Commit Graph

20 Commits

Author SHA1 Message Date
Nick Alcock
5e8b4bbcc8 ctf: fix various dreadful typos in the ctf_archive format comments
When defining a format it helps to a) get the endianness right when you
explicitly state what it is and b) define things in terms of fields that
exist rather than fields that don't.

(A bunch of changes of names during implementation were not reflected in
these comments...)

Thanks to Jose "Eye of the Eagle" Marchesi for spotting these.

include/
	* ctf.h (struct ctf_archive) [ctfa_ctfs]: The size element of
	this is in little-endian byte order, not network byte order.
	(struct ctf_archive_modent): This is positioned right after the
	end fo the struct ctf_archive, not at the offset of a
	nonexistent field.  The number of elements in the array depends
	on ctfa_ndicts, not another nonexistent field.
2023-01-12 14:40:47 +00:00
Alan Modra
d87bef3a7b Update year range in copyright notice of binutils files
The newer update-copyright.py fixes file encoding too, removing cr/lf
on binutils/bfdtest2.c and ld/testsuite/ld-cygwin/exe-export.exp, and
embedded cr in binutils/testsuite/binutils-all/ar.exp string match.
2023-01-01 21:50:11 +10:30
Nick Alcock
203bfa2f6b include, libctf, ld: extend variable section to contain functions too
The CTF variable section is an optional (usually-not-present) section in
the CTF dict which contains name -> type mappings corresponding to data
symbols that are present in the linker input but not in the output
symbol table: the idea is that programs that use their own symbol-
resolution mechanisms can use this section to look up the types of
symbols they have found using their own mechanism.

Because these removed symbols (mostly static variables, functions, etc)
all have names that are unlikely to appear in the ELF symtab and because
very few programs have their own symbol-resolution mechanisms, a special
linker flag (--ctf-variables) is needed to emit this section.

Historically, we emitted only removed data symbols into the variable
section.  This seemed to make sense at the time, but in hindsight it
really doesn't: functions are symbols too, and a C program can look them
up just like any other type.  So extend the variable section so that it
contains all static function symbols too (if it is emitted at all), with
types of kind CTF_K_FUNCTION.

This is a little fiddly.  We relied on compiler assistance for data
symbols: the compiler simply emits all data symbols twice, once into the
symtypetab as an indexed symbol and once into the variable section.

Rather than wait for a suitably adjusted compiler that does the same for
function symbols, we can pluck unreported function symbols out of the
symtab and add them to the variable section ourselves.  While we're at
it, we do the same with data symbols: this is redundant right now
because the compiler does it, but it costs very little time and lets the
compiler drop this kludge and save a little space in .o files.

include/
	* ctf.h: Mention the new things we can see in the variable
	section.

ld/
	* testsuite/ld-ctf/data-func-conflicted-vars.d: New test.

libctf/
	* ctf-link.c (ctf_link_deduplicating_variables): Duplicate
	symbols into the variable section too.
	* ctf-serialize.c (symtypetab_delete_nonstatic_vars): Rename
	to...
	(symtypetab_delete_nonstatics): ... this.  Check the funchash
	when pruning redundant variables.
	(ctf_symtypetab_sect_sizes): Adjust accordingly.
	* NEWS: Describe this change.
2022-03-23 13:48:32 +00:00
Alan Modra
a2c5833233 Update year range in copyright notice of binutils files
The result of running etc/update-copyright.py --this-year, fixing all
the files whose mode is changed by the script, plus a build with
--enable-maintainer-mode --enable-cgen-maint=yes, then checking
out */po/*.pot which we don't update frequently.

The copy of cgen was with commit d1dd5fcc38ead reverted as that commit
breaks building of bfp opcodes files.
2022-01-02 12:04:28 +10:30
Nick Alcock
49da556c65 libctf, include: support an alternative encoding for nonrepresentable types
Before now, types that could not be encoded in CTF were represented as
references to type ID 0, which does not itself appear in the
dictionary. This choice is annoying in several ways, principally that it
forces generators and consumers of CTF to grow special cases for types
that are referenced in valid dicts but don't appear.

Allow an alternative representation (which will become the only
representation in format v4) whereby nonrepresentable types are encoded
as actual types with kind CTF_K_UNKNOWN (an already-existing kind
theoretically but not in practice used for padding, with value 0).
This is backward-compatible, because CTF_K_UNKNOWN was not used anywhere
before now: it was used in old-format function symtypetabs, but these
were never emitted by any compiler and the code to handle them in libctf
likely never worked and was removed last year, in favour of new-format
symtypetabs that contain only type IDs, not type kinds.

In order to link this type, we need an API addition to let us add types
of unknown kind to the dict: we let them optionally have names so that
GCC can emit many different unknown types and those types with identical
names will be deduplicated together.  There are also small tweaks to the
deduplicator to actually dedup such types, to let opening of dicts with
unknown types with names work, to return the ECTF_NONREPRESENTABLE error
on resolution of such types (like ID 0), and to print their names as
something useful but not a valid C identifier, mostly for the sake of
the dumper.

Tests added in the next commit.

include/ChangeLog
2021-05-06  Nick Alcock  <nick.alcock@oracle.com>

	* ctf.h (CTF_K_UNKNOWN): Document that it can be used for
	nonrepresentable types, not just padding.
	* ctf-api.h (ctf_add_unknown): New.

libctf/ChangeLog
2021-05-06  Nick Alcock  <nick.alcock@oracle.com>

	* ctf-open.c (init_types): Unknown types may have names.
	* ctf-types.c (ctf_type_resolve): CTF_K_UNKNOWN is as
	non-representable as type ID 0.
	(ctf_type_aname): Print unknown types.
	* ctf-dedup.c (ctf_dedup_hash_type): Do not early-exit for
	CTF_K_UNKNOWN types: they have real hash values now.
	(ctf_dedup_rwalk_one_output_mapping): Treat CTF_K_UNKNOWN types
	like other types with no referents: call the callback and do not
	skip them.
	(ctf_dedup_emit_type): Emit via...
	* ctf-create.c (ctf_add_unknown): ... this new function.
	* libctf.ver (LIBCTF_1.2): Add it.
2021-05-06 09:30:59 +01:00
Nick Alcock
24c877f9b1 include: always do unsigned left-shift in CTF_SET_STID
This turns into a signed left shift by 31 bits, otherwise.  This is an
offset and is always treated as unsigned in any case, so add an
appropriate cast.

