This adds the test I was using when testing 60d67dc8.
* testsuite/ld-elfweak/alias.c,
* testsuite/ld-elfweak/alias.dat,
* testsuite/ld-elfweak/aliasmain.c,
* testsuite/ld-elfweak/weakref1.c,
* testsuite/ld-elfweak/weakref2.c: New test.
* testsuite/ld-elfweak/elfweak.exp: Run it. Don't return on fails,
attempt other tests.
In early October, HJ Lu added support for a number of targets to "Dump
dynamic relocation in read-only section with minfo". This extends
that support to more targets, displays the symbol involved, and splits
the existing function that sets TEXTREL into a "readonly_dynrelocs"
and "maybe_set_textrel" function. I'll need "readonly_dynrelocs" if I
ever get around to fixing "pr22374 function pointer initialization"
fails.
am33_2.0, arc, bfin, hppa64, mn10300, and nios2 fail to mark a binary
needing text relocations with DT_TEXTREL. That's not good. xtensa also
fails to do so but complains about "dangerous relocation: dynamic
relocation in read-only section" so I reckon that is fine and have
marked the test as an xfail. The other targets need maintainer
attention.
Curiously, the map file dump wasn't added for x86, so the map test
currently fail on x86. It also fails on alpha, am33_2.0, arc, bfin,
hppa64, ia64, m68k, mips, mn10300, nios2, score and vax. cris
complains with "tmpdir/textrel.o, section .rodata: relocation
R_CRIS_32 should not be used in a shared object; recompile with -fPIC"
so I've marked it as an xfail.
bfd/
* elf32-hppa.c (maybe_set_textrel): Print symbol for map file output.
* elf32-ppc.c (maybe_set_textrel): Likewise.
* elf64-ppc.c (maybe_set_textrel): Likewise.
* elf32-arm.c (readonly_dynrelocs): New function.
(maybe_set_textrel): New function, replacing..
(elf32_arm_readonly_dynrelocs): ..this.
* elf32-lm32.c (readonly_dynrelocs): New function.
(maybe_set_textrel): New function, replacing old version of..
(readonly_dynrelocs): ..this.
* elf32-m32r.c (readonly_dynrelocs): New function.
(maybe_set_textrel): New function, replacing old version of..
(readonly_dynrelocs): ..this.
* elf32-metag.c (readonly_dynrelocs): New function.
(maybe_set_textrel): New function, replacing old version of..
(readonly_dynrelocs): ..this.
* elf32-nds32.c: Delete unnecessary forward declarations.
(readonly_dynrelocs): New function.
(maybe_set_textrel): New function, replacing old version of..
(readonly_dynrelocs): ..this.
* elf32-or1k.c (readonly_dynrelocs): New function.
(maybe_set_textrel): New function, replacing old version of..
(readonly_dynrelocs): ..this.
* elf32-s390.c (readonly_dynrelocs): New function.
(maybe_set_textrel): New function, replacing old version of..
(readonly_dynrelocs): ..this.
* elf32-sh.c (readonly_dynrelocs): New function.
(maybe_set_textrel): New function, replacing old version of..
(readonly_dynrelocs): ..this.
* elf32-tic6x.c (readonly_dynrelocs): New function.
(maybe_set_textrel): New function, replacing..
(elf32_tic6x_readonly_dynrelocs): ..this.
* elf32-tilepro.c (readonly_dynrelocs): New function.
(maybe_set_textrel): New function, replacing old version of..
(readonly_dynrelocs): ..this.
* elf64-s390.c (readonly_dynrelocs): New function.
(maybe_set_textrel): New function, replacing old version of..
(readonly_dynrelocs): ..this.
* elfnn-aarch64.c (readonly_dynrelocs): New function.
(maybe_set_textrel): New function, replacing..
(aarch64_readonly_readonly_dynrelocs): ..this.
* elfnn-riscv.c (readonly_dynrelocs): New function.
(maybe_set_textrel): New function, replacing old version of..
(readonly_dynrelocs): ..this.
* elfxx-sparc.c (readonly_dynrelocs): New function.
(maybe_set_textrel): New function, replacing old version of..
(readonly_dynrelocs): ..this.
* elfxx-tilegx.c (readonly_dynrelocs): New function.
(maybe_set_textrel): New function, replacing old version of..
(readonly_dynrelocs): ..this.
ld/
* testsuite/ld-elf/shared.exp: Run new textrel tests.
* testsuite/ld-elf/textrel.map: New file.
* testsuite/ld-elf/textrel.rd: New file.
* testsuite/ld-elf/textrel.s: New file.
* testsuite/ld-elf/textrel.warn: New file.
ASFLAGS should be restored after any modification. Fixes
metag-linux +FAIL: Long branch stub
metag-linux +FAIL: Long branch stub (PIC, app)
mn10300-elf +FAIL: difference of two same-section symbols where the difference is held in another section
mn10300-elf +FAIL: relaxation and alignment directives
PR 22471
* testsuite/ld-elf/shared.exp: Save and restore ASFLAGS.
This patch processes linker script assignment statements before ld
opens DT_NEEDED libraries, in order to define symbols like __bss_start
that might also be defined by a library, falsely triggering an error
about "DSO missing from command line".
The initial value won't be correct when assigning a symbol from dot,
and I make no attempt to handle all expressions. For example, an
assignment like "_start_foo = ADDR (.foo)" isn't valid until sections
are laid out, so won't define _start_foo early. What's here should be
enough for most common scripts, and hopefully won't perturb fragile
scripts.
bfd/
PR 22471
* elflink.c (_bfd_elf_merge_symbol): Allow weak symbols to override
early passes over linker script symbols.
* linker.c (_bfd_generic_link_add_one_symbol): Allow symbols to
override early passes over linker script symbols. Clear ldscript_def
on symbol definitions.
ld/
PR 22471
* ldexp.c (struct definedness_hash_entry): Delete "by_script". Make
"iteration" an 8-bit field, and update mask in all uses.
(definedness_newfunc): Don't init "by_script".
(update_definedness): Test ldscript_def rather than by_script.
(is_sym_value): Likewise.
(fold_name <DEFINED>): Return a result for first phase. Test
ldscript_def.
(fold_name <NAME>): Return a result for first phase.
* ldlang.c (open_input_bfds): Process all assignments, not just
defsym.
(lang_process): Increment lang_statement_iteration before
open_input_bfds.
* testsuite/ld-mips-elf/tlsdyn-o32-1.d: Adjust for larger .dynsym.
* testsuite/ld-mips-elf/tlsdyn-o32-1.got: Likewise.
* testsuite/ld-mips-elf/tlsdyn-o32-2.d: Likewise.
* testsuite/ld-mips-elf/tlsdyn-o32-2.got: Likewise.
* testsuite/ld-mips-elf/tlsdyn-o32-3.d: Likewise.
* testsuite/ld-mips-elf/tlsdyn-o32-3.got: Likewise.
If linker plugin is enabled, set non_ir_ref_regular on symbols referenced
in regular objects so that linker plugin will get the correct symbol
resolution.
bfd/
PR ld/22502
* elflink.c (_bfd_elf_merge_symbol): Also skip definition from
an IR object.
(elf_link_add_object_symbols): If linker plugin is enabled, set
non_ir_ref_regular on symbols referenced in regular objects so
that linker plugin will get the correct symbol resolution.
ld/
PR ld/22502
* testsuite/ld-plugin/lto.exp: Run PR ld/22502 test.
* testsuite/ld-plugin/pr22502a.c: New file.
* testsuite/ld-plugin/pr22502b.c: Likewise.
We also need to provide __start_scnfoo and __stop_scnfoo with the extra
leading underscore for underscore targets.
This patch fixed:
FAIL: ld-elf/pr21562k
FAIL: ld-elf/pr21562l
FAIL: ld-elf/pr21562m
FAIL: ld-elf/pr21562n
for metag-linux,
* testsuite/ld-elf/pr21562c.t: Also provide ___start_scnfoo and
___stop_scnfoo.
* testsuite/ld-elf/pr21562d.t: Likewise.
Except for %eip-relative addressing, where we don't have a suitable
relocation type silently wrapping at the 4G boundary, consistently
force use of R_X86_64_32 (in ELF terms) instead of its sign-extending
counterpart. This wasn't right in case there was no base register in
the addressing expression.
PR 22419
* emultempl/v850elf.em (v850_create_output_section_statements):
New function. Generate an error if attempting to convert the
format of the output file.
* testsuite/ld-unique/pr21529.d: Skip for the V850.
* testsuite/ld-elf/pr21884.d: Skip for the V850.
PR 22450
gas * elf-properties.c (_bfd_elf_link_setup_gnu_properties): Skip
objects without a GNU_PROPERTY note section when looking for a bfd
onto which notes can be accumulated.
ld * testsuite/ld-elf/elf.exp: Add --defsym ALIGN=2|3 to assembler
command line depending upon the size of the target address space.
* testsuite/ld-elf/pr22450.s: New test file.
* testsuite/ld-elf/pr22450.d: New test driver.
* testsuite/config/default.exp: Add note that LD_CLASS refers to
the size of the host linker not the size of the target linker.
Hi Guys,
I am applying the rather large patch attached to this email to enhance
the readelf and objdump programs so that they now have the ability to
follow links to separate debug info files. (As requested by PR
15152). So for example whereas before we had this output:
$ readelf -wi main.exe
Contents of the .debug_info section:
[...]
<15> DW_AT_comp_dir : (alt indirect string, offset: 0x30c)
[...]
With the new option enabled we get:
$ readelf -wiK main.exe
main.exe: Found separate debug info file: dwz.debug
Contents of the .debug_info section (loaded from main.exe):
[...]
<15> DW_AT_comp_dir : (alt indirect string, offset: 0x30c) /home/nickc/Downloads/dwzm
[...]
The link following feature also means that we can get two lots of
output if the same section exists in both the main file and the
separate debug info file:
$ readelf -wiK main.exe
main.exe: Found separate debug info file: dwz.debug
Contents of the .debug_info section (loaded from main.exe):
[...]
Contents of the .debug_info section (loaded from dwz.debug):
[...]
The patch also adds the ability to display the contents of debuglink
sections:
$ readelf -wk main.exe
Contents of the .gnu_debugaltlink section:
Separate debug info file: dwz.debug
Build-ID (0x14 bytes):
c4 a8 89 8d 64 cf 70 8a 35 68 21 f2 ed 24 45 3e 18 7a 7a 93
Naturally there are long versions of these options (=follow-links and
=links). The documentation has been updated as well, and since both
readelf and objdump use the same set of debug display options, I have
moved the text into a separate file. There are also a couple of new
binutils tests to exercise the new behaviour.
There are a couple of missing features in the current patch however,
although I do intend to address them in follow up submissions:
Firstly the code does not check the build-id inside separate debug
info files when it is searching for a file specified by a
.gnu_debugaltlink section. It just assumes that if the file is there,
then it contains the information being sought.
Secondly I have not checked the DWARF-5 version of these link
features, so there will probably be code to add there.
Thirdly I have only implemented link following for the
DW_FORM_GNU_strp_alt format. Other alternate formats (eg
DW_FORM_GNU_ref_alt) have yet to be implemented.
Lastly, whilst implementing this feature I found it necessary to move
some of the global variables used by readelf (eg section_headers) into
a structure that can be passed around. I have moved all of the global
variables that were necessary to get the patch working, but I need to
complete the operation and move the remaining, file-specific variables
(eg dynamic_strings).
Cheers
Nick
binutils PR 15152
* dwarf.h (enum dwarf_section_display_enum): Add gnu_debuglink,
gnu_debugaltlink and separate_debug_str.
(struct dwarf_section): Add filename field.
Add prototypes for load_separate_debug_file, close_debug_file and
open_debug_file.
* dwarf.c (do_debug_links): New.
(do_follow_links): New.
(separate_debug_file, separate_debug_filename): New.
(fetch_alt_indirect_string): New function. Retrieves a string
from the debug string table in the separate debug info file.
(read_and_display_attr_value): Use it with DW_FORM_GNU_strp_alt.
(load_debug_section_with_follow): New function. Like
load_debug_section, but if the first attempt fails, then tries
again in the separate debug info file.
(introduce): New function.
(process_debug_info): Use load_debug_section_with_follow and
introduce.
(load_debug_info): Likewise.
(display_debug_lines_raw): Likewise.
(display_debug_lines_decoded): Likewise.
(display_debug_macinfo): Likewise.
(display_debug_macro): Likewise.
(display_debug_abbrev): Likewise.
(display_debug_loc): Likewise.
(display_debug_str): Likewise.
(display_debug_aranges): Likewise.
(display_debug_addr); Likewise.
(display_debug_frames): Likewise.
(display_gdb_index): Likewise.
(process_cu_tu_index): Likewise.
(load_cu_tu_indexes): Likewise.
(display_debug_links): New function. Displays the contents of a
.gnu_debuglink or .gnu_debugaltlink section.
(calc_gnu_debuglink_ctc32):New function. Calculates a CRC32
value.
(check_gnu_debuglink): New function. Checks the CRC of a
potential separate debug info file.
(parse_gnu_debuglink): New function. Reads a CRC value out of a
.gnu_debuglink section.
(check_gnu_debugaltlink): New function.
(parse_gnu_debugaltlink): New function. Reads the build-id value
out of a .gnu_debugaltlink section.
(load_separate_debug_info): New function. Finds and loads a
separate debug info file.
(load_separate_debug_file): New function. Attempts to find and
follow a link to a separate debug info file.
(free_debug_memory): Free the separate debug info file
information.
(opts_table): Add "follow-links" and "links".
(dwarf_select_sections_by_letters): Add "k" and "K".
(debug_displays): Reformat. Add .gnu-debuglink and
.gnu_debugaltlink.
Add an extra entry for .debug_str in a separate debug info file.
* doc/binutils.texi: Move description of debug dump features
common to both readelf and objdump into...
* objdump.c (usage): Add -Wk and -WK.
(load_specific_debug_section): Initialise the filename field in
the dwarf_section structure.
(close_debug_file): New function.
(open_debug_file): New function.
(dump_dwarf): Load and dump the separate debug info sections.
* readelf.c (struct filedata): New structure. Contains various
variables that used to be global:
(current_file_size, string_table, string_table_length, elf_header)
(section_headers, program_headers, dump_sects, num_dump_sects):
Move into filedata structure.
(cmdline): New global variable. Contains list of sections to dump
by number, as specified on the command line.
Add filedata parameter to most functions.
(load_debug_section): Load the string table if it has not already
been retrieved.
(close_file): New function.
(close_debug_file): New function.
(open_file): New function.
(open_debug_file): New function.
(process_object): Process sections in any separate debug info files.
* doc/debug.options.texi: New file. Add description of =links and
=follow-links options.
* NEWS: Mention the new feature.
* elfcomm.c: Have the byte gte functions take a const pointer.
* elfcomm.h: Update prototypes.
* testsuite/binutils-all/dw5.W: Update expected output.
* testsuite/binutils-all/objdump.WL: Update expected output.
* testsuite/binutils-all/objdump.exp: Add test of -WK and -Wk.
* testsuite/binutils-all/readelf.exp: Add test of -wK and -wk.
* testsuite/binutils-all/readelf.k: New file.
* testsuite/binutils-all/objdump.Wk: New file.
