A number of backends want to return bfd_reloc_dangerous messaqes from
relocation special_function, and construct the message using asprintf.
Such messages are not freed anywhere, leading to small memory leaks
inside libbfd. To limit the leaks, I'd implemented a static buffer in
the ppc backends that was freed before use in asprintf output. This
patch extends that scheme to other backends using a shared static
buffer and goes further in freeing the buffer on any bfd_close.
The patch also fixes a few other cases where asprintf output was not
freed after use.
bfd/
* bfd.c (_input_error_msg): Make global and rename to..
(_bfd_error_buf): ..this.
(bfd_asprintf): New function.
(bfd_errmsg): Use bfd_asprintf.
* opncls.c (bfd_close_all_done): Free _buf_error_buf.
* elf32-arm.c (find_thumb_glue, find_arm_glue): Use bfd_asprintf.
* elf32-nios2.c (nios2_elf32_relocate_section): Likewise.
* elf32-ppc.c (ppc_elf_unhandled_reloc): Likewise.
* elf64-ppc.c (ppc64_elf_unhandled_reloc): Likewise.
* elfnn-riscv.c (riscv_resolve_pcrel_lo_relocs): Likewise.
(riscv_elf_relocate_section): Likewise.
* libbfd.h: Regenerate.
gas/
* read.c (read_end): Free current_name and current_label.
(do_s_func): Likewise on error path. strdup label.
ld/
* pe-dll.c (make_head, make_tail, make_one),
(make_singleton_name_thunk, make_import_fixup_entry),
(make_runtime_pseudo_reloc),
(pe_create_runtime_relocator_reference: Free oname after use.
Make a reference to _pei386_runtime_relocator before LTO recompilation.
This is done regardless of whether such a reference will be used,
because it can't be known whether it is needed before LTO.
I also found it necessary to enable long section names for the bfd
created in make_runtime_pseudo_reloc, because otherwise when writing
it out to the bfd-in-memory we get the section written as .rdata_r
which when read back in leads to a linker warning ".rdata_r: section
below image base" and likely runtime misbehaviour.
PR 30343
* emultempl/pe.em (make_runtime_ref): New function.
(gld${EMULATION_NAME}_before_plugin_all_symbols_read): New function.
(LDEMUL_BEFORE_PLUGIN_ALL_SYMBOLS_READ): Define.
* emultempl/pep.em: Similarly to pe.em.
* pe-dll.c (make_runtime_pseudo_reloc): Set long section names.
long is a poor choice of type to store 32-bit values read from
objects files by H_GET_32. H_GET_32 doesn't sign extend so tests like
that in gdb/coffread.c for "negative" values won't work if long is
larger than 32 bits. If long is 32-bit then code needs to be careful
to not accidentally index negative array elements. (I'd rather see a
segfault on an unmapped 4G array index than silently reading bogus
data.) long is also a poor choice for x_sect.s_scnlen, which might
have 64-bit values. It's better to use unsigned exact width types to
avoid surprises.
I decided to change the field names too, which makes most of this
patch simply renaming. Besides that there are a few places where
casts are no longer needed, and where printf format strings or tests
need adjusting.
include/
* coff/internal.h (union internal_auxent): Use unsigned stdint
types. Rename l fields to u32 and u64 as appropriate.
bfd/
* coff-bfd.c,
* coff-rs6000.c,
* coff64-rs6000.c,
* coffcode.h,
* coffgen.c,
* cofflink.c,
* coffswap.h,
* peXXigen.c,
* xcofflink.c: Adjust to suit internal_auxent changes.
binutils/
* rdcoff.c: Adjust to suit internal_auxent changes.
gas/
* config/obj-coff.h,
* config/tc-ppc.c: Adjust to suit internal_auxent changes.
gdb/
* coffread.c,
* xcoffread.c: Adjust to suit internal_auxent changes.
ld/
* pe-dll.c: Adjust to suit internal_auxent changes.
Revert 1c66b8a039 and instead fix the broken list pointer.
PR 29998
* pe-dll.c (build_filler_bfd): Revert last change.