include/ChangeLog
2021-03-25  Nick Alcock  <nick.alcock@oracle.com>

	PR libctf/27628
	* ctf-api.h: Fix some indentation.
	(CTF_SET_STID): Always do an unsigned shift, even if STID is
	signed.
2021-03-25 16:32:47 +00:00
Alan Modra
250d07de5c Update year range in copyright notice of binutils files 2021-01-01 10:31:05 +10:30
Nick Alcock
2c78e92523 libctf, include: CTF-archive-wide symbol lookup
CTF archives may contain multiple dicts, each of which contain many
types and possibly a bunch of symtypetab entries relating to those
types: each symtypetab entry is going to appear in exactly one dict,
with the corresponding entries in the other dicts empty (either pads, or
indexed symtypetabs that do not mention that symbol).  But users of
libctf usually want to get back the type associated with a symbol
without having to dig around to find out which dict that type might be
in.

This adds machinery to do that -- and since you probably want to do it
repeatedly, it adds internal caching to the ctf-archive machinery so
that iteration over archives via ctf_archive_next and repeated symbol
lookups do not have to repeatedly reopen the archive.  (Iteration using
ctf_archive_iter will gain caching soon.)

Two new API functions:

ctf_dict_t *
ctf_arc_lookup_symbol (ctf_archive_t *arc, unsigned long symidx,
		       ctf_id_t *typep, int *errp);

This looks up the symbol with index SYMIDX in the archive ARC, returning
the dictionary in which it resides and optionally the type index as
well.  Errors are returned in ERRP.  The dict should be
ctf_dict_close()d when done, but is also cached inside the ctf_archive
so that the open cost is only paid once.  The result of the symbol
lookup is also cached internally, so repeated lookups of the same symbol
are nearly free.

void ctf_arc_flush_caches (ctf_archive_t *arc);

Flush all the caches. Done at close time, but also available as an API
function if users want to do it by hand.

include/ChangeLog
2020-11-20  Nick Alcock  <nick.alcock@oracle.com>

	* ctf-api.h (ctf_arc_lookup_symbol): New.
	(ctf_arc_flush_caches): Likewise.
	* ctf.h: Document new auto-ctf_import behaviour.

libctf/ChangeLog
2020-11-20  Nick Alcock  <nick.alcock@oracle.com>

	* ctf-impl.h (struct ctf_archive_internal) <ctfi_dicts>: New, dicts
	the archive machinery has opened and cached.
	<ctfi_symdicts>: New, cache of dicts containing symbols looked up.
	<ctfi_syms>: New, cache of types of symbols looked up.
	* ctf-archive.c (ctf_arc_close): Free them on close.
	(enosym): New, flag entry for 'symbol not present'.
	(ctf_arc_import_parent): New, automatically import the parent from
	".ctf" if this is a child in an archive and ".ctf" is present.
	(ctf_dict_open_sections): Use it.
	(ctf_archive_iter_internal): Likewise.
	(ctf_cached_dict_close): New, thunk around ctf_dict_close.
	(ctf_dict_open_cached): New, open and cache a dict.
	(ctf_arc_flush_caches): New, flush the caches.
	(ctf_arc_lookup_symbol): New, look up a symbol in (all members of)
	an archive, and cache the lookup.
	(ctf_archive_iter): Note the new caching behaviour.
	(ctf_archive_next): Use ctf_dict_open_cached.
	* libctf.ver: Add ctf_arc_lookup_symbol and ctf_arc_flush_caches.
2020-11-20 13:34:11 +00:00
Nick Alcock
1136c37971 libctf: symbol type linking support
This adds facilities to write out the function info and data object
sections, which efficiently map from entries in the symbol table to
types.  The write-side code is entirely new: the read-side code was
merely significantly changed and support for indexed tables added
(pointed to by the no-longer-unused cth_objtidxoff and cth_funcidxoff
header fields).

With this in place, you can use ctf_lookup_by_symbol to look up the
types of symbols of function and object type (and, as before, you can
use ctf_lookup_variable to look up types of file-scope variables not
present in the symbol table, as long as you know their name: but
variables that are also data objects are now found in the data object
section instead.)

(Compatible) file format change:

The CTF spec has always said that the function info section looks much
like the CTF_K_FUNCTIONs in the type section: an info word (including an
argument count) followed by a return type and N argument types. This
format is suboptimal: it means function symbols cannot be deduplicated
and it causes a lot of ugly code duplication in libctf.  But
conveniently the compiler has never emitted this!  Because it has always
emitted a rather different format that libctf has never accepted, we can
be sure that there are no instances of this function info section in the
wild, and can freely change its format without compatibility concerns or
a file format version bump.  (And since it has never been emitted in any
code that generated any older file format version, either, we need keep
no code to read the format as specified at all!)

So the function info section is now specified as an array of uint32_t,
exactly like the object data section: each entry is a type ID in the
type section which must be of kind CTF_K_FUNCTION, the prototype of
this function.

This allows function types to be deduplicated and also correctly encodes
the fact that all functions declared in C really are types available to
the program: so they should be stored in the type section like all other
types.  (In format v4, we will be able to represent the types of static
functions as well, but that really does require a file format change.)

We introduce a new header flag, CTF_F_NEWFUNCINFO, which is set if the
new function info format is in use.  A sufficiently new compiler will
always set this flag.  New libctf will always set this flag: old libctf
will refuse to open any CTF dicts that have this flag set.  If the flag
is not set on a dict being read in, new libctf will disregard the
function info section.  Format v4 will remove this flag (or, rather, the
flag has no meaning there and the bit position may be recycled for some
other purpose).

New API:

Symbol addition:
  ctf_add_func_sym: Add a symbol with a given name and type.  The
                    type must be of kind CTF_K_FUNCTION (a function
                    pointer).  Internally this adds a name -> type
                    mapping to the ctf_funchash in the ctf_dict.
  ctf_add_objt_sym: Add a symbol with a given name and type.  The type
                    kind can be anything, including function pointers.
		    This adds to ctf_objthash.