* testsuite/binutils-all/objdump.WK2: New file.
* testsuite/binutils-all/linkdebug.s: New file.
* testsuite/binutils-all/debuglink.s: New file.
gas * testsuite/gas/avr/large-debug-line-table.d: Update expected
output.
* testsuite/gas/elf/dwarf2-11.d: Likewise.
* testsuite/gas/elf/dwarf2-12.d: Likewise.
* testsuite/gas/elf/dwarf2-13.d: Likewise.
* testsuite/gas/elf/dwarf2-14.d: Likewise.
* testsuite/gas/elf/dwarf2-15.d: Likewise.
* testsuite/gas/elf/dwarf2-16.d: Likewise.
* testsuite/gas/elf/dwarf2-17.d: Likewise.
* testsuite/gas/elf/dwarf2-18.d: Likewise.
* testsuite/gas/elf/dwarf2-5.d: Likewise.
* testsuite/gas/elf/dwarf2-6.d: Likewise.
* testsuite/gas/elf/dwarf2-7.d: Likewise.
ld * testsuite/ld-avr/gc-section-debugline.d: Update expected
output.
The fix for the PR is to not use input_section->output_section->owner
to get to the output bfd, but use the output bfd directly since it is
available nowadays in struct bfd_link_info.
I thought it worth warning when non-empty dynamic sections are
discarded too, which meant a tweak to one of the ld tests to avoid the
warning.
bfd/
PR 22431
* elf64-ppc.c (ppc64_elf_size_dynamic_sections): Warn on discarding
non-empty dynamic section.
(ppc_build_one_stub): Take elf_gp from output bfd, not output
section owner.
(ppc_size_one_stub, ppc64_elf_next_toc_section): Likewise.
ld/
* testsuite/ld-elf/note-3.t: Don't discard .got.
It was reasonable to mark PT_PHDR segment with PF_X for compatibility
with UnixWare and Solaris linkers 20 years ago. But it is inappropriate
today when the primary OS of GNU ld is Linux. This patch removes PF_X
from PT_PHDR segment as gold does.
Tested natively on Linux/x86 as well as crosss-binutils for alpha-linux,
ia64-linux, powerpc64-linux, powerpc-linux, s390-linux, s390x-linux,
sparc64-linux and sparc-linux.
bfd/
PR ld/22423
* elf.c (_bfd_elf_map_sections_to_segments): Remove PF_X from
PT_PHDR segment.
ld/
PR ld/22423
* testsuite/ld-alpha/tlsbin.rd: Replace "R E " with "R +" for
PT_PHDR segment.
* testsuite/ld-alpha/tlsbinr.rd: Likewise.
* testsuite/ld-ia64/tlsbin.rd: Likewise.
* testsuite/ld-powerpc/tlsexe.r: Likewise.
* testsuite/ld-powerpc/tlsexe32.r: Likewise.
* testsuite/ld-powerpc/tlsexetoc.r: Likewise.
* testsuite/ld-s390/tlsbin.rd: Likewise.
* testsuite/ld-s390/tlsbin_64.rd: Likewise.
* testsuite/ld-sparc/tlssunbin32.rd: Likewise.
* testsuite/ld-sparc/tlssunbin64.rd: Likewise.
* testsuite/ld-elf/pr22423.d: New test.
We don't need a PLT entry when function pointer initialization in a
read/write section is the only reference to a given function symbol.
This patch prevents the unnecessary PLT entry, and ensures no dynamic
relocs are emitted when UNDEFWEAK_NO_DYNAMIC_RELOC says so.
bfd/
PR 22374
* elf32-ppc.c (ppc_elf_adjust_dynamic_symbol): Don't create a plt
entry when just a dynamic reloc can serve. Ensure no dynamic
relocations when UNDEFWEAK_NO_DYNAMIC_RELOC by setting non_got_ref.
Expand and move the non_got_ref comment.
* elf64-ppc.c (ppc64_elf_adjust_dynamic_symbol): Likewise.
ld/
* testsuite/ld-powerpc/ambiguousv2.d: Remove FIXME.
Function pointer references in .data ought to use a dynamic reloc.
There shouldn't be any need for a PLT entry and definitely no copy
reloc.
This test fails on quite a few targets, but isn't something that
anyone should worry about too much. It's really just a missed
optimization.
PR 22374
* testsuite/ld-elf/pr22374a.s,
* testsuite/ld-elf/pr22374b.s,
* testsuite/ld-elf/pr22374-1.r,
* testsuite/ld-elf/pr22374-2.r: New test.
* testsuite/ld-elf/elf.exp: Run it.
* testsuite/ld-elf/elf.exp: Merge some conditionals, a better
name than "shared library for next test", and use xfail arg
of run_ld_link_tests in a few places.
xfail tests for certain targets.
Check shared library support for shared test.
Relax pr21703-r.sd and pr21703-shared.sd with additional "#..." pattern lines.
ld/
* testsuite/ld-elf/elf.exp: xfail pr21703 tests on specific targets.
Only run shared lib test for targets which support it.
* testsuite/ld-elf/pr21703-r.sd: Adjust the expected output.
* testsuite/ld-elf/pr21703-shared.sd: Likewise.
Checked with an arm-none-eabi tester and an arm-none-linux-gnueabi tester with no issues.
* testsuite/ld-arm/cortex-a8-far.d: Update expected disassembly.
* testsuite/ld-arm/farcall-group-size2: Likewise.
* testsuite/ld-arm/farcall-group.d: Likewise.
Some targets prefix global symbols with "_".
bfd/
* archive.c (_bfd_compute_and_write_armap): Match "__gnu_lto_slim"
optionally prefixed with "_".
* linker.c (_bfd_generic_link_add_one_symbol): Likewise.
binutils/
* nm.c (filter_symbols): Match "__gnu_lto_slim" optionally prefixed
with "_".
gold/
* symtab.cc (Symbol_table::add_from_relobj): Match "__gnu_lto_slim"
optionally prefixed with "_".
ld/
* testsuite/ld-plugin/lto-3r.d: Match "__gnu_lto_v" optionally
prefixed with "_".
* testsuite/ld-plugin/lto-5r.d: Likewise.
This matches the ISA specification. This also adds two tests: one to
make sure the assembler rejects invalid 'c.lui's, and one to make sure
we only relax valid 'c.lui's.
bfd/ChangeLog
2017-10-24 Andrew Waterman <andrew@sifive.com>
* elfnn-riscv.c (_bfd_riscv_relax_lui): Don't relax to c.lui
when rd is x0.
include/ChangeLog
2017-10-24 Andrew Waterman <andrew@sifive.com>
* opcode/riscv.h (VALID_RVC_LUI_IMM): c.lui can't load the
immediate 0.
gas/ChangeLog
2017-10-24 Andrew Waterman <andrew@sifive.com>
* testsuite/gas/riscv/c-lui-fail.d: New testcase.
gas/testsuite/gas/riscv/c-lui-fail.l: Likewise.
gas/testsuite/gas/riscv/c-lui-fail.s: Likewise.
gas/testsuite/gas/riscv/riscv.exp: Likewise.
ld/ChangeLog
2017-10-24 Andrew Waterman <andrew@sifive.com>
* ld/testsuite/ld-riscv-elf/c-lui.d: New testcase.
ld/testsuite/ld-riscv-elf/c-lui.s: Likewise.
ld/testsuite/ld-riscv-elf/ld-riscv-elf.exp: New test suite.
The behavior of _bfd_elf_merge_symbol and _bfd_generic_link_add_one_symbol is
inconsistent.
In multiple definition case, _bfd_elf_merge_symbol decided to override the old
symbol definition with the new defintion, (size, type, target data)
In _bfd_generic_link_add_one_symbol, it simply return without doing anything
because of allow-multiple-definition is provided.
This leaves the symbol in a wrong state.
Here, following the documentation, I made this patch to force the old definition
override the new definition if the old symbol is not dynamic or weak.
Because, in those two cases, it's expected to do some merge. I have checked
that, those two cases are properly handled.
bfd/
PR ld/21703
* elflink.c (_bfd_elf_merge_symbol): Handle multiple definition case.
ld/
PR ld/21703
* testsuite/ld-elf/elf.exp: Run new tests.
* testsuite/ld-elf/pr21703-1.s: New.
* testsuite/ld-elf/pr21703-2.s: New.
* testsuite/ld-elf/pr21703-3.s: New.
* testsuite/ld-elf/pr21703-4.s: New.
* testsuite/ld-elf/pr21703-r.sd: New.
* testsuite/ld-elf/pr21703-shared.sd: New.
* testsuite/ld-elf/pr21703.sd: New.
* testsuite/ld-elf/pr21703.ver: New.
PR 22319
bfd * elflink.c (elf_link_output_extsym): Keep global undefined
symbols if they have been marked as needed.
ld * testsuite/ld-elf/pr22310.s: New test source file.
* testsuite/ld-elf/pr22310.d: New test driver.
* testsuite/ld-mmix/undef-3.d: Update expected output from readelf.
* testsuite/ld-elf/shared.exp: Remove kfails.
The test-cases started passing with 5c3261b0e8,
"ELF: Call check_relocs after opening all inputs".
The lists could now be re-concatenated (see other run_ld_link_tests
calls in shared.exp), but are for now left separate to simplify future
kfail/xfailing.
This compile-time test requires a target C compiler to run. It fails
on many targets where ELF backend linkers fail to check undefined weak
symbol in static PIE via UNDEFWEAK_NO_DYNAMIC_RELOC.
PR ld/22269
* testsuite/ld-elf/pr22269-1.rd: New file.
* testsuite/ld-elf/pr22269-1.c: Likewise.
* testsuite/ld-elf/shared.exp: Run pr22269-1.
Don't generate dynamic relocation against weak undefined symbol if it
is resolved to zero. FIXME: UNDEFWEAK_NO_DYNAMIC_RELOC may need to be
checked in more places.
bfd/
PR ld/22269
* elf32-cris.c (cris_elf_relocate_section): Don't generate
dynamic relocation if UNDEFWEAK_NO_DYNAMIC_RELOC is true.
(cris_elf_check_relocs): Don't allocate dynamic relocation
if UNDEFWEAK_NO_DYNAMIC_RELOC is true.
ld/
PR ld/22269
* testsuite/ld-cris/weakhiddso.d: Update and remove R_CRIS_NONE.
A number of targets need dynamic relocs in PIEs for reasons other than
relocating thread variables. The PR is about text relocations, and,
reading between the lines, unnecessary dynamic tprel relocations.
Change the test to check for those conditions rather than no dynamic
relocations
PR ld/22263
* testsuite/ld-elf/tls.exp: Link with -z text.
* testsuite/ld-elf/pr22263-1.rd: Test for tprel relocs.
This compile-time test requires a target C compiler to run. It fails
on many targets where ELF backend linkers incorrectly check bfd_link_pic
for TLS relocations, which should check bfd_link_executable instead.
PR ld/22263
* testsuite/ld-elf/pr22263-1.rd: New file.
* testsuite/ld-elf/pr22263-1a.c: Likewise.
* testsuite/ld-elf/pr22263-1b.c: Likewise.
* testsuite/ld-elf/tls.exp: Likewise.
* reloc.c (enum bfd_reloc_status): Start values at 2.
* bfd-in2.h: Regenerate.
* elfnn-aarch64.c (aarch64_relocate): Invert sense of function, so
that a TRUE return indicates success. Compare the result of
calling _bfd_aarch64_elf_put_addend against bfd_reloc_ok.
(build_one_stub): Change sense of tests against aarch64_relocate
return value.
(elfNN_aarch64_tls_relax): Return bfd_reloc_notsupported, rather
than FALSE, when an error is detected.
(elfNN_aarch64_final_link_relocate): Likewise.
* testsuite/ld-aarch64/pcrel_pic_defined.d: Expect errors not
warnings. Expect errors about unsupported relocations.
* testsuite/ld-aarch64/pcrel_pic_undefined.d: Likewise.
Since undefined weak symbols in static PIE are always resolved to 0 at
run-time, linker should resolve them as 0 at link-time, regardless of
whether "-z dynamic-undefined-weak" is used. "-z dynamic-undefined-weak"
only makes undefined weak symbols dynamic, but doesn't change undefined
weak symbol resolution in static PIE at link-time. These tests currently
pass on x86, but fails on many other targets.
The framework to resolve weak symbols in static PE at link-time is
posted at
https://sourceware.org/ml/binutils/2017-10/msg00087.html
which requires users/hjl/check_relocs branch to call check_relocs after
opening all inputs. I will submit backend patches for failling targets
after merging users/hjl/check_relocs branch next.
* PR ld/22269
* testsuite/ld-elf/pr22269.s: New file.
* testsuite/ld-elf/pr22269a.d: Likewise.
* testsuite/ld-elf/pr22269b.d: Likewise.
Similar as aarch64 backend, arm backend only overrides the decision on undefined
weak symbols. arm backend part already emits necessary relative relocation for
this case.
bfd/
PR ld/21402
* elf32-arm.c (allocate_dynrelocs_for_symbol): Only make undefined weak
symbols into dynamic.
ld/
PR ld/21402
* testsuite/ld-arm/tls-app.d: Update address.
* testsuite/ld-arm/tls-app.r: Remove relocations.
* testsuite/ld-arm/unresolved-1-dyn.d: Update.
Don't allow '~' as the first character in symbol name in linker script.
PR ld/22267
* ldlex.l (SYMBOLNAMECHAR1) New.
(DEFSYMEXP): Replace FILENAMECHAR1 with SYMBOLNAMECHAR1.
(EXPRESSION): Likewise.
* testsuite/ld-scripts/expr.exp: Run pr22267.
* testsuite/ld-scripts/pr22267.d: New file.
* testsuite/ld-scripts/pr22267.s: Likewise.
* testsuite/ld-scripts/pr22267.t: Likewise.
This fixes a wart I've known about for years, but haven't done
anything about because BFD treats relocation sections as an adjunct to
the section they relocate. SHF_GROUP on the section thus implicitly
applies to its relocation section(s), but it is an error that the
reloc sections aren't part of the group.
Like many patches to gas, this wasn't as straightforward as it could
be due to a number of backends, i386, cr16 and others, removing relocs
in tc_get_reloc rather than marking them as "done" earlier in
md_apply_reloc. So it isn't possible for the group support to
reliably detect the presence of relocs by looking at fixups earlier
than write_relocs. However the group support needs to create
signature symbols, and that must be done before the symbol table is
frozen, before write_relocs. So split off the group sizing from
elf_adjust_symtab and put it in elf_frob_file_after_relocs.
bfd/
PR 21167
* elf.c (_bfd_elf_setup_sections): Don't trim reloc sections from
groups.
(_bfd_elf_init_reloc_shdr): Pass sec_hdr, use it to copy SHF_GROUP
flag from section.
(elf_fake_sections): Adjust calls. Exit immediately on failure.
(bfd_elf_set_group_contents): Add associated reloc section indices
to group contents
gas/
PR 21167
* config/obj-elf.c (struct group_list): Delete elt_count.
(groups): New static.
(build_group_lists): Don't count elements.
(elf_adjust_symtab): Use groups rather than auto list. Set up
pointer from group member to SHT_GROUP section. Don't size
SHT_GROUP section or clean up here..
(elf_frob_file_after_relocs): ..do so here instead.