* ldlang.c (lang_process): When rescanning archives for lto,
fix file_chain.tail pointer if the insert point happens to be
at the end of the list.
ld PR 29998
* pe-dll.c (generate_reloc): Handle sections
with no assigned output section.
Terminate early of there are no relocs to put
in the .reloc section.
(pe_exe_fill_sections): Do not emit an empty
.reloc section.
bfd * cofflink.c (_bfd_coff_generic_relocate_section):
Add an assertion that the output section is set
for defined, global symbols.
We already use C99's __func__ in places, use it more generally. This
patch doesn't change uses in the testsuite. I've also left one in
gold.h that is protected by GCC_VERSION < 4003. If any of the
remaining uses bothers anyone I invite patches.
bfd/
* bfd-in.h: Replace __FUNCTION__ with __func__.
* elf32-bfin.c: Likewise.
* elfnn-aarch64.c: Likewise.
* elfxx-sparc.c: Likewise.
* bfd-in2.h: Regenerate.
gas/
* config/tc-cris.c: Replace __FUNCTION__ with __func__.
* config/tc-m68hc11.c: Likewise.
* config/tc-msp430.c: Likewise.
gold/
* dwp.h: Replace __FUNCTION__ with __func__.
* gold.h: Likewise, except for use inside GCC_VERSION < 4003.
ld/
* emultempl/pe.em: Replace __FUNCTION__ with __func__.
* emultempl/pep.em: Likewise.
* pe-dll.c: Likewise.
This adds a mingw target for aarch64, including windres and dlltool.
Note that the old value of jmp_aarch64_bytes was wrong, and this does
the same thing as MSVC does.
The newer update-copyright.py fixes file encoding too, removing cr/lf
on binutils/bfdtest2.c and ld/testsuite/ld-cygwin/exe-export.exp, and
embedded cr in binutils/testsuite/binutils-all/ar.exp string match.
Allows aarch64-pe to be targeted natively, not having to use objcopy to convert it from ELF to PE.
Based on initial work by Jedidiah Thompson
Co-authored-by: Jedidiah Thompson <wej22007@outlook.com>
Co-authored-by: Zac Walker <zac.walker@linaro.org>
Clang generates a warning on unused (technically, written but not read
thereafter) variables. By the default configuration (with "-Werror"), it
causes a build failure (unless "--disable-werror" is specified).
This commit adds ATTRIBUTE_UNUSED attribute to some of them, which means
they are *possibly* unused (can be used but no warnings occur when
unused) and removes others.
bfd/ChangeLog:
* elf32-lm32.c (lm32_elf_size_dynamic_sections): Mark unused
rgot_count variable.
* elf32-nds32.c (elf32_nds32_unify_relax_group): Remove unused
count variable.
* mmo.c (mmo_scan): Mark unused lineno variable.
binutils/ChangeLog:
* windmc.c (write_rc): Remove unused i variable.
gas/ChangeLog:
* config/tc-riscv.c (riscv_ip): Remove unused argnum variable.
ld/ChangeLog:
* pe-dll.c (generate_reloc): Remove unused bi and page_count
variables.
Use a separate explicit max_exports/imports field, instead of
deducing it from the number of allocated elements. Use a named
constant for the incremental growth of the array.
Use bool instead of int for boolean values.
Remove an unnecessary if statement/scope in the def_file_free
function.
Add more verbose comments about parameters, and about insertion
into an array of structs.
Generally use unsigned integers for all array indices and sizes.
The num_exports/imports fields are kept as is as signed integers,
since changing them to unsigned would require a disproportionate
amount of changes ti pe-dll.c to avoid comparisons between signed
and unsigned.
Simply use xrealloc instead of a check and xmalloc/xrealloc;
xrealloc can take NULL as the first parameter (and does a similar
check internally). (This wasn't requested in review though,
but noticed while working on the code.)
Store the list of excluded symbols in a sorted list, speeding up
checking for duplicates when inserting new entries.
This is done in the same way as is done for exports and imports
(while the previous implementation was done with a linked list,
based on the implementation for aligncomm).
When linking object files with excluded symbols, there can potentially
be very large numbers of excluded symbols (just like builds with
exports can have a large number of exported symbols).
