Commit Graph

204 Commits

Author SHA1 Message Date
Jan Vrany
4825fd2d35 gdb/python: implement support for sending custom MI async notifications
This commit adds a new Python function, gdb.notify_mi, that can be used
to emit custom async notification to MI channel.  This can be used, among
other things, to implement notifications about events MI does not support,
such as remote connection closed or register change.

Reviewed-By: Eli Zaretskii <eliz@gnu.org>
Approved-By: Andrew Burgess <aburgess@redhat.com>
2023-10-10 11:22:56 +01:00
Jan Vrany
80a3485f81 gdb/python: generalize serialize_mi_result()
This commit generalizes serialize_mi_result() to make usable in
different contexts than printing result of custom MI command.

To do so, the check whether passed Python object is a dictionary has been
moved to the caller - at the very least, different uses require different
error messages.  Also it has been renamed to serialize_mi_results() to better
match GDB/MI output syntax (see corresponding section in documentation,
in particular rules 'result-record' and 'async-output'.

Since it is now more generic function, it has been moved to py-mi.c.

This is a preparation for implementing Python support for sending custom
MI async events.

Approved-By: Andrew Burgess <aburgess@redhat.com>
2023-10-10 11:22:56 +01:00
Tom Tromey
c97d123d67 Implement gdb.execute_mi
This adds a new Python function, gdb.execute_mi, that can be used to
invoke an MI command but get the output as a Python object, rather
than a string.  This is done by implementing a new ui_out subclass
that builds a Python object.

Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=11688
Reviewed-By: Eli Zaretskii <eliz@gnu.org>
2023-05-23 10:09:28 -06:00
Tom Tromey
d5ad08d77c Use field_signed from Python MI commands
If an MI command written in Python includes a number in its output,
currently that is simply emitted as a string.  However, it's
convenient for a later patch if these are emitted using field_signed.
This does not make a difference to ordinary MI clients.
2023-05-23 10:09:27 -06:00
Andrew Burgess
3965bff5b9 gdb/python: add mechanism to manage Python initialization functions
Currently, when we add a new python sub-system to GDB,
e.g. py-inferior.c, we end up having to create a new function like
gdbpy_initialize_inferior, which then has to be called from the
function do_start_initialization in python.c.

In some cases (py-micmd.c and py-tui.c), we have two functions
gdbpy_initialize_*, and gdbpy_finalize_*, with the second being called
from finalize_python which is also in python.c.

This commit proposes a mechanism to manage these initialization and
finalization calls, this means that adding a new Python subsystem will
no longer require changes to python.c or python-internal.h, instead,
the initialization and finalization functions will be registered
directly from the sub-system file, e.g. py-inferior.c, or py-micmd.c.

The initialization and finalization functions are managed through a
new class gdbpy_initialize_file in python-internal.h.  This class
contains a single global vector of all the initialization and
finalization functions.

In each Python sub-system we create a new gdbpy_initialize_file
object, the object constructor takes care of registering the two
callback functions.

Now from python.c we can call static functions on the
gdbpy_initialize_file class which take care of walking the callback
list and invoking each callback in turn.

To slightly simplify the Python sub-system files I added a new macro
GDBPY_INITIALIZE_FILE, which hides the need to create an object.  We
can now just do this:

  GDBPY_INITIALIZE_FILE (gdbpy_initialize_registers);

One possible problem with this change is that there is now no
guaranteed ordering of how the various sub-systems are initialized (or
finalized).  To try and avoid dependencies creeping in I have added a
use of the environment variable GDB_REVERSE_INIT_FUNCTIONS, this is
the same environment variable used in the generated init.c file.

Just like with init.c, when this environment variable is set we
reverse the list of Python initialization (and finalization)
functions.  As there is already a test that starts GDB with the
environment variable set then this should offer some level of
protection against dependencies creeping in - though for full
protection I guess we'd need to run all gdb.python/*.exp tests with
the variable set.

I have tested this patch with the environment variable set, and saw no
regressions, so I think we are fine right now.

One other change of note was for gdbpy_initialize_gdb_readline, this
function previously returned void.  In order to make this function
have the correct signature I've updated its return type to int, and we
now return 0 to indicate success.

All of the other initialize (and finalize) functions have been made
static within their respective sub-system files.

There should be no user visible changes after this commit.
2023-05-05 18:24:42 +01:00
Andrew Burgess
2968b79fca gdb: fix mi breakpoint-deleted notifications for thread-specific b/p
Background
----------

When a thread-specific breakpoint is deleted as a result of the
specific thread exiting the function remove_threaded_breakpoints is
called which sets the disposition of the breakpoint to
disp_del_at_next_stop and sets the breakpoint number to 0.  Setting
the breakpoint number to zero has the effect of hiding the breakpoint
from the user.  We also print a message indicating that the breakpoint
has been deleted.

It was brought to my attention during a review of another patch[1]
that setting a breakpoints number to zero will suppress the MI
breakpoint-deleted notification for that breakpoint, and indeed, this
can be seen to be true, in delete_breakpoint, if the breakpoint number
is zero, then GDB will not notify the breakpoint_deleted observer.

It seems wrong that a user created, thread-specific breakpoint, will
have a =breakpoint-created notification, but will not have a
=breakpoint-deleted notification.  I suspect that this is a bug.

[1] https://sourceware.org/pipermail/gdb-patches/2023-February/196560.html

The First Problem
-----------------

During my initial testing I wanted to see how GDB handled the
breakpoint after it's number was set to zero.  To do this I created
the testcase gdb.threads/thread-bp-deleted.exp.  This test creates a
worker thread, which immediately exits.  After the worker thread has
exited the main thread spins in a loop.

In GDB I break once the worker thread has been created and place a
thread-specific breakpoint, then use 'continue&' to resume the
inferior in non-stop mode.  The worker thread then exits, but the main
thread never stops - instead it sits in the spin.  I then tried to use
'maint info breakpoints' to see what GDB thought of the
thread-specific breakpoint.

Unfortunately, GDB crashed like this:

  (gdb) continue&
  Continuing.
  (gdb) [Thread 0x7ffff7c5d700 (LWP 1202458) exited]
  Thread-specific breakpoint 3 deleted - thread 2 no longer in the thread list.
  maint info breakpoints
  ... snip some output ...

  Fatal signal: Segmentation fault
  ----- Backtrace -----
  0x5ffb62 gdb_internal_backtrace_1
          ../../src/gdb/bt-utils.c:122
  0x5ffc05 _Z22gdb_internal_backtracev
          ../../src/gdb/bt-utils.c:168
  0x89965e handle_fatal_signal
          ../../src/gdb/event-top.c:964
  0x8997ca handle_sigsegv
          ../../src/gdb/event-top.c:1037
  0x7f96f5971b1f ???
          /usr/src/debug/glibc-2.30-2-gd74461fa34/nptl/../sysdeps/unix/sysv/linux/x86_64/sigaction.c:0
  0xe602b0 _Z15print_thread_idP11thread_info
          ../../src/gdb/thread.c:1439
  0x5b3d05 print_one_breakpoint_location
          ../../src/gdb/breakpoint.c:6542
  0x5b462e print_one_breakpoint
          ../../src/gdb/breakpoint.c:6702
  0x5b5354 breakpoint_1
          ../../src/gdb/breakpoint.c:6924
  0x5b58b8 maintenance_info_breakpoints
          ../../src/gdb/breakpoint.c:7009
  ... etc ...

As the thread-specific breakpoint is set to disp_del_at_next_stop, and
GDB hasn't stopped yet, then the breakpoint still exists in the global
breakpoint list.

The breakpoint will not show in 'info breakpoints' as its number is
zero, but it will show in 'maint info breakpoints'.

As GDB prints the breakpoint, the thread-id for the breakpoint is
printed as part of the 'stop only in thread ...' line.  Printing the
thread-id involves calling find_thread_global_id to convert the global
thread-id into a thread_info*.  Then calling print_thread_id to
convert the thread_info* into a string.

The problem is that find_thread_global_id returns nullptr as the
thread for the thread-specific breakpoint has exited.  The
print_thread_id assumes it will be passed a non-nullptr.  As a result
GDB crashes.

In this commit I've added an assert to print_thread_id (gdb/thread.c)
to check that the pointed passed in is not nullptr.  This assert would
have triggered in the above case before GDB crashed.

MI Notifications: The Dangers Of Changing A Breakpoint's Number
---------------------------------------------------------------

Currently the delete_breakpoint function doesn't trigger the
breakpoint_deleted observer for any breakpoint with the number zero.

There is a comment explaining why this is the case in the code; it's
something about watchpoints.  But I did consider just removing the 'is
the number zero' guard and always triggering the breakpoint_deleted
observer, figuring that I'd then fix the watchpoint issue some other
way.

But I realised this wasn't going to be good enough.  When the MI
notification was delivered the number would be zero, so any frontend
parsing the notifications would not be able to match
=breakpoint-deleted notification to the earlier =breakpoint-created
notification.

What this means is that, at the point the breakpoint_deleted observer
is called, the breakpoint's number must be correct.

MI Notifications: The Dangers Of Delaying Deletion
--------------------------------------------------

The test I used to expose the above crash also brought another problem
to my attention.  In the above test we used 'continue&' to resume,
after which a thread exited, but the inferior didn't stop.  Recreating
the same test in the MI looks like this:

  -break-insert -p 2 main
  ^done,bkpt={number="2",type="breakpoint",disp="keep",...<snip>...}
  (gdb)
  -exec-continue
  ^running
  *running,thread-id="all"
  (gdb)
  ~"[Thread 0x7ffff7c5d700 (LWP 987038) exited]\n"
  =thread-exited,id="2",group-id="i1"
  ~"Thread-specific breakpoint 2 deleted - thread 2 no longer in the thread list.\n"

At this point the we have a single thread left, which is still
running:

  -thread-info
  ^done,threads=[{id="1",target-id="Thread 0x7ffff7c5eb80 (LWP 987035)",name="thread-bp-delet",state="running",core="4"}],current-thread-id="1"
  (gdb)

Notice that we got the =thread-exited notification from GDB as soon as
the thread exited.  We also saw the CLI line from GDB, the line
explaining that breakpoint 2 was deleted.  But, as expected, we didn't
see the =breakpoint-deleted notification.

I say "as expected" because the number was set to zero.  But, even if
the number was not set to zero we still wouldn't see the
notification.  The MI notification is driven by the breakpoint_deleted
observer, which is only called when we actually delete the breakpoint,
which is only done the next time GDB stops.

Now, maybe this is fine.  The notification is delivered a little
late.  But remember, by setting the number to zero the breakpoint will
be hidden from the user, for example, the breakpoint is removed from
the MI's -break-info command output.

This means that GDB is in a position where the breakpoint doesn't show
up in the breakpoint table, but a =breakpoint-deleted notification has
not yet been sent out.  This doesn't seem right to me.

What this means is that, when the thread exits, we should immediately
be sending out the =breakpoint-deleted notification.  We should not
wait for GDB to next stop before sending the notification.

The Solution
------------

My proposed solution is this; in remove_threaded_breakpoints, instead
of setting the disposition to disp_del_at_next_stop and setting the
number to zero, we now just call delete_breakpoint directly.

The notification will now be sent out immediately; as soon as the
thread exits.

As the number has not changed when delete_breakpoint is called, the
notification will have the correct number.

And as the breakpoint is immediately removed from the breakpoint list,
we no longer need to worry about 'maint info breakpoints' trying to
print the thread-id for an exited thread.

My only concern is that calling delete_breakpoint directly seems so
obvious that I wonder why the original patch (that added
remove_threaded_breakpoints) didn't take this approach.  This code was
added in commit 49fa26b041, but the commit message offers no clues
to why this approach was taken, and the original email thread offers
no insights either[2].  There are no test regressions after making
this change, so I'm hopeful that this is going to be fine.

[2] https://sourceware.org/pipermail/gdb-patches/2013-September/106493.html

The Complication
----------------

Of course, it couldn't be that simple.

The script gdb.python/py-finish-breakpoint.exp had some regressions
during testing.

The problem was with the FinishBreakpoint.out_of_scope callback
implementation.  This callback is supposed to trigger whenever the
FinishBreakpoint goes out of scope; and this includes when the thread
for the breakpoint exits.

The problem I ran into is the Python FinishBreakpoint implementation.
Specifically, after this change I was loosing some of the out_of_scope
calls.

The problem is that the out_of_scope call (of which I'm interested) is
triggered from the inferior_exit observer.  Before my change the
observers were called in this order:

  thread_exit
  inferior_exit
  breakpoint_deleted

The inferior_exit would trigger the out_of_scope call.

