This should be just a move with no changes.
gdb/ChangeLog
2015-07-15 Aleksandar Ristovski <aristovski@qnx.com
Jan Kratochvil <jan.kratochvil@redhat.com>
Move linux_find_memory_regions_full & co.
* linux-tdep.c (nat/linux-maps.h): Include.
(gdb_regex.h): Remove the include.
(enum filterflags, struct smaps_vmflags, read_mapping, decode_vmflags)
(mapping_is_anonymous_p, dump_mapping_p): Moved to nat/linux-maps.c.
(linux_find_memory_region_ftype): Moved typedef to nat/linux-maps.h.
(linux_find_memory_regions_full): Moved definition to nat/linux-maps.c.
* nat/linux-maps.c: Include ctype.h, target/target-utils.h, gdb_regex.h
and target/target.h.
(struct smaps_vmflags, read_mapping, decode_vmflags)
(mapping_is_anonymous_p, dump_mapping_p): Move from linux-tdep.c.
(linux_find_memory_regions_full): Move from linux-tdep.c.
* nat/linux-maps.h (read_mapping): New declaration.
(linux_find_memory_region_ftype, enum filterflags): Moved from
linux-tdep.c.
(linux_find_memory_regions_full): New declaration.
* target.c (target/target-utils.h): Include.
(read_alloc_pread_ftype): Moved typedef to target/target-utils.h.
(read_alloc, read_stralloc_func_ftype, read_stralloc): Moved
definitions to target/target-utils.c.
* target.h (target_fileio_read_stralloc): Move it to target/target.h.
* target/target-utils.c (read_alloc, read_stralloc): Move definitions
from target.c.
* target/target-utils.h (read_alloc_pread_ftype): New typedef.
(read_alloc): New declaration.
(read_stralloc_func_ftype): New typedef.
(read_stralloc): New declaration.
* target/target.h (target_fileio_read_stralloc): Move it from target.h.
gdb/gdbserver/ChangeLog
2015-07-15 Aleksandar Ristovski <aristovski@qnx.com
Jan Kratochvil <jan.kratochvil@redhat.com>
* target.c: Include target/target-utils.h and fcntl.h.
(target_fileio_read_stralloc_1_pread, target_fileio_read_stralloc_1)
(target_fileio_read_stralloc): New functions.
Prepare code for move into gdb/common/.
gdb/ChangeLog
2015-07-15 Aleksandar Ristovski <aristovski@qnx.com
Jan Kratochvil <jan.kratochvil@redhat.com>
Prepare linux_find_memory_regions_full & co. for move.
* linux-tdep.c (linux_find_memory_region_ftype): Comment.
(linux_find_memory_regions_full): Change signature and prepare
for moving to linux-maps.
(linux_find_memory_regions_data): Rename field 'obfd' to 'data'.
(linux_find_memory_regions_thunk): New.
(linux_find_memory_regions_thunk): Use 'data' field instead of 'obfd'.
(linux_find_memory_regions_gdb): New.
(linux_find_memory_regions): Rename argument 'obfd' to 'func_data'.
(linux_make_mappings_corefile_notes): Use
linux_find_memory_regions_gdb.
* target.c (read_alloc_pread_ftype): New typedef.
(target_fileio_read_alloc_1_pread): New function.
(read_alloc): Refactor from target_fileio_read_alloc_1.
(read_stralloc_func_ftype): New typedef.
(target_fileio_read_alloc_1): New implementation. Use read_alloc.
(read_stralloc): Refactored from target_fileio_read_stralloc.
(target_fileio_read_stralloc): New implementation, use read_stralloc.
linux_get_siginfo_type is installed to many linux gdbarch. This patch
is to move this to a common area linux-tdep.c:linux_init_abi, so that
linux_get_siginfo_type is installed to every linux gdbarch. If some
linux gdbarch needs its own version, please override it in
$ARCH_linux_init_abi. In the testsuite, we enable siginfo related
tests for all linux targets.
gdb:
2015-06-24 Yao Qi <yao.qi@linaro.org>
* aarch64-linux-tdep.c (aarch64_linux_init_abi): Don't call
set_gdbarch_get_siginfo_type.
* amd64-linux-tdep.c (amd64_linux_init_abi_common): Likewise.
* arm-linux-tdep.c (arm_linux_init_abi): Likewise.
* i386-linux-tdep.c (i386_linux_init_abi): Likewise.
* m68klinux-tdep.c (m68k_linux_init_abi): Likewise.
* ppc-linux-tdep.c (ppc_linux_init_abi): Likewise.
* s390-linux-tdep.c (s390_gdbarch_init): Likewise.
* tilegx-linux-tdep.c (tilegx_linux_init_abi): Likewise.
* linux-tdep.c (linux_get_siginfo_type): Change it to static.
(linux_init_abi): Call set_gdbarch_get_siginfo_type.
* linux-tdep.h (linux_get_siginfo_type): Remove the declaration.
gdb/testsuite:
2015-06-24 Yao Qi <yao.qi@linaro.org>
* lib/gdb.exp (supports_get_siginfo_type): Return 1 for all
linux targets.
Bit mask ints are better to make enums as GDB already has support to
automatically decode them:
before this patch:
(gdb) p filterflags
$1 = 51
(gdb) p/x filterflags
$2 = 0x33
after this patch:
(gdb) p filterflags
$1 = (COREFILTER_ANON_PRIVATE | COREFILTER_ANON_SHARED | COREFILTER_ELF_HEADERS | COREFILTER_HUGETLB_PRIVATE)
gdb/ChangeLog
2015-06-15 Jan Kratochvil <jan.kratochvil@redhat.com>
* linux-tdep.c (enum filterflags): Make it from anonymous enum.
(dump_mapping_p): Use it for parameter filterflags.
(linux_find_memory_regions_full): Use it for variable filterflags.
This commit adds a new argument to all target_fileio functions with
filename arguments to allow the desired inferior to be specified.
This allows GDB to support systems where processes do not necessarily
share a common filesystem.
gdb/ChangeLog:
* target.h (struct inferior): New forward declaration.
(struct target_ops) <to_filesystem_is_local>: Update comment.
(struct target_ops) <to_fileio_open>: New argument inf.
Update comment. All implementations updated.
(struct target_ops) <to_fileio_unlink>: Likewise.
(struct target_ops) <to_fileio_readlink>: Likewise.
