mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-24 02:24:46 +08:00
8db533e7d6
319 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Luis Machado
|
68cffbbd44 |
[AArch64] MTE corefile support
Teach GDB how to dump memory tags for AArch64 when using the gcore command and how to read memory tag data back from a core file generated by GDB (via gcore) or by the Linux kernel. The format is documented in the Linux Kernel documentation [1]. Each tagged memory range (listed in /proc/<pid>/smaps) gets dumped to its own PT_AARCH64_MEMTAG_MTE segment. A section named ".memtag" is created for each of those segments when reading the core file back. To save a little bit of space, given MTE tags only take 4 bits, the memory tags are stored packed as 2 tags per byte. When reading the data back, the tags are unpacked. I've added a new testcase to exercise the feature. Build-tested with --enable-targets=all and regression tested on aarch64-linux Ubuntu 20.04. [1] Documentation/arm64/memory-tagging-extension.rst (Core Dump Support) |
||
Pedro Alves
|
5d067f3d41 |
Fix core-file -> detach -> crash (corefiles/29275)
After loading a core file, you're supposed to be able to use "detach" to unload the core file. That unfortunately regressed starting with GDB 11, with these commits: |
||
Simon Marchi
|
7ab2607f97 |
gdbsupport: make gdb_abspath return an std::string
I'm trying to switch these functions to use std::string instead of char arrays, as much as possible. Some callers benefit from it (can avoid doing a copy of the result), while others suffer (have to make one more copy). Change-Id: Iced49b8ee2f189744c5072a3b217aab5af17a993 |
||
Tom Tromey
|
6cb06a8cda |
Unify gdb printf functions
Now that filtered and unfiltered output can be treated identically, we can unify the printf family of functions. This is done under the name "gdb_printf". Most of this patch was written by script. |
||
Aaron Merey
|
b91f93a02c |
PR gdb/27570: missing support for debuginfod in core_target::build_file_mappings
Add debuginfod support to core_target::build_file_mappings and locate_exec_from_corefile_build_id to enable the downloading of missing executables and shared libraries referenced in core files. Also add debuginfod support to solib_map_sections so that previously downloaded shared libraries can be retrieved from the local debuginfod cache. When core file shared libraries are found locally, verify that their build-ids match the corresponding build-ids found in the core file. If there is a mismatch, attempt to query debuginfod for the correct build and print a warning if unsuccessful: warning: Build-id of /lib64/libc.so.6 does not match core file. Also disable debuginfod when gcore invokes gdb. Debuginfo is not needed for core file generation so debuginfod queries will slow down gcore unnecessarily. |
||
Aaron Merey
|
39f53acb41 |
gdb: Add soname to build-id mapping for core files
Since commit
|
||
John Baldwin
|
0e30a3b0f2 |
Remove fall throughs in core_target::xfer_partial.
The cases for TARGET_OBJECT_LIBRARIES and TARGET_OBJECT_LIBRARIES_AIX can try to fetch different data objects (such as TARGET_OBJECT_SIGNAL_INFO) if gdbarch methods for the requested data aren't present. Return with TARGET_XFER_E_IO if the gdbarch method isn't present instead. |
||
Joel Brobecker
|
4a94e36819 |
Automatic Copyright Year update after running gdb/copyright.py
This commit brings all the changes made by running gdb/copyright.py as per GDB's Start of New Year Procedure. For the avoidance of doubt, all changes in this commits were performed by the script. |
||
Aaron Merey
|
aa95b2d438 |
gdb: Add aliases for read_core_file_mappings callbacks
Add aliases read_core_file_mappings_loop_ftype and read_core_file_mappings_pre_loop_ftype. Intended for use with read_core_file_mappings. Also add build_id parameter to read_core_file_mappings_loop_ftype. |
||
Simon Marchi
|
13084383e8 |
gdbsupport: make gdb_open_cloexec return scoped_fd
Make gdb_open_cloexec return a scoped_fd, to encourage using automatic management of the file descriptor closing. Except in the most trivial cases, I changed the callers to just release the fd, which retains their existing behavior. That will allow the transition to using scoped_fd more to go gradually, one caller at a time. Change-Id: Ife022b403f96e71d5ebb4f1056ef6251b30fe554 |
||
Tom de Vries
|
f947f96797 |
[gdb/cli] Don't assert on empty string for core-file
With current gdb we run into: ... $ gdb -batch '' '' : No such file or directory. pathstuff.cc:132: internal-error: \ gdb::unique_xmalloc_ptr<char> gdb_abspath(const char*): \ Assertion `path != NULL && path[0] != '\0'' failed. ... Fix this by skipping the call to gdb_abspath in core_target_open in the empty-string case, such that we have instead: ... $ gdb -batch '' '' : No such file or directory. : No such file or directory. $ ... Tested on x86_64-linux. gdb/ChangeLog: 2021-08-30 Tom de Vries <tdevries@suse.de> PR cli/28290 * gdb/corelow.c (core_target_open): Skip call to gdb_abspath in the empty-string case. gdb/testsuite/ChangeLog: 2021-08-30 Tom de Vries <tdevries@suse.de> PR cli/28290 * gdb.base/batch-exit-status.exp: Add gdb '' and gdb '' '' tests. |
||
Simon Marchi
|
b447dd03c1 |
gdb: remove gdbarch_info_init
While reviewing another patch, I realized that gdbarch_info_init could easily be removed in favor of initializing gdbarch_info fields directly in the struct declaration. The only odd part is the union. I don't know if it's actually important for it to be zero-initialized, but I presume it is. I added a constructor to gdbarch_info to take care of that. A proper solution would be to use std::variant. Or, these could also be separate fields, the little extra space required wouldn't matter. gdb/ChangeLog: * gdbarch.sh (struct gdbarch_info): Initialize fields, add constructor. * gdbarch.h: Re-generate. * arch-utils.h (gdbarch_info_init): Remove, delete all usages. * arch-utils.c (gdbarch_info_init): Remove. Change-Id: I7502e08fe0f278d84eef1667a072e8a97bda5ab5 |
||
Luis Machado
|
134df96436 |
Update the core file architecture if a target description is present
At the moment, the core target has its own gdbarch (m_core_gdbarch), and that gets set from the core_bfd on the core target's constructor. That gdbarch doesn't contain a target description because it is constructed before we get a chance to fetch the target description. As a result, some hooks that depend on the target description being set are not set, and that leads to problems. One of the examples is gdbarch_report_signal_info, which is used to show AArch64 tag violation information. Fix this by reading the target description before fetching the core file's gdbarch. gdb/ChangeLog: 2021-06-25 Luis Machado <luis.machado@linaro.org> * corelow.c (core_target::core_target) Update to read target description. |
||
Simon Marchi
|
02980c5645 |
gdb: remove push_target free functions
Same as the previous patch, but for the push_target functions. The implementation of the move variant is moved to a new overload of inferior::push_target. gdb/ChangeLog: * target.h (push_target): Remove, update callers to use inferior::push_target. * target.c (push_target): Remove. * inferior.h (class inferior) <push_target>: New overload. Change-Id: I5a95496666278b8f3965e5e8aecb76f54a97c185 |
||
Simon Marchi
|
fadf6add30 |
gdb: remove unpush_target free function
unpush_target unpushes the passed-in target from the current inferior's target stack. Calling it is therefore an implicit dependency on the current global inferior. Remove that function and make the callers use the inferior::unpush_target method directly. This sometimes allows using the inferior from the context rather than the global current inferior. target_unpusher::operator() now needs to be implemented in target.c, otherwise target.h and inferior.h both need to include each other, and that wouldn't work. gdb/ChangeLog: * target.h (unpush_target): Remove, update all callers to use `inferior::unpush_target` instead. (struct target_unpusher) <operator()>: Just declare. * target.c (unpush_target): Remove. (target_unpusher::operator()): New. Change-Id: Ia5172dfb3f373e0a75b991885b50322ca2142a8c |
||
Andrew Burgess
|
95ce627aeb |
gdb: write target description into core file
When a core file is created from within GDB add the target description into a note within the core file. When loading a core file, if the target description note is present then load the target description from the core file. The benefit of this is that we can be sure that, when analysing the core file within GDB, that we are using the exact same target description as was in use at the time the core file was created. GDB already supports a mechanism for figuring out the target description from a given corefile; gdbarch_core_read_description. This new mechanism (GDB adding the target description) is not going to replace the old mechanism. Core files generated outside of GDB will not include a target description, and so GDB still needs to be able to figure out a target description for these files. My primary motivation for adding this feature is that, in a future commit, I will be adding support for bare metal core dumps on some targets. For RISC-V specifically, I want to be able to dump all the available control status registers. As different targets will present different sets of register in their target description, including registers that are possibly not otherwise known to GDB I wanted a way to capture these registers in the core dump. I therefore need a mechanism to write out an arbitrary set of registers, and to then derive a target description from this arbitrary set when later loading the core file. The obvious approach (I think) is to just reuse the target description. Once I'd decided to add support for writing out the target description I could either choose to make this RISC-V only, or make it generic. I figure that having the target description in the core file doesn't hurt, and _might_ be helpful. So that's how I got here, general support for including the target description in GDB generated core files. In previous versions of this patch I added the target description from generic code (in gcore.c). However, doing this creates a dependency between GDB's common code and bfd ELF support. As ELF support in gdb is optional (for example the target x86_64-apple-darwin20.3.0 does not include ELF support) then having gcore.c require ELF support would break the GDB build in some cases. Instead, in this version of the patch, writing the target description note is done from each specific targets make notes function. Each of these now calls a common function in gcore-elf.c (which is only linked in when bfd has ELF support). And so only targets that are ELF based will call the new function and we can therefore avoid an unconditional dependency on ELF support. gdb/ChangeLog: * corelow.c: Add 'xml-tdesc.h' include. (core_target::read_description): Load the target description from the core file when possible. * fbsd-tdep.c (fbsd_make_corefile_notes): Add target description note. * gcore-elf.c: Add 'gdbsupport/tdesc.h' include. (gcore_elf_make_tdesc_note): New function. * gcore-elf.h (gcore_elf_make_tdesc_note): Declare. * linux-tdep.c (linux_make_corefile_notes): Add target description note. |
||
Joel Brobecker
|
3666a04883 |
Update copyright year range in all GDB files
This commits the result of running gdb/copyright.py as per our Start of New Year procedure... gdb/ChangeLog Update copyright year range in copyright header of all GDB files. |
||
Simon Marchi
|
70125a45e4 |
gdb: remove other parameter in read_core_file_mappings parameter
The `void *other` parameter in read_core_file_mappings' loop_cb parameter is never used, remove it. gdb/ChangeLog: * gdbarch.sh (read_core_file_mappings): Remove `other` parameter in `loop_cb` parameter. * gdbarch.c: Re-generate. * gdbarch.h: Re-generate. * arch-utils.c (default_read_core_file_mappings): Remove `other` parameter. * arch-utils.h (default_read_core_file_mappings): Likewise. * corelow.c (core_target::build_file_mappings): Likewise. * linux-tdep.c (linux_read_core_file_mappings): Likewise. (linux_core_info_proc_mappings): Likewise. Change-Id: I6f408b4962b61b8a603642a844772b3026625523 |
||
Simon Marchi
|
dda83cd783 |
gdb, gdbserver, gdbsupport: fix leading space vs tabs issues
Many spots incorrectly use only spaces for indentation (for example, there are a lot of spots in ada-lang.c). I've always found it awkward when I needed to edit one of these spots: do I keep the original wrong indentation, or do I fix it? What if the lines around it are also wrong, do I fix them too? I probably don't want to fix them in the same patch, to avoid adding noise to my patch. So I propose to fix as much as possible once and for all (hopefully). One typical counter argument for this is that it makes code archeology more difficult, because git-blame will show this commit as the last change for these lines. My counter counter argument is: when git-blaming, you often need to do "blame the file at the parent commit" anyway, to go past some other refactor that touched the line you are interested in, but is not the change you are looking for. So you already need a somewhat efficient way to do this. Using some interactive tool, rather than plain git-blame, makes this trivial. For example, I use "tig blame <file>", where going back past the commit that changed the currently selected line is one keystroke. It looks like Magit in Emacs does it too (though I've never used it). Web viewers of Github and Gitlab do it too. My point is that it won't really make archeology more difficult. The other typical counter argument is that it will cause conflicts with existing patches. That's true... but it's a one time cost, and those are not conflicts that are difficult to resolve. I have also tried "git rebase --ignore-whitespace", it seems to work well. Although that will re-introduce the faulty indentation, so one needs to take care of fixing the indentation in the patch after that (which is easy). gdb/ChangeLog: * aarch64-linux-tdep.c: Fix indentation. * aarch64-ravenscar-thread.c: Fix indentation. * aarch64-tdep.c: Fix indentation. * aarch64-tdep.h: Fix indentation. * ada-lang.c: Fix indentation. * ada-lang.h: Fix indentation. * ada-tasks.c: Fix indentation. * ada-typeprint.c: Fix indentation. * ada-valprint.c: Fix indentation. * ada-varobj.c: Fix indentation. * addrmap.c: Fix indentation. * addrmap.h: Fix indentation. * agent.c: Fix indentation. * aix-thread.c: Fix indentation. * alpha-bsd-nat.c: Fix indentation. * alpha-linux-tdep.c: Fix indentation. * alpha-mdebug-tdep.c: Fix indentation. * alpha-nbsd-tdep.c: Fix indentation. * alpha-obsd-tdep.c: Fix indentation. * alpha-tdep.c: Fix indentation. * amd64-bsd-nat.c: Fix indentation. * amd64-darwin-tdep.c: Fix