* testsuite/gas/arc/jli-1.d,
* testsuite/gas/elf/groupautob.d,
* testsuite/gas/mips/compact-eh-eb-2.d,
* testsuite/gas/mips/compact-eh-eb-5.d,
* testsuite/gas/mips/compact-eh-el-2.d,
* testsuite/gas/mips/compact-eh-el-5.d: Adjust.
ld/
PR 21167
* testsuite/ld-elf/group9b.d: Adjust for relocs included in group.
I am applying a patch that has been lying around in the Fedora
binutils sources for a while. It skips the PR14918 linker test for
ARM based targets. This test checks that libgcc is not included in a
link of an empty executable. This works for most targets, but on the
ARM the crt1.o startup code calls __libc_csu_init which is in
/usr/lib/libc_nonshared.a(elf-init.oS). This in turn needs
__aeabi_unwind_cpp_pr0@@GCC_3.5 which is provided by libgcc_s.so.1,
and so the test fails.
non_ir_ref_dynamic wasn't being set in the case where we have a
versioned dynamic symbol definition with a non-versioned matching IR
symbol.
bfd/
PR 22220
* elflink.c (_bfd_elf_merge_symbol): Set non_ir_ref_dynamic in
a case where plugin_notice isn't called.
ld/
* testsuite/ld-plugin/pr22220.h,
* testsuite/ld-plugin/pr22220lib.cc,
* testsuite/ld-plugin/pr22220lib.ver,
* testsuite/ld-plugin/pr22220main.cc: New test.
* testsuite/ld-plugin/lto.exp: Run it.
Fix commit 647d4de92e ("Test undefined symbols in shared libraries")
and remove "undefined symbols in shared lib (dyn reloc)" test failures
for MIPS and S+core targets.
This test assumes 3 dynamic relocation entries, however the respective
psABIs define an extra single dummy *_NONE relocation at the beginning
of the dynamic relocation table, which results in test output like the
following for MIPS:
Relocation section '.rel.dyn' at offset 0x33c contains 4 entries:
Offset Info Type Sym.Value Sym. Name
00000000 00000000 R_MIPS_NONE
00010364 00000903 R_MIPS_REL32 00000000 undef_pfun
00010360 00000a03 R_MIPS_REL32 00000000 undef_data
00010368 00000b03 R_MIPS_REL32 00000000 undef_notype
and S+core:
Relocation section '.rel.dyn' at offset 0x274 contains 4 entries:
Offset Info Type Sym.Value Sym. Name
00000000 00000000 R_SCORE_NONE
5ffe0464 00000e12 R_SCORE_REL32 00000000 undef_notype
5ffe045c 00000f12 R_SCORE_REL32 00000000 undef_data
5ffe0460 00001012 R_SCORE_REL32 00000000 undef_pfun
targets respectively, and also n64 MIPS targets pad relocation triplets
they use with extra *_NONE relocations, resulting in output like this:
Relocation section '.rel.dyn' at offset 0x4c0 contains 4 entries:
Offset Info Type Sym. Value Sym. Name
000000000000 000000000000 R_MIPS_NONE
Type2: R_MIPS_NONE
Type3: R_MIPS_NONE
000000010508 000900001203 R_MIPS_REL32 0000000000000000 undef_pfun
Type2: R_MIPS_64
Type3: R_MIPS_NONE
000000010500 000a00001203 R_MIPS_REL32 0000000000000000 undef_data
Type2: R_MIPS_64
Type3: R_MIPS_NONE
000000010510 000b00001203 R_MIPS_REL32 0000000000000000 undef_notype
Type2: R_MIPS_64
Type3: R_MIPS_NONE
Expect the right number of *_NONE relocations then, and adjust the total
number of relocations expected accordingly.
ld/
* testsuite/ld-undefined/undefined.exp: Correct the dyn reloc
test for MIPS and S+core targets.
PowerPC64 .cfi directives use DW_EH_PE_sdata4 encoding for .eh_frame,
so there is no real reason why .eh_frame should be 8 byte aligned.
gas/
* config/tc-ppc.h (EH_FRAME_ALIGNMENT): Define.
ld/
* testsuite/ld-powerpc/tlsopt5.wf: Update for reduced alignment.
With -PIE on x86-64, we get
0x000000006ffffffb (FLAGS_1) Flags: GLOBAUDIT PIE
We should allow additional bits in DT_FLAGS_1.
PR ld/22139
* testsuite/ld-elf/globalaudit.rd: Allow additional bits in
DT_FLAGS_1.
bfd/
PR ld/22135
* elf32-i386.c (elf_i386_convert_load_reloc): Add an argument
to indicate if conversion is performed.
(elf_i386_check_relocs): Cache section contents and relocations
if conversion is performed.
* elf64-x86-64.c (elf_x86_64_check_relocs): Cache section
contents and relocations if conversion is performed.
ld/
PR ld/22135
* testsuite/ld-i386/i386.exp: Run pr22135.
* testsuite/ld-x86-64/x86-64.exp: Likewise.
* testsuite/ld-i386/pr22135.d: New file.
* testsuite/ld-i386/pr22135.s: Likewise.
* testsuite/ld-x86-64/pr22135.d: Likewise.
* testsuite/ld-x86-64/pr22135.s: Likewise.
This changes the PowerPC64 --plt-align option to perform the usual
alignment of code as suggested by its name, as well as the previous
behaviour of padding so as to reduce boundary crossing. The old
behaviour is had by using a negative parameter.
The default is also changed to align plt stub code by default to 32
byte boundaries, the point being to get better bctr branch prediction
on power8 and power9 hardware.
bfd/
* elf64-ppp.c (plt_stub_pad): Handle positive and negative
plt_stub_align.
ld/
* ld.texinfo (--plt-align): Describe new behaviour of option.
* emultempl/ppc64elf.em (params): Default plt_stub_align to 5.
* testsuite/ld-powerpc/powerpc.exp: Pass --no-plt-align for
selected tests.
* testsuite/ld-powerpc/relbrlt.d: Pass --no-plt-align.
* testsuite/ld-powerpc/elfv2so.d: Adjust expected output.
After _bfd_i386_elf_convert_load and _bfd_x86_64_elf_convert_load are
removed, elf_i386_convert_load_reloc and elf_x86_64_convert_load_reloc
see __ehdr_start as an undefined symbol when they are called from
check_relocs to convert GOT relocations against local symbols. But
__ehdr_start will be defined as a hidden symbol by linker at the later
stage if it is referenced. This patch marks __ehdr_start as a defined
local symbol at the start of check_relocs if it is referenced and not
defined.
bfd/
PR ld/22115
* elf32-i386.c (elf_i386_convert_load_reloc): Check linker_def.
Don't use UNDEFINED_WEAK_RESOLVED_TO_ZERO.
* elf64-x86-64.c (elf_x86_64_convert_load_reloc): Check
linker_def. Don't use UNDEFINED_WEAK_RESOLVED_TO_ZERO.
* elfxx-x86.c (_bfd_x86_elf_link_check_relocs): Set local_ref
and linker_def on __ehdr_start if it is referenced and not
defined.
(_bfd_x86_elf_link_symbol_references_local): Also set local_ref
and return TRUE when building executable, if a symbol has
non-GOT/non-PLT relocations in text section or there is no
dynamic linker.
* elfxx-x86.h (elf_x86_link_hash_entry): Add linker_def.
ld/
PR ld/22115
* ld-i386/i386.exp: Run PR ld/22115 tests,
* ld/testsuite/ld-x86-64/x86-64.exp: Likewise.
* testsuite/ld-i386/pr22115-1.s: New file.
* testsuite/ld-i386/pr22115-1a.d: Likewise.
* testsuite/ld-i386/pr22115-1b.d: Likewise.
* testsuite/ld-i386/pr22115-1c.d: Likewise.
* testsuite/ld-i386/pr22115-1d.d: Likewise.
* testsuite/ld-x86-64/pr22115-1.s: Likewise.
* testsuite/ld-x86-64/pr22115-1a-x32.d: Likewise.
* testsuite/ld-x86-64/pr22115-1a.d: Likewise.
* testsuite/ld-x86-64/pr22115-1b-x32.d: Likewise.
* testsuite/ld-x86-64/pr22115-1b.d: Likewise.
* testsuite/ld-x86-64/pr22115-1c-x32.d: Likewise.
* testsuite/ld-x86-64/pr22115-1c.d: Likewise.
* testsuite/ld-x86-64/pr22115-1d-x32.d: Likewise.
* testsuite/ld-x86-64/pr22115-1d.d: Likewise.
Add R_X86_64_converted_reloc_bit to relocation type to indicate if a
relocation is converted from a GOTPCREL relocation. Linker now generates
failed to convert GOTPCREL relocation; relink with --no-relax
for all cases, including relocations against local symbols.
bfd/
* elf64-x86-64.c (R_X86_64_converted_reloc_bit): New.
(elf_x86_64_info_to_howto): Get the real relocation type by
masking out R_X86_64_converted_reloc_bit.
(elf_x86_64_check_tls_transition): Get the real relocation type
by masking out R_X86_64_converted_reloc_bit.
(elf_x86_64_convert_load_reloc): Set R_X86_64_converted_reloc_bit
instead of setting converted_reloc.
(elf_x86_64_relocate_section): Check R_X86_64_converted_reloc_bit
instead of converted_reloc. Get the real relocation type by
masking out R_X86_64_converted_reloc_bit.
(elf_x86_64_link_setup_gnu_properties): Verify that the value of
R_X86_64_converted_reloc_bit is valid.
* elfxx-x86.h (converted_reloc): Removed.
ld/
* testsuite/ld-x86-64/pr19609-2a.d: Updated.
* testsuite/ld-x86-64/pr19609-2b.d: Likewise.
* testsuite/ld-x86-64/pr19609-4a.d: Likewise.
* testsuite/ld-x86-64/pr19609-4c.d: Likewise.
When GOTPCREL relocation conversion leads to relocation overflow, we
may get a mysterious linker message, like
relocation truncated to fit: R_X86_64_32S against symbol `foo'
This patch changes the linker message to
failed to convert GOTPCREL relocation; relink with --no-relax
bfd/
* elf64-x86-64.c (elf_x86_64_convert_load_reloc): Remove the sec
argument. Don't check relocation overflow. Avoid relocation
overflow if --no-relax is used. Set converted_reloc on symbol
if a GOTPCREL relocation is converted.
(elf_x86_64_relocate_section): Issue a fatal error and suggest
--no-relax if GOTPCREL relocation conversion leads to relocation
overflow.
* elfxx-x86.h (elf_x86_link_hash_entry): Add converted_reloc.
ld/
* testsuite/ld-x86-64/pr19609-4e.d: Updated.
* testsuite/ld-x86-64/pr19609-6a.d: Likewise.
We need to set tlsdesc_plt for x86-64 if GOT_TLS_GDESC_P is true when
allocating dynamic relocations so that _bfd_x86_elf_size_dynamic_sections
will generate TLSDESC_PLT and TLSDESC_GOT in x86-64 output.
bfd/
PR ld/22071
* elfxx-x86.c (elf_x86_allocate_dynrelocs): Set tlsdesc_plt
for x86-64 if GOT_TLS_GDESC_P is true.
ld/
PR ld/22071
* testsuite/ld-x86-64/pr22071.d: New file.
* testsuite/ld-x86-64/pr22071.s: Likewise.
* testsuite/ld-x86-64/x86-64.exp: Run pr22071.
The machinery to do this was there, but not enabled if the terminator
was the only thing in the section.
bfd/
* elf-eh-frame.c (_bfd_elf_parse_eh_frame): Don't exit early
for a section containing just a terminator. Allow multiple
terminators at end of section.
* elflink.c (bfd_elf_discard_info): Iterate over .eh_frame
sections when not adding alignment. Assert on terminator in
the middle of FDEs.
ld/
* testsuite/ld-elf/eh3.d: Update.
* testsuite/ld-elf/eh4.d: Update.
Complement commit 5b5f4e6f8c ("ld: Early detection of orphans we know
will be discarded") and add `.MIPS.options' to the list of sections
discarded with orphan tests, removing failures like:
./ld-new: error: unplaced orphan section `.MIPS.options' from `tmpdir/orphan-11.o'.
FAIL: ld-elf/orphan-11
and:
./ld-new: error: unplaced orphan section `.MIPS.options' from `tmpdir/orphan-12.o'.
FAIL: ld-elf/orphan-12
from n64 MIPS testing.
ld/
* testsuite/ld-elf/orphan-11.ld: Also discard `.MIPS.options'
sections.
Fix a bug in commit a6ebf6169a ("MIPS: Convert cross-mode BAL to
JALX") and in BFD linker relaxation correct the microMIPS interpretation
of the branch offset, which is supposed to be shifted by 1 bit, rather
than 2 as in the regular MIPS case.
bfd/
* elfxx-mips.c (mips_elf_perform_relocation): Correct microMIPS
branch offset interpretation.
gas/
* testsuite/gas/mips/branch-addend-micromips.d: New test.
* testsuite/gas/mips/branch-addend-micromips-n32.d: New test.
* testsuite/gas/mips/branch-addend-micromips-n64.d: New test.
* testsuite/gas/mips/branch-addend-micromips.s: New test source.
* testsuite/gas/mips/mips.exp: Run the new tests.
ld/
* testsuite/ld-mips-elf/bal-jalx-addend-micromips.d: New test.
* testsuite/ld-mips-elf/bal-jalx-addend-micromips-n32.d: New
test.
* testsuite/ld-mips-elf/bal-jalx-addend-micromips-n64.d: New
test.
* testsuite/ld-mips-elf/bal-jalx-local-micromips.d: New test.
* testsuite/ld-mips-elf/bal-jalx-local-micromips-n32.d: New
test.
* testsuite/ld-mips-elf/bal-jalx-local-micromips-n64.d: New
test.
* testsuite/ld-mips-elf/bal-jalx-pic-micromips.d: New test.
* testsuite/ld-mips-elf/bal-jalx-pic-micromips-n32.d: New test.
* testsuite/ld-mips-elf/bal-jalx-pic-micromips-n64.d: New test.
* testsuite/ld-mips-elf/bal-jalx-pic-ignore-micromips.d: New
test.
* testsuite/ld-mips-elf/bal-jalx-pic-ignore-micromips-n32.d: New
test.
* testsuite/ld-mips-elf/bal-jalx-pic-ignore-micromips-n64.d: New
test.
* testsuite/ld-mips-elf/mips-elf.exp: Run the new tests.
In the TLS GD/LD to LE optimization, ld replaces a sequence like
addi 3,2,x@got@tlsgd R_PPC64_GOT_TLSGD16 x
bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
R_PPC64_REL24 __tls_get_addr
nop
with
addis 3,13,x@tprel@ha R_PPC64_TPREL16_HA x
addi 3,3,x@tprel@l R_PPC64_TPREL16_LO x
nop
When the tprel offset is small, this can be further optimized to
nop
addi 3,13,x@tprel
nop
bfd/
* elf64-ppc.c (struct ppc_link_hash_table): Add do_tls_opt.
(ppc64_elf_tls_optimize): Set it.
(ppc64_elf_relocate_section): Nop addis on TPREL16_HA, and convert
insn on TPREL16_LO and TPREL16_LO_DS relocs to use r13 when
addis would add zero.