These both treat symbols as name -> type mappings: the linker associates
symbol names with symbol indexes via the ctf_link_shuffle_syms callback,
which sets up the ctf_dynsyms/ctf_dynsymidx/ctf_dynsymmax fields in the
ctf_dict.  Repeated relinks can add more symbols.

Variables that are also exposed as symbols are removed from the variable
section at serialization time.

CTF symbol type sections which have enough pads, defined by
CTF_INDEX_PAD_THRESHOLD (whether because they are in dicts with symbols
where most types are unknown, or in archive where most types are defined
in some child or parent dict, not in this specific dict) are sorted by
name rather than symidx and accompanied by an index which associates
each symbol type entry with a name: the existing ctf_lookup_by_symbol
will map symbol indexes to symbol names and look the names up in the
index automatically.  (This is currently ELF-symbol-table-dependent, but
there is almost nothing specific to ELF in here and we can add support
for other symbol table formats easily).

The compiler also uses index sections to communicate the contents of
object file symbol tables without relying on any specific ordering of
symbols: it doesn't need to sort them, and libctf will detect an
unsorted index section via the absence of the new CTF_F_IDXSORTED header
flag, and sort it if needed.

Iteration:
  ctf_symbol_next: Iterator which returns the types and names of symbols
                   one by one, either for function or data symbols.

This does not require any sorting: the ctf_link machinery uses it to
pull in all the compiler-provided symbols cheaply, but it is not
restricted to that use.

(Compatible) changes in API:
  ctf_lookup_by_symbol: can now be called for object and function
                        symbols: never returns ECTF_NOTDATA (which is
			now not thrown by anything, but is kept for
                        compatibility and because it is a plausible
                        error that we might start throwing again at some
                        later date).

Internally we also have changes to the ctf-string functionality so that
"external" strings (those where we track a string -> offset mapping, but
only write out an offset) can be consulted via the usual means
(ctf_strptr) before the strtab is written out.  This is important
because ctf_link_add_linker_symbol can now be handed symbols named via
strtab offsets, and ctf_link_shuffle_syms must figure out their actual
names by looking in the external symtab we have just been fed by the
ctf_link_add_strtab callback, long before that strtab is written out.

include/ChangeLog
2020-11-20  Nick Alcock  <nick.alcock@oracle.com>

	* ctf-api.h (ctf_symbol_next): New.
	(ctf_add_objt_sym): Likewise.
	(ctf_add_func_sym): Likewise.
	* ctf.h: Document new function info section format.
	(CTF_F_NEWFUNCINFO): New.
	(CTF_F_IDXSORTED): New.
	(CTF_F_MAX): Adjust accordingly.

libctf/ChangeLog
2020-11-20  Nick Alcock  <nick.alcock@oracle.com>

	* ctf-impl.h (CTF_INDEX_PAD_THRESHOLD): New.
	(_libctf_nonnull_): Likewise.
	(ctf_in_flight_dynsym_t): New.
	(ctf_dict_t) <ctf_funcidx_names>: Likewise.
	<ctf_objtidx_names>: Likewise.
	<ctf_nfuncidx>: Likewise.
	<ctf_nobjtidx>: Likewise.
	<ctf_funcidx_sxlate>: Likewise.
	<ctf_objtidx_sxlate>: Likewise.
	<ctf_objthash>: Likewise.
	<ctf_funchash>: Likewise.
	<ctf_dynsyms>: Likewise.
	<ctf_dynsymidx>: Likewise.
	<ctf_dynsymmax>: Likewise.
	<ctf_in_flight_dynsym>: Likewise.
	(struct ctf_next) <u.ctn_next>: Likewise.
	(ctf_symtab_skippable): New prototype.
	(ctf_add_funcobjt_sym): Likewise.
	(ctf_dynhash_sort_by_name): Likewise.
	(ctf_sym_to_elf64): Rename to...
	(ctf_elf32_to_link_sym): ... this, and...
	(ctf_elf64_to_link_sym): ... this.
	* ctf-open.c (init_symtab): Check for lack of CTF_F_NEWFUNCINFO
	flag, and presence of index sections.  Refactor out
	ctf_symtab_skippable and ctf_elf*_to_link_sym, and use them.  Use
	ctf_link_sym_t, not Elf64_Sym.  Skip initializing objt or func
	sxlate sections if corresponding index section is present.  Adjust
	for new func info section format.
	(ctf_bufopen_internal): Add ctf_err_warn to corrupt-file error
	handling.  Report incorrect-length index sections.  Always do an
	init_symtab, even if there is no symtab section (there may be index
	sections still).
	(flip_objts): Adjust comment: func and objt sections are actually
	identical in structure now, no need to caveat.
	(ctf_dict_close):  Free newly-added data structures.
	* ctf-create.c (ctf_create): Initialize them.
	(ctf_symtab_skippable): New, refactored out of
	init_symtab, with st_nameidx_set check added.
	(ctf_add_funcobjt_sym): New, add a function or object symbol to the
	ctf_objthash or ctf_funchash, by name.
	(ctf_add_objt_sym): Call it.
	(ctf_add_func_sym): Likewise.
	(symtypetab_delete_nonstatic_vars): New, delete vars also present as
	data objects.
	(CTF_SYMTYPETAB_EMIT_FUNCTION): New flag to symtypetab emitters:
	this is a function emission, not a data object emission.
	(CTF_SYMTYPETAB_EMIT_PAD): New flag to symtypetab emitters: emit
	pads for symbols with no type (only set for unindexed sections).
	(CTF_SYMTYPETAB_FORCE_INDEXED): New flag to symtypetab emitters:
	always emit indexed.
	(symtypetab_density): New, figure out section sizes.
	(emit_symtypetab): New, emit a symtypetab.
	(emit_symtypetab_index): New, emit a symtypetab index.
	(ctf_serialize): Call them, emitting suitably sorted symtypetab
	sections and indexes.  Set suitable header flags.  Copy over new
	fields.
	* ctf-hash.c (ctf_dynhash_sort_by_name): New, used to impose an
	order on symtypetab index sections.
	* ctf-link.c (ctf_add_type_mapping): Delete erroneous comment
	relating to code that was never committed.
	(ctf_link_one_variable): Improve variable name.
	(check_sym): New, symtypetab analogue of check_variable.
	(ctf_link_deduplicating_one_symtypetab): New.
	(ctf_link_deduplicating_syms): Likewise.
	(ctf_link_deduplicating): Call them.
	(ctf_link_deduplicating_per_cu): Note that we don't call them in
	this case (yet).
	(ctf_link_add_strtab): Set the error on the fp correctly.
	(ctf_link_add_linker_symbol): New (no longer a do-nothing stub), add
	a linker symbol to the in-flight list.
	(ctf_link_shuffle_syms): New (no longer a do-nothing stub), turn the
	in-flight list into a mapping we can use, now its names are
	resolvable in the external strtab.
	* ctf-string.c (ctf_str_rollback_atom): Don't roll back atoms with
	external strtab offsets.
	(ctf_str_rollback): Adjust comment.
	(ctf_str_write_strtab): Migrate ctf_syn_ext_strtab population from
	writeout time...
	(ctf_str_add_external): ... to string addition time.
	* ctf-lookup.c (ctf_lookup_var_key_t): Rename to...
	(ctf_lookup_idx_key_t): ... this, now we use it for syms too.
	<clik_names>: New member, a name table.
	(ctf_lookup_var): Adjust accordingly.
	(ctf_lookup_variable): Likewise.
	(ctf_lookup_by_id): Shuffle further up in the file.
	(ctf_symidx_sort_arg_cb): New, callback for...
	(sort_symidx_by_name): ... this new function to sort a symidx
	found to be unsorted (likely originating from the compiler).
	(ctf_symidx_sort): New, sort a symidx.
	(ctf_lookup_symbol_name): Support dynamic symbols with indexes
	provided by the linker.  Use ctf_link_sym_t, not Elf64_Sym.
	Check the parent if a child lookup fails.
	(ctf_lookup_by_symbol): Likewise.  Work for function symbols too.
	(ctf_symbol_next): New, iterate over symbols with types (without
	sorting).
	(ctf_lookup_idx_name): New, bsearch for symbol names in indexes.
	(ctf_try_lookup_indexed): New, attempt an indexed lookup.
	(ctf_func_info): Reimplement in terms of ctf_lookup_by_symbol.
	(ctf_func_args): Likewise.
	(ctf_get_dict): Move...
	* ctf-types.c (ctf_get_dict): ... here.
	* ctf-util.c (ctf_sym_to_elf64): Re-express as...
	(ctf_elf64_to_link_sym): ... this.  Add new st_symidx field, and
	st_nameidx_set (always 0, so st_nameidx can be ignored).  Look in
	the ELF strtab for names.
	(ctf_elf32_to_link_sym): Likewise, for Elf32_Sym.
	(ctf_next_destroy): Destroy ctf_next_t.u.ctn_next if need be.
	* libctf.ver: Add ctf_symbol_next, ctf_add_objt_sym and
	ctf_add_func_sym.
2020-11-20 13:34:08 +00:00
Nick Alcock
3d16b64e28 bfd, include, ld, binutils, libctf: CTF should use the dynstr/sym
This is embarrassing.