indentation. * amd64-linux-nat.c: Fix indentation. * amd64-linux-tdep.c: Fix indentation. * amd64-nat.c: Fix indentation. * amd64-obsd-tdep.c: Fix indentation. * amd64-tdep.c: Fix indentation. * amd64-windows-tdep.c: Fix indentation. * annotate.c: Fix indentation. * arc-tdep.c: Fix indentation. * arch-utils.c: Fix indentation. * arch/arm-get-next-pcs.c: Fix indentation. * arch/arm.c: Fix indentation. * arm-linux-nat.c: Fix indentation. * arm-linux-tdep.c: Fix indentation. * arm-nbsd-tdep.c: Fix indentation. * arm-pikeos-tdep.c: Fix indentation. * arm-tdep.c: Fix indentation. * arm-tdep.h: Fix indentation. * arm-wince-tdep.c: Fix indentation. * auto-load.c: Fix indentation. * auxv.c: Fix indentation. * avr-tdep.c: Fix indentation. * ax-gdb.c: Fix indentation. * ax-general.c: Fix indentation. * bfin-linux-tdep.c: Fix indentation. * block.c: Fix indentation. * block.h: Fix indentation. * blockframe.c: Fix indentation. * bpf-tdep.c: Fix indentation. * break-catch-sig.c: Fix indentation. * break-catch-syscall.c: Fix indentation. * break-catch-throw.c: Fix indentation. * breakpoint.c: Fix indentation. * breakpoint.h: Fix indentation. * bsd-uthread.c: Fix indentation. * btrace.c: Fix indentation. * build-id.c: Fix indentation. * buildsym-legacy.h: Fix indentation. * buildsym.c: Fix indentation. * c-typeprint.c: Fix indentation. * c-valprint.c: Fix indentation. * c-varobj.c: Fix indentation. * charset.c: Fix indentation. * cli/cli-cmds.c: Fix indentation. * cli/cli-decode.c: Fix indentation. * cli/cli-decode.h: Fix indentation. * cli/cli-script.c: Fix indentation. * cli/cli-setshow.c: Fix indentation. * coff-pe-read.c: Fix indentation. * coffread.c: Fix indentation. * compile/compile-cplus-types.c: Fix indentation. * compile/compile-object-load.c: Fix indentation. * compile/compile-object-run.c: Fix indentation. * completer.c: Fix indentation. * corefile.c: Fix indentation. * corelow.c: Fix indentation. * cp-abi.h: Fix indentation. * cp-namespace.c: Fix indentation. * cp-support.c: Fix indentation. * cp-valprint.c: Fix indentation. * cris-linux-tdep.c: Fix indentation. * cris-tdep.c: Fix indentation. * darwin-nat-info.c: Fix indentation. * darwin-nat.c: Fix indentation. * darwin-nat.h: Fix indentation. * dbxread.c: Fix indentation. * dcache.c: Fix indentation. * disasm.c: Fix indentation. * dtrace-probe.c: Fix indentation. * dwarf2/abbrev.c: Fix indentation. * dwarf2/attribute.c: Fix indentation. * dwarf2/expr.c: Fix indentation. * dwarf2/frame.c: Fix indentation. * dwarf2/index-cache.c: Fix indentation. * dwarf2/index-write.c: Fix indentation. * dwarf2/line-header.c: Fix indentation. * dwarf2/loc.c: Fix indentation. * dwarf2/macro.c: Fix indentation. * dwarf2/read.c: Fix indentation. * dwarf2/read.h: Fix indentation. * elfread.c: Fix indentation. * eval.c: Fix indentation. * event-top.c: Fix indentation. * exec.c: Fix indentation. * exec.h: Fix indentation. * expprint.c: Fix indentation. * f-lang.c: Fix indentation. * f-typeprint.c: Fix indentation. * f-valprint.c: Fix indentation. * fbsd-nat.c: Fix indentation. * fbsd-tdep.c: Fix indentation. * findvar.c: Fix indentation. * fork-child.c: Fix indentation. * frame-unwind.c: Fix indentation. * frame-unwind.h: Fix indentation. * frame.c: Fix indentation. * frv-linux-tdep.c: Fix indentation. * frv-tdep.c: Fix indentation. * frv-tdep.h: Fix indentation. * ft32-tdep.c: Fix indentation. * gcore.c: Fix indentation. * gdb_bfd.c: Fix indentation. * gdbarch.sh: Fix indentation. * gdbarch.c: Re-generate * gdbarch.h: Re-generate. * gdbcore.h: Fix indentation. * gdbthread.h: Fix indentation. * gdbtypes.c: Fix indentation. * gdbtypes.h: Fix indentation. * glibc-tdep.c: Fix indentation. * gnu-nat.c: Fix indentation. * gnu-nat.h: Fix indentation. * gnu-v2-abi.c: Fix indentation. * gnu-v3-abi.c: Fix indentation. * go32-nat.c: Fix indentation. * guile/guile-internal.h: Fix indentation. * guile/scm-cmd.c: Fix indentation. * guile/scm-frame.c: Fix indentation. * guile/scm-iterator.c: Fix indentation. * guile/scm-math.c: Fix indentation. * guile/scm-ports.c: Fix indentation. * guile/scm-pretty-print.c: Fix indentation. * guile/scm-value.c: Fix indentation. * h8300-tdep.c: Fix indentation. * hppa-linux-nat.c: Fix indentation. * hppa-linux-tdep.c: Fix indentation. * hppa-nbsd-nat.c: Fix indentation. * hppa-nbsd-tdep.c: Fix indentation. * hppa-obsd-nat.c: Fix indentation. * hppa-tdep.c: Fix indentation. * hppa-tdep.h: Fix indentation. * i386-bsd-nat.c: Fix indentation. * i386-darwin-nat.c: Fix indentation. * i386-darwin-tdep.c: Fix indentation. * i386-dicos-tdep.c: Fix indentation. * i386-gnu-nat.c: Fix indentation. * i386-linux-nat.c: Fix indentation. * i386-linux-tdep.c: Fix indentation. * i386-nto-tdep.c: Fix indentation. * i386-obsd-tdep.c: Fix indentation. * i386-sol2-nat.c: Fix indentation. * i386-tdep.c: Fix indentation. * i386-tdep.h: Fix indentation. * i386-windows-tdep.c: Fix indentation. * i387-tdep.c: Fix indentation. * i387-tdep.h: Fix indentation. * ia64-libunwind-tdep.c: Fix indentation. * ia64-libunwind-tdep.h: Fix indentation. * ia64-linux-nat.c: Fix indentation. * ia64-linux-tdep.c: Fix indentation. * ia64-tdep.c: Fix indentation. * ia64-tdep.h: Fix indentation. * ia64-vms-tdep.c: Fix indentation. * infcall.c: Fix indentation. * infcmd.c: Fix indentation. * inferior.c: Fix indentation. * infrun.c: Fix indentation. * iq2000-tdep.c: Fix indentation. * language.c: Fix indentation. * linespec.c: Fix indentation. * linux-fork.c: Fix indentation. * linux-nat.c: Fix indentation. * linux-tdep.c: Fix indentation. * linux-thread-db.c: Fix indentation. * lm32-tdep.c: Fix indentation. * m2-lang.c: Fix indentation. * m2-typeprint.c: Fix indentation. * m2-valprint.c: Fix indentation. * m32c-tdep.c: Fix indentation. * m32r-linux-tdep.c: Fix indentation. * m32r-tdep.c: Fix indentation. * m68hc11-tdep.c: Fix indentation. * m68k-bsd-nat.c: Fix indentation. * m68k-linux-nat.c: Fix indentation. * m68k-linux-tdep.c: Fix indentation. * m68k-tdep.c: Fix indentation. * machoread.c: Fix indentation. * macrocmd.c: Fix indentation. * macroexp.c: Fix indentation. * macroscope.c: Fix indentation. * macrotab.c: Fix indentation. * macrotab.h: Fix indentation. * main.c: Fix indentation. * mdebugread.c: Fix indentation. * mep-tdep.c: Fix indentation. * mi/mi-cmd-catch.c: Fix indentation. * mi/mi-cmd-disas.c: Fix indentation. * mi/mi-cmd-env.c: Fix indentation. * mi/mi-cmd-stack.c: Fix indentation. * mi/mi-cmd-var.c: Fix indentation. * mi/mi-cmds.c: Fix indentation. * mi/mi-main.c: Fix indentation. * mi/mi-parse.c: Fix indentation. * microblaze-tdep.c: Fix indentation. * minidebug.c: Fix indentation. * minsyms.c: Fix indentation. * mips-linux-nat.c: Fix indentation. * mips-linux-tdep.c: Fix indentation. * mips-nbsd-tdep.c: Fix indentation. * mips-tdep.c: Fix indentation. * mn10300-linux-tdep.c: Fix indentation. * mn10300-tdep.c: Fix indentation. * moxie-tdep.c: Fix indentation. * msp430-tdep.c: Fix indentation. * namespace.h: Fix indentation. * nat/fork-inferior.c: Fix indentation. * nat/gdb_ptrace.h: Fix indentation. * nat/linux-namespaces.c: Fix indentation. * nat/linux-osdata.c: Fix indentation. * nat/netbsd-nat.c: Fix indentation. * nat/x86-dregs.c: Fix indentation. * nbsd-nat.c: Fix indentation. * nbsd-tdep.c: Fix indentation. * nios2-linux-tdep.c: Fix indentation. * nios2-tdep.c: Fix indentation. * nto-procfs.c: Fix indentation. * nto-tdep.c: Fix indentation. * objfiles.c: Fix indentation. * objfiles.h: Fix indentation. * opencl-lang.c: Fix indentation. * or1k-tdep.c: Fix indentation. * osabi.c: Fix indentation. * osabi.h: Fix indentation. * osdata.c: Fix indentation. * p-lang.c: Fix indentation. * p-typeprint.c: Fix indentation. * p-valprint.c: Fix indentation. * parse.c: Fix indentation. * ppc-linux-nat.c: Fix indentation. * ppc-linux-tdep.c: Fix indentation. * ppc-nbsd-nat.c: Fix indentation. * ppc-nbsd-tdep.c: Fix indentation. * ppc-obsd-nat.c: Fix indentation. * ppc-ravenscar-thread.c: Fix indentation. * ppc-sysv-tdep.c: Fix indentation. * ppc64-tdep.c: Fix indentation. * printcmd.c: Fix indentation. * proc-api.c: Fix indentation. * producer.c: Fix indentation. * producer.h: Fix indentation. * prologue-value.c: Fix indentation. * prologue-value.h: Fix indentation. * psymtab.c: Fix indentation. * python/py-arch.c: Fix indentation. * python/py-bpevent.c: Fix indentation. * python/py-event.c: Fix indentation. * python/py-event.h: Fix indentation. * python/py-finishbreakpoint.c: Fix indentation. * python/py-frame.c: Fix indentation. * python/py-framefilter.c: Fix indentation. * python/py-inferior.c: Fix indentation. * python/py-infthread.c: Fix indentation. * python/py-objfile.c: Fix indentation. * python/py-prettyprint.c: Fix indentation. * python/py-registers.c: Fix indentation. * python/py-signalevent.c: Fix indentation. * python/py-stopevent.c: Fix indentation. * python/py-stopevent.h: Fix indentation. * python/py-threadevent.c: Fix indentation. * python/py-tui.c: Fix indentation. * python/py-unwind.c: Fix indentation. * python/py-value.c: Fix indentation. * python/py-xmethods.c: Fix indentation. * python/python-internal.h: Fix indentation. * python/python.c: Fix indentation. * ravenscar-thread.c: Fix indentation. * record-btrace.c: Fix indentation. * record-full.c: Fix indentation. * record.c: Fix indentation. * reggroups.c: Fix indentation. * regset.h: Fix indentation. * remote-fileio.c: Fix indentation. * remote.c: Fix indentation. * reverse.c: Fix indentation. * riscv-linux-tdep.c: Fix indentation. * riscv-ravenscar-thread.c: Fix indentation. * riscv-tdep.c: Fix indentation. * rl78-tdep.c: Fix indentation. * rs6000-aix-tdep.c: Fix indentation. * rs6000-lynx178-tdep.c: Fix indentation. * rs6000-nat.c: Fix indentation. * rs6000-tdep.c: Fix indentation. * rust-lang.c: Fix indentation. * rx-tdep.c: Fix indentation. * s12z-tdep.c: Fix indentation. * s390-linux-tdep.c: Fix indentation. * score-tdep.c: Fix indentation. * ser-base.c: Fix indentation. * ser-mingw.c: Fix indentation. * ser-uds.c: Fix indentation. * ser-unix.c: Fix indentation. * serial.c: Fix indentation. * sh-linux-tdep.c: Fix indentation. * sh-nbsd-tdep.c: Fix indentation. * sh-tdep.c: Fix indentation. * skip.c: Fix indentation. * sol-thread.c: Fix indentation. * solib-aix.c: Fix indentation. * solib-darwin.c: Fix indentation. * solib-frv.c: Fix indentation. * solib-svr4.c: Fix indentation. * solib.c: Fix indentation. * source.c: Fix indentation. * sparc-linux-tdep.c: Fix indentation. * sparc-nbsd-tdep.c: Fix indentation. * sparc-obsd-tdep.c: Fix indentation. * sparc-ravenscar-thread.c: Fix indentation. * sparc-tdep.c: Fix indentation. * sparc64-linux-tdep.c: Fix indentation. * sparc64-nbsd-tdep.c: Fix indentation. * sparc64-obsd-tdep.c: Fix indentation. * sparc64-tdep.c: Fix indentation. * stabsread.c: Fix indentation. * stack.c: Fix indentation. * stap-probe.c: Fix indentation. * stubs/ia64vms-stub.c: Fix indentation. * stubs/m32r-stub.c: Fix indentation. * stubs/m68k-stub.c: Fix indentation. * stubs/sh-stub.c: Fix indentation. * stubs/sparc-stub.c: Fix indentation. * symfile-mem.c: Fix indentation. * symfile.c: Fix indentation. * symfile.h: Fix indentation. * symmisc.c: Fix indentation. * symtab.c: Fix indentation. * symtab.h: Fix indentation. * target-float.c: Fix indentation. * target.c: Fix indentation. * target.h: Fix indentation. * tic6x-tdep.c: Fix indentation. * tilegx-linux-tdep.c: Fix indentation. * tilegx-tdep.c: Fix indentation. * top.c: Fix indentation. * tracefile-tfile.c: Fix indentation. * tracepoint.c: Fix indentation. * tui/tui-disasm.c: Fix indentation. * tui/tui-io.c: Fix indentation. * tui/tui-regs.c: Fix indentation. * tui/tui-stack.c: Fix indentation. * tui/tui-win.c: Fix indentation. * tui/tui-winsource.c: Fix indentation. * tui/tui.c: Fix indentation. * typeprint.c: Fix indentation. * ui-out.h: Fix indentation. * unittests/copy_bitwise-selftests.c: Fix indentation. * unittests/memory-map-selftests.c: Fix indentation. * utils.c: Fix indentation. * v850-tdep.c: Fix indentation. * valarith.c: Fix indentation. * valops.c: Fix indentation. * valprint.c: Fix indentation. * valprint.h: Fix indentation. * value.c: Fix indentation. * value.h: Fix indentation. * varobj.c: Fix indentation. * vax-tdep.c: Fix indentation. * windows-nat.c: Fix indentation. * windows-tdep.c: Fix indentation. * xcoffread.c: Fix indentation. * xml-syscall.c: Fix indentation. * xml-tdesc.c: Fix indentation. * xstormy16-tdep.c: Fix indentation. * xtensa-config.c: Fix indentation. * xtensa-linux-nat.c: Fix indentation. * xtensa-linux-tdep.c: Fix indentation. * xtensa-tdep.c: Fix indentation. gdbserver/ChangeLog: * ax.cc: Fix indentation. * dll.cc: Fix indentation. * inferiors.h: Fix indentation. * linux-low.cc: Fix indentation. * linux-nios2-low.cc: Fix indentation. * linux-ppc-ipa.cc: Fix indentation. * linux-ppc-low.cc: Fix indentation. * linux-x86-low.cc: Fix indentation. * linux-xtensa-low.cc: Fix indentation. * regcache.cc: Fix indentation. * server.cc: Fix indentation. * tracepoint.cc: Fix indentation. gdbsupport/ChangeLog: * common-exceptions.h: Fix indentation. * event-loop.cc: Fix indentation. * fileio.cc: Fix indentation. * filestuff.cc: Fix indentation. * gdb-dlfcn.cc: Fix indentation. * gdb_string_view.h: Fix indentation. * job-control.cc: Fix indentation. * signals.cc: Fix indentation. Change-Id: I4bad7ae6be0fbe14168b8ebafb98ffe14964a695 |
||
Tom Tromey
|
7e10abd146 |
Remove the exec_bfd macro
This removes the exec_bfd macro, in favor of new accessors on program_space. In one spot the accessor can't be used; but this is still a big improvement over the macro, IMO. gdb/ChangeLog 2020-10-29 Tom Tromey <tom@tromey.com> * windows-tdep.c (windows_solib_create_inferior_hook): Update. * symfile.c (reread_symbols): Update. * symfile-mem.c (add_symbol_file_from_memory_command) (add_vsyscall_page): Update. * source-cache.c (source_cache::get_plain_source_lines): Update. * solib-svr4.c (find_program_interpreter, elf_locate_base) (svr4_current_sos_direct, svr4_exec_displacement) (svr4_relocate_main_executable): Update. (svr4_iterate_over_objfiles_in_search_order): Update. * solib-frv.c (enable_break2, enable_break): Update. * solib-dsbt.c (lm_base, enable_break): Update. * solib-darwin.c (find_program_interpreter) (darwin_solib_create_inferior_hook): Update. * sol-thread.c (rw_common, ps_pdmodel): Update. * rs6000-nat.c (rs6000_nat_target::create_inferior): Update. * remote.c (compare_sections_command) (remote_target::trace_set_readonly_regions): Update. * remote-sim.c (get_sim_inferior_data) (gdbsim_target::create_inferior, gdbsim_target::create_inferior): Update. (gdbsim_target_open, gdbsim_target::files_info): Update. * exec.h (exec_bfd): Remove macro. * progspace.c (initialize_progspace): Update. * proc-service.c (ps_addr_to_core_addr, core_addr_to_ps_addr): Update. * nto-procfs.c (nto_procfs_target::post_attach) (nto_procfs_target::create_inferior): Update. * maint.c (maintenance_info_sections): Update. * linux-thread-db.c (thread_db_target::get_thread_local_address): Update. * infcmd.c (post_create_inferior): Update. * gcore.c (default_gcore_arch, default_gcore_target): Update. (objfile_find_memory_regions): Update. * exec.c (validate_exec_file, exec_file_attach) (exec_read_partial_read_only, print_section_info): Update. * corelow.c (core_target_open): Update. * corefile.c (reopen_exec_file, validate_files): Update. * arm-tdep.c (gdb_print_insn_arm): Update. * arch-utils.c (gdbarch_update_p, default_print_insn): Update. * progspace.h (struct program_space) <exec_bfd, set_exec_bfd>: New methods. |