* elf32-ppc.c (struct ppc_elf_link_hash_table): Add do_tls_opt.
(ppc_elf_tls_optimize): Set it.
(ppc_elf_relocate_section): Nop addis on TPREL16_HA, and convert
insn on TPREL16_LO relocs to use r2 when addis would add zero.
gold/
* powerpc.cc (Target_powerpc::Relocate::relocate): Nop addis on
TPREL16_HA, and convert insn on TPREL16_LO and TPREL16_LO_DS
relocs to use r2/r13 when addis would add zero.
ld/
* testsuite/ld-powerpc/tls.s: Add calls with tls markers.
* testsuite/ld-powerpc/tls32.s: Likewise.
* testsuite/ld-powerpc/powerpc.exp: Run tls marker tests.
* testsuite/ld-powerpc/tls.d: Adjust for TPREL16_HA/LO optimization.
* testsuite/ld-powerpc/tlsexe.d: Likewise.
* testsuite/ld-powerpc/tlsexetoc.d: Likewise.
* testsuite/ld-powerpc/tlsld.d: Likewise.
* testsuite/ld-powerpc/tlsmark.d: Likewise.
* testsuite/ld-powerpc/tlsopt4.d: Likewise.
* testsuite/ld-powerpc/tlstoc.d: Likewise.
There isn't a good reason for ld.bfd to behave differently from gold
in the code generated by TLS GD/LD to LE optimization.
bfd/
* elf64-ppc.c (ppc64_elf_relocate_section): When optimizing
__tls_get_addr call sequences to LE, don't move the addi down
to the nop. Replace the bl with addi and leave the nop alone.
ld/
* testsuite/ld-powerpc/tls.d: Update.
* testsuite/ld-powerpc/tlsexe.d: Update.
* testsuite/ld-powerpc/tlsexetoc.d: Update.
* testsuite/ld-powerpc/tlsld.d: Update.
* testsuite/ld-powerpc/tlsmark.d: Update.
* testsuite/ld-powerpc/tlsopt4.d: Update.
* testsuite/ld-powerpc/tlstoc.d: Update.
We shpouldn't generate copy relocation to resolve reference to protected
data symbol defined in shared object with the NO_COPY_ON_PROTECTED
property. This patch adds a bit to elf_obj_tdata as well as
elf_i386_link_hash_entry and elf_x86_64_link_hash_entry to track the bfd
with the NO_COPY_ON_PROTECTED property as well as protected symbol
defined in shared object. extern_protected_data is set to FALSE if any
input relocatable file contains the NO_COPY_ON_PROTECTED property.
bfd/
PR ld/21997
* elf-bfd.h (elf_obj_tdata): Use ENUM_BITFIELD on object_id,
dyn_lib_class and has_gnu_symbols. Change bad_symtab to bitfield.
Add a has_no_copy_on_protected bitfield.
(elf_has_no_copy_on_protected): New.
* elf-properties.c (_bfd_elf_parse_gnu_properties): Set
elf_has_no_copy_on_protected for GNU_PROPERTY_NO_COPY_ON_PROTECTED.
(elf_merge_gnu_property_list): Likewise.
(_bfd_elf_link_setup_gnu_properties): Set extern_protected_data
to FALSE for elf_has_no_copy_on_protected.
* elf32-i386.c (SYMBOL_NO_COPYRELOC): New.
(elf_i386_link_hash_entry): Add def_protected.
(elf_i386_adjust_dynamic_symbol): Also check SYMBOL_NO_COPYRELOC
when checking info->nocopyreloc.
(elf_i386_link_setup_gnu_properties): Don't set
extern_protected_data here.
(elf_i386_merge_symbol_attribute): New function.
(elf_backend_merge_symbol_attribute): New.
* elf64-x86-64.c (SYMBOL_NO_COPYRELOC): New.
(elf_x86_64_link_hash_entry): Add def_protected.
(elf_x86_64_need_pic): Report protected symbol for def_protected.
(elf_x86_64_adjust_dynamic_symbol): Also check SYMBOL_NO_COPYRELOC
when checking info->nocopyreloc.
(elf_x86_64_relocate_section): Also check for R_X86_64_PC32
relocation run-time overflow and unresolvable R_X86_64_32S
relocation against protected data symbol defined in shared object
with GNU_PROPERTY_NO_COPY_ON_PROTECTED.
(elf_x86_64_link_setup_gnu_properties): Don't set
extern_protected_data here.
(elf_x86_64_merge_symbol_attribute): New function.
(elf_backend_merge_symbol_attribute): New.
ld/
PR ld/21997
* testsuite/ld-i386/i386.exp: Run PR ld/21997 tests.
* testsuite/ld-x86-64/x86-64.exp: Likewise.
* testsuite/ld-i386/pr21997-1a.S: New file.
* testsuite/ld-i386/pr21997-1b.c: Likewise.
* testsuite/ld-i386/pr21997-1c.S: Likewise.
* testsuite/ld-x86-64/pr21997-1a.S: Likewise.
* testsuite/ld-x86-64/pr21997-1a.err: Likewise.
* testsuite/ld-x86-64/pr21997-1b.c: Likewise.
* testsuite/ld-x86-64/pr21997-1b.err: Likewise.
* testsuite/ld-x86-64/pr21997-1c.c: Likewise.
Replace regexp with string match to workaround dejagnu 1.4.4 which
complains:
ERROR: bad switch "-fPIE": must be -all, -about, -indices, -inline, -expanded, -line, -linestop, -lineanchor, -nocase, -start, or --
* testsuite/ld-i386/i386.exp (undefined_weak): Replace regexp
with string match.
* testsuite/ld-x86-64/x86-64.exp (undefined_weak): Likewise.
Run pr22001-1b on x32 since R_X86_64_32S relocation can be turned into
dynamic R_X86_64_32 relocation which won't overflow on x32.
* testsuite/ld-x86-64/x86-64.exp: Run pr22001-1b on x32.
On x86-64, when -z nocopyreloc is used to build executable, relocations
may overflow at run-time or may not be resolved without PIC. This patch
checks these conditions and issues an error with suggestion for -fPIC.
bfd/
PR ld/22001
* elf64-x86-64.c (elf_x86_64_relocate_section): Check for
R_X86_64_PC32 relocation run-time overflow and unresolvable
R_X86_64_32S relocation with -z nocopyreloc.
ld/
PR ld/22001
* testsuite/ld-i386/i386.exp: Run -z nocopyreloc tests.
* testsuite/ld-x86-64/x86-64.exp: Likewise.
* ld/testsuite/ld-i386/pr22001-1a.c: New file.
* ld/testsuite/ld-i386/pr22001-1b.c: Likewise.
* ld/testsuite/ld-i386/pr22001-1c.S: Likewise.
* ld/testsuite/ld-x86-64/pr22001-1a.c: Likewise.
* ld/testsuite/ld-x86-64/pr22001-1a.err: Likewise.
* ld/testsuite/ld-x86-64/pr22001-1b.c: Likewise.
* ld/testsuite/ld-x86-64/pr22001-1b.err: Likewise.
* ld/testsuite/ld-x86-64/pr22001-1c.c: Likewise.
When processing an orphan section we first call lang_place_orphans, this
function handles a few sections for which the behaviour is known COMMON
sections, or sections marked as SEC_EXCLUDE.
Any orphans that are not handled in lang_place_orphans are passed on to
ldlang_place_orphan, this is where we decide where to put the orphan,
and then call lang_add_section to perform the actual orphan placement.
We previously had a larger set of checks at the start of the function
lang_add_section to discard some sections that we _knew_ should not be
added into the output file, this was where .group sections (in a final
link) and .debug* sections (with --strip-debug) were dropped.
The problem with dropping these sections at the lang_add_section stage
is that a user might also be using --orphan-handling=error to prevent
orphans. If they are then they should not be get errors about sections
that we know will be discarded, and which are not mentioned in the
linker script.
The solution proposed in this patch is to move the "will this section be
discarded" check into a separate function, and use this in
lang_place_orphans to have the early discard phase discard sections that
we know should not be included in the output file.
ld/ChangeLog:
PR 21961
* ldlang.c (lang_discard_section_p): New function.
(lang_add_section): Checks moved out into new function, which is
now called.
(lang_place_orphans): Call lang_discard_section_p instead of
duplicating some of the checks from lang_add_section.
* testsuite/ld-elf/orphan-11.d: New file.
* testsuite/ld-elf/orphan-11.ld: New file.
* testsuite/ld-elf/orphan-11.s: New file.
* testsuite/ld-elf/orphan-12.d: New file.
* testsuite/ld-elf/orphan-12.s: New file.
git commit 46434633f9 said
Make undefined symbols in allocate_dynrelocs dynamic
..if they have dynamic relocs. An undefined symbol in a PIC object
that finds no definition ought to become dynamic in order to support
--allow-shlib-undefined, but there is nothing in the generic ELF
linker code to do this if the reference isn't via the GOT or PLT. (An
initialized function pointer is an example.) So it falls to backend
code to ensure the symbol is made dynamic.
The above isn't true. Undefined symbols are indeed made dynamic for
shared libraries. Undefined symbols are not automatically made
dynamic in executables, and it was the PIE case that triggered an
internal consistency assertion on powerpc64. I guess I could have
jumped the other way when fixing PR21988, and not created a dynamic
reloc. Either way, it doesn't matter a great deal. We're going to
get an error on strong undefined symbols in an executable anyway, and
broken binaries if you try to use --unresolved-symbols=ignore-all to
disable the error.
* testsuite/ld-undefined/fundef.s: New test.
* testsuite/ld-undefined/undefined.exp: Test that undefined
symbols in shared libraries are made dynamic.
Add '\' before -- to workaround dejagnu 1.4.4 which complains:
ERROR: bad switch "--no-define-common may not be used without -shared":...
* testsuite/ld-elf/pr21903c.d: Add '\' before --.
* testsuite/ld-elf/pr21903d.d: Likewise.
* testsuite/ld-elf/pr21903e.d: Likewise.
-fPIC may be needed to compile PIE or PDE objects, not just shared
object.
bfd/
* elf64-x86-64.c (elf_x86_64_need_pic): Add an argument for
bfd_link_info. Report shared, PIE or PDE object based on
bfd_link_info.
(elf_x86_64_check_relocs): Update elf_x86_64_need_pic call.
(elf_x86_64_relocate_section): Likewise.
ld/
* testsuite/ld-x86-64/pie2.d: Updated.
* testsuite/ld-x86-64/pr19719.d: Likewise.
* testsuite/ld-x86-64/pr19807-2a.d: Likewise.
* testsuite/ld-x86-64/pr19969.d: Likewise.
When GNU_PROPERTY_NO_COPY_ON_PROTECTED is set, it indicates that there
are no copy relocations against protected data symbols. When linker
sees GNU_PROPERTY_NO_COPY_ON_PROTECTED on any input relocatable file,
it sets extern_protected_data to FALSE.
bfd/
* elf32-i386.c (elf_i386_link_setup_gnu_properties): Set
extern_protected_data to FALSE if GNU_PROPERTY_NO_COPY_ON_PROTECTED
is set on any input relocatable file.
* elf64-x86-64.c (elf_x86_64_link_setup_gnu_properties): Likewise.
ld/
* testsuite/ld-i386/i386.exp: Run protected7.
* testsuite/ld-i386/protected7.d: New file.
* testsuite/ld-i386/protected7.s: Likewise.
* testsuite/ld-x86-64/protected8.d: Likewise.
* testsuite/ld-x86-64/protected8.s: Likewise.
* testsuite/ld-x86-64/x86-64.exp: Run protected8.
Until all .eh_frame sections have been edited we don't know their
sizes. So it isn't possible to properly decide whether a non-empty
.eh_frame section follows a given section until editing is complete.
bfd/
PR 21441
* elf-eh-frame.c (_bfd_elf_discard_section_eh_frame): Don't add
alignment padding here.
* elflink.c (bfd_elf_discard_info): Add .eh_frame padding here
in a reverse pass over sections.
ld/
PR 21441
* testsuite/ld-x86-64/pr21038a.d: Adjust.
* testsuite/ld-x86-64/pr21038a-now.d: Adjust.
OUTPUT_FORMAT in linker script of PR ld/21884 tests is needed to trigger
PR ld/21884. Restore linker scripts and add nacl versions of the same
tests.
* testsuite/ld-i386/i386.exp: Run pr21884-nacl.
* testsuite/ld-x86-64/x86-64.exp: Likewise.
* testsuite/ld-i386/pr21884.d: Don't run on nacl targets.
* testsuite/ld-x86-64/pr21884.d: Likewise.
* testsuite/ld-i386/pr21884.t: Revert the last change.
* testsuite/ld-x86-64/pr21884.t: Likewise.
* testsuite/ld-i386/pr21884-nacl.d: New file.
* testsuite/ld-i386/pr21884-nacl.t: Likewise.
* testsuite/ld-x86-64/pr21884-nacl.d: Likewise.
* testsuite/ld-x86-64/pr21884-nacl.t: Likewise.
OUTPUT_FORMAT in the script results in "./ld-new: target elf32-i386
not found" and similarly for the x86_64 test.
* testsuite/ld-i386/pr21884.t: Remove unneeded format, arch and entry.
* testsuite/ld-x86-64/pr21884.t: Likewise.
* emultempl/elf32.em (handle_option): Accept the -z globalaudit
command line option.
* lexsup.c (elf_static_list_options): Add -z globalaudit.
* ld.texinfo: Document the support for the new command line
option.
* NEWS: Mention the new feature.
* testsuite/ld-elf/audit.exp: Add a test of the -z globalaudit
command line option.
* testsuite/ld-elf/globalaudit.rd: New file: Expected output from
readelf.
When --enable-shared is used, ./ld-new may be a shell script and the
real linker is .libs/ld-new. We should check .libs/ld-new first.
* testsuite/config/default.exp (LD_CLASS): Check .libs/ld-new
for linker first.
PR ld/17618 test requires 64-bit linker to run. Set LD_CLASS to "64bit"
for 64-bit ELF linker and run PR ld/17618 test only if $LD_CLASS is
"64bit". More checks can be added to support 64-bit linkers in non-ELF
format.
* testsuite/config/default.exp (LD_CLASS): New. Set to "64bit"
for 64-bit ELF linker.
* testsuite/ld-x86-64/pr17618.d (#notarget): Removed.
* testsuite/ld-x86-64/x86-64.exp: Run pr17618 only for 64-bit
linker.
Require GCC 5 or above for 3 x86 tests which fail with GCC 4.9.3.
PR ld/21924
* testsuite/ld-i386/i386.exp: Require GCC 5 or above for
"weakundef1 with PIE" test.
* testsuite/ld-x86-64/tls.exp: Require GCC 5 or above for
"tlsdesc1" and "tlsdesc1 with PIE" tests.
These were discovered when running --hash-style=gnu as default, the
previous batch being --hash-style=both.
* testsuite/ld-aarch64/ifunc-1-local.d: Run ld with --hash-style=sysv.
* testsuite/ld-aarch64/ifunc-2-local.d: Likewise.
* testsuite/ld-aarch64/ifunc-3a.d: Likewise.
* testsuite/ld-frv/fdpic-pie-1.d: Likewise.
* testsuite/ld-frv/fdpic-pie-2.d: Likewise.