The whole point of CTF is that it remains intact even after a binary is
stripped, providing a compact mapping from symbols to types for
everything in the externally-visible interface of an ELF object: it has
connections to the symbol table for that purpose, and to the string
table to avoid duplicating symbol names.  So it's a shame that the hooks
I implemented last year served to hook it up to the .symtab and .strtab,
which obviously disappear on strip, leaving any accompanying the CTF
dict containing references to strings (and, soon, symbols) which don't
exist any more because their containing strtab has been vaporized.  The
original Solaris design used .dynsym and .dynstr (well, actually,
.ldynsym, which has more symbols) which do not disappear. So should we.

Thankfully the work we did before serves as guide rails, and adjusting
things to use the .dynstr and .dynsym was fast and easy.  The only
annoyance is that the dynsym is assembled inside elflink.c in a fairly
piecemeal fashion, so that the easiest way to get the symbols out was to
hook in before every call to swap_symbol_out (we also leave in a hook in
front of symbol additions to the .symtab because it seems plausible that
we might want to hook them in future too: for now that hook is unused).
We adjust things so that rather than being offered a whole hash table of
symbols at once, libctf is now given symbols one at a time, with st_name
indexes already resolved and pointing at their final .dynstr offsets:
it's now up to libctf to resolve these to names as needed using the
strtab info we pass it separately.

Some bits might be contentious.  The ctf_new_dynstr callback takes an
elf_internal_sym, and this remains an elf_internal_sym right down
through the generic emulation layers into ldelfgen.  This is no worse
than the elf_sym_strtab we used to pass down, but in the future when we
gain non-ELF CTF symtab support we might want to lower the
elf_internal_sym to some other representation (perhaps a
ctf_link_symbol) in bfd or in ldlang_ctf_new_dynsym.  We rename the
'apply_strsym' hooks to 'acquire_strings' instead, becuse they no longer
have anything to do with symbols.

There are some API changes to pieces of API which are technically public
but actually totally unused by anything and/or unused by anything but ld
so they can change freely: the ctf_link_symbol gains new fields to allow
symbol names to be given as strtab offsets as well as strings, and a
symidx so that the symbol index can be passed in.  ctf_link_shuffle_syms
loses its callback parameter: the idea now is that linkers call the new
ctf_link_add_linker_symbol for every symbol in .dynsym, feed in all the
strtab entries with ctf_link_add_strtab, and then a call to
ctf_link_shuffle_syms will apply both and arrange to use them to reorder
the CTF symtab at CTF serialization time (which is coming in the next
commit).

Inside libctf we have a new preamble flag CTF_F_DYNSTR which is always
set in v3-format CTF dicts from this commit forwards: CTF dicts without
this flag are associated with .strtab like they used to be, so that old
dicts' external strings don't turn to garbage when loaded by new libctf.
Dicts with this flag are associated with .dynstr and .dynsym instead.
(The flag is not the next in sequence because this commit was written
quite late: the missing flags will be filled in by the next commit.)