This improves the link performance somewhat, when linking with large
numbers of excluded symbols.
The later actual use of the excluded symbols within pe-dll.c
handles them via an unordered linked list still, though.
This maps to the same as ld's --exclude-symbols command line option,
but allowing specifying the option via directives embedded in the
object files instead of passed manually on the command line.
These two macros print either a 16 digit hex number or an 8 digit
hex number. Unfortunately they depend on both target and host, which
means that the output for 32-bit targets may be either 8 or 16 hex
digits.
Replace them in most cases with code that prints a bfd_vma using
PRIx64. In some cases, deliberately lose the leading zeros.
This change some output, notably in base/offset fields of m68k
disassembly which I think looks better that way, and in error
messages. I've kept leading zeros in symbol dumps (objdump -t)
and in PE header dumps.
bfd/
* bfd-in.h (fprintf_vma, sprintf_vma, printf_vma): Delete.
* bfd-in2.h: Regenerate.
* bfd.c (bfd_sprintf_vma): Don't use sprintf_vma.
(bfd_fprintf_vma): Don't use fprintf_vma.
* coff-rs6000.c (xcoff_reloc_type_tls): Don't use sprintf_vma.
Instead use PRIx64 to print bfd_vma values.
(xcoff_ppc_relocate_section): Likewise.
* cofflink.c (_bfd_coff_write_global_sym): Likewise.
* mmo.c (mmo_write_symbols_and_terminator): Likewise.
* srec.c (srec_write_symbols): Likewise.
* elf32-xtensa.c (print_r_reloc): Similarly for fprintf_vma.
* pei-x86_64.c (pex64_dump_xdata): Likewise.
(pex64_bfd_print_pdata_section): Likewise.
* som.c (som_print_symbol): Likewise.
* ecoff.c (_bfd_ecoff_print_symbol): Use bfd_fprintf_vma.
opcodes/
* dis-buf.c (perror_memory, generic_print_address): Don't use
sprintf_vma. Instead use PRIx64 to print bfd_vma values.
* i386-dis.c (print_operand_value, print_displacement): Likewise.
* m68k-dis.c (print_base, print_indexed): Likewise.
* ns32k-dis.c (print_insn_arg): Likewise.
* ia64-gen.c (_opcode_int64_low, _opcode_int64_high): Delete.
(opcode_fprintf_vma): Delete.
(print_main_table): Use PRIx64 to print opcode.
binutils/
* od-macho.c: Replace all uses of printf_vma with bfd_printf_vma.
* objcopy.c (copy_object): Don't use sprintf_vma. Instead use
PRIx64 to print bfd_vma values.
(copy_main): Likewise.
* readelf.c (CHECK_ENTSIZE_VALUES): Likewise.
(dynamic_section_mips_val): Likewise.
(print_vma): Don't use printf_vma. Instead use PRIx64 to print
bfd_vma values.
(dump_ia64_vms_dynamic_fixups): Likewise.
(process_version_sections): Likewise.
* rddbg.c (stab_context): Likewise.
gas/
* config/tc-i386.c (offset_in_range): Don't use sprintf_vma.
Instead use PRIx64 to print bfd_vma values.
(md_assemble): Likewise.
* config/tc-mips.c (load_register, macro): Likewise.
* messages.c (as_internal_value_out_of_range): Likewise.
* read.c (emit_expr_with_reloc): Likewise.
* config/tc-ia64.c (note_register_values): Don't use fprintf_vma.
Instead use PRIx64 to print bfd_vma values.
(print_dependency): Likewise.
* listing.c (list_symbol_table): Use bfd_sprintf_vma.
* symbols.c (print_symbol_value_1): Use %p to print pointers.
(print_binary): Likewise.
(print_expr_1): Use PRIx64 to print bfd_vma values.
* write.c (print_fixup): Use %p to print pointers. Don't use
fprintf_vma.
* testsuite/gas/all/overflow.l: Update expected output.
* testsuite/gas/m68k/mcf-mov3q.d: Likewise.
* testsuite/gas/m68k/operands.d: Likewise.
* testsuite/gas/s12z/truncated.d: Likewise.
ld/
* deffilep.y (def_file_print): Don't use fprintf_vma. Instead
use PRIx64 to print bfd_vma values.
