_breakpoint): New function. (print_it_catch_fork, print_it_catch_vfork, print_it_catch_solib) (print_it_catch_exec, print_it_ranged_breakpoint) (print_it_watchpoint, print_it_masked_watchpoint, bkpt_print_it): Use maybe_print_thread_hit_breakpoint. * breakpoint.h (maybe_print_thread_hit_breakpoint): Declare. * gdbthread.h (show_thread_that_caused_stop): Declare. * infrun.c (print_signal_received_reason): Print which thread received signal. * thread.c (show_thread_that_caused_stop): New function. gdb/testsuite/ChangeLog: 2016-01-18 Pedro Alves <palves@redhat.com> * gdb.base/async-shell.exp: Adjust expected output. * gdb.base/dprintf-non-stop.exp: Adjust expected output. * gdb.base/siginfo-thread.exp: Adjust expected output. * gdb.base/watchpoint-hw-hit-once.exp: Adjust expected output. * gdb.java/jnpe.exp: Adjust expected output. * gdb.threads/clone-new-thread-event.exp: Adjust expected output. * gdb.threads/continue-pending-status.exp: Adjust expected output. * gdb.threads/leader-exit.exp: Adjust expected output. * gdb.threads/manythreads.exp: Adjust expected output. * gdb.threads/pthreads.exp: Adjust expected output. * gdb.threads/schedlock.exp: Adjust expected output. * gdb.threads/siginfo-threads.exp: Adjust expected output. * gdb.threads/signal-command-multiple-signals-pending.exp: Adjust expected output. * gdb.threads/signal-delivered-right-thread.exp: Adjust expected output. * gdb.threads/sigthread.exp: Adjust expected output. * gdb.threads/watchpoint-fork.exp: Adjust expected output. |
||
Joel Brobecker
|
618f726fcb |
GDB copyright headers update after running GDB's copyright.py script.
gdb/ChangeLog: Update year range in copyright notice of all files. |
||
Antoine Tremblay
|
c2c2a31fdb |
Remove support for thread events without PTRACE_EVENT_CLONE in GDB
Before, on systems that did not support PTRACE_EVENT_CLONE, both GDB and GDBServer coordinated with libthread_db.so to insert breakpoints at magic locations in libpthread.so, in order to break at thread creation and thread death. Support for thread events was removed from GDBServer as patch: https://sourceware.org/ml/gdb-patches/2015-11/msg00466.html This patch removes support for thread events in GDB. No regressions found on Ubuntu 14.04 x86_64. gdb/ChangeLog: * breakpoint.c (remove_thread_event_breakpoints): Remove. * breakpoint.h (remove_thread_event_breakpoints): Remove declaration. * linux-nat.c (in_pid_list_p): Remove. (lin_lwp_attach_lwp): Remove. * linux-nat.h (lin_lwp_attach_lwp): Remove declaration. * linux-thread-db.c (thread_db_use_events): Remove. (struct thread_db_info) <td_create_bp_addr>: Remove. <td_death_bp_addr>: Likewise. <td_ta_event_addr_p>: Likewise. <td_ta_set_event_p>: Likewise. <td_ta_clear_event_p>: Likewise. <td_ta_event_getmsg_p>: Likewise. <td_thr_event_enable_p>: Likewise. (attach_thread): Likewise. (detach_thread): Likewise. (have_threads_callback): Likewise. (have_threads): Likewise. (enable_thread_event): Likewise. (enable_thread_event_reporting): Likewise. (try_thread_db_load_1): Remove td_ta_event_addr, td_ta_set_event, td_ta_clear_event, td_ta_event_getmsg, td_thr_event_enable initializations. (try_thread_db_load_1): Remove enable_thread_event_reporting call. (disable_thread_event_reporting): Remove. (record_thread): Adapt to thread_db_use_event removal. (detach_thread): Remove. (thread_db_detach): Adapt to thread_db_use_event removal. (check_event): Remove. (thread_db_wait): Adapt to thread events support removal. (thread_db_mourn_inferior): Likewise. (find_new_threads_callback): Likewise. (find_new_threads_once): Likewise. (thread_db_update_thread_list): Likewise. |
||
Pedro Alves
|
d35ae83384 |
Don't displaced step when there's a breakpoint in the scratch pad range
Assuming displaced stepping is enabled, and a breakpoint is set in the memory region of the scratch pad, things break. One of two cases can happen: #1 - The breakpoint wasn't inserted yet (all threads were stopped), so after setting up the displaced stepping scratch pad with the adjusted copy of the instruction we're trying to single-step, we insert the breakpoint, which corrupts the scratch pad, and the inferior executes the wrong instruction. (Example below.) This is clearly unacceptable. #2 - The breakpoint was already inserted, so setting up the displaced stepping scratch pad overwrites the breakpoint. This is OK in the sense that we already assume that no thread is going to executes the code in the scratch pad range (after initial startup) anyway. This commit addresses both cases by simply punting on displaced stepping if we have a breakpoint in the scratch pad range. The #1 case above explains a few regressions exposed by the AS/NS series on x86: Running ./gdb.dwarf2/callframecfa.exp ... FAIL: gdb.dwarf2/callframecfa.exp: set display for call-frame-cfa FAIL: gdb.dwarf2/callframecfa.exp: step 1 for call-frame-cfa FAIL: gdb.dwarf2/callframecfa.exp: step 2 for call-frame-cfa FAIL: gdb.dwarf2/callframecfa.exp: step 3 for call-frame-cfa FAIL: gdb.dwarf2/callframecfa.exp: step 4 for call-frame-cfa Running ./gdb.dwarf2/typeddwarf.exp ... FAIL: gdb.dwarf2/typeddwarf.exp: continue to breakpoint: continue to typeddwarf.c:53 FAIL: gdb.dwarf2/typeddwarf.exp: check value of x at typeddwarf.c:53 FAIL: gdb.dwarf2/typeddwarf.exp: check value of y at typeddwarf.c:53 FAIL: gdb.dwarf2/typeddwarf.exp: check value of z at typeddwarf.c:53 FAIL: gdb.dwarf2/typeddwarf.exp: continue to breakpoint: continue to typeddwarf.c:73 FAIL: gdb.dwarf2/typeddwarf.exp: check value of w at typeddwarf.c:73 FAIL: gdb.dwarf2/typeddwarf.exp: check value of x at typeddwarf.c:73 FAIL: gdb.dwarf2/typeddwarf.exp: check value of y at typeddwarf.c:73 FAIL: gdb.dwarf2/typeddwarf.exp: check value of z at typeddwarf.c:73 Enabling "maint set target-non-stop on" implies displaced stepping enabled as well, and it's the latter that's to blame here. We can see the same failures with "maint set target-non-stop off + set displaced on". Diffing (good/bad) gdb.log for callframecfa.exp shows: @@ -99,29 +99,29 @@ Breakpoint 2 at 0x80481b0: file q.c, lin continue Continuing. -Breakpoint 2, func (arg=77) at q.c:2 +Breakpoint 2, func (arg=52301) at q.c:2 2 in q.c (gdb) PASS: gdb.dwarf2/callframecfa.exp: continue to breakpoint: continue to breakpoint for call-frame-cfa display arg -1: arg = 77 -(gdb) PASS: gdb.dwarf2/callframecfa.exp: set display for call-frame-cfa +1: arg = 52301 +(gdb) FAIL: gdb.dwarf2/callframecfa.exp: set display for call-frame-cfa The problem is here, when setting up the func call: Breakpoint 1, main (argc=-13345, argv=0x0) at q.c:7 7 in q.c (gdb) disassemble Dump of assembler code for function main: 0x080481bb <+0>: push %ebp 