After my change the breakpoint_deleted notification (for
thread-specific breakpoints) occurs earlier, as soon as the
thread-exits, so now the order is:

  thread_exit
  breakpoint_deleted
  inferior_exit

Currently, after the breakpoint_deleted call the Python object
associated with the breakpoint is released, so, when we get to the
inferior_exit observer, there's no longer a Python object to call the
out_of_scope method on.

My solution is to follow the model for how bpfinishpy_pre_stop_hook
and bpfinishpy_post_stop_hook are called, this is done from
gdbpy_breakpoint_cond_says_stop in py-breakpoint.c.

I've now added a new bpfinishpy_pre_delete_hook
gdbpy_breakpoint_deleted in py-breakpoint.c, and from this new hook
function I check and where needed call the out_of_scope method.

With this fix in place I now see the
gdb.python/py-finish-breakpoint.exp test fully passing again.

Testing
-------

Tested on x86-64/Linux with unix, native-gdbserver, and
native-extended-gdbserver boards.

New tests added to covers all the cases I've discussed above.

Approved-By: Pedro Alves <pedro@palves.net>
2023-02-28 10:56:28 +00:00
Tom Tromey
f3d3bbbcdd Fix value chain use-after-free
Hannes filed a bug showing a crash, where a pretty-printer written in
Python could cause a use-after-free.  He sent a patch, but I thought a
different approach was needed.

In a much earlier patch (see bug #12533), we changed the Python code
to release new values from the value chain when constructing a
gdb.Value.  The rationale for this is that if you write a command that
does a lot of computations in a loop, all the values will be kept live
by the value chain, resulting in gdb using a large amount of memory.

However, suppose a value is passed to Python from some code in gdb
that needs to use the value after the call into Python.  In this
scenario, value_to_value_object will still release the value -- and
because gdb code doesn't generally keep strong references to values (a
consequence of the ancient decision to use the value chain to avoid
memory management), this will result in a use-after-free.

This scenario can happen, as it turns out, when a value is passed to
Python for pretty-printing.  Now, normally this route boxes the value
via value_to_value_object_no_release, avoiding the problematic release
from the value chain.  However, if you then call Value.cast, the
underlying value API might return the same value, when is then
released from the chain.

This patch fixes the problem by changing how value boxing is done.
value_to_value_object no longer removes a value from the chain.
Instead, every spot in gdb that might construct new values uses a
scoped_value_mark to ensure that the requirements of bug #12533 are
met.  And, because incoming values aren't ever released from the chain
(the Value.cast one comes earlier on the chain than the
scoped_value_mark), the bug can no longer occur.  (Note that many
spots in the Python layer already take this approach, so not many
places needed to be touched.)

In the future I think we should replace the use of raw "value *" with
value_ref_ptr pretty much everywhere.  This will ensure lifetime
safety throughout gdb.

The test case in this patch comes from Hannes' original patch.  I only
made a trivial ("require") change to it.  However, while this fails
for him, I can't make it fail on this machine; nevertheless, he tried
my patch and reported the bug as being fixed.

Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=30044
2023-02-27 15:46:31 -07:00
Andrew Burgess
9ae4519da9 gdb/python: deallocate tui window factories at Python shut down
The previous commit relied on spotting when a Python defined TUI
window factory was deleted.  I spotted that the window factories are
not deleted when GDB shuts down its Python environment, they are only
deleted when one window factory replaces another.  Consider this
example Python script:

  class TestWindowFactory:
      def __init__(self, msg):
          self.msg = msg
          print("Entering TestWindowFactory.__init__: %s" % self.msg)

      def __call__(self, tui_win):
          print("Entering TestWindowFactory.__call__: %s" % self.msg)
          return TestWindow(tui_win, self.msg)

      def __del__(self):
          print("Entering TestWindowFactory.__del__: %s" % self.msg)

  gdb.register_window_type("test_window", TestWindowFactory("A"))
  gdb.register_window_type("test_window", TestWindowFactory("B"))

And this GDB session:

  (gdb) source tui.py
  Entering TestWindowFactory.__init__: A
  Entering TestWindowFactory.__init__: B
  Entering TestWindowFactory.__del__: B
  (gdb) quit

Notice that when the 'B' window replaces the 'A' window we see the 'A'
object being deleted.  But, when Python is shut down (after the
'quit') the 'B' object is never deleted.

Instead, GDB retains a reference to the window factory object, which
forces the Python object to remain live even after the Python
interpreter itself has been shut down.

The references themselves are held in a dynamically allocated
std::unordered_map (in tui/tui-layout.c) which is never deallocated,
thus the underlying Python references are never decremented to zero,
and so GDB never tries to delete these Python objects.

This commit is the first half of the work to clean up this edge case.

All gdbpy_tui_window_maker objects (the objects that implement the
TUI window factory callback for Python defined TUI windows), are now
linked together into a global list using the intrusive list mechanism.

When GDB shuts down the Python interpreter we can now walk this global
list and release the reference that is held to the underlying Python
object.  By releasing this reference the Python object will now be
deleted.

I've added a new assert in gdbpy_tui_window_maker::operator(), this
will catch the case where we somehow end up in here after having
reset the reference to the underlying Python object.  I don't think
this should ever happen though as we only clear the references when
shutting down the Python interpreter, and the ::operator() function is
only called when trying to apply a new TUI layout - something that
shouldn't happen while GDB itself is shutting down.

This commit does not update the std::unordered_map in tui-layout.c,
that will be done in the next commit.

Reviewed-By: Tom Tromey <tom@tromey.com>
2023-02-13 14:50:46 +00:00
Joel Brobecker
213516ef31 Update copyright year range in header of all files managed by GDB
This commit is the result of running the gdb/copyright.py script,
which automated the update of the copyright year range for all
source files managed by the GDB project to be updated to include
year 2023.
2023-01-01 17:01:16 +04:00
Andrew Burgess
8a3b17063e gdb/python: break more dependencies between gdbpy_initialize_* functions
In a later commit in this series I will propose removing all of the
explicit gdbpy_initialize_* calls from python.c and replace these
calls with a more generic mechanism.

One of the side effects of this generic mechanism is that the order in
which the various Python sub-systems within GDB are initialized is no
longer guaranteed.

On the whole I don't think this matters, most of the sub-systems are
independent of each other, though testing did reveal a few places
where we did have dependencies, though I don't think those
dependencies were explicitly documented in comment anywhere.

This commit is similar to the previous one, and fixes the second
dependency issue that I found.

In this case the finish_breakpoint_object_type uses the
breakpoint_object_type as its tp_base, this means that
breakpoint_object_type must have been initialized with a call to
PyType_Ready before finish_breakpoint_object_type can be initialized.

Previously we depended on the ordering of calls to
gdbpy_initialize_breakpoints and gdbpy_initialize_finishbreakpoints in
python.c.

After this commit a new function gdbpy_breakpoint_init_breakpoint_type
exists, this function ensures that breakpoint_object_type has been
initialized, and can be called from any gdbpy_initialize_* function.

I feel that this change makes the dependency explicit, which I think
is a good thing.

There should be no user visible changes after this commit.
2022-10-20 16:49:53 +01:00
Tom Tromey
bd2b40ac12 Change GDB to use frame_info_ptr
This changes GDB to use frame_info_ptr instead of frame_info *
The substitution was done with multiple sequential `sed` commands:

sed 's/^struct frame_info;/class frame_info_ptr;/'
sed 's/struct frame_info \*/frame_info_ptr /g' - which left some
    issues in a few files, that were manually fixed.
sed 's/\<frame_info \*/frame_info_ptr /g'
sed 's/frame_info_ptr $/frame_info_ptr/g' - used to remove whitespace
    problems.

The changed files were then manually checked and some 'sed' changes
undone, some constructors and some gets were added, according to what
made sense, and what Tromey originally did

Co-Authored-By: Bruno Larsen <blarsen@redhat.com>
Approved-by: Tom Tomey <tom@tromey.com>
2022-10-10 11:57:10 +02:00
Tom Tromey
bdc8cfc1e4 Fix crash in gdbpy_parse_register_id
I noticed that gdbpy_parse_register_id would assert if passed a Python
object of a type it was not expecting.  The included test case shows
this crash.  This patch fixes the problem and also changes
gdbpy_parse_register_id to be more "Python-like" -- it always ensures
the Python error is set when it fails, and the callers now simply
propagate the existing exception.
2022-08-21 08:03:42 -06:00
Simon Farre
e5213e2c85 gdb/python: Add BreakpointLocation type
PR python/18385

v7:
This version addresses the issues pointed out by Tom.

Added nullchecks for Python object creations.

Changed from using PyLong_FromLong to the gdb_py-versions.

Re-factored some code to make it look more cohesive.

Also added the more safe Python reference count decrement PY_XDECREF,
even though the BreakpointLocation type is never instantiated by the
user (explicitly documented in the docs) decrementing < 0 is made
impossible with the safe call.

Tom pointed out that using the policy class explicitly to decrement a
reference counted object was not the way to go, so this has instead been
wrapped in a ref_ptr that handles that for us in blocpy_dealloc.

Moved macro from py-internal to py-breakpoint.c.

Renamed section at the bottom of commit message "Patch Description".

v6:
This version addresses the points Pedro gave in review to this patch.

Added the attributes `function`, `fullname` and `thread_groups`
as per request by Pedro with the argument that it more resembles the
output of the MI-command "-break-list".  Added documentation for these attributes.

Cleaned up left overs from copy+paste in test suite, removed hard coding
of line numbers where possible.

Refactored some code to use more c++-y style range for loops
wrt to breakpoint locations.

Changed terminology, naming was very inconsistent. Used a variety of "parent",
"owner". Now "owner" is the only term used, and the field in the
gdb_breakpoint_location_object now also called "owner".

v5:

Changes in response to review by Tom Tromey:
- Replaced manual INCREF/DECREF calls with
  gdbpy_ref ptrs in places where possible.
- Fixed non-gdb style conforming formatting
- Get parent of bploc increases ref count of parent.
- moved bploc Python definition to py-breakpoint.c

The INCREF of self in bppy_get_locations is due
to the individual locations holding a reference to
it's owner. This is decremented at de-alloc time.

The reason why this needs to be here is, if the user writes
for instance;

py loc = gdb.breakpoints()[X].locations[Y]

The breakpoint owner object is immediately going
out of scope (GC'd/dealloced), and the location
object requires it to be alive for as long as it is alive.

Thanks for your review, Tom!

v4:
Fixed remaining doc issues as per request
by Eli.

v3:
Rewritten commit message, shortened + reworded,
added tests.

Patch Description

Currently, the Python API lacks the ability to
query breakpoints for their installed locations,
and subsequently, can't query any information about them, or
enable/disable individual locations.

This patch solves this by adding Python type gdb.BreakpointLocation.
The type is never instantiated by the user of the Python API directly,
but is produced by the gdb.Breakpoint.locations attribute returning
a list of gdb.BreakpointLocation.

gdb.Breakpoint.locations:
The attribute for retrieving the currently installed breakpoint
locations for gdb.Breakpoint. Matches behavior of
the "info breakpoints" command in that it only
returns the last known or currently inserted breakpoint locations.

BreakpointLocation contains 7 attributes

6 read-only attributes:
owner: location owner's Python companion object
source: file path and line number tuple: (string, long) / None
address: installed address of the location
function: function name where location was set
fullname: fullname where location was set
thread_groups: thread groups (inferiors) where location was set.

1 writeable attribute:
enabled: get/set enable/disable this location (bool)

Access/calls to these, can all throw Python exceptions (documented in
the online documentation), and that's due to the nature
of how breakpoint locations can be invalidated
"behind the scenes", either by them being removed
from the original breakpoint or changed,
like for instance when a new symbol file is loaded, at
which point all breakpoint locations are re-created by GDB.
Therefore this patch has chosen to be non-intrusive:
it's up to the Python user to re-request the locations if
they become invalid.

Also there's event handlers that handle new object files etc, if a Python
user is storing breakpoint locations in some larger state they've
built up, refreshing the locations is easy and it only comes
with runtime overhead when the Python user wants to use them.

gdb.BreakpointLocation Python type
struct "gdbpy_breakpoint_location_object" is found in python-internal.h

Its definition, layout, methods and functions
are found in the same file as gdb.Breakpoint (py-breakpoint.c)

1 change was also made to breakpoint.h/c to make it possible
to enable and disable a bp_location* specifically,
without having its LOC_NUM, as this number
also can change arbitrarily behind the scenes.

Updated docs & news file as per request.

Testsuite: tests the .source attribute and the disabling of
individual locations.

Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=18385


Change-Id: I302c1c50a557ad59d5d18c88ca19014731d736b0
2022-07-28 11:20:46 -06:00
Kevin Buettner
fe587fc997 Handle Python 3.11 deprecation of PySys_SetPath and Py_SetProgramName
Python 3.11 deprecates PySys_SetPath and Py_SetProgramName.  The
PyConfig API replaces these and other functions.  This commit uses the
PyConfig API to provide equivalent functionality while also preserving
support for older versions of Python, i.e. those before Python 3.8.

A beta version of Python 3.11 is available in Fedora Rawhide.  Both
Fedora 35 and Fedora 36 use Python 3.10, while Fedora 34 still used
Python 3.9.  I've tested these changes on Fedora 34, Fedora 36, and
rawhide, though complete testing was not possible on rawhide due to
a kernel bug.  That being the case, I decided to enable the newer
PyConfig API by testing PY_VERSION_HEX against 0x030a0000.  This
corresponds to Python 3.10.

We could try to use the PyConfig API for Python versions as early as 3.8,
but I'm reluctant to do this as there may have been PyConfig related
bugs in earlier versions which have since been fixed.  Recent linux
distributions should have support for Python 3.10.  This should be
more than adequate for testing the new Python initialization code in
GDB.

Information about the PyConfig API as well as the motivation behind
deprecating the old interface can be found at these links:

https://github.com/python/cpython/issues/88279
https://peps.python.org/pep-0587/
https://docs.python.org/3.11/c-api/init_config.html

The v2 commit also addresses several problems that Simon found in
the v1 version.

In v1, I had used Py_DontWriteBytecodeFlag in the new initialization
code, but Simon pointed out that this global configuration variable
will be deprecated in Python 3.12.  This version of the patch no longer
uses Py_DontWriteBytecodeFlag in the new initialization code.
Additionally, both Py_DontWriteBytecodeFlag and Py_IgnoreEnvironmentFlag
will no longer be used when building GDB against Python 3.10 or higher.
While it's true that both of these global configuration variables are
deprecated in Python 3.12, it makes sense to disable their use for
gdb builds against 3.10 and higher since those are the versions for
which the PyConfig API is now being used by GDB.  (The PyConfig API
includes different mechanisms for making the same settings afforded
by use of the soon-to-be deprecated global configuration variables.)

Simon also noted that PyConfig_Clear() would not have be called for
one of the failure paths.  I've fixed that problem and also made the
rest of the "bail out" code more direct.  In particular,
PyConfig_Clear() will always be called, both for success and failure.

The v3 patch addresses some rebase conflicts related to module
initialization .  Commit 3acd9a692d ("Make 'import gdb.events' work")
uses PyImport_ExtendInittab instead of PyImport_AppendInittab.  That
commit also initializes a struct for each module to import.  Both the
initialization and the call to were moved ahead of the ifdefs to avoid
having to replicate (at least some of) the code three times in various
portions of the ifdefs.

Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=28668
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=29287
2022-07-20 12:14:17 -07:00
Tom Tromey
c4a3dbaf11 Expose current 'print' settings to Python
PR python/17291 asks for access to the current print options.  While I
think this need is largely satisfied by the existence of
Value.format_string, it seemed to me that a bit more could be done.

First, while Value.format_string uses the user's settings, it does not
react to temporary settings such as "print/x".  This patch changes
this.

Second, there is no good way to examine the current settings (in
particular the temporary ones in effect for just a single "print").
This patch adds this as well.

Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=17291
2022-07-15 09:25:33 -06:00
Tom Tromey
3acd9a692d Make 'import gdb.events' work
Pierre-Marie noticed that, while gdb.events is a Python module, it
can't be imported.  This patch changes how this module is created, so
that it can be imported, while also ensuring that the module is always
visible, just as it was in the past.

This new approach required one non-obvious change -- when running
gdb.base/warning.exp, where --data-directory is intentionally not
found, the event registries can now be nullptr.  Consequently, this
patch probably also requires

    https://sourceware.org/pipermail/gdb-patches/2022-June/189796.html

Note that this patch obsoletes

    https://sourceware.org/pipermail/gdb-patches/2022-June/189797.html
2022-07-05 10:28:39 -06:00
Andrew Burgess
15e15b2d9c gdb/python: implement the print_insn extension language hook
This commit extends the Python API to include disassembler support.

The motivation for this commit was to provide an API by which the user
could write Python scripts that would augment the output of the
disassembler.

To achieve this I have followed the model of the existing libopcodes
disassembler, that is, instructions are disassembled one by one.  This
does restrict the type of things that it is possible to do from a
Python script, i.e. all additional output has to fit on a single line,
but this was all I needed, and creating something more complex would,
I think, require greater changes to how GDB's internal disassembler
operates.

The disassembler API is contained in the new gdb.disassembler module,
which defines the following classes:

  DisassembleInfo

      Similar to libopcodes disassemble_info structure, has read-only
  properties: address, architecture, and progspace.  And has methods:
  __init__, read_memory, and is_valid.

      Each time GDB wants an instruction disassembled, an instance of
  this class is passed to a user written disassembler function, by
  reading the properties, and calling the methods (and other support
  methods in the gdb.disassembler module) the user can perform and
  return the disassembly.

  Disassembler

      This is a base-class which user written disassemblers should
  inherit from.  This base class provides base implementations of
  __init__ and __call__ which the user written disassembler should
  override.

  DisassemblerResult

      This class can be used to hold the result of a call to the
  disassembler, it's really just a wrapper around a string (the text
  of the disassembled instruction) and a length (in bytes).  The user
  can return an instance of this class from Disassembler.__call__ to
  represent the newly disassembled instruction.

The gdb.disassembler module also provides the following functions:

  register_disassembler

      This function registers an instance of a Disassembler sub-class
  as a disassembler, either for one specific architecture, or, as a
  global disassembler for all architectures.

  builtin_disassemble

      This provides access to GDB's builtin disassembler.  A common
  use case that I see is augmenting the existing disassembler output.
  The user code can call this function to have GDB disassemble the
  instruction in the normal way.  The user gets back a
  DisassemblerResult object, which they can then read in order to
  augment the disassembler output in any way they wish.

      This function also provides a mechanism to intercept the
  disassemblers reads of memory, thus the user can adjust what GDB
  sees when it is disassembling.

The included documentation provides a more detailed description of the
API.

There is also a new CLI command added:

  maint info python-disassemblers

This command is defined in the Python gdb.disassemblers module, and
can be used to list the currently registered Python disassemblers.
2022-06-15 09:44:54 +01:00
Andrew Burgess
8a0b60471a gdb/python: convert gdbpy_err_fetch to use gdbpy_ref
Convert the gdbpy_err_fetch class to make use of gdbpy_ref, this
removes the need for manual reference count management, and allows the
destructor to be removed.

There should be no functional change after this commit.

I think this cleanup is worth doing on its own, however, in a later
commit I will want to copy instances of gdbpy_err_fetch, and switching
to using gdbpy_ref means that I can rely on the default copy
constructor, without having to add one that handles the reference
counts, so this is good preparation for that upcoming change.
2022-06-15 09:44:54 +01:00
Andrew Burgess
51e8dbe1fb gdb/python: improve formatting of help text for user defined commands
Consider this command defined in Python (in the file test-cmd.py):

  class test_cmd (gdb.Command):
    """
    This is the first line.
      Indented second line.
    This is the third line.
    """

    def __init__ (self):
      super ().__init__ ("test-cmd", gdb.COMMAND_OBSCURE)

    def invoke (self, arg, from_tty):
      print ("In test-cmd")

  test_cmd()

Now, within a GDB session:

  (gdb) source test-cmd.py
  (gdb) help test-cmd

    This is the first line.
      Indented second line.
    This is the third line.

  (gdb)

I think there's three things wrong here:

  1. The leading blank line,
  2. The trailing blank line, and
  3. Every line is indented from the left edge slightly.

The problem of course, is that GDB is using the Python doc string
verbatim as its help text.  While the user has formatted the help text
so that it appears clear within the .py file, this means that the text
appear less well formatted when displayed in the "help" output.

The same problem can be observed for gdb.Parameter objects in their
set/show output.

In this commit I aim to improve the "help" output for commands and
parameters.

To do this I have added gdbpy_fix_doc_string_indentation, a new
function that rewrites the doc string text following the following
rules:

  1. Leading blank lines are removed,
  2. Trailing blank lines are removed, and
  3. Leading whitespace is removed in a "smart" way such that the
  relative indentation of lines is retained.

With this commit in place the above example now looks like this:

  (gdb) source ~/tmp/test-cmd.py
  (gdb) help test-cmd
  This is the first line.
    Indented second line.
  This is the third line.
  (gdb)

Which I think is much neater.  Notice that the indentation of the
second line is retained.  Any blank lines within the help text (not
leading or trailing) will be retained.

I've added a NEWS entry to note that there has been a change in
behaviour, but I didn't update the manual.  The existing manual is
suitably vague about how the doc string is used, so I think the new
behaviour is covered just as well by the existing text.
2022-05-28 10:36:50 +01:00
Simon Marchi
5aee458796 gdb/python: remove Python 2/3 compatibility macros
New in this version:

 - Rebase on master, fix a few more issues that appeared.

python-internal.h contains a number of macros that helped make the code
work with both Python 2 and 3.  Remove them and adjust the code to use
the Python 3 functions.

Change-Id: I99a3d80067fb2d65de4f69f6473ba6ffd16efb2d
2022-03-23 07:42:57 -04:00
Simon Marchi
edae3fd660 gdb/python: remove Python 2 support
New in this version:

 - Add a PY_MAJOR_VERSION check in configure.ac / AC_TRY_LIBPYTHON.  If
   the user passes --with-python=python2, this will cause a configure
   failure saying that GDB only supports Python 3.

Support for Python 2 is a maintenance burden for any patches touching
Python support.  Among others, the differences between Python 2 and 3
string and integer types are subtle.  It requires a lot of effort and
thinking to get something that behaves correctly on both.  And that's if
the author and reviewer of the patch even remember to test with Python
2.

See this thread for an example:

  https://sourceware.org/pipermail/gdb-patches/2021-December/184260.html

So, remove Python 2 support.  Update the documentation to state that GDB
can be built against Python 3 (as opposed to Python 2 or 3).

Update all the spots that use:

 - sys.version_info
 - IS_PY3K
 - PY_MAJOR_VERSION
 - gdb_py_is_py3k

... to only keep the Python 3 portions and drop the use of some
now-removed compatibility macros.

I did not update the configure script more than just removing the
explicit references to Python 2.  We could maybe do more there, like
check the Python version and reject it if that version is not
supported.  Otherwise (with this patch), things will only fail at
compile time, so it won't really be clear to the user that they are
trying to use an unsupported Python version.  But I'm a bit lost in the
configure code that checks for Python, so I kept that for later.

Change-Id: I75b0f79c148afbe3c07ac664cfa9cade052c0c62
2022-03-23 07:41:19 -04:00
Andrew Burgess
25209e2c69 gdb/python: add gdb.format_address function
Add a new function, gdb.format_address, which is a wrapper around
GDB's print_address function.

This method takes an address, and returns a string with the format:

  ADDRESS <SYMBOL+OFFSET>

Where, ADDRESS is the original address, formatted as hexadecimal,
SYMBOL is a symbol with an address lower than ADDRESS, and OFFSET is
the offset from SYMBOL to ADDRESS in decimal.

If there's no SYMBOL suitably close to ADDRESS then the
<SYMBOL+OFFSET> part is not included.

This is useful if a user wants to write a Python script that
pretty-prints addresses, the user no longer needs to do manual symbol
lookup, or worry about correctly formatting addresses.

Additionally, there are some settings that effect how GDB picks
SYMBOL, and whether the file name and line number should be included
with the SYMBOL name, the gdb.format_address function ensures that the
users Python script also benefits from these settings.

The gdb.format_address by default selects SYMBOL from the current
inferiors program space, and address is formatted using the
architecture for the current inferior.  However, a user can also
explicitly pass a program space and architecture like this:

  gdb.format_address(ADDRESS, PROGRAM_SPACE, ARCHITECTURE)

In order to format an address for a different inferior.

Notes on the implementation:

In py-arch.c I extended arch_object_to_gdbarch to add an assertion for
the type of the PyObject being worked on.  Prior to this commit all
uses of arch_object_to_gdbarch were guaranteed to pass this function a
gdb.Architecture object, but, with this commit, this might not be the
case.

So, with this commit I've made it a requirement that the PyObject be a
gdb.Architecture, and this is checked with the assert.  And in order
that callers from other files can check if they have a
gdb.Architecture object, I've added the new function
gdbpy_is_architecture.

