Sparc V8 does not allow fpop2 instructions (floating point
comparisons) immediately before floating point branches. From the
SPARC Architecture Manual Version 8, section B.22 "Branch on
Floating-point Condition Codes Instructions":
"If the instruction executed immediately before an FBfcc is an FPop2
instruction, the result of the FBfcc is undefined. Therefore, at
least one non FPop2 instruction should be executed between the FPop2
instruction and the FBfcc instruction."
The existing check in GAS, however, does not allow any kind of
floating point instruction before the branch. This patch adds an
extra condition to only disallow fpop2 instructions.
gas/ChangeLog:
2018-09-04 Daniel Cederman <cederman@gaisler.com>
* config/tc-sparc.c (md_assemble): Allow non-fpop2 instructions
before floating point branches for Sparc V8 and earlier.
* testsuite/gas/sparc/sparc.exp: Execute the new test.
* testsuite/gas/sparc/v8branch.d: New test.
* testsuite/gas/sparc/v8branch.s: New test.
The .dc.a directive has wrong size (32 bits) on SPARC 64-bit because
the assembler sets the correct BFD architecture only at the very end
of the processing and it's too late for the directive. It's fixed by
defining TARGET_MACH and making it return a sensible default value.
gas/
* config/tc-sparc.h (sparc_mach): Declare.
(TARGET_MACH): Define to above.
* config/tc-sparc.c (sparc_mach): New function.
(sparc_md_end): Minor tweak.
ld/
* testsuite/ld-elf/pr22450.d: Remove reference to SPARC64.
gas/
* config/tc-sparc.c (tc_gen_reloc): Convert BFD_RELOC_8/16/32/64
into the corresponding BFD_RELOC_8/16/32/64_PCREL relocation
when requested.
* config/tc-sparc.h (DIFF_EXPR_OK): Define to enable PC-relative
diff relocations.
(TC_FORCE_RELOCATION_SUB_LOCAL): Define to ensure only supported
relocations are made PC-relative.
(CFI_DIFF_EXPR_OK): Define to 0 to force BFD_RELOC_32_PCREL to
be used directly, since otherwise BFD_RELOC_SPARC_UA32 will be
used for .eh_frame which cannot in general be converted to a
BFD_RELOC_32_PCREL due to alignment requirements.
This patch avoids CALL instructions to be optimized into branches if
the symbols referred to in the CALL instruction are not fully resolved
at the time the assembler writes its output.
Tested in sparc64-linux-gnu and sparc-sun-sunos4.1.3 targets.
No regressions.
gas/ChangeLog:
2017-04-25 Jose E. Marchesi <jose.marchesi@oracle.com>
PR gas/21407
* config/tc-sparc.c (md_apply_fix): Do not transform `call'
instructions into branch instructions in fixups generating
additional relocations.
* testsuite/gas/sparc/call-relax.s: New file.
* testsuite/gas/sparc/call-relax.d: Likewise.
* testsuite/gas/sparc/call-relax-aout.d: Likewise.
* testsuite/gas/sparc/sparc.exp: Test call-relax and call-relax-aout.
With this change an architecture level bump due to assembly ASIs will show
up as a warning/error depending on options passed to gas.
Tested with sparc64-linux-gnu, and it does not introduce any regressions.
gas/ChangeLog:
Add support for associating SPARC ASIs with an architecture level.
* config/tc-sparc.c (parse_sparc_asi): New encode SPARC ASIs.
opcodes/ChangeLog:
Add support for associating SPARC ASIs with an architecture level.
* include/opcode/sparc.h (sparc_asi): New sparc_asi struct.
* opcodes/sparc-opc.c (asi_table): Updated asi_table and encoding/
decoding of SPARC ASIs.
This patch fixes two problems in the SPARC assembler:
- The diagnostic message
Error: Illegal operands: Immediate value in cbcond is out of range.
is incorrectly issued for non-CBCOND instructions that feature a
simm5 immediate field, such as MPMUL, MONTMUL, etc.
- When an invalid immediate operand is used in a CBCOND
instruction, two redundant error messages are issued to the
user, the second due to a stale fixup (this happens since
commit 85024cd8bc).