0x080481bc <+1>: mov %esp,%ebp 0x080481be <+3>: sub $0x4,%esp => 0x080481c1 <+6>: movl $0x4d,(%esp) 0x080481c8 <+13>: call 0x80481b0 <func> 0x080481cd <+18>: leave 0x080481ce <+19>: ret End of assembler dump. (gdb) disassemble /r Dump of assembler code for function main: 0x080481bb <+0>: 55 push %ebp 0x080481bc <+1>: 89 e5 mov %esp,%ebp 0x080481be <+3>: 83 ec 04 sub $0x4,%esp => 0x080481c1 <+6>: c7 04 24 4d 00 00 00 movl $0x4d,(%esp) 0x080481c8 <+13>: e8 e3 ff ff ff call 0x80481b0 <func> 0x080481cd <+18>: c9 leave 0x080481ce <+19>: c3 ret End of assembler dump. Note the breakpoint at main is set at 0x080481c1. Right at the instruction that sets up func's argument. Executing that instruction should write 0x4d to the address pointed at by $esp. However, if we stepi, the program manages to write 52301/0xcc4d there instead (0xcc is int3, the x86 breakpoint instruction), because the breakpoint address is 4 bytes inside the scratch pad location, which is 0x080481bd: (gdb) p 0x080481c1 - 0x080481bd $1 = 4 IOW, instead of executing: "c7 04 24 4d 00 00 00" [ movl $0x4d,(%esp) ] the inferior executes: "c7 04 24 4d cc 00 00" [ movl $0xcc4d,(%esp) ] gdb/ChangeLog: 2015-10-30 Pedro Alves <palves@redhat.com> * breakpoint.c (breakpoint_in_range_p) (breakpoint_location_address_range_overlap): New functions. * breakpoint.h (breakpoint_in_range_p): New declaration. * infrun.c (displaced_step_prepare_throw): If there's a breakpoint in the scratch pad range, don't displaced step. |
||
Pedro Alves
|
243a925328 |
Replace "struct continuation" mechanism by something more extensible
This adds an object oriented replacement for the "struct continuation" mechanism, and converts the stepping commands (step, next, stepi, nexti) and the "finish" commands to use it. It adds a new thread "class" (struct thread_fsm) that contains the necessary info and callbacks to manage the state machine of a thread's execution command. This allows getting rid of some hacks. E.g., in fetch_inferior_event and normal_stop we no longer need to know whether a thread is doing a multi-step (e.g., step N). This effectively makes the intermediate_continuations unused -- they'll be garbage collected in a separate patch. (They were never a proper abstraction, IMO. See how fetch_inferior_event needs to check step_multi before knowing whether to call INF_EXEC_CONTINUE or INF_EXEC_COMPLETE.) The target async vs !async uiout hacks in mi_on_normal_stop go away too. print_stop_event is no longer called from normal_stop. Instead it is now called from within each interpreter's normal_stop observer. This clears the path to make each interpreter print a stop event the way it sees fit. Currently we have some hacks in common code to differenciate CLI vs TUI vs MI around this area. The "finish" command's FSM class stores the return value plus that value's position in the value history, so that those can be printed to both MI and CLI's streams. This fixes the CLI "finish" command when run from MI -- it now also includes the function's return value in the CLI stream: (gdb) ~"callee3 (strarg=0x400730 \"A string argument.\") at src/gdb/testsuite/gdb.mi/basics.c:35\n" ~"35\t}\n" +~"Value returned is $1 = 0\n" *stopped,reason="function-finished",frame=...,gdb-result-var="$1",return-value="0",thread-id="1",stopped-threads="all",core="0" -FAIL: gdb.mi/mi-cli.exp: CLI finish: check CLI output +PASS: gdb.mi/mi-cli.exp: CLI finish: check CLI output gdb/ChangeLog: 2015-09-09 Pedro Alves <palves@redhat.com> * Makefile.in (COMMON_OBS): Add thread-fsm.o. * breakpoint.c (handle_jit_event): Print debug output. (bpstat_what): Split event callback handling to ... (bpstat_run_callbacks): ... this new function. (momentary_bkpt_print_it): No longer handle bp_finish here. * breakpoint.h (bpstat_run_callbacks): Declare. * gdbthread.h (struct thread_info) <step_multi>: Delete field. <thread_fsm>: New field. (thread_cancel_execution_command): Declare. * infcmd.c: Include thread-fsm.h. (struct step_command_fsm): New. (step_command_fsm_ops): New global. (new_step_command_fsm, step_command_fsm_prepare): New functions. (step_1): Adjust to use step_command_fsm_prepare and prepare_one_step. (struct step_1_continuation_args): Delete. (step_1_continuation): Delete. (step_command_fsm_should_stop): New function. (step_once): Delete. (step_command_fsm_clean_up, step_command_fsm_async_reply_reason) (prepare_one_step): New function, based on step_once. (until_next_command): Remove step_multi reference. (struct return_value_info): New. (print_return_value): Rename to ... (print_return_value_1): ... this. New struct return_value_info parameter. Adjust. (print_return_value): Reimplement as wrapper around print_return_value_1. (struct finish_command_fsm): New. (finish_command_continuation): Delete. (finish_command_fsm_ops): New global. (new_finish_command_fsm, finish_command_fsm_should_stop): New functions. (finish_command_fsm_clean_up, finish_command_fsm_return_value): New. (finish_command_continuation_free_arg): Delete. (finish_command_fsm_async_reply_reason): New. (finish_backward, finish_forward): Change symbol parameter to a finish_command_fsm. Adjust. (finish_command): Create a finish_command_fsm. Adjust. * infrun.c: Include "thread-fsm.h". (clear_proceed_status_thread): Delete the thread's FSM. (infrun_thread_stop_requested_callback): Cancel the thread's execution command. (clean_up_just_stopped_threads_fsms): New function. (fetch_inferior_event): Handle the event_thread's should_stop method saying the command isn't done yet. (process_event_stop_test): Run breakpoint callbacks here. (print_stop_event): Rename to ... (print_stop_location): ... this. (restore_current_uiout_cleanup): New function. (print_stop_event): Reimplement. (normal_stop): No longer notify the end_stepping_range observers here handle "step N" nor "finish" here. No longer call print_stop_event here. * infrun.h (struct return_value_info): Forward declare. (print_return_value): Declare. (print_stop_event): Change prototype. * thread-fsm.c: New file. * thread-fsm.h: New file. * thread.c: Include "thread-fsm.h". (thread_cancel_execution_command): New function. (clear_thread_inferior_resources): Call it. * cli/cli-interp.c (cli_on_normal_stop): New function. (cli_interpreter_init): Install cli_on_normal_stop as normal_stop observer. * mi/mi-interp.c: Include "thread-fsm.h". (restore_current_uiout_cleanup): Delete. (mi_on_normal_stop): If the thread has an FSM associated, and it finished, ask it for the async-reply-reason to print. Always call print_stop_event here, regardless of the top-level interpreter. Check bpstat_what to tell whether an asynchronous breakpoint hit triggered. * tui/tui-interp.c (tui_on_normal_stop): New function. (tui_init): Install tui_on_normal_stop as normal_stop observer. gdb/testsuite/ChangeLog: 2015-09-09 Pedro Alves <palves@redhat.com> * gdb.mi/mi-cli.exp: Add CLI finish tests. |
