Tidies:
- Move stuff from bfd-in.h and libbfd.c to compress.c
- Delete COMPRESS_DEBUG from enum compressed_debug_section_type
- Move compress_debug field out of link_info to ld_config.
Fixes:
- Correct test in bfd_convert_section_setup to use obfd flags,
not ibfd.
- Apply bfd_applicable_file_flags to compression bfd flags added
by gas and ld to the output bfd.
bfd/
* bfd-in.h (enum compressed_debug_section_type),
(struct compressed_type_tuple),
(bfd_get_compression_algorithm),
(bfd_get_compression_algorithm_name),
* libbfd.c (compressed_debug_section_names),
(bfd_get_compression_algorithm),
(bfd_get_compression_algorithm_name): Move..
* compress.c: ..to here, deleting COMPRESS_DEBUG from
enum compressed_debug_section_type.
(bfd_convert_section_setup): Test obfd flags not ibfd for
compression flags.
* elf.c (elf_fake_sections): Replace link_info->compress_debug
test with abfd->flags test.
* bfd-in2.h: Regenerate.
binutils/
* objcopy.c (copy_file): Tidy setting of bfd compress flags.
Expand comment.
gas/
* write.c (compress_debug): Test bfd compress flags rather than
flag_compress_debug.
(write_object_file): Apply bfd_applicable_file_flags to compress
debug flags added to output bfd.
include/
* bfdlink.h (struct bfd_link_info): Delete compress_debug.
ld/
* ld.h (ld_config_type): Add compress_debug.
* emultempl/elf.em: Replace references to link_info.compress_debug
with config.compress_debug.
* lexsup.c (elf_static_list_options): Likewise.
* ldmain.c (main): Likewise. Apply bfd_applicable_file_flags
to compress debug flags added to output bfd.
SEC_ELF_RENAME is a flag used to effect section name changes when
compressing/decompressing zlib-gnu debug sections. This can be
accomplished more directly in one of the objcopy specific bfd
functions. Renaming for ld input is simplified too. Ld input object
files always have BFD_DECOMPRESS set.
bfd/
* compress.c (bfd_convert_section_size): Rename to..
(bfd_convert_section_setup): ..this. Handle objcopy renaming
of compressed/decompressed debug sections.
* elf.c (_bfd_elf_make_section_from_shdr): Only rename zdebug
input for linker.
(elf_fake_sections): Don't handle renaming of debug sections for
objcopy here.
* section.c (SEC_ELF_RENAME): Delete.
* bfd-in2.h: Regenerate.
binutils/
* objcopy.c (setup_section): Call bfd_convert_section_setup.
Don't call bfd_convert_section_size.
Define an enum instead of using ELFCOMPRESS_ZLIB and ELFCOMPRESS_ZSTD
in bfd and binutils, and move some functions from bfd.c to compress.c.
When looking at the COFF/PE debug compression support, I wondered
about extending it to support zstd. I likely won't do that, but
the compression header ch_type field isn't just ELF specific if these
headers are to be used in COFF/PE too.
bfd/
* bfd.c (bfd_update_compression_header),
(bfd_check_compression_header, bfd_get_compression_header_size),
(bfd_convert_section_size, bfd_convert_section_contents): Move to..
* compress.c: ..here.
(enum compression_type): New. Use it throughout file.
* elf.c (_bfd_elf_make_section_from_shdr): Replace uses of
ELFCOMPRESS_ZLIB and ELFCOMPRESS_ZSTD with ch_compress_zlib and
ch_compress_zstd.
* bfd-in2.h: Regenerate.
binutils/
* readelf.c (process_section_headers, dump_section_as_strings),
(dump_section_as_bytes, load_specific_debug_section): Replace
uses of ELFCOMPRESS_ZLIB and ELFCOMPRESS_ZSTD with
ch_compress_zlib and ch_compress_zstd.
While working on disassembler styling for MIPS, I noticed that
undefined instructions are printed by the disassembler as raw number
with no assembler directive prefix (e.g. without .word or .short).
I think adding something like .word, or .short, helps to make it
clearer the size of the value that is being displayed, and is inline
with what many of the other libopcode disassemblers do.
In this commit I've added the .word and .short directives, and updated
all the tests that I spotted that failed as a result.
Fixes a fuzzed object file problem where plt relocs were manipulated
in such a way that two synthetic symbols were generated at the same
plt location. Won't occur in real object files.