(target_filesystem_is_local): Update comment.
(target_fileio_open): New argument inf. Update comment.
(target_fileio_unlink): Likewise.
(target_fileio_readlink): Likewise.
(target_fileio_read_alloc): Likewise.
(target_fileio_read_stralloc): Likewise.
* target.c (target_fileio_open): New argument inf.
Pass inf to implementation. Update debug printing.
(target_fileio_unlink): Likewise.
(target_fileio_readlink): Likewise.
(target_fileio_read_alloc_1): New argument inf. Pass inf
to target_fileio_open.
(target_fileio_read_alloc): New argument inf. Pass inf to
target_fileio_read_alloc_1.
(target_fileio_read_stralloc): Likewise.
* gdb_bfd.c (inferior.h): New include.
(gdb_bfd_iovec_fileio_open): Replace unused "open_closure"
argument with new argument "inferior". Pass inferior to
target_fileio_open.
(gdb_bfd_open): Supply inferior argument to
gdb_bfd_iovec_fileio_open.
* linux-tdep.c (linux_info_proc): Supply inf argument to
relevant target_fileio calls.
(linux_find_memory_regions_full): Likewise.
(linux_fill_prpsinfo): Likewise.
* remote.c (remote_filesystem_is_local): Supply inf
argument to remote_hostio_open.
(remote_file_put): Likewise.
(remote_file_get): Likewise.
(remote_file_delete): Supply inf argument to
remote_hostio_unlink.
Currently inferior memory is allocated by inferior mmap() but it is never
deallocated; despite the injected objfile incl. its symbols is freed. This was
intentional so that one can do for example:
inferior:
char *str = "foo";
GDB:
(gdb) compile code str = "bar";
I believe later patches will be needed to introduce full control over keeping
vs. discarding the injected module as being discussed in:
compile: objfiles lifetime UI
https://sourceware.org/ml/gdb/2015-04/msg00051.html
Message-ID: <20150429135735.GA16974@host1.jankratochvil.net>
https://sourceware.org/ml/gdb/2015-05/msg00007.html
As decided by Phil it is better not to leak inferior pages as users can
workaround the issue above for example by:
(gdb) compile code str = strdup ("bar");
I have checked that in fact gdb/doc/ (written by Phil) already expects the
injected code will be unmapped so that does not need to be changed:
compile code int ff = 5; p = &ff;
In this example, @code{p} would point to @code{ff} when the
@code{compile} command is executing the source code provided to it.
However, as variables in the (example) program persist with their
assigned values, the variable @code{p} would point to an invalid
location when the command exists.
gdb/ChangeLog
2015-04-28 Jan Kratochvil <jan.kratochvil@redhat.com>
* arch-utils.c (default_infcall_munmap): New.
* arch-utils.h (default_infcall_munmap): New declaration.
* compile/compile-object-load.c (struct munmap_list, munmap_list_add)
(munmap_list_free, munmap_listp_free_cleanup): New.
(struct setup_sections_data): Add field munmap_list_headp.
(setup_sections): Call munmap_list_add.
(compile_object_load): New variable munmap_list_head, initialize
setup_sections_data.munmap_list_headp, return munmap_list_head.
* compile/compile-object-load.h (struct munmap_list): New declaration.
(struct compile_module): Add field munmap_list_head.
(munmap_list_free): New declaration.
* compile/compile-object-run.c (struct do_module_cleanup): Add field
munmap_list_head.
(do_module_cleanup): Call munmap_list_free.
(compile_object_run): Pass munmap_list_head to do_module_cleanup.
* gdbarch.c: Regenerate.
* gdbarch.h: Regenerate.
* gdbarch.sh (infcall_munmap): New.
* linux-tdep.c (linux_infcall_munmap): New.
(linux_init_abi): Install it.
gdb/testsuite/ChangeLog
2015-04-28 Jan Kratochvil <jan.kratochvil@redhat.com>
* gdb.compile/compile.exp (keep jit in memory): Rename to ...
(do not keep jit in memory): ... this.
(expect 5): Change it to ...
(expect no 5): ... this.
Running break-interp.exp with the target always in non-stop mode trips
on PR13858, as enabling non-stop also enables displaced stepping.
The problem is that when GDB doesn't know where the entry point is, it
doesn't know where to put the displaced stepping scratch pad. The
test added by this commit exercises this. Without the fix, we get:
(gdb) PASS: gdb.base/step-over-no-symbols.exp: displaced=on: break *$pc
set displaced-stepping on
(gdb) PASS: gdb.base/step-over-no-symbols.exp: displaced=on: set displaced-stepping on
stepi
0x00000000004005be in ?? ()
Entry point address is not known.
(gdb) PASS: gdb.base/step-over-no-symbols.exp: displaced=on: stepi
p /x $pc
$2 = 0x4005be
(gdb) PASS: gdb.base/step-over-no-symbols.exp: displaced=on: get after PC
FAIL: gdb.base/step-over-no-symbols.exp: displaced=on: advanced
The fix switches all GNU/Linux ports to get the entry point from
AT_ENTRY in the target auxiliary vector instead of from symbols. This
is currently only done by PPC when Cell debugging is enabled, but I
think all archs should be able to do the same. Note that
ppc_linux_displaced_step_location cached the result, I'm guessing to
avoid constantly re-fetching the auxv out of remote targets, but
that's no longer necessary nowadays, as the auxv blob is itself cached
in the inferior object. The ppc_linux_entry_point_addr global is
obviously bad for multi-process too nowadays.
Tested on x86-64 (-m64/-m32), PPC64 (-m64/-m32) and S/390 GNU/Linux.
Yao tested the new test on ARM as well.
gdb/ChangeLog:
2015-04-10 Pedro Alves <palves@redhat.com>
PR gdb/13858
* amd64-linux-tdep.c (amd64_linux_init_abi_common): Install
linux_displaced_step_location as gdbarch_displaced_step_location
hook.
* arm-linux-tdep.c (arm_linux_init_abi): Likewise.
* i386-linux-tdep.c (i386_linux_init_abi): Likewise.
* linux-tdep.c (linux_displaced_step_location): New function,
based on ppc_linux_displaced_step_location.
* linux-tdep.h (linux_displaced_step_location): New declaration.
* ppc-linux-tdep.c (ppc_linux_entry_point_addr): Delete.