||
Tom Tromey
|
6be2a9ab1f |
Add target_section constructor
This adds a constructor to target_section, simplifying the code that creates instances of this. gdb/ChangeLog 2020-10-29 Tom Tromey <tom@tromey.com> * target-section.h (struct target_section): Add constructor. * exec.c (build_section_table, add_target_sections_of_objfile): Update. * corelow.c (core_target::build_file_mappings): Update. |
||
Luis Machado
|
1bd57575dc |
Fix gdb.base/corefile2.exp regression when running Docker/AUFS
The following failures started showing up after commit |
||
Tom Tromey
|
d7a78e5c41 |
Change target_section_table to std::vector alias
Because target_section_table only holds a vector, and because it is used in an "open" way, this patch makes it just be an alias for the std::vector specialization. This makes the code less wordy. If we do ever want to add more specialized behavior to this type, it's simple enough to convert it back to a struct with the few needed methods implied by this change. gdb/ChangeLog 2020-10-12 Tom Tromey <tom@tromey.com> * target.h (struct target_ops) <get_section_table>: Update. (target_get_section_table): Update. * target.c (target_get_section_table, target_section_by_addr) (memory_xfer_partial_1): Update. * target-section.h (target_section_table): Now an alias. * target-delegates.c: Rebuild. * target-debug.h (target_debug_print_target_section_table_p): Rename from target_debug_print_struct_target_section_table_p. * symfile.c (build_section_addr_info_from_section_table): Update. * solib.c (solib_map_sections, solib_contains_address_p): Update. * solib-svr4.c (scan_dyntag): Update. * solib-dsbt.c (scan_dyntag): Update. * remote.c (remote_target::remote_xfer_live_readonly_partial): Update. * record-full.c (record_full_core_target::xfer_partial): Update. * progspace.h (struct program_space) <target_sections>: Update. * exec.h (print_section_info): Update. * exec.c (exec_target::close, build_section_table) (add_target_sections, add_target_sections_of_objfile) (remove_target_sections, exec_on_vfork) (section_table_available_memory) (section_table_xfer_memory_partial) (exec_target::get_section_table, exec_target::xfer_partial) (print_section_info, set_section_command) (exec_set_section_address, exec_target::has_memory): Update. * corelow.c (core_target::build_file_mappings) (core_target::xfer_partial, core_target::info_proc_mappings) (core_target::info_proc_mappings): Update. * bfd-target.c (class target_bfd): Update |
||
Tom Tromey
|
2d128614d4 |
build_section_table cannot fail
I noticed that build_section_table cannot fail. This patch changes it to return a target_section_table and then removes the dead code. gdb/ChangeLog 2020-10-12 Tom Tromey <tom@tromey.com> * solib.c (solib_map_sections): Update. * record-full.c (record_full_core_open_1): Update. * exec.h (build_section_table): Return a target_section_table. * exec.c (exec_file_attach): Update. (build_section_table): Return a target_section_table. * corelow.c (core_target::core_target): Update. * bfd-target.c (target_bfd::target_bfd): Update. |
||
Tom Tromey
|
bb2a67773c |
Use a std::vector in target_section_table
This changes target_section_table to wrap a std::vector. This simplifies some code, and also enables the simplifications coming in the subsequent patches. Note that for solib, I chose to have it use a pointer to a target_section_table. This is more convoluted than would be ideal, but I didn't want to convert solib to new/delete as a prerequisite for this series. gdb/ChangeLog 2020-10-12 Tom Tromey <tom@tromey.com> * target.c (target_section_by_addr, memory_xfer_partial_1): Update. * target-section.h (struct target_section_table): Use std::vector. * symfile.h (build_section_addr_info_from_section_table): Take a target_section_table. * symfile.c (build_section_addr_info_from_section_table): Take a target_section_table. * solist.h (struct so_list) <sections>: Change type. <sections_end>: Remove. * solib.c (solib_map_sections, clear_so, solib_read_symbols) (solib_contains_address_p): Update. * solib-svr4.c (scan_dyntag): Update. * solib-dsbt.c (scan_dyntag): Update. * remote.c (remote_target::remote_xfer_live_readonly_partial): Update. * record-full.c (record_full_core_start, record_full_core_end): Remove. (record_full_core_sections): New global. (record_full_core_open_1, record_full_core_target::xfer_partial): Update. * exec.h (build_section_table, section_table_xfer_memory_partial) (add_target_sections): Take a target_section_table. * exec.c (exec_file_attach, clear_section_table): Update. (resize_section_table): Remove. (build_section_table, add_target_sections): Take a target_section_table. (add_target_sections_of_objfile, remove_target_sections) (exec_on_vfork): Update. (section_table_available_memory): Take a target_section_table. (section_table_read_available_memory): Update. (section_table_xfer_memory_partial): Take a target_section_table. (print_section_info, set_section_command) (exec_set_section_address, exec_target::has_memory): Update. * corelow.c (class core_target) <m_core_section_table, m_core_file_mappings>: Remove braces. <~core_target>: Remove. (core_target::core_target): Update. (core_target::~core_target): Remove. (core_target::build_file_mappings) (core_target::xfer_memory_via_mappings) (core_target::xfer_partial, core_target::info_proc_mappings): Update. * bfd-target.c (target_bfd::xfer_partial): Update. (target_bfd::target_bfd): Update. (target_bfd::~target_bfd): Remove. |
||
Simon Marchi
|
a7aba2668a |
gdb: remove arguments from inferior_created observable
I noticed that non of the listeners of the inferior_created observable used either of the arguments. Remove them. This in turn allows removing the target parameter of post_create_inferior. Tested only by rebuilding. gdb/ChangeLog: * observable.h <inferior_created>: Remove parameters. Update all listeners. * inferior.h (post_create_inferior): Remove target parameter. Update all callers. Change-Id: I8944cefdc4447ed5347dc927b75abf1e7a0e27e6 |
||
Tom Tromey
|
a190fabbfc |
Use gdb_bfd_sections in core_target_open
This changes core_target_open to avoid bfd_map_over_sections, in favor of iteration. gdb/ChangeLog 2020-09-19 Tom Tromey <tom@tromey.com> * corelow.c (add_to_thread_list): Change parameters. (core_target_open): Use foreach. |
||
Kevin Buettner
|
973695d6bb |
Work around incorrect/broken pathnames in NT_FILE note
Luis Machado reported some regressions after I pushed recent core file related patches fixing BZ 25631: FAIL: gdb.base/corefile.exp: backtrace in corefile.exp FAIL: gdb.base/corefile.exp: core-file warning-free FAIL: gdb.base/corefile.exp: print func2::coremaker_local FAIL: gdb.base/corefile.exp: up in corefile.exp FAIL: gdb.base/corefile.exp: up in corefile.exp (reinit) This commit fixes these regressions. Thanks to Luis for testing an earlier version of the patch. (I was unable to reproduce these regressions in various test environments that I created.) Luis is testing in a docker container which is using the AUFS storage driver. It turns out that the kernel is placing docker host paths in the NT_FILE note instead of paths within the container. I've made a similar docker environment (though apparently not similar enough to reproduce the regressions). This is one of the paths that I see mentioned in the warning messages printed while loading the core file during NT_FILE note processing - note that I've shortened the path component starting with "d07c4": /var/lib/docker/aufs/diff/d07c4...21/lib/x86_64-linux-gnu/ld-2.27.so This is a path on the docker host; it does not exist in the container. In the docker container, this is the path: /lib/x86_64-linux-gnu/ld-2.27.so My first thought was to disable all NT_FILE mappings when any path was found to be bad. This would have caused GDB to fall back to accessing memory using the file stratum as it did before I added the NT_FILE note loading code. After further consideration, I realized that we could do better than this. For file-backed memory access, we can still use the NT_FILE mappings when available, and then attempt to access memory using the file stratum constrained to those address ranges corresponding to the "broken" mappings. In order to test it, I made some additions to corefile2.exp in which the test case's executable is renamed. The core file is then loaded; due to the fact that the executable has been renamed, those mappings will be unavailable. After loading the core file, the executable is renamed back to its original name at which point it is loaded using GDB's "file" command. The "interesting" tests are then run. These tests will print out values in file-backed memory regions along with mmap'd regions placed within/over the file-backed regions. Despite the fact that the executable could not be found during the NT_FILE note processing, these tests still work correctly due to the fact that memory is available from the file stratum combined with the fact that the broken NT_FILE mappings are used to prevent file-backed access outside of the "broken" mappings. gdb/ChangeLog: * corelow.c (unordered_set): Include. (class core_target): Add field 'm_core_unavailable_mappings'. (core_target::build_file_mappings): Print only one warning per inaccessible file. Add unavailable/broken mappings to m_core_unavailable_mappings. (core_target::xfer_partial): Call... (core_target::xfer_memory_via_mappings): New method. gdb/testsuite/ChangeLog: * gdb.base/corefile2.exp (renamed binfile): New tests. |
||
Kevin Buettner
|
b5582ab72f |
Don't output null pathname in core_target::build_file_mappings warning
While looking into the regressions reported by Luis Machado, I noticed that null pathnames were being output in the warnings. E.g. warning: Can't open file (null) during file-backed mapping note processing I've changed the warning to output the pathname found in the note, like this: warning: Can't open file /var/lib/docker/aufs/diff/d07c...e21/lib/x86_64-linux-gnu/libc-2.27.so during file-backed mapping note processing (I've shortened one of the path elements above.) gdb/ChangeLog: * corelow.c (core_target::build_file_mappings): Don't output null pathname in warning. |
||
Kevin Buettner
|
513487e1a8 |
Fix BZ 26294 - Add period to help text for maint print core-file-backed-mappings
gdb/ChangeLog: PR corefiles/26294 * corelow.c (_initialize_corelow): Add period to help text for "maintenance print core-file-backed-mappings". |
||
Kevin Buettner
|
09c2f5d45c |
Add new command "maint print core-file-backed-mappings"
I wrote a read_core_file_mappings method for FreeBSD and then registered this gdbarch method. I saw some strange behavior while testing it and wanted a way to make sure that mappings were being correctly loaded into corelow.c, so I wrote the new command which is the topic of this commit. I think it might be occasionally useful for debugging strange corefile behavior. With regard to FreeBSD, my work isn't ready yet. Unlike Linux, FreeBSD puts all mappings into its core file note. And, unlike Linux, it doesn't dump load segments which occupy no space in the file. So my (perhaps naive) implementation of a FreeBSD read_core_file_mappings didn't work all that well: I saw more failures in the corefile2.exp tests than without it. I think it should be possible to make FreeBSD work as well as Linux, but it will require doing something with all of the mappings, not just the file based mappings that I was considering. In the v4 series, Pedro asked the following: I don't understand what this command provides that "info proc mappings" doesn't? Can you give an example of when you'd use this command over "info proc mappings" ? On Linux, "info proc mappings" and "maint print core-file-backed-mappings" will produce similar, possibly identical, output. This need not be the case for other OSes. E.g. on FreeBSD, had I finished the implementation, the output from these commands would have been very different. The FreeBSD "info proc mappings" command would show additional (non-file-backed) mappings in addition to at least one additional field (memory permissions) for each mapping. As noted earlier, I was seeing some unexpected behavior while working on the FreeBSD implementation and wanted to be certain that the mappings were being correctly loaded by corelow.c. "info proc mappings" prints the core file mappings, but doesn't tell us anything about whether they've been loaded by corelow.c This new maintenance command directly interrogates the data structures and prints the values found there. gdb/ChangeLog: * corelow.c (gdbcmd.h): Include. (core_target::info_proc_mappings): New method. (get_current_core_target): New function. (maintenance_print_core_file_backed_mappings): New function. (_initialize_corelow): Add core-file-backed-mappings to "maint print" commands. |
||
Kevin Buettner
|
db082f5979 |
Use NT_FILE note section for reading core target memory