Tests forthcoming in a later commit in this series.

bfd/ChangeLog
2020-11-20  Nick Alcock  <nick.alcock@oracle.com>

	* elflink.c (elf_finalize_dynstr): Call examine_strtab after
	dynstr finalization.
	(elf_link_swap_symbols_out): Don't call it here.  Call
	ctf_new_symbol before swap_symbol_out.
	(elf_link_output_extsym): Call ctf_new_dynsym before
	swap_symbol_out.
	(bfd_elf_final_link): Likewise.
	* elf.c (swap_out_syms): Pass in bfd_link_info.  Call
	ctf_new_symbol before swap_symbol_out.
	(_bfd_elf_compute_section_file_positions): Adjust.

binutils/ChangeLog
2020-11-20  Nick Alcock  <nick.alcock@oracle.com>

	* readelf.c (dump_section_as_ctf): Use .dynsym and .dynstr, not
	.symtab and .strtab.

include/ChangeLog
2020-11-20  Nick Alcock  <nick.alcock@oracle.com>

	* bfdlink.h (struct elf_sym_strtab): Replace with...
	(struct elf_internal_sym): ... this.
	(struct bfd_link_callbacks) <examine_strtab>: Take only a
	symstrtab argument.
	<ctf_new_symbol>: New.
	<ctf_new_dynsym>: Likewise.
	* ctf-api.h (struct ctf_link_sym) <st_symidx>: New.
	<st_nameidx>: Likewise.
	<st_nameidx_set>: Likewise.
	(ctf_link_iter_symbol_f): Removed.
	(ctf_link_shuffle_syms): Remove most parameters, just takes a
	ctf_dict_t now.
	(ctf_link_add_linker_symbol): New, split from
	ctf_link_shuffle_syms.
	* ctf.h (CTF_F_DYNSTR): New.
	(CTF_F_MAX): Adjust.

ld/ChangeLog
2020-11-20  Nick Alcock  <nick.alcock@oracle.com>

	* ldelfgen.c (struct ctf_strsym_iter_cb_arg): Rename to...
	(struct ctf_strtab_iter_cb_arg): ... this, changing fields:
	<syms>: Remove.
	<symcount>: Remove.
	<symstrtab>: Rename to...
	<strtab>: ... this.
	(ldelf_ctf_strtab_iter_cb): Adjust.
	(ldelf_ctf_symbols_iter_cb): Remove.
	(ldelf_new_dynsym_for_ctf): New, tell libctf about a single
	symbol.
	(ldelf_examine_strtab_for_ctf): Rename to...
	(ldelf_acquire_strings_for_ctf): ... this, only doing the strtab
	portion and not symbols.
	* ldelfgen.h: Adjust declarations accordingly.
	* ldemul.c (ldemul_examine_strtab_for_ctf): Rename to...
	(ldemul_acquire_strings_for_ctf): ... this.
	(ldemul_new_dynsym_for_ctf): New.
	* ldemul.h: Adjust declarations accordingly.
	* ldlang.c (ldlang_ctf_apply_strsym): Rename to...
	(ldlang_ctf_acquire_strings): ... this.
	(ldlang_ctf_new_dynsym): New.
	(lang_write_ctf): Call ldemul_new_dynsym_for_ctf with NULL to do
	the actual symbol shuffle.
	* ldlang.h (struct elf_strtab_hash): Adjust accordingly.
	* ldmain.c (bfd_link_callbacks): Wire up new/renamed callbacks.

libctf/ChangeLog
2020-11-20  Nick Alcock  <nick.alcock@oracle.com>

	* ctf-link.c (ctf_link_shuffle_syms): Adjust.
	(ctf_link_add_linker_symbol): New, unimplemented stub.
	* libctf.ver: Add it.
	* ctf-create.c (ctf_serialize): Set CTF_F_DYNSTR on newly-serialized
	dicts.
	* ctf-open-bfd.c (ctf_bfdopen_ctfsect): Check for the flag: open the
	symtab/strtab if not present, dynsym/dynstr otherwise.
	* ctf-archive.c (ctf_arc_bufpreamble): New, get the preamble from
	some arbitrary member of a CTF archive.
	* ctf-impl.h (ctf_arc_bufpreamble): Declare it.
2020-11-20 13:34:07 +00:00
Nick Alcock
139633c307 libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file".  Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago.  So the term "CTF file"
refers to something that is never a file!  This is at best confusing.

The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.

So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead.  Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.

Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).

binutils/ChangeLog
2020-11-20  Nick Alcock  <nick.alcock@oracle.com>

	* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
	(dump_ctf_archive_member): Likewise.
	(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
	* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
	(dump_ctf_archive_member): Likewise.
	(dump_section_as_ctf): Likewise.  Use ctf_dict_close, not
	ctf_file_close.

gdb/ChangeLog
2020-11-20  Nick Alcock  <nick.alcock@oracle.com>

	* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
	(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.

include/ChangeLog
2020-11-20  Nick Alcock  <nick.alcock@oracle.com>

	* ctf-api.h (ctf_file_t): Rename to...
	(ctf_dict_t): ... this.  Keep ctf_file_t around for compatibility.
	(struct ctf_file): Likewise rename to...
	(struct ctf_dict): ... this.
	(ctf_file_close): Rename to...
	(ctf_dict_close): ... this, keeping compatibility function.
	(ctf_parent_file): Rename to...
	(ctf_parent_dict): ... this, keeping compatibility function.
	All callers adjusted.
	* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
	(struct ctf_archive) <ctfa_nfiles>: Rename to...
	<ctfa_ndicts>: ... this.

ld/ChangeLog
2020-11-20  Nick Alcock  <nick.alcock@oracle.com>

	* ldlang.c (ctf_output): This is a ctf_dict_t now.
	(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
	(ldlang_open_ctf): Adjust comment.
	(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
	* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
	ctf_dict_t.  Change opaque declaration accordingly.
	* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
	* ldemul.h (examine_strtab_for_ctf): Likewise.
	(ldemul_examine_strtab_for_ctf): Likewise.
	* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.