(ppc_linux_inferior_created, ppc_linux_displaced_step_location):
Delete.
(ppc_linux_init_abi): Install linux_displaced_step_location as
gdbarch_displaced_step_location hook, even without Cell/B.E..
(_initialize_ppc_linux_tdep): Don't install
ppc_linux_inferior_created as inferior_created observer.
* s390-linux-tdep.c (s390_gdbarch_init): Install
linux_displaced_step_location as gdbarch_displaced_step_location
hook.
gdb/testsuite/
2015-04-10 Pedro Alves <palves@redhat.com>
PR gdb/13858
* gdb.base/step-over-no-symbols.exp: New file.
This patch, as the subject says, extends GDB so that it is able to use
the contents of the file /proc/PID/coredump_filter when generating a
corefile. This file contains a bit mask that is a representation of
the different types of memory mappings in the Linux kernel; the user
can choose to dump or not dump a certain type of memory mapping by
enabling/disabling the respective bit in the bit mask. Currently,
here is what is supported:
bit 0 Dump anonymous private mappings.
bit 1 Dump anonymous shared mappings.
bit 2 Dump file-backed private mappings.
bit 3 Dump file-backed shared mappings.
bit 4 (since Linux 2.6.24)
Dump ELF headers.
bit 5 (since Linux 2.6.28)
Dump private huge pages.
bit 6 (since Linux 2.6.28)
Dump shared huge pages.
(This table has been taken from core(5), but you can also read about it
on Documentation/filesystems/proc.txt inside the Linux kernel source
tree).
The default value for this file, used by the Linux kernel, is 0x33,
which means that bits 0, 1, 4 and 5 are enabled. This is also the
default for GDB implemented in this patch, FWIW.
Well, reading the file is obviously trivial. The hard part, mind you,
is how to determine the types of the memory mappings. For that, I
extended the code of gdb/linux-tdep.c:linux_find_memory_regions_full and
made it rely *much more* on the information gathered from
/proc/<PID>/smaps. This file contains a "verbose dump" of the
inferior's memory mappings, and we were not using as much information as
we could from it. If you want to read more about this file, take a look
at the proc(5) manpage (I will also write a blog post soon about
everything I had to learn to get this patch done, and when I it is ready
I will post it here).
With Oleg Nesterov's help, we could improve the current algorithm for
determining whether a memory mapping is anonymous/file-backed,
private/shared. GDB now also respects the MADV_DONTDUMP flag and does
not dump the memory mapping marked as so, and will always dump
"[vsyscall]" or "[vdso]" mappings (just like the Linux kernel).
In a nutshell, what the new code is doing is:
- If the mapping is associated to a file whose name ends with
" (deleted)", or if the file is "/dev/zero", or if it is "/SYSV%08x"
(shared memory), or if there is no file associated with it, or if
the AnonHugePages: or the Anonymous: fields in the /proc/PID/smaps
have contents, then GDB considers this mapping to be anonymous.
There is a special case in this, though: if the memory mapping is a
file-backed one, but *also* contains "Anonymous:" or
"AnonHugePages:" pages, then GDB considers this mapping to be *both*
anonymous and file-backed, just like the Linux kernel does. What
that means is simple: this mapping will be dumped if the user
requested anonymous mappings *or* if the user requested file-backed
mappings to be present in the corefile.
It is worth mentioning that, from all those checks described above,
the most fragile is the one to see if the file name ends with
" (deleted)". This does not necessarily mean that the mapping is
anonymous, because the deleted file associated with the mapping may
have been a hard link to another file, for example. The Linux
kernel checks to see if "i_nlink == 0", but GDB cannot easily do
this check (as it has been discussed, GDB would need to run as root,
and would need to check the contents of the /proc/PID/map_files/
directory in order to determine whether the deleted was a hardlink
or not). Therefore, we made a compromise here, and we assume that
if the file name ends with " (deleted)", then the mapping is indeed
anonymous. FWIW, this is something the Linux kernel could do
better: expose this information in a more direct way.
- If we see the flag "sh" in the VmFlags: field (in /proc/PID/smaps),
then certainly the memory mapping is shared (VM_SHARED). If we have
access to the VmFlags, and we don't see the "sh" there, then
certainly the mapping is private. However, older Linux kernels (see
the code for more details) do not have the VmFlags field; in that
case, we use another heuristic: if we see 'p' in the permission
flags, then we assume that the mapping is private, even though the
presence of the 's' flag there would mean VM_MAYSHARE, which means
the mapping could still be private. This should work OK enough,
however.
Finally, it is worth mentioning that I added a new command, 'set
use-coredump-filter on/off'. When it is 'on', it will read the
coredump_filter' file (if it exists) and use its value; otherwise, it
will use the default value mentioned above (0x33) to decide which memory
mappings to dump.
gdb/ChangeLog:
2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com>
Jan Kratochvil <jan.kratochvil@redhat.com>
Oleg Nesterov <oleg@redhat.com>
PR corefiles/16092
* linux-tdep.c: Include 'gdbcmd.h' and 'gdb_regex.h'.
New enum identifying the various options of the coredump_filter
file.
(struct smaps_vmflags): New struct.
(use_coredump_filter): New variable.
(decode_vmflags): New function.
(mapping_is_anonymous_p): Likewise.
(dump_mapping_p): Likewise.
(linux_find_memory_regions_full): New variables
'coredumpfilter_name', 'coredumpfilterdata', 'pid', 'filterflags'.
Removed variable 'modified'. Read /proc/<PID>/smaps file; improve
parsing of its information. Implement memory mapping filtering
based on its contents.
(show_use_coredump_filter): New function.
(_initialize_linux_tdep): New command 'set use-coredump-filter'.
* NEWS: Mention the possibility of using the
'/proc/PID/coredump_filter' file when generating a corefile.
Mention new command 'set use-coredump-filter'.
gdb/doc/ChangeLog:
2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com>
PR corefiles/16092
* gdb.texinfo (gcore): Mention new command 'set
use-coredump-filter'.
(set use-coredump-filter): Document new command.
gdb/testsuite/ChangeLog:
2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com>
PR corefiles/16092
* gdb.base/coredump-filter.c: New file.
* gdb.base/coredump-filter.exp: Likewise.