PR 29846
PR 20337
* objdump.c (compare_symbols): Test symbol flags to exclude
section and synthetic symbols before attempting to check flavour.
The previous warnings about holes in .debug_loclists sections don't
take into account the headers of each CU and could include the locviews
if they precede the loclist.
The following warning can be triggered between two CU.
... <previous CU views> ...
0000001d <End of list>
0000002a v000000000000000 v000000000000000 location view pair
0000002c v000000000000000 v000000000000000 location view pair
readelf: Warning: There is a hole [0x1e - 0x2e] in .debug_loclists section.
0000002e v000000000000000 v000000000000000 views at 0000002a for:
...
But [0x1e - 0x2a] corresponds to the CU header and [0x2a - 0x2e] are
the locviews. Thus there is no hole here.
binutils/ChangeLog:
* dwarf.c (display_debug_loc): Adjust holes detections for
headers and locviews.
PR 25202
bfd * bfd.c (VerilogDataEndianness): New variable.
(verilog_write_record): Use VerilogDataEndianness, if set, to
choose the endianness of the output.
(verilog_write_section): Adjust the address by the data width.
binutils* objcopy.c (copy_object): Set VerilogDataEndianness to the
endianness of the input file.
(copy_main): Verifiy the value set by the --verilog-data-width
option.
* testsuite/binutils-all/objcopy.exp: Add tests of the new behaviour.
* testsuite/binutils-all/verilog-I4.hex: New file.
This extends the commit 4581a1c7d3 fix to more targets, which
hardens BFD a little. I think the real underlying problem was the
bfd_canonicalize_reloc call in load_specific_debug_section which
passed a NULL for "symbols". Fix that too.
PR 22509
bfd/
* aoutx.h (swap_ext_reloc_out): Gracefully handle NULL symbols.
* i386lynx.c (swap_ext_reloc_out): Likewise.
* pdp11.c (pdp11_aout_swap_reloc_out): Likewise.
* coff-tic30.c (reloc_processing): Likewise.
* coff-tic4x.c (tic4x_reloc_processing): Likewise.
* coff-tic54x.c (tic54x_reloc_processing): Likewise.
* coff-z80.c (reloc_processing): Likewise.
* coff-z8k.c (reloc_processing): Likewise.
* ecoff.c (ecoff_slurp_reloc_table): Likewise.
* som.c (som_set_reloc_info): Likewise.
binutils/
* objdump.c (load_specific_debug_section): Pass syms to
bfd_canonicalize_reloc.
The aim here is to improve readelf handling of large 64-bit object
files on LLP64 hosts (Windows) where long is only 32 bits. The patch
changes more than just file offsets. Addresses and sizes are also
changed to avoid "long". Most places get to use uint64_t even where
size_t may be more appropriate, because that allows some overflow
checks to be implemented easily (*alloc changes).
* dwarf.c (cmalloc, xcmalloc, xcrealloc, xcalloc2): Make nmemb
parameter uint64_t.
* dwarf.h: Update prototypes.
(struct dwarf_section): Make num_relocs uint64_t.
* elfcomm.c (setup_archive): Update error format.
* elfcomm.h (struct archive_info): Make sym_size, longnames_size,
nested_member_origin, next_arhdr_offset uint64_t.
* readelf.c (struct filedata): Make archive_file_offset,
archive_file_size, string_table_length, dynamic_addr,
dynamic_nent, dynamic_strings_length, num_dynamic_syms,
dynamic_syminfo_offset uint64_t.
(many functions): Replace uses of "unsigned long" with
"uint64_t" or "size_t".
Replace the macros with a small wrapper function that verifies the fseek
offset arg isn't overlarge.
* readelf.c (FSEEK_FUNC): Delete, replace uses with..
(fseek64): ..this new function.
(process_program_headers): Don't cast p_offset to long.
Integrate back checks for fseeko{,64} into configure.ac, so
that regeneration works.
binutils/
* configure.ac: Add fseeko, fseeko64 checks.
* configure: Regenerate.
Changes readelf to make use first of fseeko64 and then fseeko,
depending on which of those is available. If neither is available,
reverts to the previous behavior of using fseek.