||
Keith Seitz
|
f00aae0f7b |
Explicit locations: use new location API
This patch converts the code base to use the new struct event_location API being introduced. This patch preserves the current functionality and adds no new features. The "big picture" API usage introduced by this patch may be illustrated with a simple exmaple. Where previously developers would write: void my_command (char *arg, int from_tty) { create_breakpoint (..., arg, ...); ... } one now uses: void my_command (char *arg, int from_tty) { struct event_locaiton *location; struct cleanup *back_to; location = string_to_event_locaiton (&arg, ...); back_to = make_cleanup_delete_event_location (location); create_breakpoint (..., location, ...); do_cleanups (back_to); } Linespec-decoding functions (now called location-decoding) such as decode_line_full no longer skip argument pointers over processed input. That functionality has been moved into string_to_event_location as demonstrated above. gdb/ChangeLog * ax-gdb.c: Include location.h. (agent_command_1) Use linespec location instead of address string. * break-catch-throw.c: Include location.h. (re_set_exception_catchpoint): Use linespec locations instead of address strings. * breakpoint.c: Include location.h. (create_overlay_event_breakpoint, create_longjmp_master_breakpoint) (create_std_terminate_master_breakpoint) (create_exception_master_breakpoint, update_breakpoints_after_exec): Use linespec location instead of address string. (print_breakpoint_location): Use locations and event_location_to_string. Print extra_string for pending locations for non-MI streams. (print_one_breakpoint_location): Use locations and event_location_to_string. (init_raw_breakpoint_without_location): Initialize b->location. (create_thread_event_breakpoint): Use linespec location instead of address string. (init_breakpoint_sal): Likewise. Only save extra_string if it is non-NULL and not the empty string. Use event_location_to_string instead of `addr_string'. Constify `p' and `endp'. Use skip_spaces_const/skip_space_const instead of non-const versions. Copy the location into the breakpoint. If LOCATION is NULL, save the breakpoint address as a linespec location instead of an address string. (create_breakpoint_sal): Change `addr_string' parameter to a struct event_location. All uses updated. (create_breakpoints_sal): Likewise for local variable `addr_string'. (parse_breakpoint_sals): Use locations instead of address strings. Remove check for empty linespec with conditional. Refactor. (decode_static_tracepoint_spec): Make argument const and update function. (create_breakpoint): Change `arg' to a struct event_location and rename. Remove `copy_arg' and `addr_start'. If EXTRA_STRING is empty, set it to NULL. Don't populate `canonical' for pending breakpoints. Pass `extra_string' to find_condition_and_thread. Clear `extra_string' if `rest' was NULL. Do not error with "garbage after location" if setting a dprintf breakpoint. Copy the location into the breakpoint instead of an address string. (break_command_1): Use string_to_event_location and pass this to create_breakpoint instead of an address string. Check against `arg_cp' for a probe linespec. (dprintf_command): Use string_to_event_location and pass this to create_breakpoint instead of an address string. Throw an exception if no format string was specified. (print_recreate_ranged_breakpoint): Use event_location_to_string instead of address strings. (break_range_command, until_break_command) (init_ada_exception_breakpoint): Use locations instead of address strings. (say_where): Print out extra_string for pending locations. (base_breakpoint_dtor): Delete `location' and `location_range_end' of the breakpoint. (base_breakpoint_create_sals_from_location): Use struct event_location instead of address string. Remove `addr_start' and `copy_arg' parameters. (base_breakpoint_decode_location): Use struct event_location instead of address string. (bkpt_re_set): Use locations instead of address strings. Use event_location_empty_p to check for unset location. (bkpt_print_recreate): Use event_location_to_string instead of an address string. Print out extra_string for pending locations. (bkpt_create_sals_from_location, bkpt_decode_location) (bkpt_probe_create_sals_from_location): Use struct event_location instead of address string. (bkpt_probe_decode_location): Use struct event_location instead of address string. (tracepoint_print_recreate): Use event_location_to_string to recreate the tracepoint. (tracepoint_create_sals_from_location, tracepoint_decode_location) (tracepoint_probe_create_sals_from_location) (tracepoint_probe_decode_location): Use struct event_location instead of address string. (dprintf_print_recreate): Use event_location_to_string to recreate the dprintf. (dprintf_re_set): Remove check for valid/missing format string. (strace_marker_create_sals_from_location) (strace_marker_create_breakpoints_sal, strace_marker_decode_location) (update_static_tracepoint): Use struct event_location instead of address string. (location_to_sals): Likewise. Pass `extra_string' to find_condition_and_thread. For newly resolved pending breakpoint locations, clear the location's string representation. Assert that the breakpoint's condition string is NULL when condition_not_parsed. (breakpoint_re_set_default, create_sals_from_location_default) (decode_location_default, trace_command, ftrace_command) (strace_command, create_tracepoint_from_upload): Use locations instead of address strings. * breakpoint.h (struct breakpoint_ops) <create_sals_from_location>: Use struct event_location instead of address string. Update all uses. <decode_location>: Likewise. (struct breakpoint) <addr_string>: Change to struct event_location and rename `location'. <addr_string_range_end>: Change to struct event_location and rename `location_range_end'. (create_breakpoint): Use struct event_location instead of address string. * cli/cli-cmds.c: Include location.h. (edit_command, list_command): Use locations instead of address strings. * elfread.c: Include location.h. (elf_gnu_ifunc_resolver_return_stop): Use event_location_to_string. * guile/scm-breakpoint.c: Include location.h. (bpscm_print_breakpoint_smob): Use event_location_to_string. (gdbscm_register_breakpoint): Use locations instead of address strings. * linespec.c: Include location.h. (struct ls_parser) <stream>: Change to const char *. (PARSER_STREAM): Update. (lionespec_lexer_lex_keyword): According