This patch splits the TRY_CATCH macro into three, so that we go from
this:
~~~
volatile gdb_exception ex;
TRY_CATCH (ex, RETURN_MASK_ERROR)
{
}
if (ex.reason < 0)
{
}
~~~
to this:
~~~
TRY
{
}
CATCH (ex, RETURN_MASK_ERROR)
{
}
END_CATCH
~~~
Thus, we'll be getting rid of the local volatile exception object, and
declaring the caught exception in the catch block.
This allows reimplementing TRY/CATCH in terms of C++ exceptions when
building in C++ mode, while still allowing to build GDB in C mode
(using setjmp/longjmp), as a transition step.
TBC, after this patch, is it _not_ valid to have code between the TRY
and the CATCH blocks, like:
TRY
{
}
// some code here.
CATCH (ex, RETURN_MASK_ERROR)
{
}
END_CATCH
Just like it isn't valid to do that with C++'s native try/catch.
By switching to creating the exception object inside the CATCH block
scope, we can get rid of all the explicitly allocated volatile
exception objects all over the tree, and map the CATCH block more
directly to C++'s catch blocks.
The majority of the TRY_CATCH -> TRY+CATCH+END_CATCH conversion was
done with a script, rerun from scratch at every rebase, no manual
editing involved. After the mechanical conversion, a few places
needed manual intervention, to fix preexisting cases where we were
using the exception object outside of the TRY_CATCH block, and cases
where we were using "else" after a 'if (ex.reason) < 0)' [a CATCH
after this patch]. The result was folded into this patch so that GDB
still builds at each incremental step.
END_CATCH is necessary for two reasons:
First, because we name the exception object in the CATCH block, which
requires creating a scope, which in turn must be closed somewhere.
Declaring the exception variable in the initializer field of a for
block, like:
#define CATCH(EXCEPTION, mask) \
for (struct gdb_exception EXCEPTION; \
exceptions_state_mc_catch (&EXCEPTION, MASK); \
EXCEPTION = exception_none)
would avoid needing END_CATCH, but alas, in C mode, we build with C90,
which doesn't allow mixed declarations and code.
Second, because when TRY/CATCH are wired to real C++ try/catch, as
long as we need to handle cleanup chains, even if there's no CATCH
block that wants to catch the exception, we need for stop at every
frame in the unwind chain and run cleanups, then rethrow. That will
be done in END_CATCH.
After we require C++, we'll still need TRY/CATCH/END_CATCH until
cleanups are completely phased out -- TRY/CATCH in C++ mode will
save/restore the current cleanup chain, like in C mode, and END_CATCH
catches otherwise uncaugh exceptions, runs cleanups and rethrows, so
that C++ cleanups and exceptions can coexist.
IMO, this still makes the TRY/CATCH code look a bit more like a
newcomer would expect, so IMO worth it even if we weren't considering
C++.
gdb/ChangeLog.
2015-03-07 Pedro Alves <palves@redhat.com>
* common/common-exceptions.c (struct catcher) <exception>: No
longer a pointer to volatile exception. Now an exception value.
<mask>: Delete field.
(exceptions_state_mc_init): Remove all parameters. Adjust.
(exceptions_state_mc): No longer pop the catcher here.
(exceptions_state_mc_catch): New function.
(throw_exception): Adjust.
* common/common-exceptions.h (exceptions_state_mc_init): Remove
all parameters.
(exceptions_state_mc_catch): Declare.
(TRY_CATCH): Rename to ...
(TRY): ... this. Remove EXCEPTION and MASK parameters.
(CATCH, END_CATCH): New.
All callers adjusted.
gdb/gdbserver/ChangeLog:
2015-03-07 Pedro Alves <palves@redhat.com>
Adjust all callers of TRY_CATCH to use TRY/CATCH/END_CATCH
instead.
We define an enum ARG_MAX in linux_infcall_mmap, but it is conflict
with macro ARG_MAX which is defined in /usr/include/linux/limits.h.
This causes a build failure below,
gdb/linux-tdep.c: In function 'linux_infcall_mmap':
gdb/linux-tdep.c:1945:70: error: expected identifier before numeric constant
the enum in the pre-processed source becomes:
enum
{
ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, 131072
};
This patch is to replace ARG_MAX with ARG_LAST.
gdb:
2014-12-16 Yao Qi <yao@codesourcery.com>
* linux-tdep.c (linux_infcall_mmap): Replace ARG_MAX with
ARG_LAST.
This implements the new gdbarch "infcall_mmap" method for Linux.
gdb/ChangeLog
2014-12-12 Jan Kratochvil <jan.kratochvil@redhat.com>
* linux-tdep.c: Include objfiles.h and infcall.h.
(GDB_MMAP_MAP_PRIVATE, GDB_MMAP_MAP_ANONYMOUS, linux_infcall_mmap): New
function.
(linux_init_abi): Add linux_infcall_mmap to gdbarch.
We're now doing a vsyscall/vDSO address range lookup whenever we fetch
shared libraries, either through an explicit "info shared", or when
the target reports new libraries have been loaded, in order to filter
out the vDSO from glibc's DSO list. Before we started doing that, GDB
would only ever lookup the vsyscall's address range once in the
process's lifetime.
Looking up the vDSO address range requires an auxv lookup (which is
already cached, so no problem), but also reading the process's
mappings from /proc to find out the vDSO's mapping's size. That
generates extra RSP traffic when remote debugging. Particularly
annoying when the process's mappings grow linearly as more libraries
are mapped in, and we went through the trouble of making incremental
DSO list updates work against gdbserver (when the probes-based dynamic
linker interface is available).
The vsyscall/vDSO is mapped by the kernel when the process is
initially mapped in, and doesn't change throughout the process's
lifetime, so we can cache its address range.
Caching at this level brings GDB back to one and only one vsyscall
address range lookup per process.
Tested on x86_64 Fedora 20.
gdb/
2014-10-10 Pedro Alves <palves@redhat.com>
* linux-tdep.c: Include observer.h.
(linux_inferior_data): New global.
(struct linux_info): New structure.
(invalidate_linux_cache_inf, linux_inferior_data_cleanup)
(get_linux_inferior_data): New functions.
(linux_vsyscall_range): Rename to ...
(linux_vsyscall_range_raw): ... this.
(linux_vsyscall_range): New function; handles caching.
(_initialize_linux_tdep): Register linux_inferior_data. Install
inferior_exit and inferior_appeared observers.
