Most targets already default to loading code via their LMA, but for
a few, this means the default changes from loading VMA to LMA. It's
better to have the different targets be consistent, and allows some
code clean up.
We've moved custom option install for other targets to sim_open, so update
cris too. It's the last one using MODULE_LIST, so we can drop that from
the common code too.
This code relies on the old sim-break module, but that was deleted in 2003.
The module only existed for gdb to tell the sim to set breakpoints on its
behalf, but then that logic was abandoned in favor of gdb knowing all about
proper breakpoints (since it does already for non-sim targets). Some dead
code lived on in the older ports though -- clean it up now.
We build & bundle the watchpoint module everywhere, but we don't make
the command line flags available by default. A few targets opted in,
but most did not. Just enable the flag for everyone. Not all targets
will respect the flags (making them nops), but shouldn't be a big deal.
This is how we handle other common modules already.
No target has used this, and it's a cheap hack in place in using the
common memory module. We want everyone using that though, so drop
support for flatmem entirely.
Fix occurrences of left-shifting negative constants in C code.
sim/arm/ChangeLog:
* thumbemu.c (handle_T2_insn): Fix left shift of negative value.
* armemu.c (handle_v6_insn): Likewise.
sim/avr/ChangeLog:
* interp.c (sign_ext): Fix left shift of negative value.
sim/mips/ChangeLog:
* micromips.igen (process_isa_mode): Fix left shift of negative
value.
sim/msp430/ChangeLog:
* msp430-sim.c (get_op, put_op): Fix left shift of negative value.
sim/v850/ChangeLog:
* simops.c (v850_bins): Fix left shift of negative value.
* aarch64/simulator.c (system_get): New function. Provides read
access to the dczid system register.
(do_mrs): New function - implements the MRS instruction.
(dexSystem): Call do_mrs for the MRS instruction. Halt on
unimplemented system instructions.
* msp430-sim.c (sim_open): Check for needed memory at address
0x500 not 0x200.
(get_op): Add support for F5 hardware multiply addresses.
(put_op): Likewise.
POSIX does not define $< behavior in ordinary rules, so avoid its use
to fix building on non-GNU make setups.
Reported-by: Christopher January <chris.january@allinea.com>
Keeping track of the right printf formats for the various types can be
a pretty big hassle, especially in common code which has to support a
variety of bitsizes. Take a page from the existing standards and add
a set of PRI macros which hide the details in a common header.
This is not entirely useful as avr doesn't (yet) store its register
state in the cpu state, but it does allow for switching to the common
code for these functions.
Having this be a config option doesn't make sense: the code size is
pretty much the same (as all the logic is still active), and if it's
disabled, the sim throws an error if you try to use it. That means
we can't break sims that weren't using it before by enabling it all
the time.
Building a gdb that includes the PPC sim in C++ mode fails to link with:
(...)s.o compile-object-load.o compile-object-run.o compile-loc2c.o compile-c-support.o inflow.o init.o \
../sim/ppc/libsim.a ../readline/libreadline.a ../opcodes/libopcodes.a ../bfd/libbfd.a -lz ../libiberty/libiberty.a ../libdecnumber/libdecnumber.a -ldl -ldl -lncurses -lm -ldl -lguile-2.0 -lgc -lpthread -ldl -lutil -lm -lpython2.7 -Xlinker -export-dynamic -lexpat -llzma -lbabeltrace -lbabeltrace-ctf ../libiberty/libiberty.a build-gnulib/import/libgnu.a
../sim/ppc/libsim.a(sim_calls.o): In function `sim_open':
/home/pedro/gdb/mygit/cxx-convertion/src/sim/ppc/sim_calls.c:73: undefined reference to `printf_filtered'
/home/pedro/gdb/mygit/cxx-convertion/src/sim/ppc/sim_calls.c:73: undefined reference to `printf_filtered'
../sim/ppc/libsim.a(sim_calls.o): In function `sim_close':
/home/pedro/gdb/mygit/cxx-convertion/src/sim/ppc/sim_calls.c:93: undefined reference to `printf_filtered'
/home/pedro/gdb/mygit/cxx-convertion/src/sim/ppc/sim_calls.c:93: undefined reference to `printf_filtered'
../sim/ppc/libsim.a(sim_calls.o): In function `sim_load':
/home/pedro/gdb/mygit/cxx-convertion/src/sim/ppc/sim_calls.c:102: undefined reference to `printf_filtered'
../sim/ppc/libsim.a(sim_calls.o):/home/pedro/gdb/mygit/cxx-convertion/src/sim/ppc/sim_calls.c:102: more undefined references to `printf_filtered' follow
collect2: error: ld returned 1 exit status
The undefined references come from TRACE macro calls, which expand to
calls to printf_filtered.