to find_condition_and_thread, keywords must be followed by whitespace. (canonicalize_linespec): Save a linespec location into `canonical'. Save a canonical linespec into `canonical'. (parse_linespec): Change `argptr' to const char * and rename `arg'. All uses updated. Update function description. (linespec_parser_new): Initialize `parser'. Update initialization of parsing stream. (event_location_to_sals): New function. (decode_line_full): Change `argptr' to a struct event_location and rename it `location'. Use locations instead of address strings. Call event_location_to_sals instead of parse_linespec. (decode_line_1): Likewise. (decode_line_with_current_source, decode_line_with_last_displayed) Use locations instead of address strings. (decode_objc): Likewise. Change `argptr' to const char * and rename `arg'. (destroy_linespec_result): Delete the linespec result's location instead of freeing the address string. * linespec.h (struct linespec_result) <addr_string>: Change to struct event_location and rename to ... <location>: ... this. (decode_line_1, decode_line_full): Change `argptr' to struct event_location. All callers updated. * mi/mi-cmd-break.c: Include language.h, location.h, and linespec.h. (mi_cmd_break_insert_1): Use locations instead of address strings. Throw an error if there was "garbage" at the end of the specified linespec. * probe.c: Include location.h. (parse_probes): Change `argptr' to struct event_location. Use event locations instead of address strings. * probe.h (parse_probes): Change `argptr' to struct event_location. * python/py-breakpoint.c: Include location.h. (bppy_get_location): Constify local variable `str'. Use event_location_to_string. (bppy_init): Use locations instead of address strings. * python/py-finishbreakpoint.c: Include location.h. (bpfinishpy_init): Remove local variable `addr_str'. Use locations instead of address strings. * python/python.c: Include location.h. (gdbpy_decode_line): Use locations instead of address strings. * remote.c: Include location.h. (remote_download_tracepoint): Use locations instead of address strings. * spu-tdep.c: Include location.h. (spu_catch_start): Remove local variable `buf'. Use locations instead of address strings. * tracepoint.c: Include location.h. (scope_info): Use locations instead of address strings. (encode_source_string): Constify parameter `src'. * tracepoint.h (encode_source_string): Likewise. gdb/testsuite/ChangeLog * gdb.base/dprintf-pending.exp: Update dprintf "without format" test. Add tests for missing ",FMT" and ",". |
||
Keith Seitz
|
5f700d83f7 |
Explicit locations: rename "address string"/"addr_string" to "location"
This patch renames all occurrances of "addr_string" and "address string" in the breakpoint/linespec APIs. This will emphasize the change from address strings used in setting breakpoints (et al) to the new locations-based API introduced in subsequent patches. gdb/ChangeLog: * breakpoint.h (struct breakpoint_ops) <create_sals_from_address>: Renamed to create_sals_from_location. <decode_linespec>: Renamed to decode_location. Update all callers. * breakpoint.c (create_sals_from_address_default): Renamed to ... (create_sals_from_location_default): ... this. (addr_string_to_sals): Renamed to ... (location_to_sals): ... this. (decode_linespec_default): Renamed to ... (decode_location_default): ... this. (base_breakpoint_create_sals_from_address): Renamed to ... (base_breakpoint_create_sals_from_location): ... this. (bkpt_create_sals_from_address): Renamed to ... (bkpt_create_sals_from_location): ... this. (bkpt_decode_linespec): Renamed to ... (bkpt_decode_location): ... this. (bkpt_probe_create_sals_from_address): Renamed to ... (bkpt_probe_create_sals_from_location): ... this. (tracepoint_create_sals_from_address): Renamed to ... (tracepoint_create_sals_from_location): ... this. (tracepoint_decode_linespec): Renamed to ... (tracepoint_decode_location): ... this. (tracepoint_probe_create_sals_from_address): Renamed to ... (tracepoint_probe_create_sals_from_location): ... this. (tracepoint_probe_decode_linespec): Renamed to ... (tracepoint_probe_decode_location): ... this. (strace_marker_create_sals_from_address): Renamed to ... (strace_marker_create_sals_from_location): ... this. (decode_linespec_default): Renamed to ... (decode_location_default): ... this. |
||
Luis Machado
|
da4616f69f |
Remove unused function make_breakpoint_permanent.
make_breakpoint_permanent is no longer used anywhere and can be safely removed. gdb/ChangeLog: 2015-06-17 Luis Machado <lgustavo@codesourcery.com> * breakpoint.c (make_breakpoint_permanent): Remove unused function. * breakpoint.h (make_breakpoint_permanent): Remove declaration. |
||
Pedro Alves
|
7a26bd4d83 |
constify set_breakpoint_condition
gdb: 2015-03-20 Pedro Alves <palves@redhat.com> * breakpoint.c (set_breakpoint_condition): Make argument "exp" const. * breakpoint.h (set_breakpoint_condition): Update declaration. |
||
Sergio Durigan Junior
|
badd37cec8 |
Implement breakpoint_find_if
This commit implements the 'breakpoint_find_if' function, which allows code external to gdb/breakpoint.c to iterate through the list of 'struct breakpoint *'. This is needed in order to create the 'gdb/break-catch-syscall.c' file, because one of its functions (catching_syscall_number) needs to do this iteration. My first thought was to share the ALL_BREAKPOINTS* macros on gdb/breakpoint.h, but they use a global variable local to gdb/breakpoint.c, and I did not want to share that variable. So, in order to keep the minimal separation, I decided to implement this way of iterating through the existing 'struct breakpoint *'. This function was based on BFD's bfd_sections_find_if. If the user-provided function returns 0, the iteration proceeds. Otherwise, the iteration stops and the function returns the 'struct breakpoint *' that is being processed. This means that the return value of this function can be either NULL or a pointer to a 'struct breakpoint'. gdb/ChangeLog: 2015-03-11 Sergio Durigan Junior <sergiodj@redhat.com> * breakpoint.c (breakpoint_find_if): New function. * breakpoint.h (breakpoint_find_if): New prototype. |
||
Pedro Alves
|
1cf4d9513a |
Teach GDB about targets that can tell whether a trap is a breakpoint event
The moribund locations heuristics are problematic. This patch teaches
GDB about targets that can reliably tell whether a trap was caused by
a software or hardware breakpoint, and thus don't need moribund
locations, thus bypassing all the problems that mechanism has.
The non-stop-fair-events.exp test is frequently failing currently.
E.g., see https://sourceware.org/ml/gdb-testers/2015-q1/msg03148.html.