libctf/ChangeLog
2020-11-20  Nick Alcock  <nick.alcock@oracle.com>

	* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
	adjusted.
	(ctf_fileops): Rename to...
	(ctf_dictops): ... this.
	(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
	<cd_id_to_dict_t>: ... this.
	(ctf_file_t): Fix outdated comment.
	<ctf_fileops>: Rename to...
	<ctf_dictops>: ... this.
	(struct ctf_archive_internal) <ctfi_file>: Rename to...
	<ctfi_dict>: ... this.
	* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
	Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
	Rename ctf_file_close to ctf_dict_close.  All users adjusted.
	* ctf-create.c: Likewise.  Refer to CTF dicts, not CTF containers.
	(ctf_bundle_t) <ctb_file>: Rename to...
	<ctb_dict): ... this.
	* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
	* ctf-dedup.c: Likewise.  Rename ctf_file_close to
	ctf_dict_close. Refer to CTF dicts, not CTF containers.
	* ctf-dump.c: Likewise.
	* ctf-error.c: Likewise.
	* ctf-hash.c: Likewise.
	* ctf-inlines.h: Likewise.
	* ctf-labels.c: Likewise.
	* ctf-link.c: Likewise.
	* ctf-lookup.c: Likewise.
	* ctf-open-bfd.c: Likewise.
	* ctf-string.c: Likewise.
	* ctf-subr.c: Likewise.
	* ctf-types.c: Likewise.
	* ctf-util.c: Likewise.
	* ctf-open.c: Likewise.
	(ctf_file_close): Rename to...
	(ctf_dict_close): ...this.
	(ctf_file_close): New trivial wrapper around ctf_dict_close, for
	compatibility.
	(ctf_parent_file): Rename to...
	(ctf_parent_dict): ... this.
	(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
	compatibility.
	* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 13:34:04 +00:00
Nick Alcock
ec388c16cd libctf: error out on corrupt CTF with invalid header flags
If corrupt CTF with invalid header flags is passed in, return the new
error ECTF_FLAGS.

include/
	* ctf-api.h (ECTF_FLAGS): New.
	(ECTF_NERR): Adjust.
	* ctf.h (CTF_F_MAX): New.
libctf/
	* ctf-open.c (ctf_bufopen_internal): Diagnose invalid flags.
2020-07-22 17:57:54 +01:00
Alan Modra
b3adc24a07 Update year range in copyright notice of binutils files 2020-01-01 18:42:54 +10:30
Nick Alcock
d851ecd373 libctf: support getting strings from the ELF strtab
The CTF file format has always supported "external strtabs", which
internally are strtab offsets with their MSB on: such refs
get their strings from the strtab passed in at CTF file open time:
this is usually intended to be the ELF strtab, and that's what this
implementation is meant to support, though in theory the external
strtab could come from anywhere.

This commit adds support for these external strings in the ctf-string.c
strtab tracking layer.  It's quite easy: we just add a field csa_offset
to the atoms table that tracks all strings: this field tracks the offset
of the string in the ELF strtab (with its MSB already on, courtesy of a
new macro CTF_SET_STID), and adds a new function that sets the
csa_offset to the specified offset (plus MSB).  Then we just need to
avoid writing out strings to the internal strtab if they have csa_offset
set, and note that the internal strtab is shorter than it might
otherwise be.

(We could in theory save a little more time here by eschewing sorting
such strings, since we never actually write the strings out anywhere,
but that would mean storing them separately and it's just not worth the
complexity cost until profiling shows it's worth doing.)

We also have to go through a bit of extra effort at variable-sorting
time.  This was previously using direct references to the internal
strtab: it couldn't use ctf_strptr or ctf_strraw because the new strtab
is not yet ready to put in its usual field (in a ctf_file_t that hasn't
even been allocated yet at this stage): but now we're using the external
strtab, this will no longer do because it'll be looking things up in the
wrong strtab, with disastrous results.  Instead, pass the new internal
strtab in to a new ctf_strraw_explicit function which is just like
ctf_strraw except you can specify a ne winternal strtab to use.

But even now that it is using a new internal strtab, this is not quite
enough: it can't look up strings in the external strtab because ld
hasn't written it out yet, and when it does will write it straight to
disk.  Instead, when we write the internal strtab, note all the offset
-> string mappings that we have noted belong in the *external* strtab to
a new "synthetic external strtab" dynhash, ctf_syn_ext_strtab, and look
in there at ctf_strraw time if it is set.  This uses minimal extra
memory (because only strings in the external strtab that we actually use
are stored, and even those come straight out of the atoms table), but
let both variable sorting and name interning when ctf_bufopen is next
called work fine.  (This also means that we don't need to filter out
spurious ECTF_STRTAB warnings from ctf_bufopen but can pass them back to
the caller, once we wrap ctf_bufopen so that we have a new internal
variant of ctf_bufopen etc that we can pass the synthetic external
strtab to. That error has been filtered out since the days of Solaris
libctf, which didn't try to handle the problem of getting external
strtabs right at construction time at all.)

v3: add the synthetic strtab and all associated machinery.
v5: fix tabdamage.

include/
	* ctf.h (CTF_SET_STID): New.

libctf/
	* ctf-impl.h (ctf_str_atom_t) <csa_offset>: New field.
	(ctf_file_t) <ctf_syn_ext_strtab>: Likewise.
	(ctf_str_add_ref): Name the last arg.
	(ctf_str_add_external) New.
	(ctf_str_add_strraw_explicit): Likewise.
	(ctf_simple_open_internal): Likewise.
	(ctf_bufopen_internal): Likewise.