* emultempl/armelf.em (gld${EMULATION_NAME}_finish): Don't use
sprintf_vma. Instead use PRIx64 to print bfd_vma values.
* emultempl/pe.em (gld${EMULATION_NAME}_finish): Likewise.
* ldlang.c (lang_map): Use %V to print region origin.
(lang_one_common): Don't use sprintf_vma.
* ldmisc.c (vfinfo): Don't use fprintf_vma or sprintf_vma.
* pe-dll.c (pe_dll_generate_def_file): Likewise.
gdb/
* remote.c (remote_target::trace_set_readonly_regions): Replace
uses of sprintf_vma with bfd_sprintf_vma.
PR 29006
* pe-dll.c (dll_name): Delete, replacing with..
(dll_filename): ..this, moved earlier in file.
(generate_edata): Delete parameters. Don't set up dll_name here..
(pe_process_import_defs): ..instead set up dll_filename and
dll_symname here before returning.
(dll_symname_len): Delete write-only variable.
(pe_dll_generate_implib): Don't set up dll_symname here.
ld * pe-dll.c (make_head): Prefix the symbol name with the dll name.
(make_tail, make_one, make_singleton_name_thunk): Likewise.
(make_import_fixup_entry, make_runtime_pseudo_reloc): Likewise.
(pe_create_runtime_relocator_reference): Likewise.
(pe_dll_generate_implib): Set dll_symname_len.
(pe_process_import_defs): Likewise.
binutils
* dlltool.c (main): If a prefix has not been provided, attempt to
use a deterministic one based upon the dll name.
The result of running etc/update-copyright.py --this-year, fixing all
the files whose mode is changed by the script, plus a build with
--enable-maintainer-mode --enable-cgen-maint=yes, then checking
out */po/*.pot which we don't update frequently.
The copy of cgen was with commit d1dd5fcc38ead reverted as that commit
breaks building of bfp opcodes files.
Due to a bogus linker script, or perhaps because a section doesn't get
placed by a linker script while default placement puts it too high up,
sections can end up above .reloc. Since the process of determining its
contents (and hence its size) happens before final section placement,
relocations needed for such sections would no longer point at the
correct address in the final binary. Warn about this (down the road this
may want to become an error, unless size determination and content
creation for .reloc would get decoupled).
To avoid triggering the warning when .reloc gets discarded, suppress
populating the section in the first place in this case.
The allocation of reloc_d doesn't take reloc_s->size into account. There
is already padding being emitted up to the allocated size. While
reloc_s->size ought to still be zero at this point anyway (and hence the
code being deleted would have been just dead), don't risk writing past
the actual allocation.
It is the very nature of absolute symbols that they don't change even
if the loader decides to put the image at other than its link-time base
address. Of the linker-defined (and PE-specific) symbols __image_base__
(and its alias) needs special casing, as it'll still appear to be
absolute at this point.
A new inquiry function in ldexp.c is needed because PE base relocations
get generated before ldexp_finalize_syms() runs, yet whether a
relocation is needed depends on the ultimate property of a symbol.
PR 19011
* emultempl/pe.em (DEFAULT_DLL_CHARACTERISTICS): Define.
(pe_dll_characteristics): Initialise to DEFAULT_DLL_CHARACTERISTICS.
(add_options): Add options to disable DLL characteristics.
(list_options): List the new options.
(handle_options): Handle the new options.
* emultempl/pep.em: Similar changes to above.
(NT_EXE_IMAGE_BASE): Default to an address above 4G.
(NT_DLL_IMAGE_BASE, NT_DLL_AUTO_IMAGE_BASE,
(NT_DLL_AUTO_IMAGE_MASK): Likewise.
* ld.texi: Document the new options.
* pe-dll.c (pe_dll_enable_reloc_section): Change to default to
true.
(generate_reloc): Do nothing if there is no reloc section.
(pe_exe_fill_sections): Only assign the reloc section contents if
the section exists.
* testsuite/ld-pe/pe.exp: Add the --disable-reloc-section flag to
the .secrel32 tests.