* testsuite/ld-frv/fdpic-pie-7.d: Likewise.
* testsuite/ld-frv/fdpic-pie-8.d: Likewise.
* testsuite/ld-arm/arm-elf.exp: Add --hash-style=sysv to "Using
Thumb lib by another lib" test's ld options.
* testsuite/ld-elf/note-3.l: Match .gnu.hash.
* testsuite/ld-elf/note-3.t: Add .gnu.hash output section.
When --no-define-common is used to build shared library, treat common
symbol as undefined so that common symbols that are referenced from a
shared library to be assigned addresses only in the main program. This
eliminates the unused duplicate space in the shared library, and also
prevents any possible confusion over resolving to the wrong duplicate
when there are many dynamic modules with specialized search paths for
runtime symbol resolution.
--no-define-common is only allowed when building a shared library.
bfd/
PR ld/21903:
* elflink.c (elf_link_add_object_symbols): Treat common symbol
as undefined for --no-define-common.
include/
PR ld/21903:
* bfdlink.h (bfd_link_info): Add inhibit_common_definition.
ld/
PR ld/21903:
* ld.h (command_line): Remove inhibit_common_definition.
* ldgram.y: Replace command_line.inhibit_common_definition with
link_info.inhibit_common_definition.
* ldlang.c (lang_common): Likewise.
* lexsup.c (parse_args): Likewise.
* ldmain.c (main): Only allow --no-define-common with -shared.
* testsuite/ld-elf/pr21903.s: New file.
* testsuite/ld-elf/pr21903a.d: Likewise.
* testsuite/ld-elf/pr21903b.d: Likewise.
* testsuite/ld-elf/pr21903c.d: Likewise.
* testsuite/ld-elf/pr21903d.d: Likewise.
* testsuite/ld-elf/pr21903e.d: Likewise.
The base bfd_link_hash_table works fine here, the only thing to watch
out for is to only set elf_gp if the output is ELF.
bfd/
* elf32-hppa.c (elf32_hppa_set_gp): Don't require an
hppa_link_hash_table.
ld/
* testsuite/ld-unique/pr21529.d: Don't xfail hppa.
"ld -d" assigns space to common symbols even if a relocatable output
file is specified (with '-r').
PR ld/21904
* testsuite/ld-elf/pr21904.d: New file.
* testsuite/ld-elf/pr21904.s: Likewise.
PR ld/21884
* testsuite/ld-elf/pr21884.d: Add AVR, HPPA, IA64, M68HC1x and
SCORE to list of targets not supporting file format changes during
linking.
* testsuite/ld-unique/pr21529.d: Likewise.
* emultempl/avrelf.em (_before_allocation): Skip for non-ELF
output formats.
(avr_elf_create_output_section_statements): Fail if the output
format is not ELF.
(avr_finish): Do not access the ELF header in non-ELF format
output bfds.
* emultempl/m68hc1xelf.em (_before_allocation): Skip for non-ELF
output formats.
(m68hc11elf_create_output_section_statements): Fail if the putput
format is not ELF.
(m68hc11elf_after_allocation): Skip for non-ELF output formats.
* ldgram.y (ldgram_had_keep): Make static.
(ldgram_vers_current_lang): Likewise.
(filename_spec): New rule.
(input_section_spec_no_keep): Use filename_spec.
(wildcard_maybe_exclude): New rule.
(wildcard_spec): Rename to...
(section_name_spec): ...this.
(section_NAME_list): Rename to...
(section_name_list): ...this.
(section_name_spec): Simplifiy and use wildcard_maybe_exclude.
* ldlang.c (placed_commons): Delete.
(lang_add_wild): No longer set placed_commons.
(print_wild_statement): Use full names for SORT specifiers.
* testsuite/ld-scripts/align.exp: Run new tests.
* testsuite/ld-scripts/align3.d: New file.
* testsuite/ld-scripts/align3.t: New file.
* testsuite/ld-scripts/align4.d: New file.
* testsuite/ld-scripts/align4.t: New file.
* testsuite/ld-scripts/align5.d: New file.
* testsuite/ld-scripts/align5.t: New file.
* testsuite/ld-scripts/exclude-file-5.d: New file.
* testsuite/ld-scripts/exclude-file-5.map: New file.
* testsuite/ld-scripts/exclude-file-5.t: New file.
* testsuite/ld-scripts/exclude-file-6.d: New file.
* testsuite/ld-scripts/exclude-file-6.map: New file.
* testsuite/ld-scripts/exclude-file-6.t: New file.
* NEWS: Mention the changes.
Since the __tls_get_addr_opt stub saves LR and makes a call, eh_frame
info should be generated to describe how to unwind through the stub.
The patch also changes the way the backend iterates over stubs, from
looking at all sections in stub_bfd to which all dynamic sections are
attached as well, to iterating over the group list, which gets just
the stub sections. Most binaries will have just one or two stub
groups, so this is a little faster.
bfd/
* elf64-ppc.c (struct map_stub): Add tls_get_addr_opt_bctrl.
(stub_eh_frame_size): New function.
(ppc_size_one_stub): Set group tls_get_addr_opt_bctrl.
(group_sections): Init group tls_get_addr_opt_bctrl.
(ppc64_elf_size_stubs): Update sizing and initialization of
.eh_frame. Iteration over stubs via group list.
(ppc64_elf_build_stubs): Iterate over stubs via group list.
(ppc64_elf_finish_dynamic_sections): Update finalization of
.eh_frame.
ld/
* testsuite/ld-powerpc/tlsopt5.s: Add cfi.
* testsuite/ld-powerpc/tlsopt5.d: Update.
* testsuite/ld-powerpc/tlsopt5.wf: New file.
* testsuite/ld-powerpc/powerpc.exp: Perform new tlsopt5 test.
A set of small patches that are fixing big-endian observed errors.
ld/
2017-07-24 Claudiu Zissulescu <claziss@synopsys.com>
* testsuite/ld-arc/jli-overflow.d: Force testing for little
endian.
* testsuite/ld-arc/tls_gd-01.d: Fix string to match bigendian
systems.
* testsuite/ld-arc/tls_ie-01.d: Fix test for bigendian systems.
Complement commit ffe54b3798 ("Pad sections according to current
script FILL.") and add a FILL script statement test for targets that
impose the minimum alignment of more than 2**2 for the `.text' section.
These targets include IA-64 targets, MIPS targets other than bare-metal
ELF and VxWorks, TILE-Gx targets, TILEPro targets and X86-64 PE targets.
Use the `notarget' tag for configuration triplets that are incompatible
with the new test, but are supported by the existing FILL test, and
`xfail' for ones that have issues due to section alignment or padding
with both tests. Make a complementary change to the existing FILL test,
removing the following test issues:
arm-epoc-pe -FAIL: ld-scripts/fill
mips-elf -XPASS: ld-scripts/fill
mips-img-elf -XPASS: ld-scripts/fill
mips-mti-elf -XPASS: ld-scripts/fill
mips-sde-elf -XPASS: ld-scripts/fill
mips-vxworks -XPASS: ld-scripts/fill
mipsel-elf -XPASS: ld-scripts/fill
mipsel-img-elf -XPASS: ld-scripts/fill
mipsel-mti-elf -XPASS: ld-scripts/fill
mipsel-vxworks -XPASS: ld-scripts/fill
mipsisa32-elf -XPASS: ld-scripts/fill
mipsisa32el-elf -XPASS: ld-scripts/fill
mipsisa64-elf -XPASS: ld-scripts/fill
mipsisa64el-elf -XPASS: ld-scripts/fill
tilegx-linux -FAIL: ld-scripts/fill
tilepro-elf -FAIL: ld-scripts/fill
tx39-elf -XPASS: ld-scripts/fill
ld/
* testsuite/ld-scripts/fill.d: Adjust `xfail' entries. Add
`notarget' entries. Update comments.
* testsuite/ld-scripts/fill16.d: New test.
* testsuite/ld-scripts/fill16_0.s: New test source.
* testsuite/ld-scripts/fill16_1.s: New test source.
* testsuite/ld-scripts/fill16_2.s: New test source.
* testsuite/ld-scripts/data.exp: Run the new test.
The following relocation types were added to GCC/binutils:
ARC_JLI_SECTOFF is a relocation type in Metaware that is now used by
GCC as well to adjust the index of function calls to functions with
attribute jli_call_always.
bfd/
2017-07-19 Claudiu Zissulescu <claziss@synopsys.com>
John Eric Martin <John.Martin@emmicro-us.com>
* bfd-in2.h: Regenerate.
* libbfd.h: Regenerate.
* elf32-arc.c (JLI): Define.
* reloc.c: Add JLI relocations.
gas/
2017-07-19 Claudiu Zissulescu <claziss@synopsys.com>
* testsuite/gas/arc/jli-1.d: New file.
* testsuite/gas/arc/jli-1.s: Likewise.
* testsuite/gas/arc/taux.d: Update for jli_base.
include/
2017-07-19 Claudiu Zissulescu <claziss@synopsys.com>
John Eric Martin <John.Martin@emmicro-us.com>
* elf/arc-reloc.def: Add JLI relocs howto.
* opcode/arc-func.h (replace_jli): New function.
ld/
2017-07-19 Claudiu Zissulescu <claziss@synopsys.com>
John Eric Martin <John.Martin@emmicro-us.com>
* emulparams/arcelf.sh (JLI_START_TABLE): Define.
* scripttempl/elfarc.sc: Handle jlitab section.
* scripttempl/elfarcv2.sc: Likewise.
* testsuite/ld-arc/arc.exp: Add JLI test.
* testsuite/ld-arc/jli-script.ld: New file.
* testsuite/ld-arc/jli-simple.dd: Likewise.
* testsuite/ld-arc/jli-simple.rd: Likewise.
* testsuite/ld-arc/jli-simple.s: Likewise.
* testsuite/ld/testsuite/ld-arc/jli-overflow.s: Likewise.
* testsuite/ld/testsuite/ld-arc/jli-overflow.d: Likewise.
* testsuite/ld/testsuite/ld-arc/jli-overflow.err: Likewise.
opcode/
2017-07-19 Claudiu Zissulescu <claziss@synopsys.com>
John Eric Martin <John.Martin@emmicro-us.com>
* arc-opc.c (UIMM10_6_S_JLIOFF): Define.
(UIMM3_23): Adjust accordingly.
* arc-regs.h: Add/correct jli_base register.
* arc-tbl.h (jli_s): Likewise.
Complement commit d345186d05 ("Check if GNU_RELRO segment is is
generated") and exclude the presence of a `.got' section from implying
the creation of a GNU_RELRO segment for targets which place the section
along with small data, and therefore as it stands cannot have the
section assigned to GNU_RELRO. This is because we currently only
support a single GNU_RELRO segment and we place it at the beginning of
regular data which is then separated from small data by read-write data.
Currently the list of such targets consists of Alpha, Linux HPPA, NetBSD
HPPA, OpenBSD HPPA, Meta, MIPS, Nios II, OpenRISC 1000, RISC-V, SH and
X86-64, as determined by examining default linker scripts produced in a
`--enable-targets=all' build for those that have DATA_SEGMENT_RELRO_END
set and `.got' placed beyond. These targets do not set NO_SMALL_DATA or
DATA_GOT in their respective files in ld/emulparams/*, hovever checking
for the absence of these settings on its own is not very feasible due to
the structure of these files and the lack of support for GNU_RELRO by
some targets in the first place.
Add a separate control for `.got.plt' which does get placed in GNU_RELRO
on MIPS targets even though `.got' does not.
ld/
* testsuite/ld-elf/binutils.exp (binutils_test): Make the
expectation for `.got' in GNU_RELRO segment target-specific.
Handle `.got.plt' separately.
Complement commit d345186d05 ("Check if GNU_RELRO segment is is
generated") and exclude the presence of a `.dynamic' section from
implying the creation of a GNU_RELRO segment for targets which place the
section in the (read-only) text segment, and therefore cannot have the
section assigned to GNU_RELRO and neither it would make sense.
Currently the list of such targets consists of 64-bit HPPA and
non-VxWorks MIPS targets, as determined by looking for TEXT_DYNAMIC
being set across ld/emulparams/* and then verified by examining default
linker scripts produced in a `--enable-targets=all' build.
ld/
* testsuite/ld-elf/binutils.exp (binutils_test): Make the
expectation for `.dynamic' in GNU_RELRO segment target-specific.
When building an executable, undefined symbols are error and undefined
weak symbols are resolved to zero. We only need to check PIC for
building a shared library.
bfd/
PR ld/21782
* elf64-x86-64.c (elf_x86_64_relocate_section): Limit PIC check
to shared library.
ld/
PR ld/21782
* testsuite/ld-x86-64/pie3-nacl.d: New file.
* testsuite/ld-x86-64/pie3.d: Likewise.
* testsuite/ld-x86-64/pie3.s: Likewise.
* testsuite/ld-x86-64/x86-64.exp: Run pie3 and pie3-nacl.
These all were odd in that they used r13 as the GOT pointer. That
didn't matter for the purpose of testing, but would never occur in
practice. Also, the tlsopt5 tests could have their global dynamic
sequences optimized to initial exec, so link with -shared.
* testsuite/ld-powerpc/powerpc.exp: Add -shared to tlsop5 tests.
* testsuite/ld-powerpc/tlsopt5.d: Adjust.
* testsuite/ld-powerpc/tlsopt1_32.s: Use r30 as GOT pointer.
* testsuite/ld-powerpc/tlsopt2_32.s: Likewise.
* testsuite/ld-powerpc/tlsopt3_32.s: Likewise.
* testsuite/ld-powerpc/tlsopt4_32.s: Likewise.
* testsuite/ld-powerpc/tlsopt5_32.s: Rewrite.
* testsuite/ld-powerpc/tlsopt1_32.d: Adjust.
* testsuite/ld-powerpc/tlsopt2_32.d: Adjust.
* testsuite/ld-powerpc/tlsopt3_32.d: Adjust.
* testsuite/ld-powerpc/tlsopt5_32.d: Adjust.
Complement commit d940949881 ("Add a testcase for PR ld/21529") and
use a linker script to prevent an inter-segment gap arranged by the
default linker script associated with some targets such as `rx-elf':
$ ld -e main -o tmpdir/dump-elf tmpdir/pr21529.o
$ readelf -l tmpdir/dump-elf
Elf file type is EXEC (Executable file)
Entry point 0x10000004
There are 2 program headers, starting at offset 52
Program Headers:
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
LOAD 0x001000 0x10000000 0x10000000 0x00008 0x00008 R E 0x1000
LOAD 0x001ffc 0xbffffffc 0xbffffffc 0x00004 0x00004 RW 0x1000
Section to Segment mapping:
Segment Sections...
00 .text
01 .stack
$
and converted to padding with the use of the binary BFD for output from
producing unreasonably large files.
ld/
* testsuite/ld-unique/pr21529.ld: New test linker script.
* testsuite/ld-unique/pr21529.d: Use it.
On Fedora 26, "g++ -dumpversion" displays "7", instead of "7.1.1".
Update selective.exp to support single digit GCC version. Also
remove duplicated [4-9] version check.
* testsuite/ld-selective/selective.exp: Support single digit
GCC version.