We have a case in solib-svr4.c where we could reuse symfile-mem.c's
vDSO range lookup. Since symfile-mem.c is not present in all
configurations solib-svr4.c is, move that lookup to a gdbarch hook.
This has the minor (good) side effect that we stop even trying the
target_auxv_search lookup against targets that don't have a concept of
a vDSO, in case symfile-mem.c happens to be linked in the build
(--enable-targets=all).
Tested on x86_64 Fedora 20.
gdb/
2014-10-10 Pedro Alves <palves@redhat.com>
* arch-utils.c (default_vsyscall_range): New function.
* arch-utils.h (default_vsyscall_range): New declaration.
* gdbarch.sh (vsyscall_range): New hook.
* gdbarch.h, gdbarch.c: Regenerate.
* linux-tdep.c (linux_vsyscall_range): New function.
(linux_init_abi): Install linux_vsyscall_range as
vsyscall_range gdbarch hook.
* memrange.c (address_in_mem_range): New function.
* memrange.h (address_in_mem_range): New declaration.
* symfile-mem.c (find_vdso_size): Delete function.
(add_vsyscall_page): Use gdbarch_vsyscall_range.
Now that all Linux targets use the regset iterator, the fall back to
the deprecated target method is dropped.
gdb/ChangeLog:
* linux-nat.c (linux_nat_collect_thread_registers): Remove.
(linux_nat_make_corefile_notes): Remove.
(linux_target_install_ops): Do not set target method
'make_corefile_notes'.
* linux-tdep.c (struct linux_corefile_thread_data)<collect>:
Remove field.
(linux_corefile_thread_callback): Instead of args->collect, call
linux_collect_thread_registers.
(linux_make_corefile_notes): Remove 'collect' parameter. Return
NULL unless there is a regset iterator.
(linux_make_corefile_notes_1): Remove.
(linux_init_abi): Replace reference to linux_make_corefile_notes_1
by linux_make_corefile_notes.
* linux-tdep.h (linux_make_corefile_notes): Remove prototype.
This adds the 'regset' parameter to the iterator callback.
Consequently the 'regset_from_core_section' method is dropped for all
targets that provide the iterator method.
This change prepares for replacing regset_from_core_section
everywhere, thereby eliminating one gdbarch interface. Since the
iterator is usually no more complex than regset_from_core_section
alone, targets that previously didn't define core_regset_sections will
then gain multi-arch capable core file generation support without
increased complexity.
gdb/ChangeLog:
* gdbarch.sh (iterate_over_regset_sections_cb): Add regset
parameter.
* gdbarch.h: Regenerate.
* corelow.c (sniff_core_bfd): Don't sniff if gdbarch has a regset
iterator.
(get_core_register_section): Add parameter 'regset' and use it, if
set. Add parameter 'min_size' and verify the bfd section size
against it.
(get_core_registers_cb): Add parameter 'regset' and pass it to
get_core_register section. For the "standard" register sections
".reg" and ".reg2", set an appropriate default for human_name.
(get_core_registers): Don't abort when the gdbarch has an iterator
but no regset_from_core_section. Add NULL/0 for parameters
'regset'/'min_size' in calls to get_core_register_section.
* linux-tdep.c (linux_collect_regset_section_cb): Add parameter
'regset' and use it instead of calling the
regset_from_core_section gdbarch method.
* i386-tdep.h (struct gdbarch_tdep): Add field 'fpregset'.
* i386-tdep.c (i386_supply_xstateregset)
(i386_collect_xstateregset, i386_xstateregset): Moved to
i386-linux-tdep.c.
(i386_regset_from_core_section): Drop handling for .reg-xfp and
.reg-xstate.
(i386_gdbarch_init): Set tdep field 'fpregset'. Enable generic
core file support only if the regset iterator hasn't been set.
* i386-linux-tdep.c (i386_linux_supply_xstateregset)
(i386_linux_collect_xstateregset, i386_linux_xstateregset): New.
Moved from i386-tdep.c and renamed to *_linux*.
(i386_linux_iterate_over_regset_sections): Add regset parameter to
each callback invocation. Allow any .reg-xstate size when reading
from a core file.
* amd64-tdep.c (amd64_supply_xstateregset)
(amd64_collect_xstateregset, amd64_xstateregset): Moved to
amd64-linux-tdep.c.
(amd64_regset_from_core_section): Remove.
(amd64_init_abi): Set new tdep field 'fpregset'. No longer
install an amd64-specific regset_from_core_section gdbarch method.
* amd64-linux-tdep.c (amd64_linux_supply_xstateregset)
(amd64_linux_collect_xstateregset, amd64_linux_xstateregset): New.
Moved from amd64-tdep.c and renamed to *_linux*.
(amd64_linux_iterate_over_regset_sections): Add regset parameter
to each callback invocation. Allow any .reg-xstate size when
reading from a core file.
* arm-linux-tdep.c (arm_linux_regset_from_core_section): Remove.
(arm_linux_iterate_over_regset_sections): Add regset parameter to
each callback invocation.
(arm_linux_init_abi): No longer set the regset_from_core_section
gdbarch method.
* ppc-linux-tdep.c (ppc_linux_regset_from_core_section): Remove.
(ppc_linux_iterate_over_regset_sections): Add regset parameter to
each callback invocation.
(ppc_linux_init_abi): No longer set the regset_from_core_section
gdbarch method.
* s390-linux-tdep.c (struct gdbarch_tdep): Remove the fields
gregset, sizeof_gregset, fpregset, and sizeof_fpregset.
(s390_regset_from_core_section): Remove.
(s390_iterate_over_regset_sections): Add regset parameter to each
callback invocation.
(s390_gdbarch_init): No longer set the regset_from_core_section
gdbarch method. Drop initialization of deleted tdep fields.
The core_regset_sections list in gdbarch (needed for multi-arch
capable core file generation support) is replaced by an iterator
method. Overall, this reduces the code a bit, and it allows for more
flexibility.
gdb/ChangeLog:
* amd64-linux-tdep.c (amd64_linux_regset_sections): Remove.
(amd64_linux_iterate_over_regset_sections): New.
(amd64_linux_init_abi_common): Don't install the regset section
list, but the new iterator in gdbarch.
* arm-linux-tdep.c (arm_linux_fpa_regset_sections)
(arm_linux_vfp_regset_sections): Remove. Move combined logic...