In his reviews of my v1 and v2 corefile related patches, Pedro identified two cases which weren't handled by those patches. In https://sourceware.org/pipermail/gdb-patches/2020-May/168826.html, Pedro showed that debugging a core file in which mmap() is used to create a new mapping over an existing file-backed mapping will produce incorrect results. I.e, for his example, GDB would show: (gdb) disassemble main Dump of assembler code for function main: 0x00000000004004e6 <+0>: push %rbp 0x00000000004004e7 <+1>: mov %rsp,%rbp => 0x00000000004004ea <+4>: callq 0x4003f0 <abort@plt> End of assembler dump. This sort of looks like it might be correct, but is not due to the fact that mmap(...MAP_FIXED...) was used to create a mapping (of all zeros) on top of the .text section. So, the correct result should be: (gdb) disassemble main Dump of assembler code for function main: 0x00000000004004e6 <+0>: add %al,(%rax) 0x00000000004004e8 <+2>: add %al,(%rax) => 0x00000000004004ea <+4>: add %al,(%rax) 0x00000000004004ec <+6>: add %al,(%rax) 0x00000000004004ee <+8>: add %al,(%rax) End of assembler dump. The other case that Pedro found involved an attempted examination of a particular section in the test case from gdb.base/corefile.exp. On Fedora 27 or 28, the following behavior may be observed: (gdb) info proc mappings Mapped address spaces: Start Addr End Addr Size Offset objfile ... 0x7ffff7839000 0x7ffff7a38000 0x1ff000 0x1b5000 /usr/lib64/libc-2.27.so ... (gdb) x/4x 0x7ffff7839000 0x7ffff7839000: Cannot access memory at address 0x7ffff7839000 FYI, this section appears to be unrelocated vtable data. See https://sourceware.org/pipermail/gdb-patches/2020-May/168331.html for a detailed analysis. The important thing here is that GDB should be able to access this address since it should be backed by the shared library. I.e. it should do this: (gdb) x/4x 0x7ffff7839000 0x7ffff7839000: 0x0007ddf0 0x00000000 0x0007dba0 0x00000000 Both of these cases are fixed with this commit. In a nutshell, this commit opens a "binary" target BFD for each of the files that are mentioned in an NT_FILE / .note.linuxcore.file note section. It then uses these mappings instead of the file stratum mappings that GDB has used in the past. If this note section doesn't exist or is mangled for some reason, then GDB will use the file stratum as before. Should this happen, then we can expect both of the above problems to again be present. See the code comments in the commit for other details. gdb/ChangeLog: * corelow.c (solist.h, unordered_map): Include. (class core_target): Add field m_core_file_mappings and method build_file_mappings. (core_target::core_target): Call build_file_mappings. (core_target::~core_target): Free memory associated with m_core_file_mappings. (core_target::build_file_mappings): New method. (core_target::xfer_partial): Use m_core_file_mappings for memory transfers. * linux-tdep.c (linux_read_core_file_mappings): New function. (linux_core_info_proc_mappings): Rewrite to use linux_read_core_file_mappings. (linux_init_abi): Register linux_read_core_file_mappings. |
||
Kevin Buettner
|
2735d4218e |
Provide access to non SEC_HAS_CONTENTS core file sections
Consider the following program: - - - mkmmapcore.c - - - static char *buf; int main (int argc, char **argv) { buf = mmap (NULL, 8192, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); abort (); } - - - end mkmmapcore.c - - - Compile it like this: gcc -g -o mkmmapcore mkmmapcore.c Now let's run it from GDB. I've already placed a breakpoint on the line with the abort() call and have run to that breakpoint. Breakpoint 1, main (argc=1, argv=0x7fffffffd678) at mkmmapcore.c:11 11 abort (); (gdb) x/x buf 0x7ffff7fcb000: 0x00000000 Note that we can examine the memory allocated via the call to mmap(). Now let's try debugging a core file created by running this program. Depending on your system, in order to make a core file, you may have to run the following as root (or using sudo): echo core > /proc/sys/kernel/core_pattern It may also be necessary to do: ulimit -c unlimited I'm using Fedora 31. YMMV if you're using one of the BSDs or some other (non-Linux) system. This is what things look like when we debug the core file: [kev@f31-1 tmp]$ gdb -q ./mkmmapcore core.304767 Reading symbols from ./mkmmapcore... [New LWP 304767] Core was generated by `/tmp/mkmmapcore'. Program terminated with signal SIGABRT, Aborted. #0 __GI_raise (sig=sig@entry=6) at ../sysdeps/unix/sysv/linux/raise.c:50 50 return ret; (gdb) x/x buf 0x7ffff7fcb000: Cannot access memory at address 0x7ffff7fcb000 Note that we can no longer access the memory region allocated by mmap(). Back in 2007, a hack for GDB was added to _bfd_elf_make_section_from_phdr() in bfd/elf.c: /* Hack for gdb. Segments that have not been modified do not have their contents written to a core file, on the assumption that a debugger can find the contents in the executable. We flag this case by setting the fake section size to zero. Note that "real" bss sections will always have their contents dumped to the core file. */ if (bfd_get_format (abfd) == bfd_core) newsect->size = 0; You can find the entire patch plus links to other discussion starting here: https://sourceware.org/ml/binutils/2007-08/msg00047.html This hack sets the size of certain BFD sections to 0, which effectively causes GDB to ignore them. I think it's likely that the bug described above existed even before this hack was added, but I have no easy way to test this now. The output from objdump -h shows the result of this hack: 25 load13 00000000 00007ffff7fcb000 0000000000000000 00013000 2**12 ALLOC (The first field, after load13, shows the size of 0.) Once the hack is removed, the output from objdump -h shows the correct size: 25 load13 00002000 00007ffff7fcb000 0000000000000000 00013000 2**12 ALLOC (This is a digression, but I think it's good that objdump will now show the correct size.) If we remove the hack from bfd/elf.c, but do nothing to GDB, we'll see the following regression: FAIL: gdb.base/corefile.exp: print coremaker_ro The reason for this is that all sections which have the BFD flag SEC_ALLOC set, but for which SEC_HAS_CONTENTS is not set no longer have zero size. Some of these sections have data that can (and should) be read from the executable. (Sections for which SEC_HAS_CONTENTS is set should be read from the core file; sections which do not have this flag set need to either be read from the executable or, failing that, from the core file using whatever BFD decides is the best value to present to the user - it uses zeros.) At present, due to the way that the target strata are traversed when attempting to access memory, the non-SEC_HAS_CONTENTS sections will be read as zeroes from the process_stratum (which in this case is the core file stratum) without first checking the file stratum, which is where the data might actually be found. What we should be doing is this: - Attempt to access core file data for SEC_HAS_CONTENTS sections. - Attempt to access executable file data if the above fails. - Attempt to access core file data for non SEC_HAS_CONTENTS sections, if both of the above fail. This corresponds to the analysis of Daniel Jacobowitz back in 2007 when the hack was added to BFD: https://sourceware.org/legacy-ml/binutils/2007-08/msg00045.html The difference, observed by Pedro in his review of my v1 patches, is that I'm using "the section flags as proxy for the p_filesz/p_memsz checks." gdb/ChangeLog: PR corefiles/25631 * corelow.c (core_target:xfer_partial): Revise TARGET_OBJECT_MEMORY case to consider non-SEC_HAS_CONTENTS case after first checking the stratum beneath the core target. (has_all_memory): Return true. * target.c (raw_memory_xfer_partial): Revise comment regarding use of has_all_memory. |
||
Kevin Buettner
|
e56cb451c9 |
section_table_xfer_memory: Replace section name with callback predicate
This patch is motivated by the need to be able to select sections that section_table_xfer_memory_partial should consider for memory transfers. I'll use this facility in the next patch in this series. section_table_xfer_memory_partial() can currently be passed a section name which may be used to make name-based selections. This is similar to what I want to do, except that I want to be able to consider section flags instead of the name. I'm replacing the section name parameter with a predicate that, when passed a pointer to a target_section struct, will return true if that section should be further considered, or false which indicates that it shouldn't. I've converted the one existing use where a non-NULL section name is passed to section_table_xfer_memory_partial(). Instead of passing the section name, it now looks like this: auto match_cb = [=] (const struct target_section *s) { return (strcmp (section_name, s->the_bfd_section->name) == 0); }; return section_table_xfer_memory_partial (readbuf, writebuf, memaddr, len, xfered_len, table->sections, table->sections_end, match_cb); The other callers all passed NULL; they've been simplified somewhat in that they no longer need to pass NULL. gdb/ChangeLog: * exec.h (section_table_xfer_memory): Revise declaration, replacing section name parameter with an optional callback predicate. * exec.c (section_table_xfer_memory): Likewise. * bfd-target.c, exec.c, target.c, corelow.c: Adjust all callers of section_table_xfer_memory. |
||
John Baldwin
|
ad97bfc533 |
Report architecture-specific signal information for core files.
When opening a core file, if the process terminated due to a signal, invoke the gdbarch report_signal_info hook to report architecture-specific information about the signal. gdb/ChangeLog: * corelow.c (core_target_open): Invoke gdbarch report_signal_info hook if present. |
||
Pedro Alves
|
60db1b8565 |
Don't write to inferior_ptid in corelow.c
gdb/ChangeLog: 2020-06-18 Pedro Alves <palves@redhat.com> * corelow.c (core_target::close): Use switch_to_no_thread instead of writing to inferior_ptid directly. (add_to_thread_list, core_target_open): Use switch_to_thread instead of writing to inferior_ptid directly. |
||
Christian Biesinger
|
6ba0a32103 |
Remove deprecated core file functions
There are no more callers to deprecated_add_core_fns, now that I have removed the usage from CRIS and ARM/NetBSD. So this patch cleans up all the related code and makes corelow.c a lot more readable. gdb/ChangeLog: 2020-03-12 Christian Biesinger <cbiesinger@google.com> * corelow.c (sniff_core_bfd): Remove. (class core_target) <m_core_vec>: Remove. (core_target::core_target): Update. (core_file_fns): Remove. (deprecated_add_core_fns): Remove. (default_core_sniffer): Remove. (sniff_core_bfd): Remove. (default_check_format): Remove. (gdb_check_format): Remove. (core_target_open): Update. (core_target::get_core_register_section): Update. (get_core_registers_cb): Update. (core_target::fetch_registers): Update. * gdbcore.h (struct core_fns): Remove. (deprecated_add_core_fns): Remove. (default_core_sniffer): Remove. (default_check_format): Remove. |
||
Simon Marchi
|
0cac9354bf |
gdb: use gdb::byte_vector instead of std::vector<char> in core_target::get_core_register_section
Since the data held by the `contents` variable is arbitrary binary data, it should have gdb_byte elements, not char elements. Also, using gdb::byte_vector is preferable, since it doesn't unnecessarily zero-initialize the values. Instead of adding a cast in the call to m_core_vec->core_read_registers, I have changed core_read_registers' argument to be a gdb_byte* instead of a char*. gdb/ChangeLog: * gdbcore.h (struct core_fns) <core_read_registers>: Change core_reg_sect type to gdb_byte *. * arm-nbsd-nat.c (fetch_elfcore_registers): Likewise. * cris-tdep.c (fetch_core_registers): Likewise. * corelow.c (core_target::get_core_register_section): Change type of `contents` to gdb::byte_vector. |
||
Simon Marchi
|
d8b2f9e333 |
gdb: use std::vector instead of alloca in core_target::get_core_register_section
As I was trying to compile gdb for an m68k host, I got this error: CXX corelow.o In file included from /binutils-gdb/gdb/gdbsupport/common-defs.h:120, from /binutils-gdb/gdb/defs.h:28, from /binutils-gdb/gdb/corelow.c:20: /binutils-gdb/gdb/corelow.c: In member function 'void core_target::get_core_register_section(regcache*, const regset*, const char*, int, int, const char*, bool)': /binutils-gdb/gdb/../include/libiberty.h:727:36: error: 'alloca' bound is unknown [-Werror=alloca-larger-than=] 727 | # define alloca(x) __builtin_alloca(x) | ~~~~~~~~~~~~~~~~^~~ /binutils-gdb/gdb/corelow.c:625:23: note: in expansion of macro 'alloca' 625 | contents = (char *) alloca (size); | ^~~~~~ We are using alloca to hold the contents of a the core register sections. These sections are typically fairly small, but there is no realy guarantee, so I think it would be more reasonable to just use dynamic allocation here. gdb/ChangeLog: * corelow.c (core_target::get_core_register_section): Use std::vector instead of alloca. |
||
Simon Marchi
|
6c2659886f |
gdb: add back declarations for _initialize functions
I'd like to enable the -Wmissing-declarations warning. However, it
warns for every _initialize function, for example:
CXX dcache.o
/home/smarchi/src/binutils-gdb/gdb/dcache.c: In function ‘void _initialize_dcache()’:
/home/smarchi/src/binutils-gdb/gdb/dcache.c:688:1: error: no previous declaration for ‘void _initialize_dcache()’ [-Werror=missing-declarations]
_initialize_dcache (void)
^~~~~~~~~~~~~~~~~~
The only practical way forward I found is to add back the declarations,
which were removed by this commit:
commit
|
||
Pedro Alves
|
5b6d1e4fa4 |
Multi-target support
This commit adds multi-target support to GDB. What this means is that with this commit, GDB can now be connected to different targets at the same time. E.g., you can debug a live native process and a core dump at the same time, connect to multiple gdbservers, etc. Actually, the word "target" is overloaded in gdb. We already have a target stack, with pushes several target_ops instances on top of one another. We also have "info target" already, which means something completely different to what this patch does. So from here on, I'll be using the "target connections" term, to mean an open process_stratum target, pushed on a target stack. This patch makes gdb have multiple target stacks, and multiple process_stratum targets open simultaneously. The user-visible changes / commands will also use this terminology, but of course it's all open to debate. User-interface-wise, not that much changes. The main difference is that each inferior may have its own target connection. A target connection (e.g., a target extended-remote connection) may support debugging multiple processes, just as before. Say you're debugging against gdbserver in extended-remote mode, and you do "add-inferior" to prepare to spawn a new process, like: (gdb) target extended-remote :9999 ... (gdb) start ... (gdb) add-inferior Added inferior 2 (gdb) inferior 2 [Switching to inferior 2 [<null>] (<noexec>)] (gdb) file a.out ... (gdb) start ... At this point, you have two inferiors connected to the same gdbserver. With this commit, GDB will maintain a target stack per inferior, instead of a global target stack. To preserve the behavior above, by default, "add-inferior" makes the new inferior inherit a copy of the target stack of the current inferior. Same across a fork - the child inherits a copy of the target stack of the parent. While the target stacks are copied, the targets themselves are not. Instead, target_ops is made a refcounted_object, which means that target_ops instances are refcounted, which each inferior counting for a reference. What if you want to create an inferior and connect it to some _other_ target? For that, this commit introduces a new "add-inferior -no-connection" option that makes the new inferior not share the current inferior's target. So you could do: (gdb) target extended-remote :9999 Remote debugging using :9999 ... (gdb) add-inferior -no-connection [New inferior 2] Added inferior 2 (gdb) inferior 2 [Switching to inferior 2 [<null>] (<noexec>)] (gdb) info inferiors Num Description