This is necessary when building readelf for LLP64 systems, where a
long will only be 32 bits wide. If the elf file in question is >= 2 GiB,
that is greater than the max long value and therefore fseek will fail
indicating that the offset is negative. On such systems, making use of
fseeko64 or fseeko will result in the ability so seek past the 2 GiB
max long boundary.
Note that large archive handling in readelf remains to be fixed.
PR 29764
gas * testsuite/gas/arm/cpu-cortex-a76ae.d: Add arm prefix to the -m
option passed to objdump.
* testsuite/gas/arm/cpu-cortex-a77.d: Likewise.
* testsuite/gas/aarch64/cpu-cortex-a76ae.d: Add aarch64 prefix to
the -m option passed to objdump.
* testsuite/gas/aarch64/cpu-cortex-a77.d: Likewise.
bfd * cpu-arm.c (scan): Accept machine names prefixed with "arm:".
* cpu-aarch64.c (scan): Accept machine names prefixed with "aarch64:".
bin * doc/binutils.texi (objdump): Note that the -m option supports
the <architecture>:<machine> syntax.
This patch adds support for SFrame in readelf and objdump. The arguments
of --sframe are optional for both readelf and objdump.
include/ChangeLog:
* sframe-api.h (dump_sframe): New function declaration.
ChangeLog:
* binutils/Makefile.am: Add dependency on libsframe for
readelf and objdump.
* binutils/Makefile.in: Regenerate.
* binutils/doc/binutils.texi: Document --sframe=[section].
* binutils/doc/sframe.options.texi: New file.
* binutils/objdump.c: Add support for SFrame format.
* binutils/readelf.c: Likewise.
* include/sframe-api.h: Add new API for dumping .sframe
section.
* libsframe/Makefile.am: Add sframe-dump.c.
* libsframe/Makefile.in: Regenerate.
* libsframe/sframe-dump.c: New file.
The linker merges all the input .sframe sections. When merging, the
linker verifies that all the input .sframe sections have the same
abi/arch.
The linker uses libsframe library to perform key actions on the
.sframe sections - decode, read, and create output data. This
implies buildsystem changes to make and install libsframe before
libbfd.
The linker places the output .sframe section in a new segment of its
own: PT_GNU_SFRAME. A new segment is not added, however, if the
generated .sframe section is empty.
When a section is discarded from the final link, the corresponding
entries in the .sframe section for those functions are also deleted.
The linker sorts the SFrame FDEs on start address by default and sets
the SFRAME_F_FDE_SORTED flag in the .sframe section.
This patch also adds support for generation of SFrame unwind
information for the .plt* sections on x86_64. SFrame unwind info is
generated for IBT enabled PLT, lazy/non-lazy PLT.
The existing linker option --no-ld-generated-unwind-info has been
adapted to include the control of whether .sframe unwind information
will be generated for the linker generated sections like PLT.
Changes to the linker script have been made as necessary.
ChangeLog:
* Makefile.def: Add install dependency on libsframe for libbfd.
* Makefile.in: Regenerated.
* bfd/Makefile.am: Add elf-sframe.c
* bfd/Makefile.in: Regenerated.
* bfd/bfd-in2.h (SEC_INFO_TYPE_SFRAME): Regenerated.
* bfd/configure: Regenerate.
* bfd/configure.ac: Add elf-sframe.lo.
* bfd/elf-bfd.h (struct sframe_func_bfdinfo): New struct.
(struct sframe_dec_info): Likewise.
(struct sframe_enc_info): Likewise.
(struct elf_link_hash_table): New member for encoded .sframe
object.
(struct output_elf_obj_tdata): New member.
(elf_sframe): New access macro.
(_bfd_elf_set_section_sframe): New declaration.
* bfd/elf.c (get_segment_type): Handle new segment
PT_GNU_SFRAME.
(bfd_section_from_phdr): Likewise.
(get_program_header_size): Likewise.
(_bfd_elf_map_sections_to_segments): Likewise.
* bfd/elf64-x86-64.c (elf_x86_64_link_setup_gnu_properties): Add
contents to the .sframe sections or .plt* entries.
* bfd/elflink.c (elf_section_ignore_discarded_relocs): Handle
SEC_INFO_TYPE_SFRAME.
(_bfd_elf_default_action_discarded): Handle .sframe section.
(elf_link_input_bfd): Merge .sframe section.
(bfd_elf_final_link): Write the output .sframe section.