Fix a commit 861fb55ab5 ("Defer allocation of R_MIPS_REL32 GOT
slots"), <https://sourceware.org/ml/binutils/2008-08/msg00096.html>,
regression and a more recent:
FAIL: ld-unique/pr21529
new LD test case failure, observed with all the relevant MIPS targets
whenever the linker is invoked with one or more ELF inputs and the
output format set to `binary'.
The culprit is a segmentation fault caused in `mips_before_allocation'
by a null pointer dereference, where an attempt is made to access the
ELF file header's `e_flags' member, for the purpose of determining
whether to produce a PLT and copy relocations, without first checking
that the output BFD is ELF. The `e_flags' member is stored in BFD's
private data pointed to by `tdep', which in the case of the `binary' BFD
is null, causing the segmentation fault. With other non-ELF BFDs such
as SREC `tdep' is not null and consequently no crash may happen and in
that case random data will be interpreted as it was `e_flags'.
Disable the access to `e_flags' then and all the associated checks and
consequently never produce a PLT and copy relocations if output is not a
MIPS ELF BFD, matching `_bfd_mips_elf_merge_private_bfd_data' that does
not process `e_flags' in that case either and therefore does not let us
decide here anyway if all the input objects included in the link are
suitable for use with a PLT and copy relocations.
ld/
* emultempl/mipself.em (mips_before_allocation): Avoid ELF
processing if not MIPS ELF.
* testsuite/ld-mips-elf/binary.d: New test.
* testsuite/ld-mips-elf/binary.ld: New test linker script.
* testsuite/ld-mips-elf/binary.s: New test source.
* testsuite/ld-mips-elf/mips-elf.exp: Run the new test.
Use frag symbols with a non-zero offset directly in `fix_new_exp' calls
made in PIC branch relaxation. There is no need here to make a helper
symbol to hold the result of a `symbol+offset' calculation requested as
only branches to local symbols are relaxed and in this case the LO16
part of the PIC address load sequence will have the offset accounted for
in calculation against the local GOT entry retrieved as the GOT16 high
part. Consequently actual code produed is identical whether a helper
symbol is used or the original `symbol+offset' expression used directly.
Verify that this is indeed the case with GAS and LD tests.
gas/
* config/tc-mips.c (md_convert_frag): Don't make a helper
expression symbol for `fix_new_exp' called with a non-zero
offset.
* testsuite/gas/mips/relax-offset.d: New test.
* testsuite/gas/mips/mips1@relax-offset.d: New test.
* testsuite/gas/mips/r3000@relax-offset.d: New test.
* testsuite/gas/mips/r3900@relax-offset.d: New test.
* testsuite/gas/mips/micromips@relax-offset.d: New test.
* testsuite/gas/mips/relax-offset.l: New stderr output.
* testsuite/gas/mips/relax-offset.s: New test source.
* testsuite/gas/mips/mips.exp: Run the new tests.
ld/
* testsuite/ld-mips-elf/relax-offset.dd: New test.
* testsuite/ld-mips-elf/relax-offset.gd: New test.
* testsuite/ld-mips-elf/relax-offset-umips.dd: New test.
* testsuite/ld-mips-elf/relax-offset-umips.gd: New test.
* testsuite/ld-mips-elf/relax-offset.ld: New test linker script.
* testsuite/ld-mips-elf/mips-elf.exp: Run the new tests.
(prune_warnings): New temporary procedure.
Add GAS tests to verify Imagination interAptiv MR2 instruction assembly,
disassembly and ELF object file flags.
Add LD tests to verify Imagination interAptiv MR2 ELF object file
link-time compatibility and flag merging/propagation. Use the framework
enhancement added with commit 7575e6a752 ("MIPS/LD/testsuite:
mips-elf-flags: Add MIPS ABI Flags handling").
gas/
* testsuite/gas/mips/elf_mach_interaptiv-mr2.d: New test.
* testsuite/gas/mips/save-err.d: New test.
* testsuite/gas/mips/save-sub.d: New test.
* testsuite/gas/mips/interaptiv-mr2@save.d: New test.
* testsuite/gas/mips/mips1@save-sub.d: New test.
* testsuite/gas/mips/mips2@save-sub.d: New test.
* testsuite/gas/mips/mips3@save-sub.d: New test.
* testsuite/gas/mips/mips4@save-sub.d: New test.
* testsuite/gas/mips/mips5@save-sub.d: New test.
* testsuite/gas/mips/mips32@save-sub.d: New test.
* testsuite/gas/mips/mips64@save-sub.d: New test.
* testsuite/gas/mips/mips16@save-sub.d: New test.
* testsuite/gas/mips/mips16e@save-sub.d: New test.
* testsuite/gas/mips/r3000@save-sub.d: New test.
* testsuite/gas/mips/r3900@save-sub.d: New test.
* testsuite/gas/mips/r4000@save-sub.d: New test.
* testsuite/gas/mips/vr5400@save-sub.d: New test.
* testsuite/gas/mips/interaptiv-mr2@save-sub.d: New test.
* testsuite/gas/mips/sb1@save-sub.d: New test.
* testsuite/gas/mips/octeon2@save-sub.d: New test.
* testsuite/gas/mips/octeon3@save-sub.d: New test.
* testsuite/gas/mips/xlr@save-sub.d: New test.
* testsuite/gas/mips/r5900@save-sub.d: New test.
* testsuite/gas/mips/mips16e2-copy.d: New test.
* testsuite/gas/mips/mips16e2-copy-err.d: New test.
* testsuite/gas/mips/save.d: Remove `MIPS16e' from the `name'
option. Adjust for trailing padding change.
* testsuite/gas/mips/mips16e2-copy-err.l: New stderr output.
* testsuite/gas/mips/save-sub.s: New test source.
* testsuite/gas/mips/mips16e2-copy.s: New test source.
* testsuite/gas/mips/mips16e2-copy-err.s: New test source.
* testsuite/gas/mips/save.s: Update description, change trailing
padding and remove trailing white space.
* testsuite/gas/mips/mips.exp: Expand `save' and `save-err'
tests across the regular MIPS interAptiv MR2 architecture. Run
the new tests.
ld/
* testsuite/ld-mips-elf/mips-elf-flags.exp: Add interAptiv MR2
tests.
Fix incorrect adjustment of diff relocs when relaxing, and thus the
resulting source line to address mismatch.
Fix two issues when adjusting diff relocs to account for
deleted bytes.
1. Don't adjust the difference if the end address is the shrinked
insn's address i.e. use < instead of <=. The relaxation code deletes
count bytes from or after shrinked_insn_address, so the difference
between start_address and end_address should remain unchanged in this
case.
2. Adjust the reloc addend if the difference is to be adjusted and
symval + reloc addend is past the shrinked insn address. This is
because for a typical sym1 - sym2 diff reloc, sym1 is .text +
irel->r_addend, and the addend should be reduced to account for the
shrinked insn.
For example, assume the reloc value is .text + 0x8 with .text = 0, the
diff value in the object file = 0x4, and shrinked_insn_address = 0x4
with count = 0x2. Then the existing code writes 0x2 into the object
file to account for the deleted bytes, as shrinked_insn_address lies
between 0x8 and 0x8 - 0x4 = 0x4, but leaves the addend as is. The next
time the reloc is looked at, the code sees if a shrinked_insn_address
lies between 0x8 and 0x8 - 0x2 = 0x6, instead of 0x6 and 0x4. If there
happens to be one, then the diff value in the object file ends up
getting reduced again.
bfd/
2017-06-27 Senthil Kumar Selvaraj <senthil_kumar.selvaraj@atmel.com>
PR ld/13402
* elf32-avr.c (elf32_avr_adjust_diff_reloc_value): Adjust
reloc addend if necessary. Adjust diff only if
shrinked_insn_address < end_address.
ld/
2017-06-27 Senthil Kumar Selvaraj <senthil_kumar.selvaraj@atmel.com>
PR ld/13402
* testsuite/ld-avr/pr13402.d: New test.
* testsuite/ld-avr/pr13402.s: New test.
Complement commit 351cdf24d2 ("[MIPS] Implement O32 FPXX, FP64 and
FP64A ABI extensions") and add optional MIPS ABI Flags handling to
`good_combination' in the `mips-elf-flags.exp' test script. This lets
callers of this procedure request to examine MIPS ABI Flags in addition
to the `e_flags' member of the ELF file header so as to verify that
flags are merged correctly by LD. The presence of further arguments
triggers this verification, in which case `readelf' is called with the
`-A' option additionally specified and the ISA member, the ISA Extension
member and the ASEs member will be examined as per the arguments.
Unlike with `readelf -h' output consider a failure to retrieve the
member requested a test case failure rather than an unresolved result.
This is because unlike with the `e_flags' member of the ELF file header
which is always there in any valid ELF file the MIPS ABI Flags structure
is optional in LD output and the absence of this structure when expected
is surely a bug in LD.
ld/
* testsuite/ld-mips-elf/mips-elf-flags.exp (good_combination):
Add an `args' final argument and examination code for `readelf
-A' output. Update procedure description accordingly.
For ELF file header flag verification done in `good_combination' in the
`mips-elf-flags.exp' test script the version of `readelf' built along
with the rest of binutils has to be used rather than any such executable
already present on the build system, so that flags recognized by the
tool match those supported by LD being tested. Use `remote_exec' as
elsewhere in the LD test framework and also with GAS and LD used here,
getting and arranging for extra reporting of `readelf' calls included in
test logs on this occasion as well.
ld/
* testsuite/ld-mips-elf/mips-elf-flags.exp (good_combination):
Use `remote_exec' to call `readelf'. Log the command issued.
For the purpose of link-time object compatibility handling verification
code in the `good_combination' procedure from the `mips-elf-flags.exp'
test script only examines the `e_flags' member of the ELF file header
and ignores data from any ELF program or section headers present. Use
`readelf -h' rather than `readelf --headers' then to obtain data for
examination, avoiding unnecessary processing to extract this extraneous
information.
ld/
* testsuite/ld-mips-elf/mips-elf-flags.exp (good_combination):
Use `readelf -h' rather than `readelf --headers'.
Make BFD agree with GAS and mark the LSI MiniRISC CW4010 processor core
(for an odd reason referred to as LSI R4010 across our code base) as a
MIPS II processor in BFD as well, fixing a bug that has been there since
forever and addressing linker warnings like:
$ as -m4010 empty.s -o 4010.o
$ ld -r 4010.o -o 4010-r.o
ld: 4010.o: warning: Inconsistent ISA between e_flags and .MIPS.abiflags
$
due to the ISA level being recorded as MIPS III in ELF file header's
`e_flags' vs MIPS II in the MIPS ABI Flags section:
$ readelf -Ah 4010.o
ELF Header:
Magic: 7f 45 4c 46 01 02 01 00 00 00 00 00 00 00 00 00
Class: ELF32
Data: 2's complement, big endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: REL (Relocatable file)
Machine: MIPS R3000
Version: 0x1
Entry point address: 0x0
Start of program headers: 0 (bytes into file)
Start of section headers: 348 (bytes into file)
Flags: 0x20821000, 4010, o32, mips3
Size of this header: 52 (bytes)
Size of program headers: 0 (bytes)
Number of program headers: 0
Size of section headers: 40 (bytes)
Number of section headers: 11
Section header string table index: 10
Attribute Section: gnu
File Attributes
Tag_GNU_MIPS_ABI_FP: Hard float (double precision)
MIPS ABI Flags Version: 0
ISA: MIPS2
GPR size: 32
CPR1 size: 32
CPR2 size: 0
FP ABI: Hard float (double precision)
ISA Extension: LSI R4010
ASEs:
None
FLAGS 1: 00000000
FLAGS 2: 00000000
$
Available documentation[1][2] clearly indicates the LSI CW4010 processor
is only backwards compatible with the MIPS R4000 processor as far as the
latter's 32-bit instructions are concerned and consequently can only be
considered a MIPS II ISA implementation (with vendor extensions).
This fixes an LD testsuite failure:
FAIL: MIPS incompatible objects: "-march=r4010 -32" "-march=r4650 -32"
triggered for the `mips-sgi-irix5' and `mips-sgi-irix6' targets.
References:
[1] Paul Cobb, Bob Caulk, Joe Cesana, "The MiniRISC CW4010: A
Superscalar MIPS Processor ASIC Core", LSI Logic, July 1995,
presented at Hot Chips VII, Stanford University, Stanford,
California, August 1995
[2] "MiniRISC MR4010 Superscalar Microprocessor Reference Device", LSI
Logic, November 1996, Doc. No. DB09-000028-00, Order No. C15017
bfd/
* cpu-mips.c (arch_info_struct): Mark the 4010 32-bit.
* elfxx-mips.c (mips_set_isa_flags) <bfd_mach_mips4010>: Set
E_MIPS_ARCH_2 rather than E_MIPS_ARCH_3 in `e_flags'.
(mips_mach_extensions): Mark `bfd_mach_mips4010' as extending
`bfd_mach_mips6000' rather than `bfd_mach_mips4000'.
ld/
* testsuite/ld-mips-elf/lsi-4010-isa.d: New test.
* ld/testsuite/ld-mips-elf/mips-elf.exp: Run the new test.
Correct .startof.SECNAME/.sizeof.SECNAME tests for MIPS/IRIX targets,
complementing commit dc74becf49 ("ld: Add tests for -Ur") and commit
da614360f5 ("ld: Add tests for .startof.SECNAME/.sizeof.SECNAME") with
subsequent updates, and in reference to commit cbd0eecf26 ("Always
define referenced __start_SECNAME/__stop_SECNAME") and commit
7dba9362c1 ("Rewrite __start and __stop symbol handling").
These targets set the STT_OBJECT type for non-function symbol
references, according to `elf_frob_symbol' code in gas/config/obj-elf.c:
/* The Irix 5 and 6 assemblers set the type of any common symbol and
any undefined non-function symbol to STT_OBJECT. We try to be
compatible, since newer Irix 5 and 6 linkers care. However, we
only set undefined symbols to be STT_OBJECT if we are on Irix,
because that is the only time gcc will generate the necessary
.global directives to mark functions. */
if (S_IS_COMMON (symp))
symbol_get_bfdsym (symp)->flags |= BSF_OBJECT;
if (strstr (TARGET_OS, "irix") != NULL
&& ! S_IS_DEFINED (symp)
&& (symbol_get_bfdsym (symp)->flags & BSF_FUNCTION) == 0)
symbol_get_bfdsym (symp)->flags |= BSF_OBJECT;
and consequently entries in the symbol table listing from `readelf'
produced with these tests do not match the NOTYPE pattern expected,
causing test suite failures:
FAIL: ld-elf/sizeofa
FAIL: ld-elf/sizeofc
FAIL: ld-elf/startofa
FAIL: ld-elf/startofc
specifically with the `mips-sgi-irix5' and `mips-sgi-irix6' targets.
Given that it does not matter for the feature covered by these tests
whether the type of the symbols produced is STT_NOTYPE or STT_OBJECT
adjust the problematic cases to accept either type, removing the
failures observed.
ld/
* testsuite/ld-elf/sizeofa.d: Also accept the OBJECT type for
the symbols examined.
* testsuite/ld-elf/sizeofc.d: Likewise.
* testsuite/ld-elf/startofa.d: Likewise.
* testsuite/ld-elf/startofc.d: Likewise.