Some diagnostic tests for the CBCOND instructions are also
included in the patch.
Tested in both sparc64-linux-gnu and sparcv9-linux-gnu targets.
gas/ChangeLog:
2016-11-25 Jose E. Marchesi <jose.marchesi@oracle.com>
* config/tc-sparc.c (sparc_ip): Avoid emitting a cbcond error
messages for non-cbcond instructions.
* testsuite/gas/sparc/cbcond-diag.s: New file.
* testsuite/gas/sparc/cbcond-diag.l: Likewise.
* testsuite/gas/sparc/sparc.exp (gas_64_check): Run cbcond-diag tests.
When the assembler finds an instruction which is part of a higher
opcode architecture it bumps the current opcode architecture. For
example:
$ echo "mwait" | as -bump
{standard input}: Assembler messages:
{standard input}:1: Warning: architecture bumped from "v6" to "v9m" on "mwait"
However, when two instructions pertaining to the same opcode
architecture but associated to different SPARC hardware capabilities
are found in the input stream, and no GAS architecture is specified in
the command line, the assembler bangs:
$ echo "mwait; wr %g0,%g1,%mcdper" | as -bump
{standard input}: Assembler messages:
{standard input}:1: Warning: architecture bumped from "v6" to "v9m" on "mwait"
{standard input}:1: Error: Hardware capability "sparc5" not enabled for "wr".
... and it should'nt, as WRMCDPER pertains to the same architecture
level than MWAIT.
This patch fixes this by extending the definition of sparc opcode
architectures to contain a set of hardware capabilities and making the
assembler to take these capabilities into account when updating the
set of allowed hwcaps when an architecture bump is triggered by some
instruction.
This way, hwcaps associated to architecture levels are maintained in
opcodes, while the assembler keeps the flexibiity of defining GAS
architectures including additional hwcaps (like -Asparcfmaf or the
v8plus* variants).
A test covering this failure case is included.
gas/ChangeLog:
2016-11-22 Jose E. Marchesi <jose.marchesi@oracle.com>
* config/tc-sparc.c: Move HWS_* and HWS2_* definitions to
opcodes/sparc-opc.c.
(sparc_arch): Clarify the new role of the hwcap_allowed and
hwcap2_allowed fields.
(sparc_arch_table): Remove HWS_* and HWS2_* instances from
hwcap_allowed and hwcap2_allowed respectively.
(md_parse_option): Include the opcode arch hwcaps when processing
-A.
(sparc_ip): Use the current opcode arch hwcaps to update
hwcap_allowed, as well of the hwcaps of the instruction triggering
the bump.
* testsuite/gas/sparc/hwcaps-bump.s: New file.
* testsuite/gas/sparc/hwcaps-bump.l: Likewise.
* testsuite/gas/sparc/sparc.exp (gas_64_check): Run tests in
hwcaps-bump.
include/ChangeLog:
2016-11-22 Jose E. Marchesi <jose.marchesi@oracle.com>
* opcode/sparc.h (sparc_opcode_arch): New fields hwcaps and
hwcaps2.
opcodes/ChangeLog:
2016-11-22 Jose E. Marchesi <jose.marchesi@oracle.com>
* sparc-opc.c (HWS_V8): Definition moved from
gas/config/tc-sparc.c.
(HWS_V9): Likewise.
(HWS_VA): Likewise.
(HWS_VB): Likewise.
(HWS_VC): Likewise.
(HWS_VD): Likewise.
(HWS_VE): Likewise.
(HWS_VV): Likewise.
(HWS_VM): Likewise.
(HWS2_VM): Likewise.
(sparc_opcode_archs): Initialize hwcaps and hwcaps2 fields of
existing entries.
Merely dumping the mnemonic name in "architecture mismatch" errors may
not provide enough information to determine what went wrong, as the same
mnemonic can be used for different variants of an instruction pertaining
to different architecture levels.
This little patch makes the assembler to include the instruction
arguments in the error message.
gas/ChangeLog:
2016-09-14 Jose E. Marchesi <jose.marchesi@oracle.com>
* config/tc-sparc.c (sparc_ip): Print the instruction arguments
in "architecture mismatch" error messages.