Executable 1 process 18401 target:/home/pedro/tmp/main * 2 <null> (gdb) tar extended-remote :10000 Remote debugging using :10000 ... (gdb) info inferiors Num Description Executable 1 process 18401 target:/home/pedro/tmp/main * 2 process 18450 target:/home/pedro/tmp/main (gdb) A following patch will extended "info inferiors" to include a column indicating which connection an inferior is bound to, along with a couple other UI tweaks. Other than that, debugging is the same as before. Users interact with inferiors and threads as before. The only difference is that inferiors may be bound to processes running in different machines. That's pretty much all there is to it in terms of noticeable UI changes. On to implementation. Since we can be connected to different systems at the same time, a ptid_t is no longer a unique identifier. Instead a thread can be identified by a pair of ptid_t and 'process_stratum_target *', the later being the instance of the process_stratum target that owns the process/thread. Note that process_stratum_target inherits from target_ops, and all process_stratum targets inherit from process_stratum_target. In earlier patches, many places in gdb were converted to refer to threads by thread_info pointer instead of ptid_t, but there are still places in gdb where we start with a pid/tid and need to find the corresponding inferior or thread_info objects. So you'll see in the patch many places adding a process_stratum_target parameter to functions that used to take only a ptid_t. Since each inferior has its own target stack now, we can always find the process_stratum target for an inferior. That is done via a inf->process_target() convenience method. Since each inferior has its own target stack, we need to handle the "beneath" calls when servicing target calls. The solution I settled with is just to make sure to switch the current inferior to the inferior you want before making a target call. Not relying on global context is just not feasible in current GDB. Fortunately, there aren't that many places that need to do that, because generally most code that calls target methods already has the current context pointing to the right inferior/thread. Note, to emphasize -- there's no method to "switch to this target stack". Instead, you switch the current inferior, and that implicitly switches the target stack. In some spots, we need to iterate over all inferiors so that we reach all target stacks. Native targets are still singletons. There's always only a single instance of such targets. Remote targets however, we'll have one instance per remote connection. The exec target is still a singleton. There's only one instance. I did not see the point of instanciating more than one exec_target object. After vfork, we need to make sure to push the exec target on the new inferior. See exec_on_vfork. For type safety, functions that need a {target, ptid} pair to identify a thread, take a process_stratum_target pointer for target parameter instead of target_ops *. Some shared code in gdb/nat/ also need to gain a target pointer parameter. This poses an issue, since gdbserver doesn't have process_stratum_target, only target_ops. To fix this, this commit renames gdbserver's target_ops to process_stratum_target. I think this makes sense. There's no concept of target stack in gdbserver, and gdbserver's target_ops really implements a process_stratum-like target. The thread and inferior iterator functions also gain process_stratum_target parameters. These are used to be able to iterate over threads and inferiors of a given target. Following usual conventions, if the target pointer is null, then we iterate over threads and inferiors of all targets. I tried converting "add-inferior" to the gdb::option framework, as a preparatory patch, but that stumbled on the fact that gdb::option does not support file options yet, for "add-inferior -exec". I have a WIP patchset that adds that, but it's not a trivial patch, mainly due to need to integrate readline's filename completion, so I deferred that to some other time. In infrun.c/infcmd.c, the main change is that we need to poll events out of all targets. See do_target_wait. Right after collecting an event, we switch the current inferior to an inferior bound to the target that reported the event, so that target methods can be used while handling the event. This makes most of the code transparent to multi-targets. See fetch_inferior_event. infrun.c:stop_all_threads is interesting -- in this function we need to stop all threads of all targets. What the function does is send an asynchronous stop request to all threads, and then synchronously waits for events, with target_wait, rinse repeat, until all it finds are stopped threads. Now that we have multiple targets, it's not efficient to synchronously block in target_wait waiting for events out of one target. Instead, we implement a mini event loop, with interruptible_select, select'ing on one file descriptor per target. For this to work, we need to be able to ask the target for a waitable file descriptor. Such file descriptors already exist, they are the descriptors registered in the main event loop with add_file_handler, inside the target_async implementations. This commit adds a new target_async_wait_fd target method that just returns the file descriptor in question. See wait_one / stop_all_threads in infrun.c. The 'threads_executing' global is made a per-target variable. Since it is only relevant to process_stratum_target targets, this is where it is put, instead of in target_ops. You'll notice that remote.c includes some FIXME notes. These refer to the fact that the global arrays that hold data for the remote packets supported are still globals. For example, if we connect to two different servers/stubs, then each might support different remote protocol features. They might even be different architectures, like e.g., one ARM baremetal stub, and a x86 gdbserver, to debug a host/controller scenario as a single program. That isn't going to work correctly today, because of said globals. I'm leaving fixing that for another pass, since it does not appear to be trivial, and I'd rather land the base work first. It's already useful to be able to debug multiple instances of the same server (e.g., a distributed cluster, where you have full control over the servers installed), so I think as is it's already reasonable incremental progress. Current limitations: - You can only resume more that one target at the same time if all targets support asynchronous debugging, and support non-stop mode. It should be possible to support mixed all-stop + non-stop backends, but that is left for another time. This means that currently in order to do multi-target with gdbserver you need to issue "maint set target-non-stop on". I would like to make that mode be the default, but we're not there yet. Note that I'm talking about how the target backend works, only. User-visible all-stop mode works just fine. - As explained above, connecting to different remote servers at the same time is likely to produce bad results if they don't support the exact set of RSP features. FreeBSD updates courtesy of John Baldwin. gdb/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> John Baldwin <jhb@FreeBSD.org> * aarch64-linux-nat.c (aarch64_linux_nat_target::thread_architecture): Adjust. * ada-tasks.c (print_ada_task_info): Adjust find_thread_ptid call. (task_command_1): Likewise. * aix-thread.c (sync_threadlists, aix_thread_target::resume) (aix_thread_target::wait, aix_thread_target::fetch_registers) (aix_thread_target::store_registers) (aix_thread_target::thread_alive): Adjust. * amd64-fbsd-tdep.c: Include "inferior.h". (amd64fbsd_get_thread_local_address): Pass down target. * amd64-linux-nat.c (ps_get_thread_area): Use ps_prochandle thread's gdbarch instead of target_gdbarch. * break-catch-sig.c (signal_catchpoint_print_it): Adjust call to get_last_target_status. * break-catch-syscall.c (print_it_catch_syscall): Likewise. * breakpoint.c (breakpoints_should_be_inserted_now): Consider all inferiors. (update_inserted_breakpoint_locations): Skip if inferiors with no execution. (update_global_location_list): When handling moribund locations, find representative inferior for location's pspace, and use thread count of its process_stratum target. * bsd-kvm.c (bsd_kvm_target_open): Pass target down. * bsd-uthread.c (bsd_uthread_target::wait): Use as_process_stratum_target and adjust thread_change_ptid and add_thread calls. (bsd_uthread_target::update_thread_list): Use as_process_stratum_target and adjust find_thread_ptid, thread_change_ptid and add_thread calls. * btrace.c (maint_btrace_packet_history_cmd): Adjust find_thread_ptid call. * corelow.c (add_to_thread_list): Adjust add_thread call. (core_target_open): Adjust add_thread_silent and thread_count calls. (core_target::pid_to_str): Adjust find_inferior_ptid call. * ctf.c (ctf_target_open): Adjust add_thread_silent call. * event-top.c (async_disconnect): Pop targets from all inferiors. * exec.c (add_target_sections): Push exec target on all inferiors sharing the program space. (remove_target_sections): Remove the exec target from all inferiors sharing the program space. (exec_on_vfork): New. * exec.h (exec_on_vfork): Declare. * fbsd-nat.c (fbsd_add_threads): Add fbsd_nat_target parameter. Pass it down. (fbsd_nat_target::update_thread_list): Adjust. (fbsd_nat_target::resume): Adjust. (fbsd_handle_debug_trap): Add fbsd_nat_target parameter. Pass it down. (fbsd_nat_target::wait, fbsd_nat_target::post_attach): Adjust. * fbsd-tdep.c (fbsd_corefile_thread): Adjust get_thread_arch_regcache call. * fork-child.c (gdb_startup_inferior): Pass target down to startup_inferior and set_executing. * gdbthread.h (struct process_stratum_target): Forward declare. (add_thread, add_thread_silent, add_thread_with_info) (in_thread_list): Add process_stratum_target parameter. (find_thread_ptid(inferior*, ptid_t)): New overload. (find_thread_ptid, thread_change_ptid): Add process_stratum_target parameter. (all_threads()): Delete overload. (all_threads, all_non_exited_threads): Add process_stratum_target parameter. (all_threads_safe): Use brace initialization. (thread_count): Add process_stratum_target parameter. (set_resumed, set_running, set_stop_requested, set_executing) (threads_are_executing, finish_thread_state): Add process_stratum_target parameter. (switch_to_thread): Use is_current_thread. * i386-fbsd-tdep.c: Include "inferior.h". (i386fbsd_get_thread_local_address): Pass down target. * i386-linux-nat.c (i386_linux_nat_target::low_resume): Adjust. * inf-child.c (inf_child_target::maybe_unpush_target): Remove have_inferiors check. * inf-ptrace.c (inf_ptrace_target::create_inferior) (inf_ptrace_target::attach): Adjust. * infcall.c (run_inferior_call): Adjust. * infcmd.c (run_command_1): Pass target to scoped_finish_thread_state. (proceed_thread_callback): Skip inferiors with no execution. (continue_command): Rename 'all_threads' local to avoid hiding 'all_threads' function. Adjust get_last_target_status call. (prepare_one_step): Adjust set_running call. (signal_command): Use user_visible_resume_target. Compare thread pointers instead of inferior_ptid. (info_program_command): Adjust to pass down target. (attach_command): Mark target's 'thread_executing' flag. (stop_current_target_threads_ns): New, factored out from ... (interrupt_target_1): ... this. Switch inferior before making target calls. * inferior-iter.h (struct all_inferiors_iterator, struct all_inferiors_range) (struct all_inferiors_safe_range) (struct all_non_exited_inferiors_range): Filter on process_stratum_target too. Remove explicit. * inferior.c (inferior::inferior): Push dummy target on target stack. (find_inferior_pid, find_inferior_ptid, number_of_live_inferiors): Add process_stratum_target parameter, and pass it down. (have_live_inferiors): Adjust. (switch_to_inferior_and_push_target): New. (add_inferior_command, clone_inferior_command): Handle "-no-connection" parameter. Use switch_to_inferior_and_push_target. (_initialize_inferior): Mention "-no-connection" option in the help of "add-inferior" and "clone-inferior" commands. * inferior.h: Include "process-stratum-target.h". (interrupt_target_1): Use bool. (struct inferior) <push_target, unpush_target, target_is_pushed, find_target_beneath, top_target, process_target, target_at, m_stack>: New. (discard_all_inferiors): Delete. (find_inferior_pid, find_inferior_ptid, number_of_live_inferiors) (all_inferiors, all_non_exited_inferiors): Add process_stratum_target parameter. * infrun.c: Include "gdb_select.h" and <unordered_map>. (target_last_proc_target): New global. (follow_fork_inferior): Push target on new inferior. Pass target to add_thread_silent. Call exec_on_vfork. Handle target's reference count. (follow_fork): Adjust get_last_target_status call. Also consider target. (follow_exec): Push target on new inferior. (struct execution_control_state) <target>: New field. (user_visible_resume_target): New. (do_target_resume): Call target_async. (resume_1): Set target's threads_executing flag. Consider resume target. (commit_resume_all_targets): New. (proceed): Also consider resume target. Skip threads of inferiors with no execution. Commit resumtion in all targets. (start_remote): Pass current inferior to wait_for_inferior. (infrun_thread_stop_requested): Consider target as well. Pass thread_info pointer to clear_inline_frame_state instead of ptid. (infrun_thread_thread_exit): Consider target as well. (random_pending_event_thread): New inferior parameter. Use it. (do_target_wait): Rename to ... (do_target_wait_1): ... this. Add inferior parameter, and pass it down. (threads_are_resumed_pending_p, do_target_wait): New. (prepare_for_detach): Adjust calls. (wait_for_inferior): New inferior parameter. Handle it. Use do_target_wait_1 instead of do_target_wait. (fetch_inferior_event): Adjust. Switch to representative inferior. Pass target down. (set_last_target_status): Add process_stratum_target parameter. Save target in global. (get_last_target_status): Add process_stratum_target parameter and handle it. (nullify_last_target_wait_ptid): Clear 'target_last_proc_target'. (context_switch): Check inferior_ptid == null_ptid before calling inferior_thread(). (get_inferior_stop_soon): Pass down target. (wait_one): Rename to ... (poll_one_curr_target): ... this. (struct wait_one_event): New. (wait_one): New. (stop_all_threads): Adjust. (handle_no_resumed, handle_inferior_event): Adjust to consider the event's target. (switch_back_to_stepped_thread): Also consider target. (print_stop_event): Update. (normal_stop): Update. Also consider the resume target. * infrun.h (wait_for_inferior): Remove declaration. (user_visible_resume_target): New declaration. (get_last_target_status, set_last_target_status): New