The root cause is a fundamental problem with moribund locations. For
example, the stepped_breakpoint logic added by
|
||
Pedro Alves
|
64166036b3 |
breakpoint.h: move enum ‘print_stop_action’
Building GDB in C++, we get: src/gdb/breakpoint.h:529:8: error: use of enum ‘print_stop_action’ without previous declaration We can't forward declare enums in C++. gdb/ChangeLog: 2015-02-27 Pedro Alves <palves@redhat.com> * breakpoint.h (enum print_stop_action): Move further up in the file. |
||
Pedro Alves
|
9c02b52532 |
linux-nat.c: better starvation avoidance, handle non-stop mode too
Running the testsuite with a series that reimplements user-visible
all-stop behavior on top of a target running in non-stop mode revealed
problems related to event starvation avoidance.
For example, I see
gdb.threads/signal-while-stepping-over-bp-other-thread.exp failing.
What happens is that GDB core never gets to see the signal event. It
ends up processing the events for the same threads over an over,
because Linux's waitpid(-1, ...) returns that first task in the task
list that has an event, starving threads on the tail of the task list.
So I wrote a non-stop mode test originally inspired by
signal-while-stepping-over-bp-other-thread.exp, to stress this
independently of all-stop on top of non-stop. Fixing it required the
changes described below. The test will be added in a following
commit.
1) linux-nat.c has code in place that picks an event LWP at random out
of all that have had events. This is because on the kernel side,
"waitpid(-1, ...)" just walks the task list linearly looking for the
first that had an event. But, this code is currently only used in
all-stop mode. So with a multi-threaded program that has multiple
events triggering debug events in parallel, GDB ends up starving some
threads.
To make the event randomization work in non-stop mode too, the patch
makes us pull out all the already pending events on the kernel side,
with waitpid, before deciding which LWP to report to the core.
There's some code in linux_wait that takes care of leaving events
pending if they were for LWPs the caller is not interested in. The
patch moves that to linux_nat_filter_event, so that we only have one
place that leaves events pending. With that in place, conceptually,
the flow is simpler and more normalized:
#1 - walk the LWP list looking for an LWP with a pending event to report.
#2 - if no pending event, pull events out of the kernel, and store
them in the LWP structures as pending.
#3- goto #1.
2) Then, currently the event randomization code only considers SIGTRAP
(or trap-like) events. That means that if e.g., have have multiple
threads stepping in parallel that hit a breakpoint that needs stepping
over, and one gets a signal, the signal may end up never getting
processed, because GDB will always be giving priority to the SIGTRAPs.
The patch fixes this by making the randomization code consider all
kinds of pending events.
3) If multiple threads hit a breakpoint, we report one of those, and
"cancel" the others. Cancelling means decrementing the PC, and
discarding the event. If the next time the LWP is resumed the
breakpoint is still installed, the LWP should hit it again, and we'll
report the hit then. The problem I found is that this delays threads
from advancing too much, with the kernel potentially ending up
scheduling the same threads over and over, and others not advancing.
So the patch switches away from cancelling the breakpoints, and
instead remembering that the LWP had stopped for a breakpoint. If on
resume the breakpoint is still installed, we report it. If it's no
longer installed, we discard the pending event then. This is actually
how GDBserver used to handle this before
|
||
Joel Brobecker
|
32d0add0a6 |
Update year range in copyright notice of all files owned by the GDB project.
gdb/ChangeLog: Update year range in copyright notice of all files. |
||
Pedro Alves
|
1a853c5224 |
make "permanent breakpoints" per location and disableable
"permanent"-ness is currently a property of the breakpoint. But, it should actually be an implementation detail of a _location_. Consider this bit in infrun.c: /* Normally, by the time we reach `resume', the breakpoints are either removed or inserted, as appropriate. The exception is if we're sitting at a permanent breakpoint; we need to step over it, but permanent breakpoints can't be removed. So we have to test for it here. */ if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here) { if (gdbarch_skip_permanent_breakpoint_p (gdbarch)) gdbarch_skip_permanent_breakpoint (gdbarch, regcache); else error (_("\ The program is stopped at a permanent breakpoint, but GDB does not know\n\ how to step past a permanent breakpoint on this architecture. Try using\n\ a command like `return' or `jump' to continue execution.")); } This will wrongly skip a non-breakpoint instruction if we have a multiple location breakpoint where the whole breakpoint was set to "permanent" because one of the locations happened to be permanent, even if the one GDB is resuming from is not. Related, because the permanent breakpoints are only marked as such in init_breakpoint_sal, we currently miss marking momentary breakpoints as permanent. A test added by a following patch trips on that. Making permanent-ness be per-location, and marking locations as such in add_location_to_breakpoint, the natural place to do this, fixes this issue... ... and then exposes a latent issue with mark_breakpoints_out. It's clearing the inserted flag of permanent breakpoints. This results in assertions failing like this: Breakpoint 1, main () at testsuite/gdb.base/callexit.c:32 32 return 0; (gdb) call callexit() [Inferior 1 (process 15849) exited normally] gdb/breakpoint.c:12854: internal-error: allegedly permanent breakpoint is not actually inserted A problem internal to GDB has been detected, further debugging may prove unreliable. The call dummy breakpoint, which is a momentary breakpoint, is set on top of a manually inserted breakpoint instruction, and so is now rightfully marked as a permanent breakpoint. See "Write a legitimate instruction at the point where the infcall breakpoint is going to be inserted." comment in infcall.c. Re. make_breakpoint_permanent. That's only called by solib-pa64.c. Permanent breakpoints were actually originally invented for HP-UX [1]. I believe that that call (the only one in the tree) is unnecessary nowadays, given that nowadays the core breakpoints code analyzes the instruction under the breakpoint to automatically detect whether it's setting a breakpoint on top of a breakpoint instruction in the program. I know close to nothing about HP-PA/HP-UX, though. [1] https://sourceware.org/ml/gdb-patches/1999-q3/msg00245.html, and https://sourceware.org/ml/gdb-patches/1999-q3/msg00242.html In addition to the per-location issue, "permanent breakpoints" are currently always displayed as enabled=='n': (gdb) b main Breakpoint 3 at 0x40053c: file ../../../src/gdb/testsuite/gdb.arch/i386-permbkpt.S, line 29. (gdb) info breakpoints Num Type Disp Enb Address What 3 breakpoint keep n 0x000000000040053c ../../../src/gdb/testsuite/gdb.arch/i386-permbkpt.S:29 But OTOH they're always enabled; there's no way to disable them... In turn, this means that if one adds commands to such a breakpoint, they're _always_ run: (gdb) start Starting program: /home/pedro/gdb/mygit/build/gdb/testsuite/gdb.arch/i386-permbkpt ... Temporary breakpoint 1, main () at ../../../src/gdb/testsuite/gdb.arch/i386-permbkpt.S:29 29 int3 (gdb) b main Breakpoint 2 at 0x40053c: file ../../../src/gdb/testsuite/gdb.arch/i386-permbkpt.S, line 29. (gdb) info breakpoints Num Type Disp Enb Address What 2 breakpoint keep n 0x000000000040053c ../../../src/gdb/testsuite/gdb.arch/i386-permbkpt.S:29 (gdb) commands Type commands for breakpoint(s) 2, one per line. End with a line saying just "end". >echo "hello!" >end (gdb) disable 2 (gdb) start The program being debugged has been started already. Start it from the beginning? (y or n) y Temporary breakpoint 3 at 0x40053c: file ../../../src/gdb/testsuite/gdb.arch/i386-permbkpt.S, line 29. Starting program: /home/pedro/gdb/mygit/build/gdb/testsuite/gdb.arch/i386-permbkpt Breakpoint 2, main () at ../../../src/gdb/testsuite/gdb.arch/i386-permbkpt.S:29 29 int3 "hello!"