Before SPARC V9 the effect of having a delayed branch instruction in the
delay slot of a conditional delayed branch was undefined.
In SPARC V9 DCTI couples are well defined.
However, starting with the UltraSPARC Architecture 2005, DCTI
couples (of all kind) are deprecated and should not be used, as they may
be slow or behave differently to what the programmer expects.
This patch adds a new command line option --dcti-couples-detect to `as',
disabled by default, that makes the assembler to warn the user if an
unpredictable DCTI couple is found. Tests and documentation are
included.
gas/ChangeLog:
2016-09-14 Jose E. Marchesi <jose.marchesi@oracle.com>
* config/tc-sparc.c (md_assemble): Detect and warning on
unpredictable DCTI couples in certain arches.
(dcti_couples_detect): New global.
(md_longopts): Add command line option -dcti-couples-detect.
(md_show_usage): Document -dcti-couples-detect.
(md_parse_option): Handle OPTION_DCTI_COUPLES_DETECT.
* testsuite/gas/sparc/sparc.exp (gas_64_check): Run
dcti-couples-v8, dcti-couples-v9 and dcti-couples-v9c tests.
* testsuite/gas/sparc/dcti-couples.s: New file.
* testsuite/gas/sparc/dcti-couples-v9c.d: Likewise.
* testsuite/gas/sparc/dcti-couples-v8.d: Likewise.
* testsuite/gas/sparc/dcti-couples-v9.d: Likewise.
* testsuite/gas/sparc/dcti-couples-v9c.l: Likewise.
* testsuite/gas/sparc/dcti-couples-v8.l: Likewise.
* doc/as.texinfo (Overview): Document --dcti-couples-detect.
* doc/c-sparc.texi (Sparc-Opts): Likewise.
gas/ChangeLog:
2016-07-19 Trevor Saunders <tbsaunde+binutils@tbsaunde.org>
* config/tc-sparc.c (struct pop_entry): Make the type of reloc
bfd_reloc_code_real_type.
This patch fixes and expands the definition of the read/write
instructions for ancillary-state, privileged and hyperprivileged
registers in opcodes.
It also adds support for three new v9m hyperprivileged registers:
%hmcdper, %hmcddfr and %hva_mask_nz.
Finally, the patch expands existing tests (and adds several new ones) in
order to cover all the read/write instructions in all its variants.
opcodes/ChangeLog:
2016-06-17 Jose E. Marchesi <jose.marchesi@oracle.com>
* sparc-opc.c (rdasr): New macro.
(wrasr): Likewise.
(rdpr): Likewise.
(wrpr): Likewise.
(rdhpr): Likewise.
(wrhpr): Likewise.
(sparc_opcodes): Use the macros above to fix and expand the
definition of read/write instructions from/to
asr/privileged/hyperprivileged instructions.
* sparc-dis.c (v9_hpriv_reg_names): Add %hmcdper, %hmcddfr and
%hva_mask_nz. Prefer softint_set and softint_clear over
set_softint and clear_softint.
(print_insn_sparc): Support %ver in Rd.
gas/ChangeLog:
2016-06-17 Jose E. Marchesi <jose.marchesi@oracle.com>
* config/tc-sparc.c (hpriv_reg_table): Add registers %hmcdper,
%hmcddfr and %hva_mask_nz.
(sparc_ip): New handling of asr/privileged/hyperprivileged
registers, adapted to the new form of the sparc opcodes table.
* testsuite/gas/sparc/rdasr.s: New file.
* testsuite/gas/sparc/rdasr.d: Likewise.
* testsuite/gas/sparc/wrasr.s: Likewise.
* testsuite/gas/sparc/wrasr.d: Likewise.
* testsuite/gas/sparc/sparc.exp (sparc_elf_setup): Add rdasr and
wrasr tests.
* testsuite/gas/sparc/rdpr.d: Use -Av9m, as some privileged
registers require it.
* testsuite/gas/sparc/wrpr.s: Complete to cover all privileged
registers and write instruction modalities.