* testsuite/ld-scripts/provide-8.d: Expect for fail on PE targets.
* NEWS: Mention the change in DLL generation.
The 64-bit version of binutils got support for the PE COFF BIG OBJ format a
couple of years ago. The BIG OBJ format is a slightly different COFF format
which extends the size of the number of section field in the header from a
uint16_t to a uint32_t and so greatly increases the number of sections allowed.
However the 32-bit version of bfd never got support for this. The GHC Haskell
compiler generates a great deal of symbols due to it's use of
-ffunction-sections and -fdata-sections.
This meant that we could not build the 32-bit version of the GHC Compiler for
many releases now as binutils didn't have this support.
This patch adds the support to the 32-bit port of binutils as well and also does
come cleanup in the code.
bfd/ChangeLog:
* coff-i386.c (COFF_WITH_PE_BIGOBJ): New.
* coff-x86_64.c (COFF_WITH_PE_BIGOBJ): New.
* config.bfd (targ_selvecs): Rename x86_64_pe_be_vec
to x86_64_pe_big_vec as it not a big-endian format.
(vec i386_pe_big_vec): New.
* configure.ac: Likewise.
* targets.c: Likewise.
* configure: Regenerate.
* pe-i386.c (TARGET_SYM_BIG, TARGET_NAME_BIG,
COFF_WITH_PE_BIGOBJ): New.
* pe-x86_64.c (TARGET_SYM_BIG, TARGET_NAME_BIG):
New.
(x86_64_pe_be_vec): Moved.
gas/ChangeLog:
* NEWS: Add news entry for big-obj.
* config/tc-i386.c (i386_target_format): Support new format.
* doc/c-i386.texi: Add i386 support.
* testsuite/gas/pe/big-obj.d: Rename test to not be x64 specific.
* testsuite/gas/pe/pe.exp (big-obj): Make test run on i386 as well.
ld/ChangeLog:
* pe-dll.c (pe_detail_list): Add pe-bigobj-i386.
PR ld/18963
* testsuite/ld-scripts/pr18963.s: New, replaces empty data.s to
allocate space in text, data, bss here rather than pr18963.t.
* testsuite/ld-scripts/pr18963.t: Remove assignments to dot.
* testsuite/ld-scripts/pr18963.d: Change addresses to fit 16 bits.
PR binutils/pr25662
bfd * libcoff-in.h (struct pe_tdata): Rename the insert_timestamp
field to timestamp and make it an integer.
* libcoff.h: Regenerate.
* peXXigen.c (_bfd_XXi_only_swap_filehdr_out): Test the timestamp
field in the pe_data structure rather than the insert_timestamp
field.
binutils* objcopy.c (copy_object): When copying PE format files set the
timestamp field in the pe_data structure if the preserve_dates
flag is set.
* testsuite/binutils-all/objcopy.exp (objcopy_test) Use
--preserve-dates in place of the -p option, in order to make its
effect more obvious.
ld * emultempl/pe.em (after_open): Replace initialisation of the
insert_timestamp field in the pe_data structure with an
initialisation of the timestamp field.
* emultemp/pep.em: Likewise.
* pe-dll.c (fill_edata): Use the timestamp field in the pe_data
structure instead of the insert_timestamp field.
This is quite complicated because the CTF section's contents depend on
the final contents of the symtab and strtab, because it has two sections
whose contents are shuffled to be in 1:1 correspondence with the symtab,
and an internal strtab that gets deduplicated against the ELF strtab
(with offsets adjusted to point into the ELF strtab instead). It is
also compressed if large enough, so its size depends on its contents!
So we cannot construct it as early as most sections: we cannot even
*begin* construction until after the symtab and strtab are finalized.
Thankfully there is already one section treated similarly: compressed
debugging sections: the only differences are that compressed debugging
sections have extra handling to deal with their changing name if
compressed (CTF sections are always called ".ctf" for now, though we
have reserved ".ctf.*" against future use), and that compressed
debugging sections have previously-uncompressed content which has to be
stashed away for later compression, while CTF sections have no content
at all until we generate it (very late).