=== Context ===
This patch is part of a patch series to add support for ARMv8-R
architecture. Its purpose is to add support for ARMv8-R in the linker.
=== Patch description ===
This patch is composed of 3 changes:
1) The main change is the addition of the logic for merging a file whose
Tag_CPU_arch build attribute is 15 (ARMv8-R). Namely, all pre-ARMv8 are
merged into ARMv8-R as well as ARMv8-R itself. ARMv8-A (14) merges into
ARMv8-A. ARMv8-M Baseline (16) and Mainline (17) are not allowed to
merge merge with ARMv8-R. Note that merging only occurs if the two
profiles are identical or one is S (Application or Realtime) and the
other is R.
2) using_thumb_only, using_thumb2_bl, using_thumb2 and arch_has_arm_nop
are updated according to capabilities of ARMv8-R and their BFD_ASSERT
updated to reflect that the logic is valid for ARMv8-R.
3) 2 build attribute merging tests are added to test the first change.
2017-06-24 Thomas Preud'homme <thomas.preudhomme@arm.com>
bfd/
* elf32-arm.c (using_thumb_only): Update list of architectures in
BFD_ASSERT for which the logic is valid.
(using_thumb2_bl): Likewise.
(using_thumb2): Likewise and return true for ARMv8-R.
(arch_has_arm_nop): Likewise.
(tag_cpu_arch_combine): New v8r table for ARMv8-R Tag_CPU_arch
merging logic. Update commentis for value 15 of v8m_baseline,
v8m_mainline and v4t_plus_v6_m arrays. Use v8r array to decide
merging of value 15 of Tag_CPU_arch.
ld/
* testsuite/ld-arm/arm-elf.exp (EABI attribute merging 11): New test.
(EABI attribute merging 12): Likewise.
* testsuite/ld-arm/attr-merge-11a.s: New file.
* testsuite/ld-arm/attr-merge-11b.s: New file.
* testsuite/ld-arm/attr-merge-11.attr: New file.
* testsuite/ld-arm/attr-merge-12a.s: New file.
* testsuite/ld-arm/attr-merge-12b.s: New file.
* testsuite/ld-arm/attr-merge-12.attr: New file.
To support IBT in Intel Control-flow Enforcement Technology (CET)
instructions:
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
#define GNU_PROPERTY_X86_FEATURE_1_AND 0xc0000002
#define GNU_PROPERTY_X86_FEATURE_1_IBT (1U << 0)
are added to GNU program properties to indicate that all executable
sections are compatible with IBT when ENDBR instruction starts each
valid target where an indirect branch instruction can land.
GNU_PROPERTY_X86_FEATURE_1_IBT is set on output only if it is set on
all relocatable inputs.
The followings changes are made to the Procedure Linkage Table (PLT):
1. For 64-bit x86-64, PLT is changed to
PLT0: push GOT[1]
bnd jmp *GOT[2]
nop
...
PLTn: endbr64
push namen_reloc_index
bnd jmp PLT0
together with the second PLT section:
PLTn: endbr64
bnd jmp *GOT[namen_index]
nop
BND prefix is also added so that IBT-enabled PLT is compatible with MPX.
2. For 32-bit x86-64 (x32) and i386, PLT is changed to
PLT0: push GOT[1]
jmp *GOT[2]
nop
...
PLTn: endbr64 # endbr32 for i386.
push namen_reloc_index
jmp PLT0
together with the second PLT section:
PLTn: endbr64 # endbr32 for i386.
jmp *GOT[namen_index]
nop
BND prefix isn't used since MPX isn't supported on x32 and BND registers
aren't used in parameter passing on i386.
GOT is an array of addresses. Initially, GOT[namen_index] is filled
with the address of the ENDBR instruction of the corresponding entry
in the first PLT section. The function, namen, is called via the
ENDBR instruction in the second PLT entry. GOT[namen_index] is updated
to the actual address of the function, namen, at run-time.
2 linker command line options are added:
1. -z ibtplt: Generate IBT-enabled PLT.
2. -z ibt: Generate GNU_PROPERTY_X86_FEATURE_1_IBT in GNU program
properties as well as IBT-enabled PLT.
bfd/
* elf32-i386.c (elf_i386_lazy_ibt_plt0_entry): New.
(elf_i386_lazy_ibt_plt_entry): Likewise.
(elf_i386_pic_lazy_ibt_plt0_entry): Likewise.
(elf_i386_non_lazy_ibt_plt_entry): Likewise.
(elf_i386_pic_non_lazy_ibt_plt_entry): Likewise.
(elf_i386_eh_frame_lazy_ibt_plt): Likewise.
(elf_i386_lazy_plt_layout): Likewise.
(elf_i386_non_lazy_plt_layout): Likewise.
(elf_i386_link_hash_entry): Add plt_second.
(elf_i386_link_hash_table): Add plt_second and
plt_second_eh_frame.
(elf_i386_allocate_dynrelocs): Use the second PLT if needed.
(elf_i386_size_dynamic_sections): Use .plt.got unwind info for
the second PLT. Check the second PLT.
(elf_i386_relocate_section): Use the second PLT to resolve
PLT reference if needed.
(elf_i386_finish_dynamic_symbol): Fill and use the second PLT if
needed.
(elf_i386_finish_dynamic_sections): Set sh_entsize on the
second PLT. Generate unwind info for the second PLT.
(elf_i386_plt_type): Add plt_second.
(elf_i386_get_synthetic_symtab): Support the second PLT.
(elf_i386_parse_gnu_properties): Support
GNU_PROPERTY_X86_FEATURE_1_AND.
(elf_i386_merge_gnu_properties): Support
GNU_PROPERTY_X86_FEATURE_1_AND. If info->ibt is set, turn
on GNU_PROPERTY_X86_FEATURE_1_IBT
(elf_i386_link_setup_gnu_properties): If info->ibt is set,
turn on GNU_PROPERTY_X86_FEATURE_1_IBT. Use IBT-enabled PLT
for info->ibtplt, info->ibt or GNU_PROPERTY_X86_FEATURE_1_IBT
is set on all relocatable inputs.
* elf64-x86-64.c (elf_x86_64_lazy_ibt_plt_entry): New.
(elf_x32_lazy_ibt_plt_entry): Likewise.
(elf_x86_64_non_lazy_ibt_plt_entry): Likewise.
(elf_x32_non_lazy_ibt_plt_entry): Likewise.
(elf_x86_64_eh_frame_lazy_ibt_plt): Likewise.
(elf_x32_eh_frame_lazy_ibt_plt): Likewise.
(elf_x86_64_lazy_ibt_plt): Likewise.
(elf_x32_lazy_ibt_plt): Likewise.
(elf_x86_64_non_lazy_ibt_plt): Likewise.
(elf_x32_non_lazy_ibt_plt): Likewise.
(elf_x86_64_get_synthetic_symtab): Support the second PLT.
(elf_x86_64_parse_gnu_properties): Support
GNU_PROPERTY_X86_FEATURE_1_AND.
(elf_x86_64_merge_gnu_properties): Support
GNU_PROPERTY_X86_FEATURE_1_AND. If info->ibt is set, turn
on GNU_PROPERTY_X86_FEATURE_1_IBT
(elf_x86_64_link_setup_gnu_properties): If info->ibt is set,
turn on GNU_PROPERTY_X86_FEATURE_1_IBT. Use IBT-enabled PLT
for info->ibtplt, info->ibt or GNU_PROPERTY_X86_FEATURE_1_IBT
is set on all relocatable inputs.
binutils/
* readelf.c (decode_x86_feature): New.
(print_gnu_property_note): Call decode_x86_feature on
GNU_PROPERTY_X86_FEATURE_1_AND.
* testsuite/binutils-all/i386/empty.d: New file.
* testsuite/binutils-all/i386/empty.s: Likewise.
* testsuite/binutils-all/i386/ibt.d: Likewise.
* testsuite/binutils-all/i386/ibt.s: Likewise.
* testsuite/binutils-all/x86-64/empty-x32.d: Likewise.
* testsuite/binutils-all/x86-64/empty.d: Likewise.
* testsuite/binutils-all/x86-64/empty.s: Likewise.
* testsuite/binutils-all/x86-64/ibt-x32.d: Likewise.
* testsuite/binutils-all/x86-64/ibt.d: Likewise.
* testsuite/binutils-all/x86-64/ibt.s: Likewise.
include/
* bfdlink.h (bfd_link_info): Add ibtplt and ibt.
* elf/common.h (GNU_PROPERTY_X86_FEATURE_1_AND): New.
(GNU_PROPERTY_X86_FEATURE_1_IBT): Likewise.
ld/
* Makefile.am (ELF_X86_DEPS): Add $(srcdir)/emulparams/cet.sh.
* Makefile.in: Regenerated.
* NEWS: Mention GNU_PROPERTY_X86_FEATURE_1_IBT, -z ibtplt
and -z ibt.
* emulparams/cet.sh: New file.
* testsuite/ld-i386/ibt-plt-1.d: Likewise.
* testsuite/ld-i386/ibt-plt-1.s: Likewise.
* testsuite/ld-i386/ibt-plt-2.s: Likewise.
* testsuite/ld-i386/ibt-plt-2a.d: Likewise.
* testsuite/ld-i386/ibt-plt-2b.d: Likewise.
* testsuite/ld-i386/ibt-plt-2c.d: Likewise.
* testsuite/ld-i386/ibt-plt-2d.d: Likewise.
* testsuite/ld-i386/ibt-plt-3.s: Likewise.
* testsuite/ld-i386/ibt-plt-3a.d: Likewise.
* testsuite/ld-i386/ibt-plt-3b.d: Likewise.
* testsuite/ld-i386/ibt-plt-3c.d: Likewise.
* testsuite/ld-i386/ibt-plt-3d.d: Likewise.
* testsuite/ld-i386/plt-main-ibt.dd: Likewise.
* testsuite/ld-i386/plt-pie-ibt.dd: Likewise.
* testsuite/ld-i386/property-x86-empty.s: Likewise.
* testsuite/ld-i386/property-x86-ibt.s: Likewise.
* testsuite/ld-i386/property-x86-ibt1a.d: Likewise.
* testsuite/ld-i386/property-x86-ibt1b.d: Likewise.
* testsuite/ld-i386/property-x86-ibt2.d: Likewise.
* testsuite/ld-i386/property-x86-ibt3a.d: Likewise.
* testsuite/ld-i386/property-x86-ibt3b.d: Likewise.
* testsuite/ld-i386/property-x86-ibt4.d: Likewise.
* testsuite/ld-i386/property-x86-ibt5.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-1-x32.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-1.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-1.s: Likewise.
* testsuite/ld-x86-64/ibt-plt-2.s: Likewise.
* testsuite/ld-x86-64/ibt-plt-2a-x32.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-2a.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-2b-x32.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-2b.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-2c-x32.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-2c.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-2d-x32.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-2d.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-3.s: Likewise.
* testsuite/ld-x86-64/ibt-plt-3a-x32.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-3a.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-3b-x32.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-3b.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-3c-x32.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-3c.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-3d-x32.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-3d.d: Likewise.
* testsuite/ld-x86-64/plt-main-ibt-now.rd: Likewise.
* testsuite/ld-x86-64/plt-main-ibt-x32.dd: Likewise.
* testsuite/ld-x86-64/plt-main-ibt.dd: Likewise.
* testsuite/ld-x86-64/property-x86-empty.s: Likewise.
* testsuite/ld-x86-64/property-x86-ibt.s: Likewise.
* testsuite/ld-x86-64/property-x86-ibt1a-x32.d: Likewise.
* testsuite/ld-x86-64/property-x86-ibt1a.d: Likewise.
* testsuite/ld-x86-64/property-x86-ibt1b-x32.d: Likewise.
* testsuite/ld-x86-64/property-x86-ibt1b.d: Likewise.
* testsuite/ld-x86-64/property-x86-ibt2-x32.d: Likewise.
* testsuite/ld-x86-64/property-x86-ibt2.d: Likewise.
* testsuite/ld-x86-64/property-x86-ibt3a-x32.d: Likewise.
* testsuite/ld-x86-64/property-x86-ibt3a.d: Likewise.
* testsuite/ld-x86-64/property-x86-ibt3b-x32.d: Likewise.
* testsuite/ld-x86-64/property-x86-ibt3b.d: Likewise.
* testsuite/ld-x86-64/property-x86-ibt4-x32.d: Likewise.
* testsuite/ld-x86-64/property-x86-ibt4.d: Likewise.
* testsuite/ld-x86-64/property-x86-ibt5-x32.d: Likewise.
* testsuite/ld-x86-64/property-x86-ibt5.d: Likewise.
* emulparams/elf32_x86_64.sh: Source emulparams/cet.sh.
(TINY_READONLY_SECTION): Add .plt.sec.
* emulparams/elf_i386.sh: Likewise.
* emulparams/elf_x86_64.sh: Source emulparams/cet.sh.
* ld.texinfo: Document -z ibtplt and -z ibt.
* testsuite/ld-i386/i386.exp: Run IBT and IBT PLT tests.
* testsuite/ld-x86-64/x86-64.exp: Likewise.
* testsuite/ld-x86-64/pr21481b.S (check): Updated for x32.
Since the BFD section count may not be cleared for shared objects during
linking, we should check the DYNAMIC bit for input shared objects.
bfd/
PR ld/21626
* elf-properties.c (_bfd_elf_link_setup_gnu_properties): Check
the DYNAMIC bit instead of bfd_count_sections.
ld/
PR ld/21626
* testsuite/ld-i386/i386.exp: Run ld/21626 tests.
* testsuite/ld-x86-64/x86-64.exp: Likewise.
For some pc-relative relocations we want to allow them under PIC mode while
a normal global symbol defined in the same dynamic object can still bind
externally through copy relocation. So, we should not allow pc-relative
relocation against such symbol.
SYMBOL_REFERENCES_LOCAL should be used and is more accurate than the original
individual checks.
bfd/
* elfnn-aarch64.c (elfNN_aarch64_final_link_relocate): Use
SYMBOL_REFERENCES_LOCAL.
ld/
* testsuite/ld-aarch64/aarch64-elf.exp: Update test name
* testsuite/ld-aarch64/pcrel.s: Add new testcases.
* testsuite/ld-aarch64/pcrel_pic_undefined.d: Update the expected
warnings.
* testsuite/ld-aarch64/pcrel_pic_defined_local.d: Rename ...
* testsuite/ld-aarch64/pcrel_pic_defined.d: ... to this.
Update expected warnings.
As discussed at the PR, this patch tries to avoid COPY relocation generation
and propagate the original relocation into runtime if it was relocating on
writable section. The ELIMINATE_COPY_RELOCS has been set to true and it's
underlying infrastructure has been improved so that the COPY reloc elimination
at least working on absoluate relocations (ABS64) on AArch64.
BFD linker copy relocation elimination framwork requires the backend to always
allocate dynrelocs for all those relocation types that are possible to introduce
copy relocations. This is for adjust_dynamic_symbol hook to be able to get all
symbol reference information. Should one symbol is referenced by more than one
relocations, if there is any of them needs copy relocation then linker should
generate it.
bfd/
PR ld/21532
* elfnn-aarch64.c (ELIMINATE_COPY_RELOCS): Set to 1.
(elfNN_aarch64_final_link_relocate): Also propagate relocations to
runtime for if there needs copy relocation elimination.