(bfd_elf_discard_info): Handle discarding .sframe section.
* bfd/elfxx-x86.c (_bfd_x86_elf_size_dynamic_sections): Create
.sframe section for .plt and .plt.sec.
(_bfd_x86_elf_finish_dynamic_sections): Handle .sframe from
.plt* sections.
* bfd/elfxx-x86.h (PLT_SFRAME_FDE_START_OFFSET): New
definition.
(SFRAME_PLT0_MAX_NUM_FRES): Likewise.
(SFRAME_PLTN_MAX_NUM_FRES): Likewise.
(struct elf_x86_sframe_plt): New structure.
(struct elf_x86_link_hash_table): New member.
(struct elf_x86_init_table): New members for .sframe
creation.
* bfd/section.c: Add new definition SEC_INFO_TYPE_SFRAME.
* binutils/readelf.c (get_segment_type): Handle new segment
PT_GNU_SFRAME.
* ld/ld.texi: Update documentation for
--no-ld-generated-unwind-info.
* ld/scripttempl/elf.sc: Support .sframe sections.
* ld/Makefile.am (TESTSFRAMELIB): Use it.
(check-DEJAGNU): Likewise.
* ld/Makefile.in: Regenerated.
* ld/configure.ac (TESTSFRAMELIB): Set to the .so or .a like TESTBFDLIB.
* ld/configure: Regenerated.
* bfd/elf-sframe.c: New file.
include/ChangeLog:
* elf/common.h (PT_GNU_SFRAME): New definition.
* elf/internal.h (struct elf_segment_map): Handle new segment
type PT_GNU_SFRAME.
ld/testsuite/ChangeLog:
* ld/testsuite/ld-bootstrap/bootstrap.exp: Add SFRAMELIB.
* ld/testsuite/ld-aarch64/aarch64-elf.exp: Add new test
sframe-simple-1.
* ld/testsuite/ld-aarch64/sframe-bar.s: New file.
* ld/testsuite/ld-aarch64/sframe-foo.s: Likewise.
* ld/testsuite/ld-aarch64/sframe-simple-1.d: Likewise.
* ld/testsuite/ld-sframe/sframe-empty.d: New test.
* ld/testsuite/ld-sframe/sframe-empty.s: New file.
* ld/testsuite/ld-sframe/sframe.exp: New testsuite.
* ld/testsuite/ld-x86-64/sframe-bar.s: New file.
* ld/testsuite/ld-x86-64/sframe-foo.s: Likewise.
* ld/testsuite/ld-x86-64/sframe-simple-1.d: Likewise.
* ld/testsuite/ld-x86-64/sframe-plt-1.d: Likewise.
* ld/testsuite/ld-x86-64/sframe-simple-1.d: Likewise.
* ld/testsuite/ld-x86-64/x86-64.exp: Add new tests -
sframe-simple-1, sframe-plt-1.
* ld/testsuite/lib/ld-lib.exp: Add new proc to check if
assembler supports SFrame section.
* ld/testsuite/ld-sframe/discard.d: New file.
* ld/testsuite/ld-sframe/discard.ld: Likewise.
* ld/testsuite/ld-sframe/discard.s: Likewise.
libsframe is a library that allows you to:
- decode a .sframe section
- probe and inspect a .sframe section
- encode (and eventually write) a .sframe section.
This library is currently being used by the linker, readelf, objdump.
This library will also be used by the SFrame unwinder which is still
to be upstream'd.
The file include/sframe-api.h defines the user-facing APIs for decoding,
encoding and probing .sframe sections. A set of error codes together
with their error message strings are also defined.
Endian flipping is performed automatically at read and write time, if
cross-endianness is detected.
ChangeLog:
* Makefile.def: Add libsframe as new module with its
dependencies.
* Makefile.in: Regenerated.
* binutils/Makefile.am: Add libsframe.
* binutils/Makefile.in: Regenerated.
* configure: Regenerated
* configure.ac: Add libsframe to host_libs.
* libsframe/Makefile.am: New file.
* libsframe/Makefile.in: New file.
* libsframe/aclocal.m4: New file.
* libsframe/config.h.in: New file.
* libsframe/configure: New file.
* libsframe/configure.ac: New file.
* libsframe/sframe-error.c: New file.
* libsframe/sframe-impl.h: New file.