* testsuite/gas/sparc/wrpr.d: Likewise.
* testsuite/gas/sparc/rdhpr.s: Likewise for hyperprivileged
registers.
* testsuite/gas/sparc/rdhpr.d: Likewise.
* testsuite/gas/sparc/wrhpr.s: Likewise.
* testsuite/gas/sparc/wrhpr.d: Likewise.
This patch marks the SPARC instructions in the opcodes table with their
proper opcode architectures, and makes the assembler aware of them.
This allows the assembler to properly realize when a new instruction
needs a higher architecture (after v9b) and to react accordingly
emitting an error message or bumping the architecture.
It also expands architecture mismatch tests to cover architectures
higher than v9b, and fixes a couple of minor bugs in the GAS testsuite.
opcodes/ChangeLog:
2016-06-17 Jose E. Marchesi <jose.marchesi@oracle.com>
* sparc-opc.c (sparc_opcodes): Adjust instructions opcode
architecture according to the hardware capabilities they require.
(sparc_priv_regs): New table.
(sparc_hpriv_regs): Likewise.
(sparc_asr_regs): Likewise.
(v9anotv9m): Define.
gas/ChangeLog:
2016-06-17 Jose E. Marchesi <jose.marchesi@oracle.com>
* config/tc-sparc.c (sparc_arch_table): adjust the GAS
architectures to use the right opcode architecture.
(sparc_md_end): Handle v9{c,d,e,v,m}.
(sparc_ip): Fix some comments.
* testsuite/gas/sparc/ldx_efsr.d: Fix the architecture of this
instruction, which is v9d.
* testsuite/gas/sparc/mwait.s: Remove the `rd %mwait,%g1'
instruction from the test, as %mwait is not readable.
* testsuite/gas/sparc/mwait.d: Likewise.
* testsuite/gas/sparc/mism-1.s: Expand to check v9b and v9e
mismatch architecture errors.
* testsuite/gas/sparc/mism-2.s: New file.
The current sparc assembler breaks when the name of an ancillary-state
register, privileged register or hyperprivileged register has a
%-pseudo-operation name as a prefix. For example, %hmcdper and %hm(),
or %hintp and %hi().
This patch fixes it by introducing a new table `perc_table' (for
%-table) that contains an entry for every %name supported by the
assembler, other than the general registers. This table is used to
detect name collisions when the assembler tries to detect a %-pseudo-op.
This patch also fixes a related bug, making sure that v9a_asr_table and
hpriv_reg_table are sorted in reverse lexicographic order, as otherwise
the search code may fail.
gas/ChangeLog:
2016-06-17 Jose E. Marchesi <jose.marchesi@oracle.com>
* config/tc-sparc.c (priv_reg_table): Use NULL instead of the
empty string to mark the end of the array.
(hpriv_reg_table): Likewise.
(v9a_asr_table): Likewise.
(cmp_reg_entry): Handle entries with NULL names.
(F_POP_V9): Define.
(F_POP_PCREL): Likewise.
(F_POP_TLS_CALL): Likewise.
(F_POP_POSTFIX): Likewise.
(struct pop_entry): New type.
(pop_table): New variable.
(enum pop_entry_type): New type.
(struct perc_entry): Likewise.
(NUM_PERC_ENTRIES): Define.
(perc_table): New variable.
(cmp_perc_entry): New function.
(md_begin): Sort hpriv_reg_table and v9a_asr_table, and initialize
perc_table.
(sparc_ip): Handle entries with NULL names in priv_reg_table,
hpriv_reg_table and v9a_asr_table. Use perc_table to handle
%-pseudo-ops.
They are only used in one file, so we might as well restrict there scope to
that file, and theoretically this might slightly improve compilers ability to
optimize usage of these variables.
gas/ChangeLog:
2016-04-14 Trevor Saunders <tbsaunde+binutils@tbsaunde.org>
* config/tc-nios2.c (nios2_as_options): Make file static.
* config/tc-ppc.c (toc_reloc_ypes): Likewise.
* config/tc-sparc.c (native_op_table): Likewise.