	* ctf-string.c (ctf_strraw_explicit): Split from...
	(ctf_strraw): ... here, with new support for ctf_syn_ext_strtab.
	(ctf_str_add_ref_internal): Return the atom, not the
	string.
	(ctf_str_add): Adjust accordingly.
	(ctf_str_add_ref): Likewise.  Move up in the file.
	(ctf_str_add_external): New: update the csa_offset.
	(ctf_str_count_strtab): Only account for strings with no csa_offset
	in the internal strtab length.
	(ctf_str_write_strtab): If the csa_offset is set, update the
	string's refs without writing the string out, and update the
	ctf_syn_ext_strtab.  Make OOM handling less ugly.
	* ctf-create.c (struct ctf_sort_var_arg_cb): New.
	(ctf_update): Handle failure to populate the strtab.  Pass in the
	new ctf_sort_var arg.  Adjust for ctf_syn_ext_strtab addition.
	Call ctf_simple_open_internal, not ctf_simple_open.
	(ctf_sort_var): Call ctf_strraw_explicit rather than looking up
	strings by hand.
	* ctf-hash.c (ctf_hash_insert_type): Likewise (but using
	ctf_strraw).  Adjust to diagnose ECTF_STRTAB nonetheless.
	* ctf-open.c (init_types): No longer filter out ECTF_STRTAB.
	(ctf_file_close): Destroy the ctf_syn_ext_strtab.
	(ctf_simple_open): Rename to, and reimplement as a wrapper around...
	(ctf_simple_open_internal): ... this new function, which calls
	ctf_bufopen_internal.
	(ctf_bufopen): Rename to, and reimplement as a wrapper around...
	(ctf_bufopen_internal): ... this new function, which sets
	ctf_syn_ext_strtab.
2019-10-03 17:04:55 +01:00
Nick Alcock
2db912ba1a libctf: add the object index and function index sections
No code handles these yet, but our latest GCC patches are generating
them, so we have to be ready for them or erroneously conclude that we
have file corruption.

(This simultaneously fixes a longstanding bug, concealed because nothing
was generating anything in the object or function info sections, where
the end of the section was being tested against the wrong thing: it
would have walked over the entire contents of the variable section and
treated them as part of the function info section.  This had to change
now anyway because the new sections have landed in between.)

include/
	* ctf.h: Add object index and function index sections.  Describe
	them. Improve the description of the variable section and clarify
	the constraints on backward-pointing type nodes.
	(ctf_header): Add cth_objtidxoff, cth_funcidxoff.

libctf/
	* ctf-open.c (init_symtab): Check for overflow against the right
	section.
	(upgrade_header): Set cth_objtidxoff, cth_funcidxoff to zero-length.
	(upgrade_types_v1): Note that these sections are not checked.
	(flip_header): Endian-swap the header fields.
	(flip_ctf): Endian-swap the sections.
	(flip_objts): Update comment.
	(ctf_bufopen): Check header offsets and alignment for validity.
2019-10-03 17:04:55 +01:00
Nick Alcock
fd55eae84d libctf: allow the header to change between versions
libctf supports dynamic upgrading of the type table as file format
versions change, but before now has not supported changes to the CTF
header.  Doing this is complicated by the baroque storage method used:
the CTF header is kept prepended to the rest of the CTF data, just as
when read from the file, and written out from there, and is
endian-flipped in place.

This makes accessing it needlessly hard and makes it almost impossible
to make the header larger if we add fields.  The general storage
machinery around the malloced ctf pointer (the 'ctf_base') is also
overcomplicated: the pointer is sometimes malloced locally and sometimes
assigned from a parameter, so freeing it requires checking to see if
that parameter was used, needlessly coupling ctf_bufopen and
ctf_file_close together.

So split the header out into a new ctf_file_t.ctf_header, which is
written out explicitly: squeeze it out of the CTF buffer whenever we
reallocate it, and use ctf_file_t.ctf_buf to skip past the header when
we do not need to reallocate (when no upgrading or endian-flipping is
required).  We now track whether the CTF base can be freed explicitly
via a new ctf_dynbase pointer which is non-NULL only when freeing is
possible.

With all this done, we can upgrade the header on the fly and add new
fields as desired, via a new upgrade_header function in ctf-open.
As with other forms of upgrading, libctf upgrades older headers
automatically to the latest supported version at open time.

For a first use of this field, we add a new string field cth_cuname, and
a corresponding setter/getter pair ctf_cuname_set and ctf_cuname: this
is used by debuggers to determine whether a CTF section's types relate
to a single compilation unit, or to all compilation units in the
program.  (Types with ambiguous definitions in different CUs have only
one of these types placed in the top-level shared .ctf container: the
rest are placed in much smaller per-CU containers, which have the shared
container as their parent.  Since CTF must be useful in the absence of
DWARF, we store the names of the relevant CUs ourselves, so the debugger
can look them up.)

v5: fix tabdamage.

include/
	* ctf-api.h (ctf_cuname): New function.
	(ctf_cuname_set): Likewise.
	* ctf.h: Improve comment around upgrading, no longer
	implying that v2 is the target of upgrades (it is v3 now).
	(ctf_header_v2_t): New, old-format header for backward
	compatibility.
	(ctf_header_t): Add cth_cuname: this is the first of several
	header changes in format v3.
libctf/
	* ctf-impl.h (ctf_file_t): New fields ctf_header, ctf_dynbase,
	ctf_cuname, ctf_dyncuname: ctf_base and ctf_buf are no longer const.
	* ctf-open.c (ctf_set_base): Preserve the gap between ctf_buf and
	ctf_base: do not assume that it is always sizeof (ctf_header_t).
	Print out ctf_cuname: only print out ctf_parname if set.
	(ctf_free_base): Removed, ctf_base is no longer freed: free
	ctf_dynbase instead.
	(ctf_set_version): Fix spacing.
	(upgrade_header): New, in-place header upgrading.
	(upgrade_types): Rename to...
	(upgrade_types_v1): ... this.  Free ctf_dynbase, not ctf_base.  No
	longer track old and new headers separately.  No longer allow for
	header sizes explicitly: squeeze the headers out on upgrade (they
	are preserved in fp->ctf_header).  Set ctf_dynbase, ctf_base and
	ctf_buf explicitly.  Use ctf_free, not ctf_free_base.
	(upgrade_types): New, also handle ctf_parmax updating.
	(flip_header): Flip ctf_cuname.
	(flip_types): Flip BUF explicitly rather than deriving BUF from
	BASE.
	(ctf_bufopen): Store the header in fp->ctf_header.  Correct minimum
	required alignment of objtoff and funcoff.  No longer store it in
	the ctf_buf unless that buf is derived unmodified from the input.
	Set ctf_dynbase where ctf_base is dynamically allocated. Drop locals
	that duplicate fields in ctf_file: move allocation of ctf_file
	further up instead.  Call upgrade_header as needed.  Move
	version-specific ctf_parmax initialization into upgrade_types.  More
	concise error handling.
	(ctf_file_close): No longer test for null pointers before freeing.
	Free ctf_dyncuname, ctf_dynbase, and ctf_header.  Do not call
	ctf_free_base.
	(ctf_cuname): New.
	(ctf_cuname_set): New.
	* ctf-create.c (ctf_update): Populate ctf_cuname.
	(ctf_gzwrite): Write out the header explicitly.  Remove obsolescent
	comment.
	(ctf_write): Likewise.
	(ctf_compress_write): Get the header from ctf_header, not ctf_base.
	Fix the compression length: fp->ctf_size never counted the CTF
	header.  Simplify the compress call accordingly.
2019-10-03 17:04:55 +01:00
Nick Alcock
7cee18263c libctf: endianness fixes
Testing of the first code to generate CTF_K_SLICEs on big-endian
revealed a bunch of new problems in this area.  Most importantly, the
trick we did earlier to avoid wasting two bytes on padding in the
ctf_slice_t is best avoided: because it leads to the whole file after
that point no longer being naturally aligned, all multibyte accesses
from then on must use memmove() to avoid unaligned access on platforms
where that is fatal.  In future, this is planned, but for now we are
still doing direct access in many places, so we must revert to making
ctf_slice_t properly aligned for storage in an array.