* libsframe/sframe.c: New file.
include/ChangeLog:
* sframe-api.h: New file.
testsuite/ChangeLog:
* libsframe/testsuite/Makefile.am: New file.
* libsframe/testsuite/Makefile.in: Regenerated.
* libsframe/testsuite/libsframe.decode/Makefile.am: New
file.
* libsframe/testsuite/libsframe.decode/Makefile.in:
Regenerated.
* libsframe/testsuite/libsframe.decode/decode.exp: New file.
* libsframe/testsuite/libsframe.encode/Makefile.am:
Likewise.
* libsframe/testsuite/libsframe.encode/Makefile.in:
Regenerated.
* libsframe/testsuite/libsframe.encode/encode.exp: New file.
* libsframe/testsuite/libsframe.encode/encode-1.c: Likewise.
* libsframe/testsuite/libsframe.decode/be-flipping.c: Likewise.
* libsframe/testsuite/libsframe.decode/frecnt-1.c: Likewise.
* libsframe/testsuite/libsframe.decode/frecnt-2.c: Likewise.
* libsframe/testsuite/libsframe.decode/DATA-BE: New file.
* libsframe/testsuite/libsframe.decode/DATA1: Likewise.
* libsframe/testsuite/libsframe.decode/DATA2: Likewise.
This patch adds readelf support for decoding the exception
table opcode "0xb5", which indicates to use effective vsp
as modifier for PAC validation as defined by EHABI
(https://github.com/ARM-software/abi-aa/releases/download/2022Q3/ehabi32.pdf
Section 10.3).
binutils/ChangeLog:
2022-11-07 Srinath Parvathaneni <srinath.parvathaneni@arm.com>
* readelf.c (decode_arm_unwind_bytecode): Add entry to decode opcode 0xb5.
For now, xfail the new test. Some header/aux-header rewriting is
required at the very least.
* testsuite/binutils-all/rename-section-01.d: xfail xcoff.
This tidies SEC_RELOC handling in bfd, in the process fixing a bug
with objcopy when renaming sections.
bfd/
* reloc.c (_bfd_generic_set_reloc): Set/clear SEC_RELOC depending
on reloc count.
* elf64-sparc.c (elf64_sparc_set_reloc): Likewise.
binutils/
* objcopy.c (copy_relocations_in_section): Remove now unnecessary
clearing of SEC_RELOC.
* testsuite/binutils-all/rename-section-01.d: New test.
* testsuite/binutils-all/objcopy.exp: Run it.
gas/
* write.c (size_seg): Remove unneccesary twiddle of SEC_RELOC.
(write_relocs): Likewise. Always call bfd_set_reloc.
Like commit ffbe89531c this avoids more silliness writing output
that is going to be deleted. bfd_close and bfd_close_all_done differ
in that only the former calls _bfd_write_contents.
* objcopy.c (copy_archive): Don't call bfd_close for elements
that are going to be deleted, call bfd_close_all_done instead.
Do the same for the archive itself.
gas uses ZSTD_compressStream2 which is only available with libzstd >=
1.4.0, leading to build errors when an older version is installed.
This patch updates the check libzstd presence to check its version is
>= 1.4.0. However, since gas seems to be the only component requiring
such a recent version this may imply that we disable ZSTD support for
all components although some would still benefit from an older
version.
I ran 'autoreconf -f' in all directories containing a configure.ac
file, using vanilla autoconf-2.69 and automake-1.15.1. I noticed
several errors from autoheader in readline, as well as warnings in
intl, but they are unrelated to this patch.
This should fix some of the buildbots.
OK for trunk?
Thanks,
Christophe
Update expected PR binutils/26160 test output for readelf out change
and run PR binutils/26160 test.
PR binutils/26160
* testsuite/binutils-all/pr26160.r: Updated.
* testsuite/binutils-all/readelf.exp: Run PR binutils/26160 test.
This commit adds disassembler styling for the ARM architecture.
The ARM disassembler is driven by several instruction tables,
e.g. cde_opcodes, coprocessor_opcodes, neon_opcodes, etc
The type for elements in each table can vary, but they all have one
thing in common, a 'const char *assembler' field. This field
contains a string that describes the assembler syntax of the
instruction.