process_stratum_target parameter. * inline-frame.c (clear_inline_frame_state(ptid_t)): Add process_stratum_target parameter, and use it. (clear_inline_frame_state (thread_info*)): New. * inline-frame.c (clear_inline_frame_state(ptid_t)): Add process_stratum_target parameter. (clear_inline_frame_state (thread_info*)): Declare. * linux-fork.c (delete_checkpoint_command): Pass target down to find_thread_ptid. (checkpoint_command): Adjust. * linux-nat.c (linux_nat_target::follow_fork): Switch to thread instead of just tweaking inferior_ptid. (linux_nat_switch_fork): Pass target down to thread_change_ptid. (exit_lwp): Pass target down to find_thread_ptid. (attach_proc_task_lwp_callback): Pass target down to add_thread/set_running/set_executing. (linux_nat_target::attach): Pass target down to thread_change_ptid. (get_detach_signal): Pass target down to find_thread_ptid. Consider last target status's target. (linux_resume_one_lwp_throw, resume_lwp) (linux_handle_syscall_trap, linux_handle_extended_wait, wait_lwp) (stop_wait_callback, save_stop_reason, linux_nat_filter_event) (linux_nat_wait_1, resume_stopped_resumed_lwps): Pass target down. (linux_nat_target::async_wait_fd): New. (linux_nat_stop_lwp, linux_nat_target::thread_address_space): Pass target down. * linux-nat.h (linux_nat_target::async_wait_fd): Declare. * linux-tdep.c (get_thread_arch_regcache): Pass target down. * linux-thread-db.c (struct thread_db_info::process_target): New field. (add_thread_db_info): Save target. (get_thread_db_info): New process_stratum_target parameter. Also match target. (delete_thread_db_info): New process_stratum_target parameter. Also match target. (thread_from_lwp): Adjust to pass down target. (thread_db_notice_clone): Pass down target. (check_thread_db_callback): Pass down target. (try_thread_db_load_1): Always push the thread_db target. (try_thread_db_load, record_thread): Pass target down. (thread_db_target::detach): Pass target down. Always unpush the thread_db target. (thread_db_target::wait, thread_db_target::mourn_inferior): Pass target down. Always unpush the thread_db target. (find_new_threads_callback, thread_db_find_new_threads_2) (thread_db_target::update_thread_list): Pass target down. (thread_db_target::pid_to_str): Pass current inferior down. (thread_db_target::get_thread_local_address): Pass target down. (thread_db_target::resume, maintenance_check_libthread_db): Pass target down. * nto-procfs.c (nto_procfs_target::update_thread_list): Adjust. * procfs.c (procfs_target::procfs_init_inferior): Declare. (proc_set_current_signal, do_attach, procfs_target::wait): Adjust. (procfs_init_inferior): Rename to ... (procfs_target::procfs_init_inferior): ... this and adjust. (procfs_target::create_inferior, procfs_notice_thread) (procfs_do_thread_registers): Adjust. * ppc-fbsd-tdep.c: Include "inferior.h". (ppcfbsd_get_thread_local_address): Pass down target. * proc-service.c (ps_xfer_memory): Switch current inferior and program space as well. (get_ps_regcache): Pass target down. * process-stratum-target.c (process_stratum_target::thread_address_space) (process_stratum_target::thread_architecture): Pass target down. * process-stratum-target.h (process_stratum_target::threads_executing): New field. (as_process_stratum_target): New. * ravenscar-thread.c (ravenscar_thread_target::update_inferior_ptid): Pass target down. (ravenscar_thread_target::wait, ravenscar_add_thread): Pass target down. * record-btrace.c (record_btrace_target::info_record): Adjust. (record_btrace_target::record_method) (record_btrace_target::record_is_replaying) (record_btrace_target::fetch_registers) (get_thread_current_frame_id, record_btrace_target::resume) (record_btrace_target::wait, record_btrace_target::stop): Pass target down. * record-full.c (record_full_wait_1): Switch to event thread. Pass target down. * regcache.c (regcache::regcache) (get_thread_arch_aspace_regcache, get_thread_arch_regcache): Add process_stratum_target parameter and handle it. (current_thread_target): New global. (get_thread_regcache): Add process_stratum_target parameter and handle it. Switch inferior before calling target method. (get_thread_regcache): Pass target down. (get_thread_regcache_for_ptid): Pass target down. (registers_changed_ptid): Add process_stratum_target parameter and handle it. (registers_changed_thread, registers_changed): Pass target down. (test_get_thread_arch_aspace_regcache): New. (current_regcache_test): Define a couple local test_target_ops instances and use them for testing. (readwrite_regcache): Pass process_stratum_target parameter. (cooked_read_test, cooked_write_test): Pass mock_target down. * regcache.h (get_thread_regcache, get_thread_arch_regcache) (get_thread_arch_aspace_regcache): Add process_stratum_target parameter. (regcache::target): New method. (regcache::regcache, regcache::get_thread_arch_aspace_regcache) (regcache::registers_changed_ptid): Add process_stratum_target parameter. (regcache::m_target): New field. (registers_changed_ptid): Add process_stratum_target parameter. * remote.c (remote_state::supports_vCont_probed): New field. (remote_target::async_wait_fd): New method. (remote_unpush_and_throw): Add remote_target parameter. (get_current_remote_target): Adjust. (remote_target::remote_add_inferior): Push target. (remote_target::remote_add_thread) (remote_target::remote_notice_new_inferior) (get_remote_thread_info): Pass target down. (remote_target::update_thread_list): Skip threads of inferiors bound to other targets. (remote_target::close): Don't discard inferiors. (remote_target::add_current_inferior_and_thread) (remote_target::process_initial_stop_replies) (remote_target::start_remote) (remote_target::remote_serial_quit_handler): Pass down target. (remote_target::remote_unpush_target): New remote_target parameter. Unpush the target from all inferiors. (remote_target::remote_unpush_and_throw): New remote_target parameter. Pass it down. (remote_target::open_1): Check whether the current inferior has execution instead of checking whether any inferior is live. Pass target down. (remote_target::remote_detach_1): Pass down target. Use remote_unpush_target. (extended_remote_target::attach): Pass down target. (remote_target::remote_vcont_probe): Set supports_vCont_probed. (remote_target::append_resumption): Pass down target. (remote_target::append_pending_thread_resumptions) (remote_target::remote_resume_with_hc, remote_target::resume) (remote_target::commit_resume): Pass down target. (remote_target::remote_stop_ns): Check supports_vCont_probed. (remote_target::interrupt_query) (remote_target::remove_new_fork_children) (remote_target::check_pending_events_prevent_wildcard_vcont) (remote_target::remote_parse_stop_reply) (remote_target::process_stop_reply): Pass down target. (first_remote_resumed_thread): New remote_target parameter. Pass it down. (remote_target::wait_as): Pass down target. (unpush_and_perror): New remote_target parameter. Pass it down. (remote_target::readchar, remote_target::remote_serial_write) (remote_target::getpkt_or_notif_sane_1) (remote_target::kill_new_fork_children, remote_target::kill): Pass down target. (remote_target::mourn_inferior): Pass down target. Use remote_unpush_target. (remote_target::core_of_thread) (remote_target::remote_btrace_maybe_reopen): Pass down target. (remote_target::pid_to_exec_file) (remote_target::thread_handle_to_thread_info): Pass down target. (remote_target::async_wait_fd): New. * riscv-fbsd-tdep.c: Include "inferior.h". (riscv_fbsd_get_thread_local_address): Pass down target. * sol2-tdep.c (sol2_core_pid_to_str): Pass down target. * sol-thread.c (sol_thread_target::wait, ps_lgetregs, ps_lsetregs) (ps_lgetfpregs, ps_lsetfpregs, sol_update_thread_list_callback): Adjust. * solib-spu.c (spu_skip_standalone_loader): Pass down target. * solib-svr4.c (enable_break): Pass down target. * spu-multiarch.c (parse_spufs_run): Pass down target. * spu-tdep.c (spu2ppu_sniffer): Pass down target. * target-delegates.c: Regenerate. * target.c (g_target_stack): Delete. (current_top_target): Return the current inferior's top target. (target_has_execution_1): Refer to the passed-in inferior's top target. (target_supports_terminal_ours): Check whether the initial inferior was already created. (decref_target): New. (target_stack::push): Incref/decref the target. (push_target, push_target, unpush_target): Adjust. (target_stack::unpush): Defref target. (target_is_pushed): Return bool. Adjust to refer to the current inferior's target stack. (dispose_inferior): Delete, and inline parts ... (target_preopen): ... here. Only dispose of the current inferior. (target_detach): Hold strong target reference while detaching. Pass target down. (target_thread_name): Add assertion. (target_resume): Pass down target. (target_ops::beneath, find_target_at): Adjust to refer to the current inferior's target stack. (get_dummy_target): New. (target_pass_ctrlc): Pass the Ctrl-C to the first inferior that has a thread running. (initialize_targets): Rename to ... (_initialize_target): ... this. * target.h: Include "gdbsupport/refcounted-object.h". (struct target_ops): Inherit refcounted_object. (target_ops::shortname, target_ops::longname): Make const. (target_ops::async_wait_fd): New method. (decref_target): Declare. (struct target_ops_ref_policy): New. (target_ops_ref): New typedef. (get_dummy_target): Declare function. (target_is_pushed): Return bool. * thread-iter.c (all_matching_threads_iterator::m_inf_matches) (all_matching_threads_iterator::all_matching_threads_iterator): Handle filter target. * thread-iter.h (struct all_matching_threads_iterator, struct all_matching_threads_range, class all_non_exited_threads_range): Filter by target too. Remove explicit. * thread.c (threads_executing): Delete. (inferior_thread): Pass down current inferior. (clear_thread_inferior_resources): Pass down thread pointer instead of ptid_t. (add_thread_silent, add_thread_with_info, add_thread): Add process_stratum_target parameter. Use it for thread and inferior searches. (is_current_thread): New. (thread_info::deletable): Use it. (find_thread_ptid, thread_count, in_thread_list) (thread_change_ptid, set_resumed, set_running): New process_stratum_target parameter. Pass it down. (set_executing): New process_stratum_target parameter. Pass it down. Adjust reference to 'threads_executing'. (threads_are_executing): New process_stratum_target parameter. Adjust reference to 'threads_executing'. (set_stop_requested, finish_thread_state): New process_stratum_target parameter. Pass it down. (switch_to_thread): Also match inferior. (switch_to_thread): New process_stratum_target parameter. Pass it down. (update_threads_executing): Reimplement. * top.c (quit_force): Pop targets from all inferior. (gdb_init): Don't call initialize_targets. * windows-nat.c (windows_nat_target) <get_windows_debug_event>: Declare. (windows_add_thread, windows_delete_thread): Adjust. (get_windows_debug_event): Rename to ... (windows_nat_target::get_windows_debug_event): ... this. Adjust. * tracefile-tfile.c (tfile_target_open): Pass down target. * gdbsupport/common-gdbthread.h (struct process_stratum_target): Forward declare. (switch_to_thread): Add process_stratum_target parameter. * mi/mi-interp.c (mi_on_resume_1): Add process_stratum_target parameter. Use it. (mi_on_resume): Pass target down. * nat/fork-inferior.c (startup_inferior): Add process_stratum_target parameter. Pass it down. * nat/fork-inferior.h (startup_inferior): Add process_stratum_target parameter. * python/py-threadevent.c (py_get_event_thread): Pass target down. gdb/gdbserver/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> * fork-child.c (post_fork_inferior): Pass target down to startup_inferior. * inferiors.c (switch_to_thread): Add process_stratum_target parameter. * lynx-low.c (lynx_target_ops): Now a process_stratum_target. * nto-low.c (nto_target_ops): Now a process_stratum_target. * linux-low.c (linux_target_ops): Now a process_stratum_target. * remote-utils.c (prepare_resume_reply): Pass the target to switch_to_thread. * target.c (the_target): Now a process_stratum_target. (done_accessing_memory): Pass the target to switch_to_thread. (set_target_ops): Ajust to use process_stratum_target. * target.h (struct target_ops): Rename to ... (struct process_stratum_target): ... this. (the_target, set_target_ops): Adjust. (prepare_to_access_memory): Adjust comment. * win32-low.c (child_xfer_memory): Adjust to use process_stratum_target. (win32_target_ops): Now a process_stratum_target. |
||
Pedro Alves
|
5018ce90c1 |
Make target_ops::has_execution take an 'inferior *' instead of a ptid_t
With the multi-target work, each inferior will have its own target stack, so to call a target method, we'll need to make sure that the inferior in question is the current one, otherwise target->beneath() calls will find the target beneath in the wrong inferior. In some places, it's much more convenient to be able to check whether an inferior has execution without having to switch to it in order to call target_has_execution on the right inferior/target stack, to avoid side effects with switching inferior/thread/program space. The current target_ops::has_execution method takes a ptid_t as parameter, which, in a multi-target world, isn't sufficient to identify the target. This patch prepares to address that, by changing the parameter to an inferior pointer instead. From the inferior, we'll be able to query its target stack to tell which target is beneath. Also adds a new inferior::has_execution() method to make callers a bit more natural to read. gdb/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> * corelow.c (core_target::has_execution): Change parameter type to inferior pointer. * inferior.c (number_of_live_inferiors): Use inferior::has_execution instead of target_has_execution_1. * inferior.h (inferior::has_execution): New. * linux-thread-db.c (thread_db_target::update_thread_list): Use inferior::has_execution instead of target_has_execution_1. * process-stratum-target.c (process_stratum_target::has_execution): Change parameter type to inferior pointer. Check the inferior's PID instead of inferior_ptid. * process-stratum-target.h (process_stratum_target::has_execution): Change parameter type to inferior pointer. * record-full.c (record_full_core_target::has_execution): Change parameter type to inferior pointer. * target.c (target_has_execution_1): Change parameter type to inferior pointer. (target_has_execution_current): Adjust. * target.h (target_ops::has_execution): Change parameter type to inferior pointer. (target_has_execution_1): Change parameter type to inferior pointer. Change return type to bool. * tracefile.h (tracefile_target::has_execution): Change parameter type to inferior pointer. |
||
Joel Brobecker
|
b811d2c292 |
Update copyright year range in all GDB files.