(arm_linux_iterate_over_regset_sections): ...here. New function.
(arm_linux_init_abi): Set iterator instead of section list.
* corelow.c (get_core_registers_cb): New function, logic moved
from...
(get_core_registers): ...loop body here. Use new iterator method
instead of walking through the regset section list.
* gdbarch.sh: Remove 'core_regset_sections'. New method
'iterate_over_regset_sections'. New typedef
'iterate_over_regset_sections_cb'.
* gdbarch.c: Regenerate.
* gdbarch.h: Likewise.
* i386-linux-tdep.c (i386_linux_regset_sections)
(i386_linux_sse_regset_sections, i386_linux_avx_regset_sections):
Remove.
(i386_linux_iterate_over_regset_sections): New.
(i386_linux_init_abi): Don't choose a regset section list, but
install new iterator in gdbarch.
* linux-tdep.c (struct linux_collect_regset_section_cb_data): New.
(linux_collect_regset_section_cb): New function, logic moved
from...
(linux_collect_thread_registers): ...loop body here. Use iterator
method instead of walking through list.
(linux_make_corefile_notes_1): Check for presence of iterator
method instead of regset section list.
* ppc-linux-tdep.c (ppc_linux_vsx_regset_sections)
(ppc_linux_vmx_regset_sections, ppc_linux_fp_regset_sections)
(ppc64_linux_vsx_regset_sections, ppc64_linux_vmx_regset_sections)
(ppc64_linux_fp_regset_sections): Remove. Move combined logic...
(ppc_linux_iterate_over_regset_sections): ...here. New function.
(ppc_linux_init_abi): Don't choose from above regset section
lists, but install new iterator in gdbarch.
* regset.h (struct core_regset_section): Remove.
* s390-linux-tdep.c (struct gdbarch_tdep): Add new fields
have_linux_v1, have_linux_v2, and have_tdb.
(s390_linux32_regset_sections, s390_linux32v1_regset_sections)
(s390_linux32v2_regset_sections, s390_linux64_regset_sections)
(s390_linux64v1_regset_sections, s390_linux64v2_regset_sections)
(s390x_linux64_regset_sections, s390x_linux64v1_regset_sections)
(s390x_linux64v2_regset_sections): Remove. Move combined logic...
(s390_iterate_over_regset_sections): ...here. New function. Use
new tdep fields.
(s390_gdbarch_init): Set new tdep fields. Don't choose from above
regset section lists, but install new iterator.
Program received signal SIGABRT, Aborted.
[...]
(gdb) gcore foobar
Couldn't get registers: No such process.
(gdb) info threads
[...]
(gdb) gcore foobar
Saved corefile foobar
(gdb)
gcore tries to access the exited thread:
[Thread 0x7ffff7fce700 (LWP 6895) exited]
ptrace(PTRACE_GETREGS, 6895, 0, 0x7fff18167dd0) = -1 ESRCH (No such process)
Without the TRY_CATCH protection testsuite FAILs for:
gcore .../gdb/testsuite/gdb.threads/gcore-thread0.test
Cannot find new threads: debugger service failed
(gdb) FAIL: gdb.threads/gcore-thread.exp: save a zeroed-threads corefile
+
core .../gdb/testsuite/gdb.threads/gcore-thread0.test
".../gdb/testsuite/gdb.threads/gcore-thread0.test" is not a core dump: File format not recognized
(gdb) FAIL: gdb.threads/gcore-thread.exp: core0file: re-load generated corefile (bad file format)
Maybe the TRY_CATCH could be more inside update_thread_list().
Similar update_thread_list() call is IMO missing in procfs_make_note_section()
but I do not have where to verify that change.
gdb/ChangeLog
2014-08-21 Jan Kratochvil <jan.kratochvil@redhat.com>
* linux-tdep.c (linux_corefile_thread_callback): Ignore THREAD_EXITED.
(linux_make_corefile_notes): call update_thread_list, protected against
exceptions.
gdb/testsuite/ChangeLog
2014-08-21 Jan Kratochvil <jan.kratochvil@redhat.com>
* gdb.threads/gcore-stale-thread.c: New file.
* gdb.threads/gcore-stale-thread.exp: New file.
The various make_corefile_notes implementations for gdbarch as well as target
currently make an xfree cleanup on the data they return. This causes problems
when trying to put a TRY_CATCH around the make_corefile_notes call.
Specifically, we get a stale cleanup error in restore_my_cleanups.
Omit the make_cleanup and have the caller free the memory.
gdb/
* fbsd-nat.c (fbsd_make_corefile_notes): Remove make_cleanup call.
* gcore.c (write_gcore_file): Free memory returned from
make_corefile_notes.
* linux-tdep.c (linux_make_corefile_notes): Remove make_cleanup call.
* procfs.c (procfs_make_note_section): Remove make_cleanup call.
This makes a parameter of to_info_proc const and then fixes up some
fallout, including parameters in a couple of gdbarch methods.
I could not test the procfs.c change. I verified it by inspection.
If this causes an error here, it will be trivial to fix.
2014-06-16 Tom Tromey <tromey@redhat.com>
* target.h (struct target_ops) <to_info_proc>: Make parameter
const.
(target_info_proc): Update.
* target.c (target_info_proc): Make "args" const.
* procfs.c (procfs_info_proc): Update.
* linux-tdep.c (linux_info_proc): Update.
(linux_core_info_proc_mappings): Make "args" const.
(linux_core_info_proc): Update.
* gdbarch.sh (info_proc, core_info_proc): Make "args" const.
* gdbarch.c: Rebuild.
* gdbarch.h: Rebuild.
* corelow.c (core_info_proc): Update.
info os processes -fsanitize=address error
https://sourceware.org/bugzilla/show_bug.cgi?id=16594
info os processes
=================================================================
==5795== ERROR: AddressSanitizer: heap-use-after-free on address
0x600600214974 at pc 0x757a92 bp 0x7fff95dd9f00 sp 0x7fff95dd9ef0
READ of size 4 at 0x600600214974 thread T0
#0 0x757a91 in get_cores_used_by_process (.../gdb/gdb+0x757a91)
At least Fedora 20 has process(es):
6678 ? Ss 0:00 /usr/lib/systemd/systemd --user
6680 ? S 0:00 \_ (sd-pam)
and GDB "info os processes" crashes on it as /proc/6680/stat contains:
6680 ((sd-pam)) S 6678 6678 6678 0 -1 1077961024 33 0 0 0 0 0 0 0 20 0 1 0 18568 73768960 120 18446744073709551615 1 1
0 0 0 0 0 4096 0 18446744073709551615 0 0 17 6 0 0 0 0 0 0 0 0 0 0 0 0 0
and GDB fails to find the proper end of the process name "((sd-pam))".