But note that the sim's 'printf_filtered' is actually a #define to
'sim_io_printf_filtered', in sim_callbacks.h :
#define printf_filtered sim_io_printf_filtered
AFAICS, this is not meant to call gdb's printf_filtered function. The
ChangeLog entry that added the printf_filtered macro reads:
Tue Jul 30 21:12:24 1996 Andrew Cagney <cagney@kremvax.highland.com.au>
* sim_callbacks.h (sim_io_printf_filtered): Replace
printf_filtered with a local simulator specific version. Add
#define printf_filtered to simplify updating of existing code.
That is, just another incomplete/partial transition. Maybe prior to
1996 this was really meant to call gdb's printf_filtered version.
The reference to printf_filtered appears because sim_calls.c, the
compilation unit that fails to link, has this at the top:
#undef printf_filtered /* blow away the mapping */
presumably so that this further below:
void
sim_io_printf_filtered(const char *fmt,
...)
{
(...)
callbacks->printf_filtered(callbacks, "%s", message);
}
works. So those TRACE macros instances in sim_calls.c just happen to
work because gdb is linked in, which satisfies the 'printf_filtered'
reference, when GDB is built in C mode. When built in C++ mode, the
problem is exposed, as GDB's printf_filtered is mangled.
The fix here is to make the TRACE macro call sim_io_printf_filtered
directly.
(Standalone "run" doesn't fail to link simply because the offending
routines are not part of its link.)
sim/ppc/ChangeLog
2015-11-17 Pedro Alves <palves@redhat.com>
* debug.h (TRACE, ITRACE, DTRACE, DITRACE, PTRACE): Call
sim_io_printf_filtered instead of printf_filtered.
Now that all arches (for the most part) have moved over, move sim-stop.o,
sim-reason.o, and sim-reg.o to the common object list and out of all the
arch ports.
Now that we have access to the sim state everywhere, we can convert to
the common engine logic for overall processing. This frees us up from
tracking exception state ourselves.
The cr16 port has a lot of translation/offset logic baked into it, but
it all looks like copy & paste from the d10v port rather than something
the cr16 port wants.
By itself, this commit doesn't really change anything. It lays the
groundwork for using the cpu state in follow up commits, both for
engine state and for cpu state. Splitting things up this way so it
is easier to see how things have changed.
Now that we have access to the sim state everywhere, we can convert to
the common engine logic for overall processing. This frees us up from
tracking exception state ourselves.
By itself, this commit doesn't really change anything. It lays the
groundwork for using the cpu state in follow up commits, both for
engine state and for cpu state. Splitting things up this way so it
is easier to see how things have changed.
This avoids using global variables to hold the cpu state so we can
better integrate with the sim common code.
There's also a minor fix here where we move the pc register back into
the state that is accessible by the asints array. When it was pulled
out previously, the reg store/fetch functions broke, but no one really
noticed as the mcore gdb port was dropped a while back.
This is not entirely useful as mcore doesn't (yet) store its register
state in the cpu state, but it does allow for switching to the common
code for these functions.
Other than the nice advantage of all sims having to declare one fewer
common function, this also fixes leakage in pretty much every sim.
Many were not freeing any resources, and a few were inconsistent as
to the ones they did. Now we have a single module that takes care of
all the logic for us.
Most of the non-cgen based ones could be deleted outright. The cgen
ones required adding a callback to the arch-specific cleanup func.
The few that still have close callbacks are to manage their internal
state.
We do not convert erc32, m32c, ppc, rl78, or rx as they do not use
the common sim core.
Sometimes in tests, we need supplemental files like linker scripts or
board helper files. There's no way to set those flags in the tests
currently and relative paths don't work (breaks out of tree builds).
Update the main option parser to replace some strings on the fly. Now
tests can do things like:
Long term we'll want to switch the framework to use the dejagnu helpers
like dg-xxx that gcc & gdb utilize. But that'll require more rework.