Rather than wasting bytes on padding, we boost the size of cts_offset
and cts_bits.  This is still a waste of space (we cannot have offsets or
bits in bitfields > 256) but it cannot be avoided for now, and slices
are not so common that this will be a serious problem.

A possibly-worse endianness problem fixed at the same time involves
a codepath used only for foreign-endian, uncompressed CTF files, where
we were not copying the actual CTF data into the buffer, leading to
libctf reading only zeroes (or, possibly, uninitialized garbage).

Finally, when we read in a CTF file, we copy the header and work from
the copy.  We were flipping the endianness of the header copy, and of
the body of the file buffer, but not of the header in the file buffer
itself: so if we write the file back out again we end up with an
unreadable frankenfile with header and body of different endiannesses.
Fix by flipping both copies of the header.

include/
	* ctf.h (ctf_slice_t): Make cts_offset and cts_bits unsigned
	short, so following structures are properly aligned.

libctf/
	* ctf-open.c (get_vbytes_common): Return the new slice size.
	(ctf_bufopen): Flip the endianness of the CTF-section header copy.
	Remember to copy in the CTF data when opening an uncompressed
	foreign-endian CTF file.  Prune useless variable manipulation.
2019-06-21 13:04:02 +01:00
Nick Alcock
a610aa4f9c libctf: fix the type of ctf_enum.cte_value
This stops the file format from depending on the size of the host int.
(It does mean that we cannot encode enums with a value > 2^32 on
platforms with an int > 2^32: this will be fixed in the next format
revision.)

include/
	* ctf.h (ctf_enum.cte_value): Fix type to int32_t.
2019-06-04 17:05:08 +01:00
Nick Alcock
9402cc593f libctf: mmappable archives
If you need to store a large number of CTF containers somewhere, this
provides a dedicated facility for doing so: an mmappable archive format
like a very simple tar or ar without all the system-dependent format
horrors or need for heavy file copying, with built-in compression of
files above a particular size threshold.

libctf automatically mmap()s uncompressed elements of these archives, or
uncompresses them, as needed.  (If the platform does not support mmap(),
copying into dynamically-allocated buffers is used.)

Archive iteration operations are partitioned into raw and non-raw
forms. Raw operations pass thhe raw archive contents to the callback:
non-raw forms open each member with ctf_bufopen() and pass the resulting
ctf_file_t to the iterator instead.  This lets you manipulate the raw
data in the archive, or the contents interpreted as a CTF file, as
needed.

It is not yet known whether we will store CTF archives in a linked ELF
object in one of these (akin to debugdata) or whether they'll get one
section per TU plus one parent container for types shared between them.
(In the case of ELF objects with very large numbers of TUs, an archive
of all of them would seem preferable, so we might just use an archive,
and add lzma support so you can assume that .gnu_debugdata and .ctf are
compressed using the same algorithm if both are present.)

To make usage easier, the ctf_archive_t is not the on-disk
representation but an abstraction over both ctf_file_t's and archives of
many ctf_file_t's: users see both CTF archives and raw CTF files as
ctf_archive_t's upon opening, the only difference being that a raw CTF
file has only a single "archive member", named ".ctf" (the default if a
null pointer is passed in as the name).  The next commit will make use
of this facility, in addition to providing the public interface to
actually open archives.  (In the future, it should be possible to have
all CTF sections in an ELF file appear as an "archive" in the same
fashion.)

This machinery is also used to allow library-internal creators of
ctf_archive_t's (such as the next commit) to stash away an ELF string
and symbol table, so that all opens of members in a given archive will
use them.  This lets CTF archives exploit the ELF string and symbol
table just like raw CTF files can.

(All this leads to somewhat confusing type naming.  The ctf_archive_t is
a typedef for the opaque internal type, struct ctf_archive_internal: the
non-internal "struct ctf_archive" is the on-disk structure meant for
other libraries manipulating CTF files.  It is probably clearest to use
the struct name for struct ctf_archive_internal inside the program, and
the typedef names outside.)

libctf/
	* ctf-archive.c: New.
	* ctf-impl.h (ctf_archive_internal): New type.
	(ctf_arc_open_internal): New declaration.
	(ctf_arc_bufopen): Likewise.
	(ctf_arc_close_internal): Likewise.
include/
	* ctf.h (CTFA_MAGIC): New.
	(struct ctf_archive): New.
	(struct ctf_archive_modent): Likewise.
	* ctf-api.h (ctf_archive_member_f): New.
	(ctf_archive_raw_member_f): Likewise.
	(ctf_arc_write): Likewise.
	(ctf_arc_close): Likewise.
	(ctf_arc_open_by_name): Likewise.
	(ctf_archive_iter): Likewise.
	(ctf_archive_raw_iter): Likewise.
	(ctf_get_arc): Likewise.
2019-05-28 17:07:55 +01:00
Nick Alcock
fceac76e64 include: new header ctf.h: file format description
The data structures and macros in this header can be used, if desired,
to access or create CTF files directly, without going through libctf,
though this should rarely be necessary in practice.

libctf relies on this header as its description of the CTF file format.

include/
	* ctf.h: New file.
2019-05-28 17:06:55 +01:00