(gdb) IMO, one should be able to disable such a breakpoint, and GDB should then behave just like if the user hadn't created the breakpoint in the first place (that is, report a SIGTRAP). By making permanent-ness a property of the location, and eliminating the bp_permanent enum enable_state state ends up fixing that as well. No tests are added for these changes yet; they'll be added in a follow up patch, as skipping permanent breakpoints is currently broken and trips on an assertion in infrun. Tested on x86_64 Fedora 20, native and gdbserver. gdb/ChangeLog: 2014-11-12 Pedro Alves <palves@redhat.com> Mark locations as permanent, not the whole breakpoint. * breakpoint.c (remove_breakpoint_1, remove_breakpoint): Adjust. (mark_breakpoints_out): Don't mark permanent breakpoints as uninserted. (breakpoint_init_inferior): Use mark_breakpoints_out. (breakpoint_here_p): Adjust. (bpstat_stop_status, describe_other_breakpoints): Remove handling of permanent breakpoints. (make_breakpoint_permanent): Mark each location as permanent, instead of marking the breakpoint. (add_location_to_breakpoint): If the location is permanent, mark it as such, and as inserted. (init_breakpoint_sal): Don't make the breakpoint permanent here. (bp_location_compare, update_global_location_list): Adjust. (update_breakpoint_locations): Don't make the breakpoint permanent here. (disable_breakpoint, enable_breakpoint_disp): Don't skip permanent breakpoints. * breakpoint.h (enum enable_state) <bp_permanent>: Delete field. (struct bp_location) <permanent>: New field. * guile/scm-breakpoint.c (bpscm_enable_state_to_string): Remove reference to bp_permanent. |
||
Pedro Alves
|
441ef17f09 |
garbage collect gdb/breakpoint.c:breakpoint_thread_match
Used to be necessary for the thread-hop code, but that's gone now. Nothing uses this anymore. gdb/ 2014-11-04 Pedro Alves <palves@redhat.com> * breakpoint.c (breakpoint_thread_match): Delete function. * breakpoint.h (breakpoint_thread_match): Delete declaration. |
||
Pedro Alves
|
34b7e8a6ad |
Make single-step breakpoints be per-thread
This patch finally makes each thread have its own set of single-step breakpoints. This paves the way to have multiple threads software single-stepping, though this patch doesn't flip that switch on yet. That'll be done on a subsequent patch. gdb/ 2014-10-15 Pedro Alves <palves@redhat.com> * breakpoint.c (single_step_breakpoints): Delete global. (insert_single_step_breakpoint): Adjust to store the breakpoint pointer in the current thread. (single_step_breakpoints_inserted, remove_single_step_breakpoints) (cancel_single_step_breakpoints): Delete functions. (breakpoint_has_location_inserted_here): Make extern. (single_step_breakpoint_inserted_here_p): Adjust to walk the breakpoint list. * breakpoint.h (breakpoint_has_location_inserted_here): New declaration. (single_step_breakpoints_inserted, remove_single_step_breakpoints) (cancel_single_step_breakpoints): Remove declarations. * gdbthread.h (struct thread_control_state) <single_step_breakpoints>: New field. (delete_single_step_breakpoints) (thread_has_single_step_breakpoints_set) (thread_has_single_step_breakpoint_here): New declarations. * infrun.c (follow_exec): Also clear the single-step breakpoints. (singlestep_breakpoints_inserted_p, singlestep_ptid) (singlestep_pc): Delete globals. (infrun_thread_ptid_changed): Remove references to removed globals. (resume_cleanups): Delete the current thread's single-step breakpoints. (maybe_software_singlestep): Remove references to removed globals. (resume): Adjust to use thread_has_single_step_breakpoints_set and delete_single_step_breakpoints. (init_wait_for_inferior): Remove references to removed globals. (delete_thread_infrun_breakpoints): Delete the thread's single-step breakpoints too. (delete_just_stopped_threads_infrun_breakpoints): Don't delete single-step breakpoints here. (delete_stopped_threads_single_step_breakpoints): New function. (adjust_pc_after_break): Adjust to use thread_has_single_step_breakpoints_set. (handle_inferior_event): Remove references to removed globals. Use delete_stopped_threads_single_step_breakpoints. (handle_signal_stop): Adjust to per-thread single-step breakpoints. Swap test order to do cheaper tests first. (switch_back_to_stepped_thread): Extend debug output. Remove references to removed globals. * record-full.c (record_full_wait_1): Adjust to per-thread single-step breakpoints. * thread.c (delete_single_step_breakpoints) (thread_has_single_step_breakpoints_set) (thread_has_single_step_breakpoint_here): New functions. (clear_thread_inferior_resources): Also delete the thread's single-step breakpoints. |
||
Pedro Alves
|
a1fd2fa599 |
Remove deprecated_insert_raw_breakpoint and friends
There are no users of deprecated_{insert,remove}_raw_breakpoint left. gdb/ 2014-10-15 Pedro Alves <palves@redhat.com> * breakpoint.c (regular_breakpoint_inserted_here_p): Inline ... (breakpoint_inserted_here_p): ... here. Remove special case for software single-step breakpoints. (find_non_raw_software_breakpoint_inserted_here): Inline ... (software_breakpoint_inserted_here_p): ... here. Remove special case for software single-step breakpoints. (bp_target_info_copy_insertion_state) (deprecated_insert_raw_breakpoint) (deprecated_remove_raw_breakpoint): Delete functions. * breakpoint.h (deprecated_insert_raw_breakpoint) (deprecated_remove_raw_breakpoint): Remove declarations. |
||
Pedro Alves
|
7c16b83e05 |
Put single-step breakpoints on the bp_location chain