gdb/ChangeLog: Update copyright year range in all GDB files. |
||
Sergio Durigan Junior
|
ff8577f649 |
Guard against 'current_directory == NULL' on gdb_abspath (PR gdb/23613)
Ref.: https://bugzilla.redhat.com/show_bug.cgi?id=1728147 Ref.: https://sourceware.org/bugzilla/show_bug.cgi?id=23613 Hi, This bug has been reported against Fedora GDB, but there's also an upstream bug. The problem reported is that GDB segfaults when the working directory is deleted. It's pretty use to reproduce it: mkdir bla cd bla rmdir ../bla gdb echo Debugging the problem is a bit tricky, because, since the current directory doesn't exist anymore, a corefile cannot be saved there. After a few attempts, I came up with the following: gdb -ex 'shell mkdir bla' -ex 'cd bla' -ex 'shell rmdir ../bla' -ex 'r echo' ./gdb/gdb This assumes that you're inside a build directory which contains ./gdb/gdb, of course. After investigating it, I found that the problem happens at gdb_abspath, where we're dereferencing 'current_directory' without checking if it's NULL: ... (concat (current_directory, IS_DIR_SEPARATOR (current_directory[strlen (current_directory) - 1]) ? "" : SLASH_STRING, ... So I fixed the problem with the patch below. The idea is that, if 'current_directory' is NULL, then the final string returned should be just the "path". After fixing the bug, I found a similar one reported against our bugzilla: PR gdb/23613. The problem is the same, but the reproducer is a bit different. I really tried writing a testcase for this, but unfortunately it's apparently not possible to start GDB inside a non-existent directory with DejaGNU. I regression tested this patch on the BuildBot, and no regressions were found. gdb/ChangeLog: 2019-12-14 Sergio Durigan Junior <sergiodj@redhat.com> https://bugzilla.redhat.com/show_bug.cgi?id=1728147 PR gdb/23613 * bsd-kvm.c (bsd_kvm_target_open): Use 'gdb_abspath'. * corelow.c: Include 'gdbsupport/pathstuff.h'. (core_target_open): Use 'gdb_abspath'. * gdbsupport/pathstuff.c (gdb_abspath): Guard against 'current_directory == NULL' case. * gdbsupport/pathstuff.h (gdb_abspath): Expand comment and explain what happens when 'current_directory' is NULL. * go32-nat.c (go32_nat_target::wait): Check if 'current_directory' is NULL before call to 'chdir'. * source.c (add_path): Use 'gdb_abspath'. * top.c: Include 'gdbsupport/pathstuff.h'. (init_history): Use 'gdb_abspath'. (set_history_filename): Likewise. * tracefile-tfile.c: Include 'gdbsupport/pathstuff.h'. (tfile_target_open): Use 'gdb_abspath'. Change-Id: Ibb0932fa25bc5c2d3ae4a7f64bd7f32885ca403b |
||
Keith Seitz
|
aa2d5a4229 |
Core file build-id support
This patch uses new BFD support for detecting build-ids in core files. After this patch, it is possible to run gdb with only the core file, and gdb will automatically load the executable and debug info [example from tests]: $ gdb -nx -q (gdb) core-file corefile-buildid.core [New LWP 29471] Reading symbols from gdb.base/corefile-buildid/debugdir-exec/.build-id/36/fe5722c5a7ca3ac746a84e223c6a2a69193a24... Core was generated by `outputs/gdb.base/coref'. Program terminated with signal SIGABRT, Aborted. (gdb) This work is based on functionality available in Fedora originally written by Jan Kratochvil. Regression tested on buildbot. gdb/ChangeLog: 2019-12-07 Keith Seitz <keiths@redhat.com> * build-id.c (build_id_bfd_get): Permit bfd_core, too. (build_id_to_debug_bfd): Make static, rewriting to use build_id_to_bfd_suffix. (build_id_to_bfd_suffix): Copy of build_id_to_debug_bfd, adding `suffix' parameter. Append SUFFIX to file names when searching for matching files. (build_id_to_debug_bfd): Use build_id_to_bfd_suffix. (build_id_to_exec_bfd): Likewise. * build-id.h (build_id_to_debug_bfd): Clarify that function searches for BFD of debug info file. (build_id_to_exec_bfd): Declare. * corelow.c: Include build-id.h. (locate_exec_from_corefile_build_id): New function. (core_target_open): If no executable BFD is found, search for a core file BFD using build-id. gdb/testsuite/ChangeLog: 2019-12-07 Keith Seitz <keiths@redhat.com> * gdb.base/corefile-buildid-shlib-shr.c: New file. * gdb.base/corefile-buildid-shlib.c: New file. * gdb.base/corefile-buildid.c: New file. * gdb.base/corefile-buildid.exp: New file. Change-Id: I15e9e8e58f10c68b5cae55e2eba58df1e8aef529 |
||
Tom Tromey
|
e0eac551da |
Remove some includes of readline.h
I went through most of the spots that include readline.h and, when appropriate, either removed the include or changed it to include tilde.h. Note that remote-sim.c and bsd-kvm.c could probably include tilde.h instead, but I did not change these. I think I can't build the latter, and I didn't want to set up a sim build for the former. Tested by rebuilding. gdb/ChangeLog 2019-11-06 Tom Tromey <tom@tromey.com> * tui/tui-interp.c: Don't include readline.h. * tui/tui-hooks.c: Don't include readline.h. * symmisc.c: Include tilde.h, not readline.h. * symfile.c: Include tilde.h, not readline.h. * source.c: Include tilde.h, not readline.h. * solib.c: Include tilde.h, not readline.h. * psymtab.c: Include tilde.h, not readline.h. * exec.c: Include tilde.h, not readline.h. * corelow.c: Include tilde.h, not readline.h. * cli/cli-dump.c: Include tilde.h, not readline.h. * cli/cli-cmds.c: Don't include readline.h. Change-Id: I60487a190c43128b800ef77517d1ab42957571d7 |
||
Tom de Vries
|
30baf67b65 |
[gdb] Fix more typos in comments (2)
Fix typos in comments. NFC. Tested on x86_64-linux. gdb/ChangeLog: 2019-10-26 Tom de Vries <tdevries@suse.de> * aarch64-linux-tdep.c: Fix typos in comments. * aarch64-tdep.c: Same. * ada-lang.c: Same. * amd64-nat.c: Same. * arc-tdep.c: Same. * arch/aarch64-insn.c: Same. * block.c: Same. * breakpoint.h: Same. * btrace.h: Same. * c-varobj.c: Same. * cli/cli-decode.c: Same. * cli/cli-script.c: Same. * cli/cli-utils.h: Same. * coff-pe-read.c: Same. * coffread.c: Same. * compile/compile-cplus-symbols.c: Same. * compile/compile-object-run.c: Same. * completer.c: Same. * corelow.c: Same. * cp-support.c: Same. * demangle.c: Same. * dwarf-index-write.c: Same. * dwarf2-frame.c: Same. * dwarf2-frame.h: Same. * eval.c: Same. * frame-base.h: Same. * frame.h: Same. * gdbcmd.h: Same. * gdbtypes.h: Same. * gnu-nat.c: Same. * guile/scm-objfile.c: Same. * i386-tdep.c: Same. * i386-tdep.h: Same. * infcall.c: Same. * infcall.h: Same. * linux-nat.c: Same. * m68k-tdep.c: Same. * macroexp.c: Same. * memattr.c: Same. * mi/mi-cmd-disas.c: Same. * mi/mi-getopt.h: Same. * mi/mi-main.c: Same. * minsyms.c: Same. * nat/aarch64-sve-linux-sigcontext.h: Same. * objfiles.h: Same. * ppc-linux-nat.c: Same. * ppc-linux-tdep.c: Same. * ppc-tdep.h: Same. * progspace.h: Same. * prologue-value.h: Same. * python/py-evtregistry.c: Same. * python/py-instruction.h: Same. * record-btrace.c: Same. * record-full.c: Same. * remote.c: Same. * rs6000-tdep.c: Same. * ser-tcp.c: Same. * sol-thread.c: Same. * sparc-sol2-tdep.c: Same. * sparc64-tdep.c: Same. * stabsread.c: Same. * symfile.c: Same. * symtab.h: Same. * target.c: Same. * tracepoint.c: Same. * tui/tui-data.h: Same. * tui/tui-io.c: Same. * tui/tui-win.c: Same. * tui/tui.c: Same. * unittests/rsp-low-selftests.c: Same. * user-regs.h: Same. * utils.c: Same. * utils.h: Same. * valarith.c: Same. * valops.c: Same. * valprint.c: Same. * valprint.h: Same. * value.c: Same. * value.h: Same. * varobj.c: Same. * x86-nat.h: Same. * xtensa-tdep.c: Same. gdb/gdbserver/ChangeLog: 2019-10-26 Tom de Vries <tdevries@suse.de> * linux-aarch64-low.c: Fix typos in comments. * linux-arm-low.c: Same. * linux-low.c: Same. * linux-ppc-low.c: Same. * proc-service.c: Same. * regcache.h: Same. * server.c: Same. * tracepoint.c: Same. * win32-low.c: Same. gdb/stubs/ChangeLog: 2019-10-26 Tom de Vries <tdevries@suse.de> * ia64vms-stub.c: Fix typos in comments. * m32r-stub.c: Same. * m68k-stub.c: Same. * sh-stub.c: Same. gdb/testsuite/ChangeLog: 2019-10-26 Tom de Vries <tdevries@suse.de> * gdb.base/bigcore.c: Fix typos in comments. * gdb.base/ctf-ptype.c: Same. * gdb.base/long_long.c: Same. * gdb.dwarf2/dw2-op-out-param.S: Same. * gdb.python/py-evthreads.c: Same. * gdb.reverse/i387-stack-reverse.c: Same. * gdb.trace/tfile.c: Same. * lib/compiler.c: Same. * lib/compiler.cc: Same. Change-Id: I8573d84a577894270179ae30f46c48d806fc1beb |
||
Ulrich Weigand
|
abf516c693 |
Remove Cell Broadband Engine debugging support
This patch implements removal of Cell/B.E. support, including - Support for the spu-*-* target - Support for native stand-alone SPU debugging - Support for integrated debugging of combined PPU/SPU applications - Remote debugging (gdbserver) support for all the above. The patch also removes the TARGET_OBJECT_SPU target object type, as this is available only on Cell/B.E. targets, including - Native Linux support - Core file support (including core file generation) - Remote target support, including removal of the qXfer:spu:read and qXfer:spu:write remote protocal packets and associated support in gdbserver. gdb/ChangeLog 2019-09-20 Ulrich Weigand <uweigand@de.ibm.com> * NEWS: Mention that Cell/B.E. debugging support was removed. * MAINTAINERS: Remove spu target. * config/djgpp/fnchange.lst: Remove entries for removed files. * Makefile.in (ALL_TARGET_OBS): Remove solib-spu.o, spu-multiarch.o, and spu-tdep.o. (HFILES_NO_SRCDIR): Remove solib-spu.h and spu-tdep.h. (ALLDEPFILES): Remove solib-spu.c, spu-linux-nat.c, spu-multiarch.c, and spu-tdep.c. * spu-linux-nat.c: Remove file. * spu-multiarch.c: Remove file. * spu-tdep.c: Remove file. * spu-tdep.h: Remove file. * solib-spu.c: Remove file. * solib-spu.h: Remove file. * configure.host (powerpc64*-*-linux*): Remove Cell/B.E. support. * configure.nat (spu-linux): Remove. * configure.tgt (powerpc*-*-linux*): Remove solib-spu.o and solib-multiarch.o from gdb_target_obs. (spu*-*-*): Remove. * arch/ppc-linux-common.h (struct ppc_linux_features): Remove "cell" feature flag. (ppc_linux_no_features): Update. * arch/ppc-linux-common.c (ppc_linux_match_description): Remove Cell/B.E. support. * arch/ppc-linux-tdesc.h (tdesc_powerpc_cell32l): Remove declaration. (tdesc_powerpc_cell64l): Likewise. * nat/ppc-linux.h (PPC_FEATURE_CELL): Remove. * ppc-linux-nat.c (ppc_linux_nat_target::read_description): Remove Cell/B.E. support. * ppc-linux-tdep.h: Do not include "solib-spu.h" or "spu-tdep.h". Do not include "features/rs6000/powerpc-cell32l.c" or "features/rs6000/powerpc-cell64l.c". (ppc_linux_spu_section): Remove. (ppc_linux_core_read_description): Remove Cell/B.E. support. (spe_context_objfile, spe_context_lm_addr, spe_context_offset, spe_context_cache_ptid, spe_context_cache_ptid): Remove. (ppc_linux_spe_context_lookup): Remove. (ppc_linux_spe_context_inferior_created): Remove. (ppc_linux_spe_context_solib_loaded): Remove. (ppc_linux_spe_context_solib_unloaded): Remove. (ppc_linux_spe_context): Remove. (struct ppu2spu_cache): Remove. (ppu2spu_prev_arch, ppu2spu_this_id, ppu2spu_prev_register): Remove. (struct ppu2spu_data): Remove. (ppu2spu_unwind_register, ppu2spu_sniffer, ppu2spu_dealloc_cache, ppu2spu_unwind): Remove. (ppc_linux_init_abi): Remove Cell/B.E. support. * rs6000-tdep.h (rs6000_gdbarch_init): Remove Cell/B.E. support. * features/Makefile (rs6000/powerpc-cell32l-expedite): Remove. (rs6000/powerpc-cell64l-expedite): Likewise (WHICH): Remove rs6000/powerpc-cell32l and rs6000/powerpc-cell64l. (XMLTOC): Remove rs6000/powerpc-cell32l.xml and rs6000/powerpc-cell64l.xml. * features/rs6000/powerpc-cell32l.xml: Remove. * features/rs6000/powerpc-cell64l.xml: Likewise. * features/rs6000/powerpc-cell32l.c: Remove generated file. * features/rs6000/powerpc-cell64l.c: Likewise. * regformats/rs6000/powerpc-cell32l.dat: Remove generated file. * regformats/rs6000/powerpc-cell64l.dat: Likewise. * regformats/reg-spu.dat: Remove. * target.h (enum target_object): Remove TARGET_OBJECT_SPU. * corelow.c (struct spuid_list): Remove. (add_to_spuid_list): Remove. (core_target::xfer_partial): Remove support for TARGET_OBJECT_SPU. * remote.c (PACKET_qXfer_spu_read, PACKET_qXfer_spu_write): Remove. (remote_protocol_features): Remove associated entries. (_initialize_remote): No longer initialize them. (remote_target::xfer_partial): Remove support for TARGET_OBJECT_SPU. * linux-nat.c (SPUFS_MAGIC): Remove. (linux_proc_xfer_spu): Remove. (spu_enumerate_spu_ids): Remove. (linux_nat_target::xfer_partial): Remove support for TARGET_OBJECT_SPU. * linux-tdep.c (-linux_spu_make_corefile_notes): Remove. (linux_make_corefile_notes): No longer call it. * regcache.c (cooked_read_test): Remove bfd_arch_spu special case. (cooked_write_test): Likewise. gdb/doc/ChangeLog 2019-09-20 Ulrich Weigand <uweigand@de.ibm.com> * doc/gdb.texinfo (Remote Configuration): Remove documentation for qXfer:spu:read and qXfer:spu:write. (General Query Packets): Likewise. (Cell Broadband Engine SPU architecture): Remove subsection. gdb/gdbserver/ChangeLog 2019-09-20 Ulrich Weigand <uweigand@de.ibm.com> * configure.srv (ipa_ppc_linux_regobj): Remove powerpc-cell32l-ipa.o and powerpc-cell64l-ipa.o. (powerpc*-*-linux*): Remove powerpc-cell32l.o and powerpc-cell64l.o from srv_regobj. Remove rs6000/powerpc-cell32l.xml and rs6000/powerpc-cell64l.xml from srv_xmlfiles. (spu*-*-*): Remove. * spu-low.c: Remove file. * linux-ppc-low.c (INSTR_SC, NR_spu_run): Remove. (parse_spufs_run): Remove. (ppc_get_pc): Remove Cell/B.E. support. (ppc_set_pc): Likewise. (ppc_breakpoint_at): Likewise. (ppc_arch_setup): Likewise. (ppc_get_ipa_tdesc_idx): Do not handle tdesc_powerpc_cell64l or tdesc_powerpc_cell32l. (initialize_low_arch): Do not call init_registers_powerpc_cell64l or init_registers_powerpc_cell32l. * linux-ppc-ipa.c (get_ipa_tdesc): Do not handle PPC_TDESC_CELL. (initialize_low_tracepoint): Do not call init_registers_powerpc_cell64l or init_registers_powerpc_cell32l. * linux-ppc-tdesc-init.h (PPC_TDESC_CELL): Mark as unused. (init_registers_powerpc_cell32l): Remove prototype. (init_registers_powerpc_cell64l): Likewise. * target.h (struct target_ops): Remove qxfer_spu member. * server.c (handle_qxfer_spu): Remove. (qxfer_packets): Remove entry for "spu". (handle_query): No longer support qXfer:spu:read or qXfer:spu:write. * linux-low.c (SPUFS_MAGIC): Remove. (spu_enumerate_spu_ids): Remove. (linux_qxfer_spu): Remove. (linux_target_ops): Remove qxfer_spu member. * lynx-low.c (lynx_target_ops): Remove qxfer_spu member. * nto-low.c (nto_target_ops): Remove qxfer_spu member. * win32-low.c (win32_target_ops): Remove qxfer_spu member. gdb/testsuite/ChangeLog 2019-09-20 Ulrich Weigand <uweigand@de.ibm.com> * gdb.arch/spu-info.exp: Remove file. * gdb.arch/spu-info.c: Remove file. * gdb.arch/spu-ls.exp: Remove file. * gdb.arch/spu-ls.c: Remove file. * gdb.asm/asm-source.exp: Remove support for spu*-*-*. * gdb.asm/spu.inc: Remove file. * gdb.base/dump.exp: Remove support for spu*-*-*. * gdb.base/stack-checking.exp: Likewise. * gdb.base/overlays.exp: Likewise. * gdb.base/ovlymgr.c: Likewise. * gdb.base/spu.ld: Remove file. * gdb.cp/bs15503.exp: Remove support for spu*-*-*. * gdb.cp/cpexprs.exp: Likewise. * gdb.cp/exception.exp: Likewise. * gdb.cp/gdb2495.exp: Likewise. * gdb.cp/mb-templates.exp: Likewise. * gdb.cp/pr9167.exp: Likewise. * gdb.cp/userdef.exp: Likewise. * gdb.xml/tdesc-regs.exp: Remove support for spu*-*-*. * gdb.cell: Remove directory. * lib/cell.exp: Remove file. |