Embedded within that assembler syntax are various escape characters,
prefixed with a '%'. Here's an example of a very simple instruction
from the arm_opcodes table:
"pld\t%a"
The '%a' indicates a particular type of operand, the function
print_insn_arm processes the arm_opcodes table, and includes a switch
statement that handles the '%a' operand, and takes care of printing
the correct value for that instruction operand.
It is worth noting that there are many print_* functions, each
function handles a single *_opcodes table, and includes its own switch
statement for operand handling. As a result, every *_opcodes table
uses a different mapping for the operand escape sequences. This means
that '%a' might print an address for one *_opcodes table, but in a
different *_opcodes table '%a' might print a register operand.
Notice as well that in our example above, the instruction mnemonic
'pld' is embedded within the assembler string. Some instructions also
include comments within the assembler string, for example, also from
the arm_opcodes table:
"nop\t\t\t@ (mov r0, r0)"
here, everything after the '@' is a comment that is displayed at the
end of the instruction disassembly.
The next complexity is that the meaning of some escape sequences is
not necessarily fixed. Consider these two examples from arm_opcodes:
"ldrex%c\tr%12-15d, [%16-19R]"
"setpan\t#%9-9d"
Here, the '%d' escape is used with a bitfield modifier, '%12-15d' in
the first instruction, and '%9-9d' in the second instruction, but,
both of these are the '%d' escape.
However, in the first instruction, the '%d' is used to print a
register number, notice the 'r' immediately before the '%d'. In the
second instruction the '%d' is used to print an immediate, notice the
'#' just before the '%d'.
We have two problems here, first, the '%d' needs to know if it should
use register style or immediate style, and secondly, the 'r' and '#'
characters also need to be styled appropriately.
The final thing we must consider is that some escape codes result in
more than just a single operand being printed, for example, the '%q'
operand as used in arm_opcodes ends up calling arm_decode_shift, which
can print a register name, a shift type, and a shift amount, this
could end up using register, sub-mnemonic, and immediate styles, as
well as the text style for things like ',' between the different
parts.
I propose a three layer approach to adding styling:
(1) Basic state machine:
When we start printing an instruction we should maintain the idea
of a 'base_style'. Every character from the assembler string will
be printed using the base_style.
The base_style will start as mnemonic, as each instruction starts
with an instruction mnemonic. When we encounter the first '\t'
character, the base_style will change to text. When we encounter
the first '@' the base_style will change to comment_start.
This simple state machine ensures that for simple instructions the
basic parts, except for the operands themselves, will be printed in
the correct style.
(2) Simple operand styling:
For operands that only have a single meaning, or which expand to
multiple parts, all of which have a consistent meaning, then I
will simply update the operand printing code to print the operand
with the correct style. This will cover a large number of the
operands, and is the most consistent with how styling has been
added to previous architectures.
(3) New styling syntax in assembler strings:
For cases like the '%d' that I describe above, I propose adding a
new extension to the assembler syntax. This extension will allow
me to temporarily change the base_style. Operands like '%d', will
then print using the base_style rather than using a fixed style.
Here are the two examples from above that use '%d', updated with
the new syntax extension:
"ldrex%c\t%{R:r%12-15d%}, [%16-19R]"
"setpan\t%{I:#%9-9d%}"
The syntax has the general form '%{X:....%}' where the 'X'
character changes to indicate a different style. In the first
instruction I use '%{R:...%}' to change base_style to the register
style, and in the second '%{I:...%}' changes base_style to
immediate style.
Notice that the 'r' and '#' characters are included within the new
style group, this ensures that these characters are printed with
the correct style rather than as text.
The function decode_base_style maps from character to style. I've
included a character for each style for completeness, though only
a small number of styles are currently used.
I have updated arm-dis.c to the above scheme, and checked all of the
tests in gas/testsuite/gas/arm/, and the styling looks reasonable.
There are no regressions on the ARM gas/binutils/ld tests that I can
see, so I don't believe I've changed the output layout at all. There
were two binutils tests for which I needed to force the disassembler
styling off.
I can't guarantee that I've not missed some untested corners of the
disassembler, or that I might have just missed some incorrectly styled
output when reviewing the test results, but I don't believe I've
introduced any changes that could break the disassembler - the worst
should be some aspect is not styled correctly.