BFD also cannot do the link itself: libctf knows how to do it, and BFD
cannot call libctf directly because libctf already depends on bfd for
file I/O. So we have to use a pair of callbacks, one, examine_strtab,
which allows a caller to examine the symtab and strtab after
finalization (called from elf_link_swap_symbols_out(), right before the
symtabs are written, and after the strtab has been finalized), and one
which actually does the emission (called emit_ctf simply because it is
grouped with a bunch of section-specific late-emission function calls at
the bottom of bfd_elf_final_link, and a section-specific name seems best
for that). emit_ctf is actually called *twice*: once from lang_process
if the emulation suggests that this bfd target does not examine the
symtab or strtab, and once via a bfd callback if it does. (This means
that non-ELF targets still get CTF emitted, even though the late CTF
emission stage is never called for them).
v2: merged with non-ELF support patch: slight commit message
adjustments.
v3: do not spend time merging CTF, or crash, if the CTF section is
explicitly discarded. Do not try to merge or compress CTF unless
linking.
v4: add CTF_COMPRESSION_THRESHOLD. Annul the freed input ctf_file_t's
after writeout: set SEC_IN_MEMORY on the output contents so a future
bfd enhancement knows it could free it. Add SEC_LINKER_CREATED |
SEC_KEEP to avoid having to add .ctf to the linker script. Drop
now-unnecessary ldlang.h-level elf-bfd.h include and hackery around
it. Adapt to elf32.em->elf.em and elf-generic.em->ldelf*.c
changes.
v5: fix tabdamage. Drop #inclusions in .h files: include in .c files,
.em files, and use struct forwards instead. Use bfd_section_is_ctf
inline function rather than SECTION_IS_CTF macro. Move a few
comments.
* Makefile.def (dependencies): all-ld depends on all-libctf.
* Makefile.in: Regenerated.
include/
* bfdlink.h (elf_strtab_hash): New forward.
(elf_sym_strtab): Likewise.
(struct bfd_link_callbacks <examine_strtab>): New.
(struct bfd_link_callbacks <emit_ctf>): Likewise.
bfd/
* elf-bfd.h (bfd_section_is_ctf): New inline function.
* elf.c (special_sections_c): Add ".ctf".
(assign_file_positions_for_non_load_sections): Note that
compressed debugging sections etc are not assigned here. Treat
CTF sections like SEC_ELF_COMPRESS sections when is_linker_output:
sh_offset -1.
(assign_file_positions_except_relocs): Likewise.
(find_section_in_list): Note that debugging and CTF sections, as
well as reloc sections, are assigned later.
(_bfd_elf_assign_file_positions_for_non_load): CTF sections get
their size and contents updated.
(_bfd_elf_set_section_contents): Skip CTF sections: unlike
compressed sections, they have no uncompressed content to copy at
this stage.
* elflink.c (elf_link_swap_symbols_out): Call the examine_strtab
callback right before the strtab is written out.
(bfd_elf_final_link): Don't cache the section contents of CTF
sections: they are not populated yet. Call the emit_ctf callback
right at the end, after all the symbols and strings are flushed
out.
ld/
* ldlang.h: (struct lang_input_statement_struct): Add the_ctf.
(struct elf_sym_strtab): Add forward.
(struct elf_strtab_hash): Likewise.
(ldlang_ctf_apply_strsym): Declare.
(ldlang_write_ctf_late): Likewise.
* ldemul.h (ldemul_emit_ctf_early): New.
(ldemul_examine_strtab_for_ctf): Likewise.
(ld_emulation_xfer_type) <emit_ctf_early>: Likewise.
(ld_emulation_xfer_type) <examine_strtab_for_ctf>: Likewise.
* ldemul.c (ldemul_emit_ctf_early): New.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldlang.c: Include ctf-api.h.
(CTF_COMPRESSION_THRESHOLD): New.
(ctf_output): New. Initialized in...
(ldlang_open_ctf): ... this new function. Open all the CTF
sections in the input files: mark them non-loaded and empty
so as not to copy their contents to the output, but linker-created
so the section gets created in the target.
(ldlang_merge_ctf): New, merge types via ctf_link_add_ctf and
ctf_link.