This patch makes single-step breakpoints "real" breakpoints on the global location list. There are several benefits to this: - It removes the currently limitation that only 2 single-step breakpoints can be inserted. See an example here of a discussion around a case that wants more than 2, possibly unbounded: https://sourceware.org/ml/gdb-patches/2014-03/msg00663.html - makes software single-step work on read-only code regions. The logic to convert a software breakpoint to a hardware breakpoint if the memory map says the breakpoint address is in read only memory is in insert_bp_location. Because software single-step breakpoints bypass all that go and straight to target_insert_breakpoint, we can't software single-step over read only memory. This patch removes that limitation, and adds a test that makes sure that works, by forcing a code region to read-only with "mem LOW HIGH ro" and then stepping through that. - Fixes PR breakpoints/9649 This is an assertion failure in insert_single_step_breakpoint in breakpoint.c, because we may leave stale single-step breakpoints behind on error. The tests for stepping through read-only regions exercise the root cause of the bug, which is that we leave single-step breakpoints behind if we fail to insert any single-step breakpoint. Deleting the single-step breakpoints in resume_cleanups, delete_just_stopped_threads_infrun_breakpoints, and fetch_inferior_event fixes this. Without that, we'd no longer hit the assertion, as that code is deleted, but we'd instead run into errors/warnings trying to insert/remove the stale breakpoints on next resume. - Paves the way to have multiple threads software single-stepping at the same time, leaving update_global_location_list to worry about duplicate locations. - Makes the moribund location machinery aware of software single-step breakpoints, paving the way to enable software single-step on non-stop, instead of forcing serialized displaced stepping for all single steps. - It's generaly cleaner. We no longer have to play games with single-step breakpoints inserted at the same address as regular breakpoints, like we recently had to do for 7.8. See this discussion: https://sourceware.org/ml/gdb-patches/2014-06/msg00052.html. Tested on x86_64 Fedora 20, on top of my 'single-step breakpoints on x86' series. gdb/ 2014-10-15 Pedro Alves <palves@redhat.com> PR breakpoints/9649 * breakpoint.c (single_step_breakpoints, single_step_gdbarch): Delete array globals. (single_step_breakpoints): New global. (breakpoint_xfer_memory): Remove special handling for single-step breakpoints. (update_breakpoints_after_exec): Delete bp_single_step breakpoints. (detach_breakpoints): Remove special handling for single-step breakpoints. (breakpoint_init_inferior): Delete bp_single_step breakpoints. (bpstat_stop_status): Add comment. (bpstat_what, bptype_string, print_one_breakpoint_location) (adjust_breakpoint_address, init_bp_location): Handle bp_single_step. (new_single_step_breakpoint): New function. (set_momentary_breakpoint, bkpt_remove_location): Remove special handling for single-step breakpoints. (insert_single_step_breakpoint, single_step_breakpoints_inserted) (remove_single_step_breakpoints, cancel_single_step_breakpoints): Rewrite. (detach_single_step_breakpoints, find_single_step_breakpoint): Delete functions. (breakpoint_has_location_inserted_here): New function. (single_step_breakpoint_inserted_here_p): Rewrite. * breakpoint.h: Remove FIXME. (enum bptype) <bp_single_step>: New enum value. (insert_single_step_breakpoint): Update comment. * infrun.c (resume_cleanups) (delete_step_thread_step_resume_breakpoint): Remove single-step breakpoints. (fetch_inferior_event): Install a cleanup that removes infrun breakpoints. (switch_back_to_stepped_thread) <expect thread advanced also>: Clear step-over info. gdb/testsuite/ 2014-10-15 Pedro Alves <palves@redhat.com> PR breakpoints/9649 * gdb.base/breakpoint-in-ro-region.c (main): Add more instructions. * gdb.base/breakpoint-in-ro-region.exp (probe_target_hardware_step): New procedure. (top level): Probe hardware stepping and hardware breakpoint support. Test stepping through a read-only region, with both "breakpoint auto-hw" on and off and both "always-inserted" on and off. |
||
Maciej W. Rozycki
|
0d5ed15352 |
Avoid software breakpoint's instruction shadow inconsistency
This change:
commit
|
||
Pedro Alves
|
b57bacecd5 |
Fix non-stop regressions caused by "breakpoints always-inserted off" changes
Commit
|
||
Pedro Alves
|
a25a5a45ef |
Fix "breakpoint always-inserted off"; remove "breakpoint always-inserted auto"
By default, GDB removes all breakpoints from the target when the target stops and the prompt is given back to the user. This is useful in case GDB crashes while the user is interacting, as otherwise, there's a higher chance breakpoints would be left planted on the target. But, as long as any thread is running free, we need to make sure to keep breakpoints inserted, lest a thread misses a breakpoint. With that in mind, in preparation for non-stop mode, we added a "breakpoint always-inserted on" mode. This traded off the extra crash protection for never having threads miss breakpoints, and in addition is more efficient if there's a ton of breakpoints to remove/insert at each user command (e.g., at each "step"). When we added non-stop mode, and for a period, we required users to manually set "always-inserted on" when they enabled non-stop mode, as otherwise GDB removes all breakpoints from the target as soon as any thread stops, which means the other threads still running will miss breakpoints. The test added by this patch exercises this. That soon revealed a nuisance, and so later we added an extra "breakpoint always-inserted auto" mode, that made GDB behave like "always-inserted on" when non-stop was enabled, and "always-inserted off" when non-stop was disabled. "auto" was made the default at the same time. In hindsight, this "auto" setting was unnecessary, and not the ideal solution. Non-stop mode does depends on breakpoints always-inserted mode, but only as long as any thread is running. If no thread is running, no breakpoint can be missed. The same is true for all-stop too. E.g., if, in all-stop mode, and the user does: (gdb) c& (gdb) b foo That breakpoint at "foo" should be inserted immediately, but it currently isn't -- currently it'll end up inserted only if the target happens to trip on some event, and is re-resumed, e.g., an internal breakpoint triggers that doesn't cause a user-visible stop, and so we end up in keep_going calling insert_breakpoints. The test added by this patch also covers this. IOW, no matter whether in non-stop or all-stop, if the target fully stops, we can remove breakpoints. And no matter whether in all-stop or non-stop, if any thread is running in the target, then we need breakpoints to be immediately inserted. And then, if the target has global breakpoints, we need to keep breakpoints even when the target is stopped. So with that in mind, and aiming at reducing all-stop vs non-stop differences for all-stop-on-stop-of-non-stop, this patch fixes "breakpoint always-inserted off" to not remove breakpoints from the target until it fully stops, and then removes the "auto" setting as unnecessary. I propose removing it straight away rather than keeping it as an alias, unless someone complains they have scripts that need it and that can't adjust. Tested on x86_64 Fedora 20. gdb/ 2014-09-22 Pedro Alves <palves@redhat.com> * NEWS: Mention merge of "breakpoint always-inserted" modes "off" and "auto" merged. * breakpoint.c (enum ugll_insert_mode): New enum. (always_inserted_mode): Now a plain boolean. (show_always_inserted_mode): No longer handle AUTO_BOOLEAN_AUTO. (breakpoints_always_inserted_mode): Delete. (breakpoints_should_be_inserted_now): New function. (insert_breakpoints): Pass UGLL_INSERT to update_global_location_list instead of calling insert_breakpoint_locations manually. (create_solib_event_breakpoint_1): New, factored out from ... (create_solib_event_breakpoint): ... this. (create_and_insert_solib_event_breakpoint): Use create_solib_event_breakpoint_1 