Therefore it reads core number off-by-one (it reads 17 instead of 6) and
overruns the array.
(1) Make the process name parsing more foolproof.
(2) Do not trust the parsed number from /proc/PID/stat and verify it against
the array size.
I noticed that 'ps' gets this right, so I've peeked at its
sources, and it just looks for the first ')' starting at
the end.
dc072aced7:proc/readproc.c
Look for stat2proc.
Given ps does that, I believe the kernel won't ever be changed
in a way that would break it. So it sounds like could do strrchr
from the end of stat just as well without worry, which is simpler.
gdb/
2014-02-21 Jan Kratochvil <jan.kratochvil@redhat.com>
PR gdb/16594
* common/linux-osdata.c (linux_common_core_of_thread): Find the end of
process name.
(get_cores_used_by_process): New parameter num_cores, use it.
(linux_xfer_osdata_processes): Pass num_cores to it.
* linux-tdep.c (linux_info_proc, linux_fill_prpsinfo): Find the end of
process name.
Message-ID: <20140217212826.GA15080@host2.jankratochvil.net>
gdb/
* linux-tdep.c (linux_corefile_thread_callback): Propagate any
failure from register information collection.
gdb/testsuite/
* lib/gdb.exp (gdb_gcore_cmd): Also handle a "Target does not
support core file generation" reply.
It will be used when one wants to convert between the internal GDB signal
representation (enum gdb_signal) and the target's representation.
The idea of this patch came from a chat between Pedro and I on IRC, plus
the discussion of my patches to add the new $_exitsignal convenience
variable:
<http://sourceware.org/ml/gdb-patches/2013-06/msg00452.html>
<http://sourceware.org/ml/gdb-patches/2013-06/msg00352.html>
What I did was to investigate, on the Linux kernel, which targets shared
the signal numbers definition with the generic definition, present at
<include/uapi/asm-generic/signal.h>. For the record, I used linux-3.10-rc7
as the main source of information, always looking at
<arch/<ARCH_NAME>/include/uapi/asm/signal.h>. For SIGRTMAX (which defaults
to _NSIG in most cases), I had to look at different signal-related
files, but most of them (except MIPS) were defined to 64 anyway.
Then, with all the differences in hand, I implemented the bits on each
target.
2013-08-09 Sergio Durigan Junior <sergiodj@redhat.com>
* linux-tdep.c: Define enum with generic signal numbers.
(linux_gdb_signal_from_target): New function.
(linux_gdb_signal_to_target): Likewise.
(linux_init_abi): Set gdbarch_gdb_signal_{to,from}_target
methods to the functions above.
* linux-tdep.h (linux_gdb_signal_from_target): New prototype.
(linux_gdb_signal_to_target): Likewise.
* alpha-linux-tdep.c: Define new enum with signals different
from generic Linux kernel.
(alpha_linux_gdb_signal_from_target): New function.
(alpha_linux_gdb_signal_to_target): Likewise.
(alpha_linux_init_abi): Set gdbarch_gdb_signal_{to,from}_target
with the functions mentioned above.
* avr-tdep.c: Define enum with differences between Linux kernel
and AVR signals.
(avr_linux_gdb_signal_from_target): New function.
(avr_linux_gdb_signal_to_target): Likewise.
(avr_gdbarch_init): Set gdbarch_gdb_signal_{to,from}_target to
the functions mentioned above.
* sparc-linux-tdep.c: Define enum with differences between SPARC
and generic Linux kernel signal numbers.
(sparc32_linux_gdb_signal_from_target): New function.
(sparc32_linux_gdb_signal_to_target): Likewise.
(sparc32_linux_init_abi): Set gdbarch_gdb_signal_{to,from}_target
to the functions defined above.
* xtensa-linux-tdep.c: Define enum with differences between
Xtensa and Linux kernel generic signals.
(xtensa_linux_gdb_signal_from_target): New function.
(xtensa_linux_gdb_signal_to_target): Likewise.
(xtensa_linux_init_abi): Set gdbarch_gdb_signal_to_target
to the functions defined above.
* mips-linux-tdep.c: Define enum with differences between
signals in MIPS and Linux kernel generic ones.
(mips_gdb_signal_to_target): New function.
(mips_gdb_signal_from_target): Redefine to use new enum, handle
only different signals from the Linux kernel generic.
(mips_linux_init_abi): Set gdbarch_gdb_signal_{to,from}_target
the functions defined above.
* mips-linux-tdep.h (enum mips_signals): Remove.
obstack_base returns char *. Need to cast to gdb_byte * in a couple spots.
gdb/
2013-04-19 Pedro Alves <palves@redhat.com>
* c-lang.c (evaluate_subexp_c): Cast result of obstack_base to
gdb_byte *.
* linux-tdep.c (linux_make_mappings_corefile_notes): Likewise.
This is sort of the opposite of the previous patch. Places that
manipulate strings or interfaces that return strings are changed to
use char* instead of gdb_byte*.
gdb/
2013-04-19 Pedro Alves <palves@redhat.com>
* avr-tdep.c (avr_io_reg_read_command): New local 'bufstr'. Use
it to get a string view of the byte buffer.
* i386-cygwin-tdep.c (core_process_module_section): Change local 'buf'
type to gdb_byte *. Adjust.
* linux-tdep.c (linux_info_proc, linux_find_memory_regions_full):
Change local to char *.
* solib-darwin.c (find_program_interpreter): Change return type to
char *. Adjust.
(darwin_solib_get_all_image_info_addr_at_init): Adjust.
* solib-dsbt.c (enable_break2): Change local 'buf' to char *.
* solib-frv.c (enable_break2): Change local 'buf' to char *.
* solib-spu.c (spu_current_sos): Add gdb_byte * cast.
* solib-svr4.c (find_program_interpreter): Change return type to
char *. Adjust.
(enable_break): Change local 'interp_name' to char *.