||
Alan Modra
|
fd3619828e |
bfd_section_* macros
This large patch removes the unnecessary bfd parameter from various bfd section macros and functions. The bfd is hardly ever used and if needed for the bfd_set_section_* or bfd_rename_section functions can be found via section->owner except for the com, und, abs, and ind std_section special sections. Those sections shouldn't be modified anyway. The patch also removes various bfd_get_section_<field> macros, replacing their use with bfd_section_<field>, and adds bfd_set_section_lma. I've also fixed a minor bug in gas where compressed section renaming was done directly rather than calling bfd_rename_section. This would have broken bfd_get_section_by_name and similar functions, but that hardly mattered at such a late stage in gas processing. bfd/ * bfd-in.h (bfd_get_section_name, bfd_get_section_vma), (bfd_get_section_lma, bfd_get_section_alignment), (bfd_get_section_size, bfd_get_section_flags), (bfd_get_section_userdata): Delete. (bfd_section_name, bfd_section_size, bfd_section_vma), (bfd_section_lma, bfd_section_alignment): Lose bfd parameter. (bfd_section_flags, bfd_section_userdata): New. (bfd_is_com_section): Rename parameter. * section.c (bfd_set_section_userdata, bfd_set_section_vma), (bfd_set_section_alignment, bfd_set_section_flags, bfd_rename_section), (bfd_set_section_size): Delete bfd parameter, rename section parameter. (bfd_set_section_lma): New. * bfd-in2.h: Regenerate. * mach-o.c (bfd_mach_o_init_section_from_mach_o): Delete bfd param, update callers. * aoutx.h, * bfd.c, * coff-alpha.c, * coff-arm.c, * coff-mips.c, * coff64-rs6000.c, * coffcode.h, * coffgen.c, * cofflink.c, * compress.c, * ecoff.c, * elf-eh-frame.c, * elf-hppa.h, * elf-ifunc.c, * elf-m10200.c, * elf-m10300.c, * elf-properties.c, * elf-s390-common.c, * elf-vxworks.c, * elf.c, * elf32-arc.c, * elf32-arm.c, * elf32-avr.c, * elf32-bfin.c, * elf32-cr16.c, * elf32-cr16c.c, * elf32-cris.c, * elf32-crx.c, * elf32-csky.c, * elf32-d10v.c, * elf32-epiphany.c, * elf32-fr30.c, * elf32-frv.c, * elf32-ft32.c, * elf32-h8300.c, * elf32-hppa.c, * elf32-i386.c, * elf32-ip2k.c, * elf32-iq2000.c, * elf32-lm32.c, * elf32-m32c.c, * elf32-m32r.c, * elf32-m68hc1x.c, * elf32-m68k.c, * elf32-mcore.c, * elf32-mep.c, * elf32-metag.c, * elf32-microblaze.c, * elf32-moxie.c, * elf32-msp430.c, * elf32-mt.c, * elf32-nds32.c, * elf32-nios2.c, * elf32-or1k.c, * elf32-ppc.c, * elf32-pru.c, * elf32-rl78.c, * elf32-rx.c, * elf32-s390.c, * elf32-score.c, * elf32-score7.c, * elf32-sh.c, * elf32-spu.c, * elf32-tic6x.c, * elf32-tilepro.c, * elf32-v850.c, * elf32-vax.c, * elf32-visium.c, * elf32-xstormy16.c, * elf32-xtensa.c, * elf64-alpha.c, * elf64-bpf.c, * elf64-hppa.c, * elf64-ia64-vms.c, * elf64-mmix.c, * elf64-ppc.c, * elf64-s390.c, * elf64-sparc.c, * elf64-x86-64.c, * elflink.c, * elfnn-aarch64.c, * elfnn-ia64.c, * elfnn-riscv.c, * elfxx-aarch64.c, * elfxx-mips.c, * elfxx-sparc.c, * elfxx-tilegx.c, * elfxx-x86.c, * i386msdos.c, * linker.c, * mach-o.c, * mmo.c, * opncls.c, * pdp11.c, * pei-x86_64.c, * peicode.h, * reloc.c, * section.c, * syms.c, * vms-alpha.c, * xcofflink.c: Update throughout for bfd section macro and function changes. binutils/ * addr2line.c, * bucomm.c, * coffgrok.c, * dlltool.c, * nm.c, * objcopy.c, * objdump.c, * od-elf32_avr.c, * od-macho.c, * od-xcoff.c, * prdbg.c, * rdcoff.c, * rddbg.c, * rescoff.c, * resres.c, * size.c, * srconv.c, * strings.c, * windmc.c: Update throughout for bfd section macro and function changes. gas/ * as.c, * as.h, * dw2gencfi.c, * dwarf2dbg.c, * ecoff.c, * read.c, * stabs.c, * subsegs.c, * subsegs.h, * write.c, * config/obj-coff-seh.c, * config/obj-coff.c, * config/obj-ecoff.c, * config/obj-elf.c, * config/obj-macho.c, * config/obj-som.c, * config/tc-aarch64.c, * config/tc-alpha.c, * config/tc-arc.c, * config/tc-arm.c, * config/tc-avr.c, * config/tc-bfin.c, * config/tc-bpf.c, * config/tc-d10v.c, * config/tc-d30v.c, * config/tc-epiphany.c, * config/tc-fr30.c, * config/tc-frv.c, * config/tc-h8300.c, * config/tc-hppa.c, * config/tc-i386.c, * config/tc-ia64.c, * config/tc-ip2k.c, * config/tc-iq2000.c, * config/tc-lm32.c, * config/tc-m32c.c, * config/tc-m32r.c, * config/tc-m68hc11.c, * config/tc-mep.c, * config/tc-microblaze.c, * config/tc-mips.c, * config/tc-mmix.c, * config/tc-mn10200.c, * config/tc-mn10300.c, * config/tc-msp430.c, * config/tc-mt.c, * config/tc-nds32.c, * config/tc-or1k.c, * config/tc-ppc.c, * config/tc-pru.c, * config/tc-rl78.c, * config/tc-rx.c, * config/tc-s12z.c, * config/tc-s390.c, * config/tc-score.c, * config/tc-score7.c, * config/tc-sh.c, * config/tc-sparc.c, * config/tc-spu.c, * config/tc-tic4x.c, * config/tc-tic54x.c, * config/tc-tic6x.c, * config/tc-tilegx.c, * config/tc-tilepro.c, * config/tc-v850.c, * config/tc-visium.c, * config/tc-wasm32.c, * config/tc-xc16x.c, * config/tc-xgate.c, * config/tc-xstormy16.c, * config/tc-xtensa.c, * config/tc-z8k.c: Update throughout for bfd section macro and function changes. * write.c (compress_debug): Use bfd_rename_section. gdb/ * aarch64-linux-tdep.c, * arm-tdep.c, * auto-load.c, * coff-pe-read.c, * coffread.c, * corelow.c, * dbxread.c, * dicos-tdep.c, * dwarf2-frame.c, * dwarf2read.c, * elfread.c, * exec.c, * fbsd-tdep.c, * gcore.c, * gdb_bfd.c, * gdb_bfd.h, * hppa-tdep.c, * i386-cygwin-tdep.c, * i386-fbsd-tdep.c, * i386-linux-tdep.c, * jit.c, * linux-tdep.c, * machoread.c, * maint.c, * mdebugread.c, * minidebug.c, * mips-linux-tdep.c, * mips-sde-tdep.c, * mips-tdep.c, * mipsread.c, * nto-tdep.c, * objfiles.c, * objfiles.h, * osabi.c, * ppc-linux-tdep.c, * ppc64-tdep.c, * record-btrace.c, * record-full.c, * remote.c, * rs6000-aix-tdep.c, * rs6000-tdep.c, * s390-linux-tdep.c, * s390-tdep.c, * solib-aix.c, * solib-dsbt.c, * solib-frv.c, * solib-spu.c, * solib-svr4.c, * solib-target.c, * spu-linux-nat.c, * spu-tdep.c, * symfile-mem.c, * symfile.c, * symmisc.c, * symtab.c, * target.c, * windows-nat.c, * xcoffread.c, * cli/cli-dump.c, * compile/compile-object-load.c, * mi/mi-interp.c: Update throughout for bfd section macro and function changes. * gcore (gcore_create_callback): Use bfd_set_section_lma. * spu-tdep.c (spu_overlay_new_objfile): Likewise. gprof/ * corefile.c, * symtab.c: Update throughout for bfd section macro and function changes. ld/ * ldcref.c, * ldctor.c, * ldelf.c, * ldlang.c, * pe-dll.c, * emultempl/aarch64elf.em, * emultempl/aix.em, * emultempl/armcoff.em, * emultempl/armelf.em, * emultempl/cr16elf.em, * emultempl/cskyelf.em, * emultempl/m68hc1xelf.em, * emultempl/m68kelf.em, * emultempl/mipself.em, * emultempl/mmix-elfnmmo.em, * emultempl/mmo.em, * emultempl/msp430.em, * emultempl/nios2elf.em, * emultempl/pe.em, * emultempl/pep.em, * emultempl/ppc64elf.em, * emultempl/xtensaelf.em: Update throughout for bfd section macro and function changes. libctf/ * ctf-open-bfd.c: Update throughout for bfd section macro changes. opcodes/ * arc-ext.c: Update throughout for bfd section macro changes. sim/ * common/sim-load.c, * common/sim-utils.c, * cris/sim-if.c, * erc32/func.c, * lm32/sim-if.c, * m32c/load.c, * m32c/trace.c, * m68hc11/interp.c, * ppc/hw_htab.c, * ppc/hw_init.c, * rl78/load.c, * rl78/trace.c, * rx/gdb-if.c, * rx/load.c, * rx/trace.c: Update throughout for bfd section macro changes. |
||
Philippe Waroquiers
|
590042fc45 |
Make first and last lines of 'command help documentation' consistent.
With this patch, the help docs now respect 2 invariants: * The first line of a command help is terminated by a '.' character. * The last character of a command help is not a newline character. Note that the changes for the last invariant were done by Tom, as part of : [PATCH] Remove trailing newlines from help text https://sourceware.org/ml/gdb-patches/2019-06/msg00050.html but some occurrences have been re-introduced since then. Some help docs had to be rephrased/restructured to respect the above invariants. Before this patch, print_doc_line was printing the first line of a command help documentation, but stopping at the first '.' or ',' character. This was giving inconsistent results : * The first line of command helps was sometimes '.' terminated, sometimes not. * The first line of command helps was not always designed to be readable/understandable/unambiguous when stopping at the first '.' or ',' character. This e.g. created the following inconsistencies/problems: < catch exception -- Catch Ada exceptions < catch handlers -- Catch Ada exceptions < catch syscall -- Catch system calls by their names < down-silently -- Same as the `down' command while the new help is: > catch exception -- Catch Ada exceptions, when raised. > catch handlers -- Catch Ada exceptions, when handled. > catch syscall -- Catch system calls by their names, groups and/or numbers. > down-silently -- Same as the `down' command, but does not print anything. Also, the command help doc should not be terminated by a newline character, but this was not respected by all commands. The cli-option -OPT framework re-introduced some occurences. So, the -OPT build help framework was changed to not output newlines at the end of %OPTIONS% replacement. This patch changes the help documentations to ensure the 2 invariants given above. It implied to slightly rephrase or restructure some help docs. Based on the above invariants, print_doc_line (called by 'apropos' and 'help' commands to print the first line of a command help) now outputs the full first line of a command help. This all results in a lot of small changes in the produced help docs. There are less code changes than changes in the help docs, as a lot of docs are produced by some code (e.g. the remote packet usage settings). gdb/ChangeLog 2019-08-07 Philippe Waroquiers <philippe.waroquiers@skynet.be> * cli/cli-decode.h (print_doc_line): Add for_value_prefix argument. * cli/cli-decode.c (print_doc_line): Likewise. It now prints the full first line, except when FOR_VALUE_PREFIX. In this case, the trailing '.' is not output, and the first character is uppercased. (print_help_for_command): Update call to print_doc_line. (print_doc_of_command): Likewise. * cli/cli-setshow.c (deprecated_show_value_hack): Likewise. * cli/cli-option.c (append_indented_doc): Do not append newline. (build_help_option): Append newline after first appended_indented_doc only if a second call is done. (build_help): Append 2 new lines before each option, except the first one. * compile/compile.c (_initialize_compile): Add new lines after %OPTIONS%, when not at the end of the help. Change help doc or code producing the help doc to respect the invariants. * maint-test-options.c (_initialize_maint_test_options): Likewise. Also removed the new line after 'Options:', as all other commands do not put an empty line between 'Options:' and the first option. * printcmd.c (_initialize_printcmd): Likewise. * stack.c (_initialize_stack): Likewise. * interps.c (interpreter_exec_cmd): Fix "Usage:" line that was incorrectly telling COMMAND is optional. * ada-lang.c (_initialize_ada_language): Change help doc or code producing the help doc to respect the invariants. * ada-tasks.c (_initialize_ada_tasks): Likewise. * breakpoint.c (_initialize_breakpoint): Likewise. * cli/cli-cmds.c (_initialize_cli_cmds): Likewise. * cli/cli-logging.c (_initialize_cli_logging): Likewise. * cli/cli-setshow.c (_initialize_cli_setshow): Likewise. * cli/cli-style.c (cli_style_option::add_setshow_commands, _initialize_cli_style): Likewise. * corelow.c (core_target_info): Likewise. * dwarf-index-cache.c (_initialize_index_cache): Likewise. * dwarf2read.c (_initialize_dwarf2_read): Likewise. * filesystem.c (_initialize_filesystem): Likewise. * frame.c (_initialize_frame): Likewise. * gnu-nat.c (add_task_commands): Likewise. * infcall.c (_initialize_infcall): Likewise. * infcmd.c (_initialize_infcmd): Likewise. * interps.c (_initialize_interpreter): Likewise. * language.c (_initialize_language): Likewise. * linux-fork.c (_initialize_linux_fork): Likewise. * maint-test-settings.c (_initialize_maint_test_settings): Likewise. * maint.c (_initialize_maint_cmds): Likewise. * memattr.c (_initialize_mem): Likewise. * printcmd.c (_initialize_printcmd): Likewise. * python/lib/gdb/function/strfns.py (_MemEq, _StrLen, _StrEq, _RegEx): Likewise. * ravenscar-thread.c (_initialize_ravenscar): Likewise. * record-btrace.c (_initialize_record_btrace): Likewise. * record-full.c (_initialize_record_full): Likewise. * record.c (_initialize_record): Likewise. * regcache-dump.c (_initialize_regcache_dump): Likewise. * regcache.c (_initialize_regcache): Likewise. * remote.c (add_packet_config_cmd, init_remote_threadtests, _initialize_remote): Likewise. * ser-tcp.c (_initialize_ser_tcp): Likewise. * serial.c (_initialize_serial): Likewise. * skip.c (_initialize_step_skip): Likewise. * source.c (_initialize_source): Likewise. * stack.c (_initialize_stack): Likewise. * symfile.c (_initialize_symfile): Likewise. * symtab.c (_initialize_symtab): Likewise. * target-descriptions.c (_initialize_target_descriptions): Likewise. * top.c (init_main): Likewise. * tracefile-tfile.c (tfile_target_info): Likewise. * tracepoint.c (_initialize_tracepoint): Likewise. * tui/tui-win.c (_initialize_tui_win): Likewise. * utils.c (add_internal_problem_command): Likewise. * valprint.c (value_print_option_defs): Likewise. gdb/testsuite/ChangeLog 2019-08-07 Philippe Waroquiers <philippe.waroquiers@skynet.be> * gdb.base/style.exp: Update tests for help doc new invariants. * gdb.base/help.exp: Likewise. |