In py-progspace.c I've added two new function, the first
progspace_object_to_program_space, converts a PyObject of type
gdb.Progspace to the associated program_space pointer, and
gdbpy_is_progspace checks if a PyObject is a gdb.Progspace or not.
2022-03-22 10:05:05 +00:00
Simon Marchi
6f3dfea03a gdb/python: remove gdb._mi_commands dict
The motivation for this patch is the fact that py-micmd.c doesn't build
with Python 2, due to PyDict_GetItemWithError being a Python 3-only
function:

      CXX    python/py-micmd.o
    /home/smarchi/src/binutils-gdb/gdb/python/py-micmd.c: In function ‘int micmdpy_uninstall_command(micmdpy_object*)’:
    /home/smarchi/src/binutils-gdb/gdb/python/py-micmd.c:430:20: error: ‘PyDict_GetItemWithError’ was not declared in this scope; did you mean ‘PyDict_GetItemString’?
      430 |   PyObject *curr = PyDict_GetItemWithError (mi_cmd_dict.get (),
          |                    ^~~~~~~~~~~~~~~~~~~~~~~
          |                    PyDict_GetItemString

A first solution to fix this would be to try to replace
PyDict_GetItemWithError equivalent Python 2 code.  But I looked at why
we are doing this in the first place: it is to maintain the
`gdb._mi_commands` Python dictionary that we use as a `name ->
gdb.MICommand object` map.  Since the `gdb._mi_commands` dictionary is
never actually used in Python, it seems like a lot of trouble to use a
Python object for this.

My first idea was to replace it with a C++ map
(std::unordered_map<std::string, gdbpy_ref<micmdpy_object>>).  While
implementing this, I realized we don't really need this map at all.  The
mi_command_py objects registered in the main MI command table can own
their backing micmdpy_object (that's a gdb.MICommand, but seen from the
C++ code).  To know whether an mi_command is an mi_command_py, we can
use a dynamic cast.  Since there's one less data structure to maintain,
there are less chances of messing things up.

 - Change mi_command_py::m_pyobj to a gdbpy_ref, the mi_command_py is
   now what keeps the MICommand alive.
 - Set micmdpy_object::mi_command in the constructor of mi_command_py.
   If mi_command_py manages setting/clearing that field in
   swap_python_object, I think it makes sense that it also takes care of
   setting it initially.
 - Move a bunch of checks from micmdpy_install_command to
   swap_python_object, and make them gdb_asserts.
 - In micmdpy_install_command, start by doing an mi_cmd_lookup.  This is
   needed to know whether there's a Python MI command already registered
   with that name.  But we can already tell if there's a non-Python
   command registered with that name.  Return an error if that happens,
   rather than waiting for insert_mi_cmd_entry to fail.  Change the
   error message to "name is already in use" rather than "may already be
   in use", since it's more precise.

I asked Andrew about the original intent of using a Python dictionary
object to hold the command objects.  The reason was to make sure the
objects get destroyed when the Python runtime gets finalized, not later.
Holding the objects in global C++ data structures and not doing anything
more means that the held Python objects will be decref'd after the
Python interpreter has been finalized.  That's not desirable.  I tried
it and it indeed segfaults.

Handle this by adding a gdbpy_finalize_micommands function called in
finalize_python.  This is the mirror of gdbpy_initialize_micommands
called in do_start_initialization.  In there, delete all Python MI
commands.  I think it makes sense to do it this way: if it was somehow
possible to unload Python support from GDB in the middle of a session
we'd want to unregister any Python MI command.  Otherwise, these MI
commands would be backed with a stale PyObject or simply nothing.

Delete tests that were related to `gdb._mi_commands`.

Co-Authored-By: Andrew Burgess <aburgess@redhat.com>
Change-Id: I060d5ebc7a096c67487998a8a4ca1e8e56f12cd3
2022-03-18 20:29:57 -04:00
Andrew Burgess
740b42ceb7 gdb/python/mi: create MI commands using python
This commit allows a user to create custom MI commands using Python
similarly to what is possible for Python CLI commands.

A new subclass of mi_command is defined for Python MI commands,
mi_command_py. A new file, gdb/python/py-micmd.c contains the logic
for Python MI commands.

This commit is based on work linked too from this mailing list thread:

  https://sourceware.org/pipermail/gdb/2021-November/049774.html

Which has also been previously posted to the mailing list here:

  https://sourceware.org/pipermail/gdb-patches/2019-May/158010.html

And was recently reposted here:

  https://sourceware.org/pipermail/gdb-patches/2022-January/185190.html

The version in this patch takes some core code from the previously
posted patches, but also has some significant differences, especially
after the feedback given here:

  https://sourceware.org/pipermail/gdb-patches/2022-February/185767.html

A new MI command can be implemented in Python like this:

  class echo_args(gdb.MICommand):
      def invoke(self, args):
          return { 'args': args }

  echo_args("-echo-args")

The 'args' parameter (to the invoke method) is a list
containing (almost) all command line arguments passed to the MI
command (--thread and --frame are handled before the Python code is
called, and removed from the args list).  This list can be empty if
the MI command was passed no arguments.

When used within gdb the above command produced output like this:

  (gdb)
  -echo-args a b c
  ^done,args=["a","b","c"]
  (gdb)

The 'invoke' method of the new command must return a dictionary.  The
keys of this dictionary are then used as the field names in the mi
command output (e.g. 'args' in the above).

The values of the result returned by invoke can be dictionaries,
lists, iterators, or an object that can be converted to a string.
These are processed recursively to create the mi output.  And so, this
is valid:

  class new_command(gdb.MICommand):
      def invoke(self,args):
          return { 'result_one': { 'abc': 123, 'def': 'Hello' },
                   'result_two': [ { 'a': 1, 'b': 2 },
                                   { 'c': 3, 'd': 4 } ] }

Which produces output like:

  (gdb)
  -new-command
  ^done,result_one={abc="123",def="Hello"},result_two=[{a="1",b="2"},{c="3",d="4"}]
  (gdb)

I have required that the fields names used in mi result output must
match the regexp: "^[a-zA-Z][-_a-zA-Z0-9]*$" (without the quotes).
This restriction was never written down anywhere before, but seems
sensible to me, and we can always loosen this rule later if it proves
to be a problem.  Much harder to try and add a restriction later, once
people are already using the API.

What follows are some details about how this implementation differs
from the original patch that was posted to the mailing list.

In this patch, I have changed how the lifetime of the Python
gdb.MICommand objects is managed.  In the original patch, these object
were kept alive by an owned reference within the mi_command_py object.
As such, the Python object would not be deleted until the
mi_command_py object itself was deleted.

This caused a problem, the mi_command_py were held in the global mi
command table (in mi/mi-cmds.c), which, as a global, was not cleared
until program shutdown.  By this point the Python interpreter has
already been shutdown.  Attempting to delete the mi_command_py object
at this point was causing GDB to try and invoke Python code after
finalising the Python interpreter, and we would crash.

To work around this problem, the original patch added code in
python/python.c that would search the mi command table, and delete the
mi_command_py objects before the Python environment was finalised.

In contrast, in this patch, I have added a new global dictionary to
the gdb module, gdb._mi_commands.  We already have several such global
data stores related to pretty printers, and frame unwinders.

The MICommand objects are placed into the new gdb.mi_commands
dictionary, and it is this reference that keeps the objects alive.
When GDB's Python interpreter is shut down gdb._mi_commands is deleted,
and any MICommand objects within it are deleted at this point.

This change avoids having to make the mi_cmd_table global, and walk
over it from within GDB's python related code.

This patch handles command redefinition entirely within GDB's python
code, though this does impose one small restriction which is not
present in the original code (detailed below), I don't think this is a
big issue.  However, the original patch relied on being able to
finish executing the mi_command::do_invoke member function after the
mi_command object had been deleted.  Though continuing to execute a
member function after an object is deleted is well defined, it is
also (IMHO) risky, its too easy for someone to later add a use of the
object without realising that the object might sometimes, have been
deleted.  The new patch avoids this issue.

The one restriction that is added to avoid this, is that an MICommand
object can't be reinitialised with a different command name, so:

  (gdb) python cmd = MyMICommand("-abc")
  (gdb) python cmd.__init__("-def")
  can't reinitialize object with a different command name

This feels like a pretty weird edge case, and I'm happy to live with
this restriction.

I have also changed how the memory is managed for the command name.
In the most recently posted patch series, the command name is moved
into a subclass of mi_command, the python mi_command_py, which
inherits from mi_command is then free to use a smart pointer to manage
the memory for the name.

In this patch, I leave the mi_command class unchanged, and instead
hold the memory for the name within the Python object, as the lifetime
of the Python object always exceeds the c++ object stored in the
mi_cmd_table.  This adds a little more complexity in py-micmd.c, but
leaves the mi_command class nice and simple.

Next, this patch adds some extra functionality, there's a
MICommand.name read-only attribute containing the name of the command,
and a read-write MICommand.installed attribute that can be used to
install (make the command available for use) and uninstall (remove the
command from the mi_cmd_table so it can't be used) the command.  This
attribute will be automatically updated if a second command replaces
an earlier command.

This patch adds additional error handling, and makes more use the
gdbpy_handle_exception function.

Co-Authored-By: Jan Vrany <jan.vrany@labware.com>
2022-03-14 14:09:09 +00:00
Andrew Burgess
30a87e90be gdb/python: add gdb.history_count function
Add a new function gdb.history_count to the Python api, this function
returns an integer, the number of items in GDB's value history.

This is useful if you want to pull items from the history by their
absolute number, for example, if you wanted to show a complete history
list.  Previously we could figure out how many items are in the
history list by trying to fetch the items, and then catching the
exception when the item is not available, but having this function
seems nicer.
2022-01-26 21:58:12 +00:00
Tom Tromey
1da5d0e664 Change how Python architecture and language are handled
Currently, gdb's Python layer captures the current architecture and
language when "entering" Python code.  This has some undesirable
effects, and so this series changes how this is handled.

First, there is code like this:

  gdbpy_enter enter_py (python_gdbarch, python_language);

This is incorrect, because both of these are NULL when not otherwise
assigned.  This can cause crashes in some cases -- I've added one to
the test suite.  (Note that this crasher is just an example, other
ones along the same lines are possible.)

Second, when the language is captured in this way, it means that
Python code cannot affect the current language for its own purposes.
It's reasonable to want to write code like this:

    gdb.execute('set language mumble')
    ... stuff using the current language
    gdb.execute('set language previous-value')

However, this won't actually work, because the language is captured on
entry.  I've added a test to show this as well.

This patch changes gdb to try to avoid capturing the current values.
The Python concept of the current gdbarch is only set in those few
cases where a non-default value is computed or needed; and the
language is not captured at all -- instead, in the cases where it's
required, the current language is temporarily changed.
2022-01-26 06:49:51 -07:00
Joel Brobecker
4a94e36819 Automatic Copyright Year update after running gdb/copyright.py
This commit brings all the changes made by running gdb/copyright.py
as per GDB's Start of New Year Procedure.

For the avoidance of doubt, all changes in this commits were
performed by the script.
2022-01-01 19:13:23 +04:00
Andrew Burgess
0e3b7c25ee gdb/python: introduce gdb.TargetConnection object type
This commit adds a new object type gdb.TargetConnection.  This new
type represents a connection within GDB (a connection as displayed by
'info connections').

There's three ways to find a gdb.TargetConnection, there's a new
'gdb.connections()' function, which returns a list of all currently
active connections.

Or you can read the new 'connection' property on the gdb.Inferior
object type, this contains the connection for that inferior (or None
if the inferior has no connection, for example, it is exited).

Finally, there's a new gdb.events.connection_removed event registry,
this emits a new gdb.ConnectionEvent whenever a connection is removed
from GDB (this can happen when all inferiors using a connection exit,
though this is not always the case, depending on the connection type).
The gdb.ConnectionEvent has a 'connection' property, which is the
gdb.TargetConnection being removed from GDB.

The gdb.TargetConnection has an 'is_valid()' method.  A connection
object becomes invalid when the underlying connection is removed from
GDB (as discussed above, this might be when all inferiors using a
connection exit, or it might be when the user explicitly replaces a
connection in GDB by issuing another 'target' command).

The gdb.TargetConnection has the following read-only properties:

  'num': The number for this connection,

  'type': e.g. 'native', 'remote', 'sim', etc

  'description': The longer description as seen in the 'info
                 connections' command output.

  'details': A string or None.  Extra details for the connection, for
             example, a remote connection's details might be
             'hostname:port'.
2021-11-30 12:10:33 +00:00
Simon Marchi
313f3b21cb gdb: remove bpstat typedef, rename bpstats to bpstat
I don't find that the bpstat typedef, which hides a pointer, is
particularly useful.  In fact, it confused me many times, and I just see
it as something to remember that adds cognitive load.  Also, with C++,
we might want to be able to pass bpstats objects by const-reference, not
necessarily by pointer.