PR gas/19910
* config/tc-sparc.c (sparc_ip): Report an error if the expression
inside a %-macro could not be fully parsed.
* expr.c (integer_constant): Accept and ignore U suffixes to
integers.
(operand): When a missing closing parenthesis is encountered,
report the character that was found instead.
* testsuite/gas/mips/tls-ill.l: Update expected error message.
* testsuite/gas/sparc/pr19910-1.d: New test driver.
* testsuite/gas/sparc/pr19910-1.s: New test.
* testsuite/gas/sparc/pr19910-2.l: Expected error output.
* testsuite/gas/sparc/pr19910-2.s: New test.
* testsuite/gas/sparc/sparc.exp: Run the new tests.
get_symbol_name () returns a char * in a out arg, which means we need to cast
to assign a literal to the variable passed to get_symbol_name (). It seems
like better APIs than get_symbol_name () could be provided, but that seems like
a fair amount of work so just casting seems to be the betterthing to do for
now.
gas/ChangeLog:
2016-03-31 Trevor Saunders <tbsaunde+binutils@tbsaunde.org>
* config/tc-ia64.c (md_assemble): Add temporary variable to pass to
get_symbol_name ().
* config/tc-sparc.c (s_register): Cast a literal to char * in
assignment.
In the SPARC V9 (and later) versions of the SPARC specification, the
section C.1.1 "Register Names" specifies that:
"asr_reg. An asr_reg is an Ancillary State Register name. It may have
one of the following values:
%asr16-%asr31"
The rationale of having this restriction was that the registers from 16
to 31 are reserved to implementations, and are therefore "non-V9". It
also assumes that the existing ASR registers in the range 0..31 will
have their own names such as %y, that can be used to access such
registers.
However, this is problematic. When a new ASR register is introduced,
such as %mcdper a.k.a. %asr14, it is useful to be able to use %asr14 in
order to not depend on the latest version of the assembler.
The Solaris assembler is lax and allows to assembly instructions
referring to %asr0 to %asr31. This patch makes the GNU assembler to
mimic that behavior.
gas/ChangeLog:
2016-03-24 Jose E. Marchesi <jose.marchesi@oracle.com>
* config/tc-sparc.c (sparc_ip): Remove the V9 restriction on ASR
registers to be in the 16..31 range.
This lets us avoid assigning a literal to a char *, and perhaps more
importantly makes it clearer what is going on here.
gas/ChangeLog:
2016-03-22 Trevor Saunders <tbsaunde+binutils@tbsaunde.org>
* config/tc-sparc.c (sparc_regname_to_dw2regnum): Replace strchr ()
call with a switch.
The SPARC Refence Manual documents the %dN and %qN syntax to
refer to double and quad-precision floating-point registers,
respectively. See OSA2015 Appendix C, Assembly Language Syntax,
C1.1 Register Names.
This patch adds support for these names to GAS. This eases the
porting of software from Solaris to GNU/Linux, as these register
names have been supported by the Solaris linker for a long time
and many assembler require that support.
gas/ChangeLog:
2015-12-09 Jose E. Marchesi <jose.marchesi@oracle.com>
* config/tc-sparc.c (sparc_ip): Support %dN and %qN notation for
double and quad-precision floating-point registers.
opcodes/ChangeLog:
2015-08-25 Jose E. Marchesi <jose.marchesi@oracle.com>
* sparc-dis.c (print_insn_sparc): Handle the privileged register
%pmcdper.
gas/ChangeLog:
2015-08-25 Jose E. Marchesi <jose.marchesi@oracle.com>
* config/tc-sparc.c (priv_reg_table): New privileged register
%pmcdper.
gas/testsuite/ChangeLog:
2015-08-25 Jose E. Marchesi <jose.marchesi@oracle.com>
* gas/sparc/wrpr.s: Test writing to the privileged %pmcdper
register.
* gas/sparc/wrpr.d: ...and the expected result.
* gas/sparc/rdpr.s: Test reading from the privileged %pmcdper
register.