* spu-multiarch.c (spu_xfer_partial): Add cast to 'char *'.
* spu-tdep.c (spu_pseudo_register_read_spu): Add cast to 'char *'.
(spu_pseudo_register_write_spu): Use char for string buffer.
Adjust.
(info_spu_event_command, info_spu_signal_command): Add casts to
'char *'.
Fix compatibility with Linux kernel 3.8.3.
* linux-tdep.c (linux_find_memory_regions_full): Move variable number
to more inner block. Remove parsing of NUMBER from outer block.
Parse NUMBER only if KEYWORD has been identified.
(trace_pass_command): Likewise.
* cli/cli-cmds.c: Include cli/cli-utils.h.
(source_command): Use skip-spaces.
(disassemble_command): Likewise.
* findcmd.c: Include cli/cli-utils.h.
(parse_find_args): Use skip_spaces.
* go32-nat.c: Include cli/cli-utils.h.
(go32_sldt): Use skip_spaces.
(go32_sgdt): Likewise.
(go32_sidt): Likewise.
(go32_pde): Likewise.
(go32_pte): Likewise.
(go32_pte_for_address): Likewise.
* infcmd.c: Include cli/cli-utils.h.
(registers_info): Use skip_spaces.
* linux-tdep.c (read_mapping): Use skip_spaces_const.
(linux_info_proc): Likewise.
* linux-thread-db.c: Include cli/cli-utils.h.
(info_auto_load_libthread_db): Use skip_spaces_const.
* m32r-rom.c: Include cli/cli-utils.h.
(m32r_upload_command): Use skip_spaces.
* maint.c: Include cli/cli-utils.h.
(maintenance_translate_address): Use skip_spaces.
* mi/mi-parse.c: Include cli/cli-utils.h.
(mi_parse_argv): Use skip_spaces.
(mi_parse): Likewise.
* minsyms.c: Include cli/cli-utils.h.
(msymbol_hash_iw): Use skip_spaces_const.
* objc-lang.c: Include cli/cli-utils.h.
(parse_selector): Use skip_spaces.
(parse_method): Likewise.
* python/python.c: Include cli/cli-utils.h.
(python_interactive_command)[HAVE_PYTHON]: Use skip_spaces.
(python_command)[HAVE_PYTHON]: Likewise.
(python_interactive_command)[!HAVE_PYTHON]: Likewise.
* remote-m32r-sdi.c: Include cli/cli-utils.h.
(m32r_load): Use skip_spaces.
* serial.c: Include cli/cli-utils.h.
(serial_open): Use skip_spaces_const.
* stack.c: Include cli/cli-utils.h.
(parse_frame_specification_1): Use skip_spaces_const.
* symfile.c: Include cli/cli-utils.h.
(set_ext_lang_command): Use skip_spaces.
* symtab.c: Include cli/cli-utils.h.
(rbreak_command): Use skip_spaces.
* thread.c (thread_name_command): Use skip_spaces.
* tracepoint.c (validate_actionline): Use skip_spaces.
(encode_actions_1): Likewise.
(trace_find_range_command): Likewise.
(trace_find_outside_command): Likewise.
(trace_dump_actions): Likewise.
Denys Vlasenko <dvlasenk@redhat.com>
Pedro Alves <palves@redhat.com>
* gdbarch.sh (elfcore_write_linux_prpsinfo): New F hook.
(struct elf_internal_linux_prpsinfo): Forward declare.
* gdbarch.h, gdbarch.c: Regenerate.
* linux-tdep.c: Include `cli/cli-utils.h'.
(linux_fill_prpsinfo): New function.
(linux_make_corefile_notes): Use linux_fill_prpsinfo. If there's
an elfcore_write_linux_prpsinfo hook, use it, otherwise, use
elfcore_write_linux_prpsinfo32 or elfcore_write_linux_prpsinfo64
depending on gdbarch pointer bitness.
* ppc-linux-tdep.c: Include elf-bfd.h.
(ppc_linux_init_abi): Hook in elfcore_write_ppc_linux_prpsinfo32
on 32-bit.
Two modifications:
1. The addition of 2013 to the copyright year range for every file;
2. The use of a single year range, instead of potentially multiple
year ranges, as approved by the FSF.
* linux-tdep.c (linux_make_siginfo_note): New function.
(linux_make_corefile_notes): Use it.
* corelow.c (get_core_siginfo): New function.
(core_xfer_partial) <TARGET_OBJECT_SIGNAL_INFO>: New case.
gdb/testsuite
* gdb.base/siginfo-obj.exp: Create core file. Test siginfo from
core files, if possible.
* gdb.base/siginfo-thread.c: New file
* gdb.base/siginfo-thread.exp: New file
bfd
* elf.c (elfcore_grok_note) <NT_SIGINFO>: New case; make
pseudosection.
PR 11804
* defs.h (find_memory_region_ftype): New comment. New arg modified.
* fbsd-nat.c (fbsd_find_memory_regions): Add the passed modified value.
* gcore.c (gcore_create_callback): New function comment. Add modified
parameter. Only write modified regions. Set SEC_READONLY exactly
according to MODIFIED.
(objfile_find_memory_regions): Ignore separate debug info files. Ass
the passed modified value to FUNC.
* gnu-nat.c (gnu_find_memory_regions): Add the passed modified value.
* linux-tdep.c (linux_find_memory_regions): Try to reads smaps file
first. New variables modified and has_anonymous. Parse the lines of
smaps file. Add the passed MODIFIED value to FUNC.
* procfs.c (find_memory_regions_callback): Add the passed modified
value.
gdb/testsuite/
PR 11804
* gdb.base/gcore-relro.exp: New file.
* gdb.base/gcore-relro-main.c: New file.
* gdb.base/gcore-relro-lib.c: New file.
* linux-tdep.c (linux_has_shared_address_space): Make static. Add
gdbarch parameter.
(linux_init_abi): Install it as has_shared_address_space gdbarch
callback.
* gdbarch.c, gdbarch.h: Regenerate.
* gcore.c (gcore_memory_sections): Try gdbarch find_memory_regions
callback before falling back to target method.
* linux-nat.c (read_mapping, linux_nat_find_memory_regions): Remove.
(linux_target_install_ops): No longer install it.
* linux-tdep.c (linux_find_memory_regions): New function.
(linux_init_abi): Install it.