So, remove the bpstat typedef and rename struct bpstats to bpstat (since
it represents one bpstat, it makes sense that it is singular).

Change-Id: I52e763b6e54ee666a9e045785f686d37b4f5f849
2021-11-08 16:39:14 -05:00
Andrew Burgess
625f7b1cdc gdb/python: move gdb.Membuf support into a new file
In a future commit I'm going to be creating gdb.Membuf objects from a
new file within gdb/python/py*.c.  Currently all gdb.Membuf objects
are created directly within infpy_read_memory (as a result of calling
gdb.Inferior.read_memory()).

Initially I split out the Membuf creation code into a new function,
and left the new function in gdb/python/py-inferior.c, however, it
felt a little random that the Membuf creation code should live with
the inferior handling code.

So, then I moved all of the Membuf related code out into a new file,
gdb/python/py-membuf.c, the interface is gdbpy_buffer_to_membuf, which
wraps an array of bytes into a gdb.Membuf object.

Most of the code is moved directly from py-inferior.c with only minor
tweaks to layout and replacing NULL with nullptr, hence, I've left the
copyright date on py-membuf.c as 2009-2021 to match py-inferior.c.

Currently, the only user of this code is still py-inferior.c, but in
later commits this will change.

There should be no user visible changes after this commit.
2021-10-22 13:43:42 +01:00
Andrew Burgess
8b87fbe6bb gdb/python: new gdb.architecture_names function
Add a new function to the Python API, gdb.architecture_names().  This
function returns a list containing all of the supported architecture
names within the current build of GDB.

The values returned in this list are all of the possible values that
can be returned from gdb.Architecture.name().
2021-10-22 13:42:49 +01:00
Lancelot SIX
1d7fe7f01b gdb: Introduce setting construct within cmd_list_element
cmd_list_element can contain a pointer to data that can be set and / or
shown.  This is achieved with the void* VAR member which points to the
data that can be accessed, while the VAR_TYPE member (of type enum
var_types) indicates how to interpret the data pointed to.

With this pattern, the user of the cmd_list_element needs to know what
is the storage type associated with a given VAR_TYPES in order to do
the proper casting.  No automatic safeguard is available to prevent
miss-use of the pointer.  Client code typically looks something like:

	switch (c->var_type)
	{
	  case var_zuinteger:
	    unsigned int v = *(unsigned int*) c->var;
	    ...
	    break;
	  case var_boolean:
	    bool v = *(bool *) c->var;
	    ...
	    break;
	  ...
	}

This patch proposes to add an abstraction around the var_types and void*
pointer pair.  The abstraction is meant to prevent the user from having
to handle the cast and verify that the data is read or written as a type
that is coherent with the setting's var_type.  This is achieved by
introducing the struct setting which exposes a set of templated get /
set member functions.  The template parameter is the type of the
variable that holds the referred variable.

Using those accessors allows runtime checks to be inserted in order to
ensure that the data pointed to has the expected type.  For example,
instantiating the member functions with bool will yield something
similar to:

	const bool &get<bool> () const
	{
	  gdb_assert (m_var_type == var_boolean);
	  gdb_assert (m_var != nullptr);
	  return *static_cast<bool *> (m_var);
	}
	void set<bool> (const bool &var)
	{
	  gdb_assert (m_var_type == var_boolean);
	  gdb_assert (m_var != nullptr);
	  *static_cast<bool *> (m_var) = var;
	}

Using the new abstraction, our initial example becomes:

	switch (c->var_type)
	{
	  case var_zuinteger:
	    unsigned int v = c->var->get<unsigned int> ();
	    ...
	    break;
	  case var_boolean:
	    bool v = c->var->get<bool> ();
	    ...
	    break;
	  ...
	}

While the call site is still similar, the introduction of runtime checks
help ensure correct usage of the data.

In order to avoid turning the bulk of add_setshow_cmd_full into a
templated function, and following a suggestion from Pedro Alves, a
setting can be constructed from a pre validated type erased reference to
a variable.  This is what setting::erased_args is used for.

Introducing an opaque abstraction to describe a setting will also make
it possible to use callbacks to retrieve or set the value of the setting
on the fly instead of pointing to a static chunk of memory.  This will
be done added in a later commit.

Given that a cmd_list_element may or may not reference a setting, the
VAR and VAR_TYPES members of the struct are replaced with a
gdb::optional<setting> named VAR.

Few internal function signatures have been modified to take into account
this new abstraction:

-The functions value_from_setting, str_value_from_setting and
 get_setshow_command_value_string used to have a 'cmd_list_element *'
 parameter but only used it for the VAR and VAR_TYPE member. They now
 take a 'const setting &' parameter instead.
- Similarly, the 'void *' and a 'enum var_types' parameters of
  pascm_param_value and gdbpy_parameter_value have been replaced with a
  'const setting &' parameter.

No user visible change is expected after this patch.

Tested on GNU/Linux x86_64, with no regression noticed.

Co-authored-by: Simon Marchi <simon.marchi@polymtl.ca>
Change-Id: Ie1d08c3ceb8b30b3d7bf1efe036eb8acffcd2f34
2021-10-03 17:53:16 +01:00
Andrew Burgess
0b233e34c8 gdb/python: remove all uses of Py_TPFLAGS_HAVE_ITER
Python 2 has a bit flag Py_TPFLAGS_HAVE_ITER which can be passed as
part of the tp_flags field when defining a new object type.  This flag
is not defined in Python 3 and so we define it to 0 in
python-internal.h (when IS_PY3K is defined).

The meaning of this flag is that the object has the fields tp_iter and
tp_iternext.  Note the use of "has" here, the flag says nothing about
the values in those fields, just that the type object has the fields.

In early versions of Python 2 these fields were no part of the
PyTypeObject struct, they were added in version 2.2 (see
https://docs.python.org/release/2.3/api/type-structs.html).  And so,
there could be a some code compiled out there which has a PyTypeObject
structure within it that doesn't even have the tp_iter and tp_iternext
fields, attempting to access these fields would be undefined
behaviour.

And so Python added the Py_TPFLAGS_HAVE_ITER flag.  If the flag is
present then Python is free to access the tp_iter and tp_iternext
fields.

If we consider GDB then we always assume that the tp_iter and
tp_iternext fields are part of PyTypeObject.  If someone was crazy
enough to try and compile GDB against Python 2.1 then we'd get lots of
build errors saying that we were passing too many fields when
initializing PyTypeObject structures.  And so, I claim, we can be sure
that GDB will always be compiled with a version of Python that has the
tp_iter and tp_iternext fields in PyTypeObject.

Next we can look at the Py_TPFLAGS_DEFAULT flag.  In Python 2, each
time additional fields are added to PyTypeObject a new Py_TPFLAGS_*
flag would be defined to indicate whether those flags are present or
not.  And, those new flags would be added to Py_TPFLAGS_DEFAULT.  And
so, in the latest version of Python 2 the Py_TPFLAGS_DEFAULT flag
includes Py_TPFLAGS_HAVE_ITER (see
https://docs.python.org/2.7/c-api/typeobj.html).

In GDB we pass Py_TPFLAGS_DEFAULT as part of the tp_flags for all
objects we define.

And so, in this commit, I propose to remove all uses of
Py_TPFLAGS_HAVE_ITER from GDB, it's simply not needed.

There should be no user visible changes after this commit.
2021-09-09 09:50:38 +01:00
Andrew Burgess
540bf37b25 gdb/python: new function to add values into GDB's history
The guile API has (history-append! <value>) to add values into GDB's
history list.  There is currently no equivalent in the Python API.

This commit adds gdb.add_history(<value>) to the Python API, this
function takes <value> a gdb.Value (or anything that can be passed to
the constructor of gdb.Value), and adds the value it represents to
GDB's history list.  The index of the newly added value is returned.
2021-09-07 10:54:07 +01:00
Simon Marchi
4b8cb9dd9e gdb: make gdbpy_parse_command_name return a unique_xmalloc_ptr
This avoids some manual memory management.

cmdpy_init correctly transfers ownership of the name to the
cmd_list_element, as it sets the name_allocated flag.  However,
cmdpy_init (and add_setshow_generic) doesn't, it looks like the name is
just leaked.  This is a bit tricky, because it actually creates two
commands (one set and one show), it would take a bit of refactoring of
the command code to give each their own allocated copy.  For now, just
keep doing what the current code does but in a more explicit fashion,
with an explicit release.

gdb/ChangeLog:

	* python/python-internal.h (gdbpy_parse_command_name): Return
	gdb::unique_xmalloc_ptr.
	* python/py-cmd.c (gdbpy_parse_command_name): Likewise.
	(cmdpy_init): Adjust.
	* python/py-param.c (parmpy_init): Adjust.
	(add_setshow_generic): Take gdb::unique_xmalloc_ptr, release it
	when done.

Change-Id: Iae5bc21fe2b22f12d5f954057b0aca7ca4cd3f0d
2021-05-12 13:50:09 -04:00
Simon Marchi
db972fce46 gdb: bool-ify ext_lang_auto_load_enabled and friends
Make it and related functions return bool.  Move function comments to
header where applicable.

gdb/ChangeLog:

	* auto-load.h (auto_load_gdb_scripts_enabled): Return bool, move
	comment here.
	* auto-load.c (auto_load_gdb_scripts_enabled): Return bool, move
	comment to header.
	* extension-priv.h (struct extension_language_script_ops)
	<auto_load_enabled>: Return bool.
	* extension.h (ext_lang_auto_load_enabled): Return bool, move
	comment here.
	* extension.c (ext_lang_auto_load_enabled): Return bool, move
	comment to header.
	* guile/guile-header.h (gdbscm_auto_load_enabled): Return bool,
	move comment here.
	* guile/scm-auto-load.c (gdbscm_auto_load_enabled): Return bool,
	move comment to header.
	* python/python-header.h (gdbpy_auto_load_enabled): Return bool,
	move comment here.
	* python/py-auto-load.c (gdbpy_auto_load_enabled): Return bool,
	move comment to header.

Change-Id: I657a17d2dab77a36884a137ce9b23a2cc6d53140
2021-01-13 11:57:24 -05:00
Joel Brobecker
3666a04883 Update copyright year range in all GDB files
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...

gdb/ChangeLog

        Update copyright year range in copyright header of all GDB files.
2021-01-01 12:12:21 +04:00
Tom Tromey
24fd95b4cd Change varobj_dynamic::child_iter to unique_ptr
This changes varobj_dynamic::child_iter to be a unique_ptr, removing
some manual management.

gdb/ChangeLog
2020-12-11  Tom Tromey  <tom@tromey.com>

	* varobj.c (struct varobj_dynamic) <child_iter>: Now unique_ptr.
	(varobj_get_iterator): Return unique_ptr.
	(update_dynamic_varobj_children, install_visualizer)
	(varobj::~varobj): Update.
	* python/python-internal.h (py_varobj_get_iterator): Return
	unique_ptr.
	* python/py-varobj.c (py_varobj_get_iterator): Return unique_ptr.
2020-12-11 09:33:40 -07:00
Tom Tromey
f99b517750 Remove redundant typedefs
I was inspired by this patch of Simon's:

https://sourceware.org/pipermail/gdb-patches/2020-November/173522.html

... to remove other typedefs that are no longer necessary now that gdb
uses C++.

I didn't remove absolutely every one -- I didn't touch the tdep files.
However, I removed many of them.  In some cases, I removed an existing
different struct tag.