* gas/sparc/rdpr.d: ...and the expected result.
gas/ChangeLog:
2015-05-06 Jose E. Marchesi <jose.marchesi@oracle.com>
* config/tc-sparc.c (sparc_ip): Support the %ncc "natural"
condition codes
* doc/c-sparc.texi (Sparc-Regs): Document %ncc.
gas/testsuite/ChangeLog:
2015-05-06 Jose E. Marchesi <jose.marchesi@oracle.com>
* gas/sparc/natural.s: New file.
* gas/sparc/natural-32.s: Likewise.
* gas/sparc/natural.d: Likewise.
* gas/sparc/natural-32.d: Likewise.
* gas/sparc/sparc.exp (sparc_elf_setup): Run the tests natural and
natural-32.
This patch fixes two related problems:
- By default gas is supposed to bump the current architecture
(starting with v6) as it finds "higher" instructions as the
assembling progresses. There are four possible cases depending on
the usage of the -A and -bump options:
(a) No -A and -bump are specified. In this case max_architecture
must be the highest architecture not conflicting with the
default architecture. The default opcode architecture is
indirectly set in configure.tgt and is "v9" in sparc64 systems
(from "v9-64"). Thus the maximum architecture in sparc64
systems must be "v9b". No warnings are echoed when the assembly
of an instruction bumps the current architecture.
(b) Only -bump is specified. This is like (a) but warnings are
always issued when the assembly of an instruction bumps the
current architecture.
(c) Only -A is specified. In this case bumping to a new
architecture is an error.
(d) Both -A and -bump are specified. In this case max_architecture
must be the highest architecture not conflicting with the
default architecture, but warnings are only to be issued when
bumping to an architecture higher than the architecture selected
in the -A option.
`max_architecture' is a global variable defined in tc-sparc.c which
is initialized to the opcode architecture corresponding to the
default architecture ("sparclite" for sparc-* targets and "v9" for
sparc64-* targets). Then in `md_begin' it is set to the highest
non-conflicting architecture, but only when both -A and -bump are
specified.
Thus (a) does not work:
$ echo "fzero %f0" | as
{standard input}: Assembler messages:
{standard input}:1: Error: Architecture mismatch on "fzero".
{standard input}:1: (Requires v9a|v9b; requested architecture is v9.)
Neither (b):
$ echo "fzero %f0" | as -bump
{standard input}: Assembler messages:
{standard input}:1: Error: Architecture mismatch on "fzero".
{standard input}:1: (Requires v9a|v9b; requested architecture is v9.)
Only (d) does:
$ echo "fzero %f0" | as -Av9 -bump
{standard input}: Assembler messages:
{standard input}:1: Warning: architecture bumped from "v6" to "v9a" on "fzero"
This patch fixes that function to "upgrade" `max_architecture' also
in the (a) and (b) cases.
Note that this problem becomes apparent only in sparc64-* targets
because in sparc-* targets the default architecture is the "higher"
among the 32bit architectures ("sparclite").
- Gas maintains a set of hardware capabilities associated with each
gas architecture, in `sparc_arch_table'. On the other hand
libopcodes maintains a set of hardware capabilities needed by each
individual sparc instruction.
When an instruction is assembled in `sparc_ip' gas checks for the
presence of the hardware capabilities required by the instruction,
emitting an error if some capability is missing.
However, this mechanism does not work properly if the current
architecture is bumped due to an instruction requiring new hw
capabilities not present on either the default architecture or an
architecture specified with -A:
$ echo "fzero %f0" | as -bump
{standard input}: Assembler messages:
{standard input}:1: Warning: architecture bumped from "v6" to "v9a" on "fzero"
{standard input}:1: Error: Hardware capability "vis" not enabled for "fzero".
This patch fixes this by adding the set of required hw caps of an
instruction if it triggers an architecture bump.
The patch has been tested in sparc64-unknown-linux-gnu.
gas/ChangeLog:
2014-09-12 Jose E. Marchesi <jose.marchesi@oracle.com>
* config/tc-sparc.c (sparc_ip): Update the set of allowed hwcaps
when bumping the current architecture.
(md_begin): Adjust the highetst architecture level also when a
specific architecture is not requested.