(ldlang_ctf_apply_strsym): New, an examine_strtab callback: wrap
ldemul_examine_strtab_for_ctf.
(lang_write_ctf): New, write out the CTF section.
(ldlang_write_ctf_late): New, late call via bfd's emit_ctf hook.
(lang_process): Call ldlang_open_ctf, ldlang_merge_ctf, and
lang_write_ctf.
* ldmain.c (link_callbacks): Add ldlang_ctf_apply_strsym,
ldlang_write_ctf_late.
* emultempl/aix.em: Add ctf-api.h.
* emultempl/armcoff.em: Likewise.
* emultempl/beos.em: Likewise.
* emultempl/elf.em: Likewise.
* emultempl/generic.em: Likewise.
* emultempl/linux.em: Likewise.
* emultempl/msp430.em: Likewise.
* emultempl/pe.em: Likewise.
* emultempl/pep.em: Likewise.
* emultempl/ticoff.em: Likewise.
* emultempl/vanilla.em: Likewise.
* ldcref.c: Likewise.
* ldctor.c: Likewise.
* ldelf.c: Likewise.
* ldelfgen.c: Likewise.
* ldemul.c: Likewise.
* ldexp.c: Likewise.
* ldfile.c: Likewise.
* ldgram.c: Likewise.
* ldlex.l: Likewise.
* ldmain.c: Likewise.
* ldmisc.c: Likewise.
* ldver.c: Likewise.
* ldwrite.c: Likewise.
* lexsup.c: Likewise.
* mri.c: Likewise.
* pe-dll.c: Likewise.
* plugin.c: Likewise.
* ldelfgen.c (ldelf_emit_ctf_early): New.
(ldelf_examine_strtab_for_ctf): tell libctf about the symtab and
strtab.
(struct ctf_strsym_iter_cb_arg): New, state to do so.
(ldelf_ctf_strtab_iter_cb): New: tell libctf about
each string in the strtab in turn.
(ldelf_ctf_symbols_iter_cb): New, tell libctf
about each symbol in the symtab in turn.
* ldelfgen.h (struct elf_sym_strtab): Add forward.
(struct elf_strtab_hash): Likewise.
(struct ctf_file): Likewise.
(ldelf_emit_ctf_early): Declare.
(ldelf_examine_strtab_for_ctf): Likewise.
* emultempl/elf-generic.em (LDEMUL_EMIT_CTF_EARLY): Set it.
(LDEMUL_EXAMINE_STRTAB_FOR_CTF): Likewise.
* emultempl/aix.em (ld_${EMULATION_NAME}_emulation): Add
emit_ctf_early and examine_strtab_for_ctf, NULL by default.
* emultempl/armcoff.em (ld_${EMULATION_NAME}_emulation): Likewise.
* emultempl/beos.em (ld_${EMULATION_NAME}_emulation): Likewise.
* emultempl/elf.em (ld_${EMULATION_NAME}_emulation): Likewise.
* emultempl/generic.em (ld_${EMULATION_NAME}_emulation): Likewise.
* emultempl/linux.em (ld_${EMULATION_NAME}_emulation): Likewise.
* emultempl/msp430.em (ld_${EMULATION_NAME}_emulation): Likewise.
* emultempl/pe.em (ld_${EMULATION_NAME}_emulation): Likewise.
* emultempl/pep.em (ld_${EMULATION_NAME}_emulation): Likewise.
* emultempl/ticoff.em (ld_${EMULATION_NAME}_emulation): Likewise.
* emultempl/vanilla.em (ld_vanilla_emulation): Likewise.
* Makefile.am: Pull in libctf (and zlib, a transitive requirement
for compressed CTF section emission). Pass it on to DejaGNU.
* configure.ac: Add AM_ZLIB.
* aclocal.m4: Added zlib.m4.
* Makefile.in: Regenerated.
* testsuite/ld-bootstrap/bootstrap.exp: Use it when relinking ld.
This restores a line that has been dropped when the auto-import feature
of the PE-COFF linker was overhauled about one year. It is necessary
for GDB to properly resolve extern symbol in DLLs.
ld/ChangeLog
* pe-dll.c (pe_find_data_imports): Replace again the original name
of the undefined symbol with the __imp_ prefixed one after it is
resolved.