Ref: https://gcc.gnu.org/wiki/DebugFissionDWP?action=recall&rev=3
Fuzzers have found a weakness in the code stashing pool section
entries. With random nonsensical values in the index entries (rather
than each index pointing to its own set distinct from other sets),
it's possible to overflow the space allocated, losing the NULL
terminator. Without a terminator, find_section_in_set can run off the
end of the shndx_pool buffer. Fix this by scanning the pool directly.
binutils/
* dwarf.c (add_shndx_to_cu_tu_entry): Delete range check.
(end_cu_tu_entry): Likewise.
(process_cu_tu_index): Fill shndx_pool by directly scanning
pool, rather than indirectly from index entries.
Given a fuzzed object file in an archive with section size exceeding
file size, objcopy will report an error like "section size (0xfeffffff
bytes) is larger than file size (0x17a bytes)" but will create a copy
of the object laid out for the large section. That means a large
temporary file on disk that is read back and written to the output
archive, which can take a while. The output archive is then deleted
due to the error. Avoid some of this silliness.
* objcopy.c (copy_section): If section contents cannot be read
set output section size to zero.
Unlike other substitution, this substitution of @PROGRAM@ was done in
binutils/Makefile and it was intended for binutils/cxxfilt.man. @PROGRAM@
in binutils/cxxfilt.man is removed in the commit 0285c67df1 ("Automate
generate on man pages") in 2001 and @PROGRAM@ is ineffective since then.
Because PROGRAM substitution does nothing, removing this manual
substitution should be completely safe.
binutils/ChangeLog:
* doc/local.mk: Remove unused substitution PROGRAM.
* Makefile.in: Regenerate.
* testsuite/binutils-all/addr2line.exp: Tidy. For powerpc64
arrange to pass --synthetic to nm, and extract .main and .fn
symbol address for addr2line test. Handle default executable
extension on cygwin/mingw compilers.
It has bothered me for a long time that we have disabled LSP (and SPE)
tests. Also the LSP test comment indicating there is something wrong
with get_powerpc_dialect. I don't think there is. Decoding of a VLE
instruction depends on whether the processor is in VLE mode (some
processors support both VLE and standard PPC) which we flag per
section with SHF_PPC_VLE for decoding when disassembling.
Background: Some versions of powerpc e200 have "Lightweight Signal
Processing" support, examples being e200z215 and e200z425. As far as
I can tell, LSP and SPE are mutually exclusive. This seems to be
borne out by insn encoding, for example LSP "zvaddih" and SPE "evaddw"
have the same encoding. So none of the processor descriptions in
ppc_opts ought to have both PPC_OPCODE_LSP and PPC_OPCODE_SPE/2, if we
want disassembly to work. I also could not find anything to suggest
that the LSP insns are enabled only in VLE mode, which means the LSP
insns should not be in vle_opcodes.
Fix all this by moving the LSP insns to their own table, and add a new
e200z2 cpu entry with LSP support, removing LSP from -me200z4 and from
-mvle. (Yes, I know, as I said above some of the e200z4 processors
have LSP. Others have SPE. It's hard to choose good options. Think
of z2 as meaning earlier, z4 as later.) Also add -mlsp to allow
adding the LSP insn set.
include/
* opcode/ppc.h (lsp_opcodes, lsp_num_opcodes): Declare.
(LSP_OP_TO_SEG): Define.
binutils/
* doc/binutils.texi: Update ppc docs.
gas/
* config/tc-ppc.c (ppc_setup_opcodes): Add lsp opcodes to ppc_hash.
* doc/c-ppc.texi: Document e200 and lsp.
* testsuite/gas/ppc/lsp-checks.d: Assemble with -me200z2.
* testsuite/gas/ppc/lsp.d: Likewise, disassembly too.
* testsuite/gas/ppc/ppc.exp: Don't xfail lsp test.
opcodes/
* ppc-dis.c (ppc_opts): Add e200z2 and lsp. Don't set
PPC_OPCODE_LSP for e200z4 or vle.
(ppc_parse_cpu): Mutually exclude LSP and SPE.
(LSP_OPCD_SEGS): Define.
(lsp_opcd_indices): New array.
(disassemble_init_powerpc): Init lsp_opcd_indices.
(lookup_lsp): New function.
(print_insn_powerpc): Call it.
* ppc-opc.c: Include libiberty.h for ARRAY_SIZE and use throughout.
(vle_opcodes): Move LSP opcodes to..
(lsp_opcodes): ..here, and sort.
(lsp_num_opcodes): New.