2020-12-04  Tom Tromey  <tromey@adacore.com>

	* linespec.c (struct linespec_token): Rename; remove typedef.
	* guile/scm-block.c (struct block_smob): Remove typedef.
	(struct block_syms_progress_smob): Likewise.
	* guile/scm-symbol.c (struct symbol_smob): Remove typedef.
	* guile/scm-symtab.c (symtab_smob): Remove typedef.
	(struct sal_smob): Remove typedef.
	* guile/scm-param.c (struct param_smob): Remove typedef.
	* guile/scm-progspace.c (struct pspace_smob): Rename.
	* guile/scm-objfile.c (struct objfile_smob): Rename.
	* guile/scm-iterator.c (struct iterator_smob): Rename.
	* guile/scm-frame.c (struct frame_smob): Rename.
	* guile/scm-arch.c (struct arch_smob): Rename.
	* guile/scm-type.c (struct field_smob): Remove typedef.
	(struct type_smob): Rename.
	* guile/scm-cmd.c (struct command_smob): Remove typedef.
	* guile/scm-ports.c (struct ioscm_memory_port): Remove typedef.
	* guile/scm-value.c (struct value_smob): Remove typedef.
	* guile/scm-lazy-string.c (lazy_string_smob): Remove typedef.
	* guile/guile-internal.h (struct scheme_variable)
	(struct scheme_function, struct scheme_integer_constant)
	(struct gdb_smob, struct chained_gdb_smob)
	(struct eqable_gdb_smob, arch_smob, frame_smob, iterator_smob)
	(objfile_smob, pspace_smob, type_smob): Remove typedef.
	* guile/scm-pretty-print.c (pretty_printer_smob): Remove typedef.
	(struct pretty_printer_worker_smob): Remove typedef.
	* guile/scm-exception.c (struct exception_smob): Remove typedef.
	* python/py-block.c (struct block_object): Remove typedef.
	(block_syms_iterator_object): Update.
	(set_block): Update.
	(block_syms_iterator_object): Remove typedef.
	* python/py-inferior.c (struct membuf_object): Remove typedef.
	* python/py-symtab.c (struct symtab_object): Remove typedef.
	(set_symtab): Update.
	(sal_object): Remove typedef.
	(set_sal): Update.
	* python/py-frame.c (frame_object): Remove typedef.
	* python/py-record-btrace.c (struct btpy_list_object): Remove
	typedef.
	* python/py-arch.c (struct arch_object): Remove typedef.
	* python/py-linetable.c (struct linetable_entry_object)
	(linetable_object, struct ltpy_iterator_object): Remove typedef.
	* python/py-events.h (eventregistry_object): Remove typedef.
	(struct events_object): Remove typedef.
	* python/python-internal.h (gdbpy_breakpoint_object): Remove
	typedef.
	(thread_object): Remove typedef.
	* python/py-progspace.c (pspace_object): Remove typedef.
	* python/py-value.c (struct value_object): Remove typedef.
	* python/py-record.h (recpy_record_object): Remove typedef.
	(struct recpy_element_object): Remove typedef.
	* python/py-lazy-string.c (lazy_string_object): Remove typedef.
	* python/py-objfile.c (objfile_object): Remove typedef.
	* python/py-cmd.c (struct cmdpy_object): Remove typedef.
	* python/py-type.c (type_object): Remove typedef.
	(typy_iterator_object): Update.
	(set_type): Update.
	(field_object): Remove typedef.
	(typy_iterator_object): Remove typedef.
	* python/py-registers.c (register_descriptor_iterator_object):
	Remove typedef.
	(struct register_descriptor_object)
	(struct reggroup_iterator_object, struct reggroup_object): Remove
	typedef.
	* python/py-record.c (recpy_gap_object): Remove typedef.
	* python/py-symbol.c (symbol_object): Remove typedef.
	(set_symbol): Update.
	* python/py-event.h (event_object): Remove typedef.
	* python/py-param.c (parmpy_object): Remove typedef.
	* python/py-instruction.c (struct py_insn_obj): Remove typedef.
	* python/py-unwind.c (struct pending_frame_object): Remove typedef.
	(unwind_info_object, struct cached_frame_info): Likewise.
2020-12-04 13:12:56 -07:00
Simon Marchi
dda83cd783 gdb, gdbserver, gdbsupport: fix leading space vs tabs issues
Many spots incorrectly use only spaces for indentation (for example,
there are a lot of spots in ada-lang.c).  I've always found it awkward
when I needed to edit one of these spots: do I keep the original wrong
indentation, or do I fix it?  What if the lines around it are also
wrong, do I fix them too?  I probably don't want to fix them in the same
patch, to avoid adding noise to my patch.

So I propose to fix as much as possible once and for all (hopefully).

One typical counter argument for this is that it makes code archeology
more difficult, because git-blame will show this commit as the last
change for these lines.  My counter counter argument is: when
git-blaming, you often need to do "blame the file at the parent commit"
anyway, to go past some other refactor that touched the line you are
interested in, but is not the change you are looking for.  So you
already need a somewhat efficient way to do this.

Using some interactive tool, rather than plain git-blame, makes this
trivial.  For example, I use "tig blame <file>", where going back past
the commit that changed the currently selected line is one keystroke.
It looks like Magit in Emacs does it too (though I've never used it).
Web viewers of Github and Gitlab do it too.  My point is that it won't
really make archeology more difficult.

The other typical counter argument is that it will cause conflicts with
existing patches.  That's true... but it's a one time cost, and those
are not conflicts that are difficult to resolve.  I have also tried "git
rebase --ignore-whitespace", it seems to work well.  Although that will
re-introduce the faulty indentation, so one needs to take care of fixing
the indentation in the patch after that (which is easy).

gdb/ChangeLog:

	* aarch64-linux-tdep.c: Fix indentation.
	* aarch64-ravenscar-thread.c: Fix indentation.
	* aarch64-tdep.c: Fix indentation.
	* aarch64-tdep.h: Fix indentation.
	* ada-lang.c: Fix indentation.
	* ada-lang.h: Fix indentation.
	* ada-tasks.c: Fix indentation.
	* ada-typeprint.c: Fix indentation.
	* ada-valprint.c: Fix indentation.
	* ada-varobj.c: Fix indentation.
	* addrmap.c: Fix indentation.
	* addrmap.h: Fix indentation.
	* agent.c: Fix indentation.
	* aix-thread.c: Fix indentation.
	* alpha-bsd-nat.c: Fix indentation.
	* alpha-linux-tdep.c: Fix indentation.
	* alpha-mdebug-tdep.c: Fix indentation.
	* alpha-nbsd-tdep.c: Fix indentation.
	* alpha-obsd-tdep.c: Fix indentation.
	* alpha-tdep.c: Fix indentation.
	* amd64-bsd-nat.c: Fix indentation.
	* amd64-darwin-tdep.c: Fix indentation.
	* amd64-linux-nat.c: Fix indentation.
	* amd64-linux-tdep.c: Fix indentation.
	* amd64-nat.c: Fix indentation.
	* amd64-obsd-tdep.c: Fix indentation.
	* amd64-tdep.c: Fix indentation.
	* amd64-windows-tdep.c: Fix indentation.
	* annotate.c: Fix indentation.
	* arc-tdep.c: Fix indentation.
	* arch-utils.c: Fix indentation.
	* arch/arm-get-next-pcs.c: Fix indentation.
	* arch/arm.c: Fix indentation.
	* arm-linux-nat.c: Fix indentation.
	* arm-linux-tdep.c: Fix indentation.
	* arm-nbsd-tdep.c: Fix indentation.
	* arm-pikeos-tdep.c: Fix indentation.
	* arm-tdep.c: Fix indentation.
	* arm-tdep.h: Fix indentation.
	* arm-wince-tdep.c: Fix indentation.
	* auto-load.c: Fix indentation.
	* auxv.c: Fix indentation.
	* avr-tdep.c: Fix indentation.
	* ax-gdb.c: Fix indentation.
	* ax-general.c: Fix indentation.
	* bfin-linux-tdep.c: Fix indentation.
	* block.c: Fix indentation.
	* block.h: Fix indentation.
	* blockframe.c: Fix indentation.
	* bpf-tdep.c: Fix indentation.
	* break-catch-sig.c: Fix indentation.
	* break-catch-syscall.c: Fix indentation.
	* break-catch-throw.c: Fix indentation.
	* breakpoint.c: Fix indentation.
	* breakpoint.h: Fix indentation.
	* bsd-uthread.c: Fix indentation.
	* btrace.c: Fix indentation.
	* build-id.c: Fix indentation.
	* buildsym-legacy.h: Fix indentation.
	* buildsym.c: Fix indentation.
	* c-typeprint.c: Fix indentation.
	* c-valprint.c: Fix indentation.
	* c-varobj.c: Fix indentation.
	* charset.c: Fix indentation.
	* cli/cli-cmds.c: Fix indentation.
	* cli/cli-decode.c: Fix indentation.
	* cli/cli-decode.h: Fix indentation.
	* cli/cli-script.c: Fix indentation.
	* cli/cli-setshow.c: Fix indentation.
	* coff-pe-read.c: Fix indentation.
	* coffread.c: Fix indentation.
	* compile/compile-cplus-types.c: Fix indentation.
	* compile/compile-object-load.c: Fix indentation.
	* compile/compile-object-run.c: Fix indentation.
	* completer.c: Fix indentation.
	* corefile.c: Fix indentation.
	* corelow.c: Fix indentation.
	* cp-abi.h: Fix indentation.
	* cp-namespace.c: Fix indentation.
	* cp-support.c: Fix indentation.
	* cp-valprint.c: Fix indentation.
	* cris-linux-tdep.c: Fix indentation.
	* cris-tdep.c: Fix indentation.
	* darwin-nat-info.c: Fix indentation.
	* darwin-nat.c: Fix indentation.
	* darwin-nat.h: Fix indentation.
	* dbxread.c: Fix indentation.
	* dcache.c: Fix indentation.
	* disasm.c: Fix indentation.
	* dtrace-probe.c: Fix indentation.
	* dwarf2/abbrev.c: Fix indentation.
	* dwarf2/attribute.c: Fix indentation.
	* dwarf2/expr.c: Fix indentation.
	* dwarf2/frame.c: Fix indentation.
	* dwarf2/index-cache.c: Fix indentation.
	* dwarf2/index-write.c: Fix indentation.
	* dwarf2/line-header.c: Fix indentation.
	* dwarf2/loc.c: Fix indentation.
	* dwarf2/macro.c: Fix indentation.
	* dwarf2/read.c: Fix indentation.
	* dwarf2/read.h: Fix indentation.
	* elfread.c: Fix indentation.
	* eval.c: Fix indentation.
	* event-top.c: Fix indentation.
	* exec.c: Fix indentation.
	* exec.h: Fix indentation.
	* expprint.c: Fix indentation.
	* f-lang.c: Fix indentation.
	* f-typeprint.c: Fix indentation.
	* f-valprint.c: Fix indentation.
	* fbsd-nat.c: Fix indentation.
	* fbsd-tdep.c: Fix indentation.
	* findvar.c: Fix indentation.
	* fork-child.c: Fix indentation.
	* frame-unwind.c: Fix indentation.
	* frame-unwind.h: Fix indentation.
	* frame.c: Fix indentation.
	* frv-linux-tdep.c: Fix indentation.
	* frv-tdep.c: Fix indentation.
	* frv-tdep.h: Fix indentation.
	* ft32-tdep.c: Fix indentation.
	* gcore.c: Fix indentation.
	* gdb_bfd.c: Fix indentation.
	* gdbarch.sh: Fix indentation.
	* gdbarch.c: Re-generate
	* gdbarch.h: Re-generate.
	* gdbcore.h: Fix indentation.
	* gdbthread.h: Fix indentation.
	* gdbtypes.c: Fix indentation.
	* gdbtypes.h: Fix indentation.
	* glibc-tdep.c: Fix indentation.
	* gnu-nat.c: Fix indentation.
	* gnu-nat.h: Fix indentation.
	* gnu-v2-abi.c: Fix indentation.
	* gnu-v3-abi.c: Fix indentation.
	* go32-nat.c: Fix indentation.
	* guile/guile-internal.h: Fix indentation.
	* guile/scm-cmd.c: Fix indentation.
	* guile/scm-frame.c: Fix indentation.
	* guile/scm-iterator.c: Fix indentation.
	* guile/scm-math.c: Fix indentation.
	* guile/scm-ports.c: Fix indentation.
	* guile/scm-pretty-print.c: Fix indentation.
	* guile/scm-value.c: Fix indentation.
	* h8300-tdep.c: Fix indentation.
	* hppa-linux-nat.c: Fix indentation.
	* hppa-linux-tdep.c: Fix indentation.
	* hppa-nbsd-nat.c: Fix indentation.
	* hppa-nbsd-tdep.c: Fix indentation.
	* hppa-obsd-nat.c: Fix indentation.
	* hppa-tdep.c: Fix indentation.
	* hppa-tdep.h: Fix indentation.
	* i386-bsd-nat.c: Fix indentation.
	* i386-darwin-nat.c: Fix indentation.
	* i386-darwin-tdep.c: Fix indentation.
	* i386-dicos-tdep.c: Fix indentation.
	* i386-gnu-nat.c: Fix indentation.
	* i386-linux-nat.c: Fix indentation.
	* i386-linux-tdep.c: Fix indentation.
	* i386-nto-tdep.c: Fix indentation.
	* i386-obsd-tdep.c: Fix indentation.
	* i386-sol2-nat.c: Fix indentation.
	* i386-tdep.c: Fix indentation.
	* i386-tdep.h: Fix indentation.
	* i386-windows-tdep.c: Fix indentation.
	* i387-tdep.c: Fix indentation.
	* i387-tdep.h: Fix indentation.
	* ia64-libunwind-tdep.c: Fix indentation.
	* ia64-libunwind-tdep.h: Fix indentation.
	* ia64-linux-nat.c: Fix indentation.
	* ia64-linux-tdep.c: Fix indentation.
	* ia64-tdep.c: Fix indentation.
	* ia64-tdep.h: Fix indentation.
	* ia64-vms-tdep.c: Fix indentation.
	* infcall.c: Fix indentation.
	* infcmd.c: Fix indentation.
	* inferior.c: Fix indentation.
	* infrun.c: Fix indentation.
	* iq2000-tdep.c: Fix indentation.
	* language.c: Fix indentation.
	* linespec.c: Fix indentation.
	* linux-fork.c: Fix indentation.
	* linux-nat.c: Fix indentation.
	* linux-tdep.c: Fix indentation.
	* linux-thread-db.c: Fix indentation.
	* lm32-tdep.c: Fix indentation.
	* m2-lang.c: Fix indentation.
	* m2-typeprint.c: Fix indentation.
	* m2-valprint.c: Fix indentation.
	* m32c-tdep.c: Fix indentation.
	* m32r-linux-tdep.c: Fix indentation.
	* m32r-tdep.c: Fix indentation.
	* m68hc11-tdep.c: Fix indentation.
	* m68k-bsd-nat.c: Fix indentation.
	* m68k-linux-nat.c: Fix indentation.
	* m68k-linux-tdep.c: Fix indentation.
	* m68k-tdep.c: Fix indentation.
	* machoread.c: Fix indentation.
	* macrocmd.c: Fix indentation.
	* macroexp.c: Fix indentation.
	* macroscope.c: Fix indentation.
	* macrotab.c: Fix indentation.
	* macrotab.h: Fix indentation.
	* main.c: Fix indentation.
	* mdebugread.c: Fix indentation.
	* mep-tdep.c: Fix indentation.
	* mi/mi-cmd-catch.c: Fix indentation.
	* mi/mi-cmd-disas.c: Fix indentation.
	* mi/mi-cmd-env.c: Fix indentation.
	* mi/mi-cmd-stack.c: Fix indentation.
	* mi/mi-cmd-var.c: Fix indentation.
	* mi/mi-cmds.c: Fix indentation.
	* mi/mi-main.c: Fix indentation.
	* mi/mi-parse.c: Fix indentation.
	* microblaze-tdep.c: Fix indentation.
	* minidebug.c: Fix indentation.
	* minsyms.c: Fix indentation.
	* mips-linux-nat.c: Fix indentation.
	* mips-linux-tdep.c: Fix indentation.
	* mips-nbsd-tdep.c: Fix indentation.
	* mips-tdep.c: Fix indentation.
	* mn10300-linux-tdep.c: Fix indentation.
	* mn10300-tdep.c: Fix indentation.
	* moxie-tdep.c: Fix indentation.
	* msp430-tdep.c: Fix indentation.
	* namespace.h: Fix indentation.
	* nat/fork-inferior.c: Fix indentation.
	* nat/gdb_ptrace.h: Fix indentation.
	* nat/linux-namespaces.c: Fix indentation.
	* nat/linux-osdata.c: Fix indentation.
	* nat/netbsd-nat.c: Fix indentation.
	* nat/x86-dregs.c: Fix indentation.
	* nbsd-nat.c: Fix indentation.
	* nbsd-tdep.c: Fix indentation.
	* nios2-linux-tdep.c: Fix indentation.
	* nios2-tdep.c: Fix indentation.
	* nto-procfs.c: Fix indentation.
	* nto-tdep.c: Fix indentation.
	* objfiles.c: Fix indentation.
	* objfiles.h: Fix indentation.
	* opencl-lang.c: Fix indentation.
	* or1k-tdep.c: Fix indentation.
	* osabi.c: Fix indentation.
	* osabi.h: Fix indentation.
	* osdata.c: Fix indentation.
	* p-lang.c: Fix indentation.
	* p-typeprint.c: Fix indentation.
	* p-valprint.c: Fix indentation.
	* parse.c: Fix indentation.
	* ppc-linux-nat.c: Fix indentation.
	* ppc-linux-tdep.c: Fix indentation.
	* ppc-nbsd-nat.c: Fix indentation.
	* ppc-nbsd-tdep.c: Fix indentation.
	* ppc-obsd-nat.c: Fix indentation.
	* ppc-ravenscar-thread.c: Fix indentation.
	* ppc-sysv-tdep.c: Fix indentation.
	* ppc64-tdep.c: Fix indentation.
	* printcmd.c: Fix indentation.
	* proc-api.c: Fix indentation.
	* producer.c: Fix indentation.
	* producer.h: Fix indentation.
	* prologue-value.c: Fix indentation.
	* prologue-value.h: Fix indentation.
	* psymtab.c: Fix indentation.
	* python/py-arch.c: Fix indentation.
	* python/py-bpevent.c: Fix indentation.
	* python/py-event.c: Fix indentation.
	* python/py-event.h: Fix indentation.
	* python/py-finishbreakpoint.c: Fix indentation.
	* python/py-frame.c: Fix indentation.
	* python/py-framefilter.c: Fix indentation.
	* python/py-inferior.c: Fix indentation.
	* python/py-infthread.c: Fix indentation.
	* python/py-objfile.c: Fix indentation.
	* python/py-prettyprint.c: Fix indentation.
	* python/py-registers.c: Fix indentation.
	* python/py-signalevent.c: Fix indentation.
	* python/py-stopevent.c: Fix indentation.
	* python/py-stopevent.h: Fix indentation.
	* python/py-threadevent.c: Fix indentation.
	* python/py-tui.c: Fix indentation.
	* python/py-unwind.c: Fix indentation.
	* python/py-value.c: Fix indentation.
	* python/py-xmethods.c: Fix indentation.
	* python/python-internal.h: Fix indentation.
	* python/python.c: Fix indentation.
	* ravenscar-thread.c: Fix indentation.
	* record-btrace.c: Fix indentation.
	* record-full.c: Fix indentation.
	* record.c: Fix indentation.
	* reggroups.c: Fix indentation.
	* regset.h: Fix indentation.
	* remote-fileio.c: Fix indentation.
	* remote.c: Fix indentation.
	* reverse.c: Fix indentation.
	* riscv-linux-tdep.c: Fix indentation.
	* riscv-ravenscar-thread.c: Fix indentation.
	* riscv-tdep.c: Fix indentation.
	* rl78-tdep.c: Fix indentation.
	* rs6000-aix-tdep.c: Fix indentation.
	* rs6000-lynx178-tdep.c: Fix indentation.
	* rs6000-nat.c: Fix indentation.
	* rs6000-tdep.c: Fix indentation.
	* rust-lang.c: Fix indentation.
	* rx-tdep.c: Fix indentation.
	* s12z-tdep.c: Fix indentation.
	* s390-linux-tdep.c: Fix indentation.
	* score-tdep.c: Fix indentation.
	* ser-base.c: Fix indentation.
	* ser-mingw.c: Fix indentation.
	* ser-uds.c: Fix indentation.
	* ser-unix.c: Fix indentation.
	* serial.c: Fix indentation.
	* sh-linux-tdep.c: Fix indentation.
	* sh-nbsd-tdep.c: Fix indentation.
	* sh-tdep.c: Fix indentation.
	* skip.c: Fix indentation.
	* sol-thread.c: Fix indentation.
	* solib-aix.c: Fix indentation.
	* solib-darwin.c: Fix indentation.
	* solib-frv.c: Fix indentation.
	* solib-svr4.c: Fix indentation.
	* solib.c: Fix indentation.
	* source.c: Fix indentation.
	* sparc-linux-tdep.c: Fix indentation.
	* sparc-nbsd-tdep.c: Fix indentation.
	* sparc-obsd-tdep.c: Fix indentation.
	* sparc-ravenscar-thread.c: Fix indentation.
	* sparc-tdep.c: Fix indentation.
	* sparc64-linux-tdep.c: Fix indentation.
	* sparc64-nbsd-tdep.c: Fix indentation.
	* sparc64-obsd-tdep.c: Fix indentation.
	* sparc64-tdep.c: Fix indentation.
	* stabsread.c: Fix indentation.
	* stack.c: Fix indentation.
	* stap-probe.c: Fix indentation.
	* stubs/ia64vms-stub.c: Fix indentation.
	* stubs/m32r-stub.c: Fix indentation.
	* stubs/m68k-stub.c: Fix indentation.
	* stubs/sh-stub.c: Fix indentation.
	* stubs/sparc-stub.c: Fix indentation.
	* symfile-mem.c: Fix indentation.
	* symfile.c: Fix indentation.
	* symfile.h: Fix indentation.
	* symmisc.c: Fix indentation.
	* symtab.c: Fix indentation.
	* symtab.h: Fix indentation.
	* target-float.c: Fix indentation.
	* target.c: Fix indentation.
	* target.h: Fix indentation.
	* tic6x-tdep.c: Fix indentation.
	* tilegx-linux-tdep.c: Fix indentation.
	* tilegx-tdep.c: Fix indentation.
	* top.c: Fix indentation.
	* tracefile-tfile.c: Fix indentation.
	* tracepoint.c: Fix indentation.
	* tui/tui-disasm.c: Fix indentation.
	* tui/tui-io.c: Fix indentation.
	* tui/tui-regs.c: Fix indentation.
	* tui/tui-stack.c: Fix indentation.
	* tui/tui-win.c: Fix indentation.
	* tui/tui-winsource.c: Fix indentation.
	* tui/tui.c: Fix indentation.
	* typeprint.c: Fix indentation.
	* ui-out.h: Fix indentation.
	* unittests/copy_bitwise-selftests.c: Fix indentation.
	* unittests/memory-map-selftests.c: Fix indentation.
	* utils.c: Fix indentation.
	* v850-tdep.c: Fix indentation.
	* valarith.c: Fix indentation.
	* valops.c: Fix indentation.
	* valprint.c: Fix indentation.
	* valprint.h: Fix indentation.
	* value.c: Fix indentation.
	* value.h: Fix indentation.
	* varobj.c: Fix indentation.
	* vax-tdep.c: Fix indentation.
	* windows-nat.c: Fix indentation.
	* windows-tdep.c: Fix indentation.
	* xcoffread.c: Fix indentation.
	* xml-syscall.c: Fix indentation.
	* xml-tdesc.c: Fix indentation.
	* xstormy16-tdep.c: Fix indentation.
	* xtensa-config.c: Fix indentation.
	* xtensa-linux-nat.c: Fix indentation.
	* xtensa-linux-tdep.c: Fix indentation.
	* xtensa-tdep.c: Fix indentation.

gdbserver/ChangeLog:

	* ax.cc: Fix indentation.
	* dll.cc: Fix indentation.
	* inferiors.h: Fix indentation.
	* linux-low.cc: Fix indentation.
	* linux-nios2-low.cc: Fix indentation.
	* linux-ppc-ipa.cc: Fix indentation.
	* linux-ppc-low.cc: Fix indentation.
	* linux-x86-low.cc: Fix indentation.
	* linux-xtensa-low.cc: Fix indentation.
	* regcache.cc: Fix indentation.
	* server.cc: Fix indentation.
	* tracepoint.cc: Fix indentation.

gdbsupport/ChangeLog:

	* common-exceptions.h: Fix indentation.
	* event-loop.cc: Fix indentation.
	* fileio.cc: Fix indentation.
	* filestuff.cc: Fix indentation.
	* gdb-dlfcn.cc: Fix indentation.
	* gdb_string_view.h: Fix indentation.
	* job-control.cc: Fix indentation.
	* signals.cc: Fix indentation.