This patch deals with the generation of the import library on the fly.
The implementation is inefficient because the linker makes a lot of
calls to realloc and memmove when importing the symbols in order to
maintain a sorted list of symbols.
This is fixable by relying on the fact that, for every linked DLL,
the list of symbols it exports is already sorted so you can import
them en masse once you have found the insertion point.
ld/
* deffile.h (def_file_add_import_from): Declare.
(def_file_add_import_at): Likewise.
* deffilep.y (fill_in_import): New function extracted from...
(def_file_add_import): ...here. Call it.
(def_file_add_import_from): New function.
(def_file_add_import_at): Likewise.
* pe-dll.c (pe_implied_import_dll): Use an optimized version of the
insertion loop for imported symbols if possible.
This patch deals with the auto-import feature. There are 2 versions
of this feature: the original one, which was piggybacked on the OS
loader with an optional help from the runtime (--enable-auto-import
--enable-runtime-pseudo-reloc-v1) and is still the one mostly
documented in the sources and manual; the enhanced one by Kai Tietz,
which is entirely piggybacked on the runtime (--enable-auto-import
--enable-runtime-pseudo-reloc-v2) and is the default for Mingw and
Cygwin nowadays.
The implementation is inefficient because of pe[p]_find_data_imports:
for every undefined symbol, the function walks the entire set of
relocations for all the input files and does a direct name comparison
for each of them.
This is easily fixable by using a hash-based map for v1 and a simple
hash table for v2. This patch leaves v1 alone and only changes v2.
It also factors out pe[p]_find_data_imports into a common function,
removes old cruft left and right, and attempts to better separate
the implementations of v1 and v2 in the code.
ld/
* emultempl/pe.em (U_SIZE): Delete.
(pe_data_import_dll): Likewise.
(make_import_fixup): Return void, take 4th parameter and pass it down
in call to pe_create_import_fixup.
(pe_find_data_imports): Move to...
(gld_${EMULATION_NAME}_after_open): Run the stdcall fixup pass after
the auto-import pass and add a guard before running the latter.
* emultempl/pep.em (U_SIZE): Delete.
(pep_data_import_dll): Likewise.
(make_import_fixup): Return void, take 4th parameter and pass it down
in call to pe_create_import_fixup.
(pep_find_data_imports): Move to...
(gld_${EMULATION_NAME}_after_open): Run the stdcall fixup pass after
the auto-import pass and add a guard before running the latter.
* pe-dll.c (runtime_pseudp_reloc_v2_init): Change type to bfd_boolean.
(pe_walk_relocs_of_symbol): Rename into...
(pe_walk_relocs): ...this. Add 2 more parameters,4th parameter to the
callback prototype and pass 4th parameter in calls to the callback.
If the import hash table is present, invoke the callback on the reloc
if the symbol name is in the table.
(pe_find_data_imports): ...here. Take 2 parameters. Build an import
hash table for the pseudo-relocation support version 2. When it is
built, walk the relocations only once at the end; when it is not, do
not build a fixup when the symbol isn't part of an import table.
Issue the associated warning only after a first fixup is built.
(tmp_seq2): Delete.
(make_singleton_name_imp): Likewise.
(make_import_fixup_mark): Return const char * and a stable string.
(make_import_fixup_entry): Do not deal with the pseudo-relocation
support version 2.
(make_runtime_pseudo_reloc): Factor out code and fix formatting.
(pe_create_import_fixup): Add 5th parameter. Clearly separate the
pseudo-relocation support version 2 from the rest. Fix formatting.
* pe-dll.h (pe_walk_relocs_of_symbol): Delete.
(pe_find_data_imports): Declare.
(pe_create_import_fixup): Add 5th parameter.
* pep-dll.c (pe_data_import_dll): Delete.
(pe_find_data_imports): Define.
(pe_walk_relocs_of_symbol): Delete.
* pep-dll.h (pep_walk_relocs_of_symbol): Delete.
(pep_find_data_imports): Declare.
(pep_create_import_fixup): Add 5th parameter.
* ld.texinfo (--enable-auto-import): Adjust to new implementation.