instead of calling insert_breakpoint_locations manually. (update_global_location_list): Change parameter type from boolean to enum ugll_insert_mode. All callers adjusted. Adjust to use breakpoints_should_be_inserted_now and handle UGLL_INSERT. (update_global_location_list_nothrow): Change parameter type from boolean to enum ugll_insert_mode. (_initialize_breakpoint): "breakpoint always-inserted" option is now a boolean command. Update help text. * breakpoint.h (breakpoints_always_inserted_mode): Delete declaration. (breakpoints_should_be_inserted_now): New declaration. * infrun.c (handle_inferior_event) <TARGET_WAITKIND_LOADED>: Remove breakpoints_always_inserted_mode check. (normal_stop): Adjust to use breakpoints_should_be_inserted_now. * remote.c (remote_start_remote): Likewise. gdb/doc/ 2014-09-22 Pedro Alves <palves@redhat.com> * gdb.texinfo (Set Breaks): Document that "set breakpoint always-inserted off" is the default mode now. Delete documentation of "set breakpoint always-inserted auto". gdb/testsuite/ 2014-09-22 Pedro Alves <palves@redhat.com> * gdb.threads/break-while-running.exp: New file. * gdb.threads/break-while-running.c: New file. |
||
Patrick Palka
|
bb9d5f81c3 |
Fix PR12526: -location watchpoints for bitfield arguments
PR 12526 reports that -location watchpoints against bitfield arguments trigger false positives when bits around the bitfield, but not the bitfield itself, are modified. This happens because -location watchpoints naturally operate at the byte level, not at the bit level. When the address of a bitfield lvalue is taken, information about the bitfield (i.e. its offset and size) is lost in the process. This information must first be retained throughout the lifetime of the -location watchpoint. This patch achieves this by adding two new fields to the watchpoint struct: val_bitpos and val_bitsize. These fields are set when a watchpoint is first defined in watch_command_1. They are both equal to zero if the watchpoint is not a -location watchpoint or if the argument is not a bitfield. Then these bitfield parameters are used inside update_watchpoint and watchpoint_check to extract the actual value of the bitfield from the watchpoint address, with the help of a local helper function extract_bitfield_from_watchpoint_value. Finally when creating a HW breakpoint pointing to a bitfield, we optimize the address and length of the breakpoint. By skipping over the bytes that don't cover the bitfield, this step reduces the frequency at which a read watchpoint for the bitfield is triggered. It also reduces the number of times a false-positive call to check_watchpoint is triggered for a write watchpoint. gdb/ PR breakpoints/12526 * breakpoint.h (struct watchpoint): New fields val_bitpos and val_bitsize. * breakpoint.c (watch_command_1): Use these fields to retain bitfield information. (extract_bitfield_from_watchpoint_value): New function. (watchpoint_check): Use it. (update_watchpoint): Use it. Optimize the address and length of a HW watchpoint pointing to a bitfield. * value.h (unpack_value_bitfield): New prototype. * value.c (unpack_value_bitfield): Make extern. gdb/testsuite/ PR breakpoints/12526 * gdb.base/watch-bitfields.exp: New file. * gdb.base/watch-bitfields.c: New file. |
||
Pedro Alves
|
f37f681c2b |
[IRIX] eliminate deprecated_insert_raw_breakpoint uses
The IRIX support wants to set a breakpoint to be hit when the startup phase is complete, which is where shared libraries have been mapped in. AFAIU, for most IRIX ports, that location is the entry point. For MIPS IRIX however, GDB needs to set a breakpoint earlier, in __dbx_link, as explained by: #ifdef SYS_syssgi /* On mips-irix, we need to stop the inferior early enough during the startup phase in order to be able to load the shared library symbols and insert the breakpoints that are located in these shared libraries. Stopping at the program entry point is not good enough because the -init code is executed before the execution reaches that point. So what we need to do is to insert a breakpoint in the runtime loader (rld), more precisely in __dbx_link(). This procedure is called by rld once all shared libraries have been mapped, but before the -init code is executed. Unfortuantely, this is not straightforward, as rld is not part of the executable we are running, and thus we need the inferior to run until rld itself has been mapped in memory. For this, we trace all syssgi() syscall exit events. Each time we detect such an event, we iterate over each text memory maps, get its associated fd, and scan the symbol table for __dbx_link(). When found, we know that rld has been mapped, and that we can insert the breakpoint at the symbol address. Once the dbx_link() breakpoint has been inserted, the syssgi() notifications are no longer necessary, so they should be canceled. */ proc_trace_syscalls_1 (pi, SYS_syssgi, PR_SYSEXIT, FLAG_SET, 0); #endif The loop in irix_solib_create_inferior_hook then runs until whichever breakpoint is hit first, the one set by solib-irix.c or the one set by procfs.c. Note the comment in disable_break talks about __dbx_init, but I think that's a typo for __dbx_link: - /* Note that it is possible that we have stopped at a location that - is different from the location where we inserted our breakpoint. - On mips-irix, we can actually land in __dbx_init(), so we should - not check the PC against our breakpoint address here. See procfs.c - for more details. */ This looks very much like referring to the loop in irix_solib_create_inferior_hook stopping at __dbx_link instead of at the entry point. What this patch does is convert these deprecated raw breakpoints to standard solib_event breakpoints. When the first solib-event breakpoint is hit, we delete all solib-event breakpoints. We do that in the so_ops->handle_event hook. This allows getting rid of the loop in irix_solib_create_inferior_hook completely, which should allow properly handling signals and other events in the early startup phase, like in SVR4. Built on x86_64 Fedora 20 with --enable-targets=all (builds solib-irix.c). Joel tested that with an earlier version of this patch "info shared" after starting a program gave the same list of shared libraries as before. gdb/ChangeLog: 2014-09-12 Pedro Alves <palves@redhat.com> * breakpoint.c (remove_solib_event_breakpoints_at_next_stop) (create_and_insert_solib_event_breakpoint): New functions. * breakpoint.h (create_and_insert_solib_event_breakpoint) (remove_solib_event_breakpoints_at_next_stop): New declarations. * procfs.c (dbx_link_bpt_addr, dbx_link_bpt): Delete globals. (remove_dbx_link_breakpoint): Delete function. (insert_dbx_link_bpt_in_file): Use create_and_insert_solib_event_breakpoint instead of deprecated_insert_raw_breakpoint. (procfs_wait): Don't check whether we hit __dbx_link here. (procfs_mourn_inferior): Don't delete the __dbx_link breakpoint here. * solib-irix.c (base_breakpoint): Delete global. (disable_break): Delete function. (enable_break): Use create_solib_event_breakpoint instead of deprecated_insert_raw_breakpoint. (irix_solib_handle_event): New function. (irix_solib_create_inferior_hook): Don't run the target or disable the mapping-complete breakpoint here. (_initialize_irix_solib): Install irix_solib_handle_event as so_ops->handle_event hook. |