Change-Id: I4bad7ae6be0fbe14168b8ebafb98ffe14964a695
2020-11-02 10:28:45 -05:00
Tom Tromey
47f0e2ff7f Don't use PyInt_FromLong
Avoid the use of PyInt_FromLong, preferring gdb_py_object_from_longest
instead.  I found found another spot that was incorrectly handling
errors (see gdbpy_create_ptid_object) while writing this patch; it is
fixed here.

gdb/ChangeLog
2020-09-15  Tom Tromey  <tromey@adacore.com>

	* python/python-internal.h (PyInt_FromLong): Remove define.
	* python/py-value.c (convert_value_from_python): Use
	gdb_py_object_from_longest.
	* python/py-type.c (typy_get_code): Use
	gdb_py_object_from_longest.
	* python/py-symtab.c (salpy_get_line): Use
	gdb_py_object_from_longest.
	* python/py-symbol.c (sympy_get_addr_class, sympy_line): Use
	gdb_py_object_from_longest.
	* python/py-record.c (recpy_gap_reason_code): Use
	gdb_py_object_from_longest.
	* python/py-record-btrace.c (recpy_bt_insn_size)
	(recpy_bt_func_level, btpy_list_count): Use
	gdb_py_object_from_longest.
	* python/py-infthread.c (gdbpy_create_ptid_object): Use
	gdb_py_object_from_longest.  Fix error handling.
	* python/py-framefilter.c (bootstrap_python_frame_filters): Use
	gdb_py_object_from_longest.
	* python/py-frame.c (frapy_type, frapy_unwind_stop_reason): Use
	gdb_py_object_from_longest.
	* python/py-breakpoint.c (bppy_get_type, bppy_get_number)
	(bppy_get_thread, bppy_get_task, bppy_get_hit_count)
	(bppy_get_ignore_count): Use gdb_py_object_from_longest.
2020-09-15 11:08:57 -06:00
Tom Tromey
d1cab9876d Don't use gdb_py_long_from_ulongest
Remove the gdb_py_long_from_ulongest defines and change the Python
layer to prefer gdb_py_object_from_ulongest.  While writing this I
noticed that the error handling in archpy_disassemble was incorrect --
it could call PyDict_SetItemString with a NULL value.  This patch also
fixes this bug.

gdb/ChangeLog
2020-09-15  Tom Tromey  <tromey@adacore.com>

	* python/python-internal.h (gdb_py_long_from_ulongest): Remove
	defines.
	* python/py-value.c (valpy_long): Use
	gdb_py_object_from_ulongest.
	* python/py-symtab.c (salpy_get_pc): Use
	gdb_py_object_from_ulongest.
	(salpy_get_last): Likewise.
	* python/py-record-btrace.c (recpy_bt_insn_pc): Use
	gdb_py_object_from_ulongest.
	* python/py-lazy-string.c (stpy_get_address): Use
	gdb_py_object_from_ulongest.
	* python/py-frame.c (frapy_pc): Use gdb_py_object_from_ulongest.
	* python/py-arch.c (archpy_disassemble): Use
	gdb_py_object_from_ulongest and gdb_py_object_from_longest.  Fix
	error handling.
2020-09-15 11:08:56 -06:00
Tom Tromey
4bde49dc81 Don't use gdb_py_long_from_longest
Change the Python layer to avoid gdb_py_long_from_longest, and remove
the defines.

gdb/ChangeLog
2020-09-15  Tom Tromey  <tromey@adacore.com>

	* python/python-internal.h (gdb_py_long_from_longest): Remove
	defines.
	* python/py-value.c (valpy_long): Use gdb_py_object_from_longest.
	* python/py-type.c (convert_field, typy_get_sizeof): Use
	gdb_py_object_from_longest.
	* python/py-record-btrace.c (btpy_list_index): Use
	gdb_py_object_from_longest.
2020-09-15 11:08:56 -06:00
Tom Tromey
3743107465 Don't use PyInt_FromSsize_t
Change the Python layer to avoid PyInt_FromSsize_t, and remove the
compatibility define.

gdb/ChangeLog
2020-09-15  Tom Tromey  <tromey@adacore.com>

	* python/python-internal.h (PyInt_FromSsize_t): Remove define.
	* python/py-record.c (recpy_element_number): Use
	gdb_py_object_from_longest.
	(recpy_gap_number): Likewise.
2020-09-15 11:08:56 -06:00
Andrew Burgess
43d5901ded gdb/python: make more use of RegisterDescriptors
This commit unifies all of the Python register lookup code (used by
Frame.read_register, PendingFrame.read_register, and
gdb.UnwindInfo.add_saved_register), and adds support for using a
gdb.RegisterDescriptor for register lookup.

Currently the register unwind code (PendingFrame and UnwindInfo) allow
registers to be looked up either by name, or by GDB's internal
number.  I suspect the number was added for performance reasons, when
unwinding we don't want to repeatedly map from name to number for
every unwind.  However, this kind-of sucks, it means Python scripts
could include GDB's internal register numbers, and if we ever change
this numbering in the future users scripts will break in unexpected
ways.

Meanwhile, the Frame.read_register method only supports accessing
registers using a string, the register name.

This commit unifies all of the register to register-number lookup code
in our Python bindings, and adds a third choice into the mix, the use
of gdb.RegisterDescriptor.

The register descriptors can be looked up by name, but once looked up,
they contain GDB's register number, and so provide all of the
performance benefits of using a register number directly.  However, as
they are looked up by name we are no longer tightly binding the Python
API to GDB's internal numbering scheme.

As we may already have scripts in the wild that are using the register
numbers directly I have kept support for this in the API, but I have
listed this method last in the manual, and I have tried to stress that
this is NOT a good method to use and that users should use either a
string or register descriptor approach.

After this commit all existing Python code should function as before,
but users now have new options for how to identify registers.

gdb/ChangeLog:

	* python/py-frame.c: Remove 'user-regs.h' include.
	(frapy_read_register): Rewrite to make use of
	gdbpy_parse_register_id.
	* python/py-registers.c (gdbpy_parse_register_id): New function,
	moved here from python/py-unwind.c.  Updated the return type, and
	also accepts register descriptor objects.
	* python/py-unwind.c: Remove 'user-regs.h' include.
	(pyuw_parse_register_id): Moved to python/py-registers.c.
	(unwind_infopy_add_saved_register): Update to use
	gdbpy_parse_register_id.
	(pending_framepy_read_register): Likewise.
	* python/python-internal.h (gdbpy_parse_register_id): Declare.

gdb/testsuite/ChangeLog:

	* gdb.python/py-unwind.py: Update to make use of a register
	descriptor.

gdb/doc/ChangeLog:

	* python.texi (Unwinding Frames in Python): Update descriptions
	for PendingFrame.read_register and
	gdb.UnwindInfo.add_saved_register.
	(Frames In Python): Update description of Frame.read_register.
2020-07-28 10:27:54 +01:00
Andrew Burgess
64cb3757a9 gdb/python: New method to access list of register groups
Add a new method gdb.Architecture.register_groups which returns a new
object of type gdb.RegisterGroupsIterator.  This new iterator then
returns objects of type gdb.RegisterGroup.

Each gdb.RegisterGroup object just wraps a single reggroup pointer,
and (currently) has just one read-only property 'name' that is a
string, the name of the register group.

As with the previous commit (adding gdb.RegisterDescriptor) I made
gdb.RegisterGroup an object rather than just a string in case we want
to add additional properties in the future.

gdb/ChangeLog:

	* NEWS: Mention additions to Python API.
	* python/py-arch.c (archpy_register_groups): New function.
	(arch_object_methods): Add 'register_groups' method.
	* python/py-registers.c (reggroup_iterator_object): New struct.
	(reggroup_object): New struct.
	(gdbpy_new_reggroup): New function.
	(gdbpy_reggroup_to_string): New function.
	(gdbpy_reggroup_name): New function.
	(gdbpy_reggroup_iter): New function.
	(gdbpy_reggroup_iter_next): New function.
	(gdbpy_new_reggroup_iterator): New function
	(gdbpy_initialize_registers): Register new types.
	(reggroup_iterator_object_type): Define new Python type.
	(gdbpy_reggroup_getset): New static global.
	(reggroup_object_type): Define new Python type.
	* python/python-internal.h

gdb/testsuite/ChangeLog:

	* gdb.python/py-arch-reg-groups.exp: New file.

gdb/doc/ChangeLog:

	* gdb.texi (Registers): Add @anchor for 'info registers
	<reggroup>' command.
	* python.texi (Architectures In Python): Document new
	register_groups method.
	(Registers In Python): Document two new object types related to
	register groups.
2020-07-06 15:06:06 +01:00
Andrew Burgess
0f767f942b gdb/python: Add gdb.Architecture.registers method
This commit adds a new method gdb.Architecture.registers that returns
an object of the new type gdb.RegisterDescriptorIterator.  This
iterator returns objects of the new type gdb.RegisterDescriptor.

A RegisterDescriptor is not a way to read the value of a register,
this is already covered by Frame.read_register, a RegisterDescriptor
is simply a way to discover from Python, which registers are
available for a given architecture.

I did consider just returning a string, the name of each register,
instead of a RegisterDescriptor, however, I'm aware that it we don't
want to break the existing Python API in any way, so if I return just
a string now, but in the future we want more information about a
register then we would have to add a second API to get that
information.  By going straight to a descriptor object now, it is easy
to add additional properties in the future should we wish to.

Right now the only property of a register that a user can access is
the name of the register.

In future we might want to be able to ask the register about is
register groups, or its type.

gdb/ChangeLog:

	* Makefile.in (SUBDIR_PYTHON_SRCS): Add py-registers.c
	* python/py-arch.c (archpy_registers): New function.
	(arch_object_methods): Add 'registers' method.
	* python/py-registers.c: New file.
	* python/python-internal.h
	(gdbpy_new_register_descriptor_iterator): Declare.
	(gdbpy_initialize_registers): Declare.
	* python/python.c (do_start_initialization): Call
	gdbpy_initialize_registers.
	* NEWS: Mention additions to the Python API.

gdb/testsuite/ChangeLog:

	* gdb.python/py-arch-reg-names.exp: New file.

gdb/doc/ChangeLog:

	* python.texi (Python API): Add new section the menu.
	(Frames In Python): Add new @anchor.
	(Architectures In Python): Document new registers method.
	(Registers In Python): New section.
2020-07-06 15:06:06 +01:00
Tom Tromey
42331a1ea2 Change extension language pretty-printers to use value API
This changes the extension language pretty-printers to use the value
API.

Note that new functions were needed, for both Guile and Python.
Currently both languages always wrap values by removing the values
from the value chain.  This makes sense to avoid strange behavior with
watchpoints, and to avoid excessive memory use.  However, when
printing, it's important to leave the passed-in value untouched, in
case pretty-printing does nothing -- that way the caller can still
access it.

gdb/ChangeLog
2020-03-13  Tom Tromey  <tom@tromey.com>

	* valprint.c (do_val_print): Update.
	* python/python-internal.h (gdbpy_apply_val_pretty_printer): Take
	a struct value.
	(value_to_value_object_no_release): Declare.
	* python/py-value.c (value_to_value_object_no_release): New
	function.
	* python/py-prettyprint.c (gdbpy_apply_val_pretty_printer): Take a
	struct value.
	* guile/scm-value.c (vlscm_scm_from_value_no_release): New
	function.
	* guile/scm-pretty-print.c (gdbscm_apply_val_pretty_printer): Take
	a struct value.
	* guile/guile-internal.h (vlscm_scm_from_value_no_release):
	Declare.
	(gdbscm_apply_val_pretty_printer): Take a struct value.
	* extension.h (apply_ext_lang_val_pretty_printer): Take a struct
	value.
	* extension.c (apply_ext_lang_val_pretty_printer): Take a struct
	value.
	* extension-priv.h (struct extension_language_ops)
	<apply_val_pretty_printer>: Take a struct value.
	* cp-valprint.c (cp_print_value): Create a struct value.
	(cp_print_value): Update.
2020-03-13 18:03:42 -06:00
Tom Tromey
01b1af321f Allow TUI windows in Python
This patch adds support for writing new TUI windows in Python.

2020-02-22  Tom Tromey  <tom@tromey.com>

	* NEWS: Add entry for gdb.register_window_type.
	* tui/tui-layout.h (window_factory): New typedef.
	(tui_register_window): Declare.
	* tui/tui-layout.c (saved_tui_windows): New global.
	(tui_apply_current_layout): Use it.
	(tui_register_window): New function.
	* python/python.c (do_start_initialization): Call
	gdbpy_initialize_tui.
	(python_GdbMethods): Add "register_window_type" function.
	* python/python-internal.h (gdbpy_register_tui_window)
	(gdbpy_initialize_tui): Declare.
	* python/py-tui.c: New file.
	* Makefile.in (SUBDIR_PYTHON_SRCS): Add py-tui.c.

gdb/doc/ChangeLog
2020-02-22  Tom Tromey  <tom@tromey.com>

	* python.texi (Python API): Add menu item.
	(TUI Windows In Python): New node.

gdb/testsuite/ChangeLog
2020-02-22  Tom Tromey  <tom@tromey.com>

	* gdb.python/tui-window.exp: New file.
	* gdb.python/tui-window.py: New file.

Change-Id: I85fbfb923a1840450a00a7dce113a05d7f048baa
2020-02-22 12:57:25 -07:00
Joel Brobecker
b811d2c292 Update copyright year range in all GDB files.
gdb/ChangeLog:

        Update copyright year range in all GDB files.
2020-01-01 10:20:53 +04:00