(need_copy_relocation_p): New function. Return true for symbol with
pc-relative references and if it's against read-only sections.
(elfNN_aarch64_adjust_dynamic_symbol): Use need_copy_relocation_p.
(elfNN_aarch64_check_relocs): Allocate dynrelocs for relocation types
that are related with accessing external objects.
(elfNN_aarch64_gc_sweep_hook): Sync the relocation types with the change
in elfNN_aarch64_check_relocs.
ld/
* testsuite/ld-aarch64/copy-reloc-exe-2.s: New test source file.
* testsuite/ld-aarch64/copy-reloc-2.d: New test.
* testsuite/ld-aarch64/copy-reloc-exe-eliminate.s: New test source file.
* testsuite/ld-aarch64/copy-reloc-eliminate.d: New test.
* testsuite/ld-aarch64/copy-reloc-so.s: Define new global objects.
* testsuite/ld-aarch64/aarch64-elf.exp: Run new tests.
ld-gc/pr20022.d requires support for dynamic relocations in .text
section.
PR ld/20022
* testsuite/ld-gc/pr20022.d: Skip on targets without dynamic
relocations in .text section.
Symbol lookup in linker will always fail on targets with leading char
in symbol name since __start_SECNAME and __stop_SECNAME in C may be
___start_SECNAME and ___stop_SECNAME in assembly. Also tests with
--gc-sections always fails on targets without --gc-sections support.
* testsuite/ld-elf/pr21562a.d: Skip on targets with leading char
in in symbol name or without --gc-sections.
* testsuite/ld-elf/pr21562b.d: Likewise.
* testsuite/ld-elf/pr21562c.d: Likewise.
* testsuite/ld-elf/pr21562d.d: Likewise.
* testsuite/ld-elf/pr21562i.d: Likewise.
* testsuite/ld-elf/pr21562j.d: Likewise.
* testsuite/ld-elf/pr21562k.d: Likewise.
* testsuite/ld-elf/pr21562l.d: Likewise.
* testsuite/ld-elf/pr21562m.d: Likewise.
* testsuite/ld-elf/pr21562n.d: Likewise.
* testsuite/ld-elf/pr21562e.d: Skip on targets with leading char
in symbol name.
* testsuite/ld-elf/pr21562f.d: Likewise.
* testsuite/ld-elf/pr21562g.d: Likewise.
* testsuite/ld-elf/pr21562h.d: Likewise.
Symbol lookup in linker will always fail on targets with leading char
in symbol name since __start_SECNAME and __stop_SECNAME in C may be
___start_SECNAME and ___stop_SECNAME in assembly.
* testsuite/ld-elf/sizeofa.d: Skip on targets with leading char
in symbol name.
* testsuite/ld-elf/sizeofb.d: Likewise.
* testsuite/ld-elf/startofa.d: Likewise.
* testsuite/ld-elf/startofb.d: Likewise.
__start_SECNAME and __stop_SECNAME shouldn't be defined for "ld -r".
* ldlang.c (lang_set_startof): Skip if config.build_constructors
is FALSE.
* testsuite/ld-elf/sizeofc.d: New file.
* testsuite/ld-elf/startofc.d: Likewise.
Currently, linker will define __start_SECNAME and __stop_SECNAME symbols
only for orphaned sections.
However, during garbage collection, ELF linker marks all sections with
references to __start_SECNAME and __stop_SECNAME symbols as used even
when section SECNAME isn't an orphaned section and linker won't define
__start_SECNAME nor __stop_SECNAME. And ELF linker stores the first
input section whose name matches __start_SECNAME or __stop_SECNAME in
u.undef.section for garbage collection. If these symbols are provided
in linker script, u.undef.section is set to the section where they will
defined by linker script, which leads to the incorrect output.
This patch changes linker to always define referenced __start_SECNAME and
__stop_SECNAME if the input section name is the same as the output section
name, which is always true for orphaned sections, and SECNAME is a C
identifier. Also __start_SECNAME and __stop_SECNAME symbols are marked
as hidden by ELF linker so that __start_SECNAME and __stop_SECNAME symbols
for section SECNAME in different modules are unique. For garbage
collection, ELF linker stores the first matched input section in the
unused vtable field.
bfd/
PR ld/20022
PR ld/21557
PR ld/21562
PR ld/21571
* elf-bfd.h (elf_link_hash_entry): Add start_stop. Change the
vtable field to a union.
(_bfd_elf_is_start_stop): Removed.
* elf32-i386.c (elf_i386_convert_load_reloc): Also check for
__start_SECNAME and __stop_SECNAME symbols.
* elf64-x86-64.c (elf_x86_64_convert_load_reloc): Likewise.
* elflink.c (_bfd_elf_is_start_stop): Removed.
(_bfd_elf_gc_mark_rsec): Check start_stop instead of calling
_bfd_elf_is_start_stop.
(elf_gc_propagate_vtable_entries_used): Skip __start_SECNAME and
__stop_SECNAME symbols. Updated.
(elf_gc_smash_unused_vtentry_relocs): Likewise.
(bfd_elf_gc_record_vtinherit): Likewise.
(bfd_elf_gc_record_vtentry): Likewise.
ld/
PR ld/20022
PR ld/21557
PR ld/21562
PR ld/21571
* ld.texinfo: Update __start_SECNAME/__stop_SECNAME symbols.
* ldlang.c (lang_insert_orphan): Move handling of __start_SECNAME
and __stop_SECNAME symbols to ...
(lang_set_startof): Here. Also define __start_SECNAME and
__stop_SECNAME for -Ur.
* emultempl/elf32.em (gld${EMULATION_NAME}_after_open): Mark
referenced __start_SECNAME and __stop_SECNAME symbols as hidden
and set start_stop for garbage collection.
* testsuite/ld-elf/pr21562a.d: New file.
* testsuite/ld-elf/pr21562a.s: Likewise.
* testsuite/ld-elf/pr21562a.t: Likewise.
* testsuite/ld-elf/pr21562b.d: Likewise.
* testsuite/ld-elf/pr21562b.s: Likewise.
* testsuite/ld-elf/pr21562b.t: Likewise.
* testsuite/ld-elf/pr21562c.d: Likewise.
* testsuite/ld-elf/pr21562c.t: Likewise.
* testsuite/ld-elf/pr21562d.d: Likewise.
* testsuite/ld-elf/pr21562d.t: Likewise.
* testsuite/ld-elf/pr21562e.d: Likewise.
* testsuite/ld-elf/pr21562f.d: Likewise.
* testsuite/ld-elf/pr21562g.d: Likewise.
* testsuite/ld-elf/pr21562h.d: Likewise.
* testsuite/ld-elf/pr21562i.d: Likewise.
* testsuite/ld-elf/pr21562j.d: Likewise.
* testsuite/ld-elf/pr21562k.d: Likewise.
* testsuite/ld-elf/pr21562l.d: Likewise.
* testsuite/ld-elf/pr21562m.d: Likewise.
* testsuite/ld-elf/pr21562n.d: Likewise.
* testsuite/ld-gc/pr20022.d: Likewise.
* testsuite/ld-gc/pr20022a.s: Likewise.
* testsuite/ld-gc/pr20022b.s: Likewise.
* testsuite/ld-gc/gc.exp: Run PR ld/20022 tests.
* testsuite/ld-gc/pr19161.d: Also accept local __start_SECNAME
symbol.
* testsuite/ld-gc/start.d: Likewise.
* testsuite/ld-x86-64/lea1a.d: Updated.
* testsuite/ld-x86-64/lea1b.d: Updated.
* testsuite/ld-x86-64/lea1d.d: Updated.
* testsuite/ld-x86-64/lea1e.d: Likewise.
Test -Ur with __start_SECNAME, __stop_SECNAME, .startof.SECNAME and
.sizeof.SECNAME. __start_SECNAME and __stop_SECNAME should be defined
to the start and the end of section SECNAME. .startof.SECNAME and
.sizeof.SECNAME should be undefined.
* testsuite/ld-elf/sizeof.d: New file.
* testsuite/ld-elf/sizeof.s: Likewise.
* testsuite/ld-elf/startof.d: Likewise.
* testsuite/ld-elf/startof.s: Likewise.
arm-none-eabi-ld supports shared libraries. However, the toolchain may be
configured to generate statically linked executable by default.
It is required to have --no-dynamic-linker option before adding dynamic symbol
to static executable.
For dynamically linked executable, the behavior won't change.
ld/ChangeLog
2017-06-13 Renlin Li <renlin.li@arm.com>
* testsuite/ld-elf/shared.exp (build_tests): Add --no-dynamic-linker
option to rdynamic-1 and dynamic-1 tests.
This reverts commit bc327528fd.
This patch can only be committed after PC-relative relocation types
support on copy relocation elimination is also completed.
In the case of static relocation, the GOT entries are fixed at link time
and are set by the linker.
In order to compute the right TLS offset it is necessary to add TCB_SIZE
to the offset, just in case the dynamic linker is not expected to be
executed (static linked case).
This problem does appear in dynamic linked applications, as the dynamic
linker is adding this TCB_SIZE by operating the TCB block structure.
Problem revealed in GLIBC with static linking.
bfd/ChangeLog:
Cupertino Miranda <cmiranda@synopsys.com>
arc-got.h (relocate_fix_got_relocs_for_got_info): Added TCB_SIZE to
patched section contents for TLS IE reloc.
elf32-arc.c: Remove TCB_SIZE preprocessor macro.
Rebase to 0006
Dump local IFUNC functions in the map file when generating IRELATIVE
relocations if -Map is used.
bfd/
* elf32-i386.c (elf_i386_check_relocs): Set local IFUNC symbol
name. Use local IFUNC symbol name string to report unsupported
non-PIC call to IFUNC function.
(elf_i386_relocate_section): Dump local IFUNC name with minfo
when generating R_386_IRELATIVE relocation.
(elf_i386_finish_dynamic_symbol): Likewise.
* elf_x86_64_check_relocs (elf_x86_64_check_relocs): Set local
IFUNC symbol name.
(elf_x86_64_relocate_section): Dump local IFUNC name with minfo
when generating R_X86_64_IRELATIVE relocation.
(elf_x86_64_finish_dynamic_symbol): Likewise.
ld/
* testsuite/ld-ifunc/ifunc-1-local-x86.d: Pass
"-Map tmpdir/ifunc-1-local-x86.map" to ld and check
ifunc-1-local-x86.map.
* testsuite/ld-ifunc/ifunc-1-x86.d: Pass
"-Map tmpdir/ifunc-1-x86.map" to ld and check ifunc-1-x86.map.
* testsuite/ld-ifunc/ifunc-1-local-x86.map: New file.
* testsuite/ld-ifunc/ifunc-1-x86.map: Likewise.
As discussed at the PR, this patch tries to avoid COPY relocation generation
and propagate the original relocation into runtime if it was relocating on
writable section. The ELIMINATE_COPY_RELOCS has been set to true and it's
underlying infrastructure has been improved so that the COPY reloc elimination
at least working on absoluate relocations (ABS64) after this patch.
bfd/
PR ld/21532
* elfnn-aarch64.c (ELIMINATE_COPY_RELOCS): Set to 1.
(elfNN_aarch64_final_link_relocate): Also propagate relocations to
runtime for copy relocation elimination cases.
(alias_readonly_dynrelocs): New function.
(elfNN_aarch64_adjust_dynamic_symbol): Keep the dynamic relocs instead
of generating copy relocation if it is not against read-only sections.
(elfNN_aarch64_check_relocs): Likewise.
ld/
* testsuite/ld-aarch64/copy-reloc-eliminate.d: New test.
* testsuite/ld-aarch64/copy-reloc-exe-eliminate.s: New test source file.
* testsuite/ld-aarch64/aarch64-elf.exp: Run new testcase.
Various targets fail this testcase due to ld not supporting binary output.
* testsuite/ld-unique/pr21529.d: xfail aarch64, arm, hppa, ia64,
nds32, and score. Match any output.
This commit adds a new linker feature: the ability to resolve section
groups as part of a relocatable link.
Currently section groups are automatically resolved when performing a
final link, and are carried through when performing a relocatable link.
By carried through this means that one copy of each section group (from
all the copies that might be found in all the input files) is placed
into the output file. Sections that are part of a section group will
not match input section specifiers within a linker script and are
forcibly kept as separate sections.
There is a slight resemblance between section groups and common
section. Like section groups, common sections are carried through when
performing a relocatable link, and resolved (allocated actual space)
only at final link time.
However, with common sections there is an ability to force the linker to
allocate space for the common sections when performing a relocatable
link, there's currently no such ability for section groups.
This commit adds such a mechanism. This new facility can be accessed in
two ways, first there's a command line switch --force-group-allocation,
second, there's a new linker script command FORCE_GROUP_ALLOCATION. If
one of these is used when performing a relocatable link then the linker
will resolve the section groups as though it were performing a final
link, the section group will be deleted, and the members of the group
will be placed like normal input sections. If there are multiple copies
of the group (from multiple input files) then only one copy of the group
members will be placed, the duplicate copies will be discarded.
Unlike common sections that have the --no-define-common command line
flag, and INHIBIT_COMMON_ALLOCATION linker script command there is no
way to prevent group resolution during a final link, this is because the
ELF gABI specifically prohibits the presence of SHT_GROUP sections in a
fully linked executable. However, the code as written should make
adding such a feature trivial, setting the new resolve_section_groups
flag to false during a final link should work as you'd expect.
bfd/ChangeLog:
* elf.c (_bfd_elf_make_section_from_shdr): Don't initially mark
SEC_GROUP sections as SEC_EXCLUDE.
(bfd_elf_set_group_contents): Replace use of abort with an assert.
(assign_section_numbers): Use resolve_section_groups flag instead
of relocatable link type.
(_bfd_elf_init_private_section_data): Use resolve_section_groups
flag instead of checking the final_link flag for part of the
checks in here. Fix white space as a result.
* elflink.c (elf_link_input_bfd): Use resolve_section_groups flag
instead of relocatable link type.
(bfd_elf_final_link): Likewise.
include/ChangeLog:
* bfdlink.h (struct bfd_link_info): Add new resolve_section_groups
flag.
ld/ChangeLog:
* ld.h (struct args_type): Add force_group_allocation field.
* ldgram.y: Add support for FORCE_GROUP_ALLOCATION.
* ldlex.h: Likewise.
* ldlex.l: Likewise.
* lexsup.c: Likewise.
* ldlang.c (unique_section_p): Check resolve_section_groups flag
not the relaxable link flag.
(lang_add_section): Discard section groups when we're resolving
groups. Clear the SEC_LINK_ONCE flag if we're resolving section
groups.
* ldmain.c (main): Initialise resolve_section_groups flag in
link_info based on command line flags.
* testsuite/ld-elf/group11.d: New file.
* testsuite/ld-elf/group12.d: New file.
* testsuite/ld-elf/group12.ld: New file.
* NEWS: Mention new features.
* ld.texinfo (Options): Document --force-group-allocation.
(Miscellaneous Commands): Document FORCE_GROUP_ALLOCATION.
Since it is incorrect to convert
bnd call *foo@GOTPCREL(%rip)
to
bnd nop
call foo
this patch removes the "-z prefix-nop" option from x86 linker.
* emulparams/call_nop.sh: Remove -z prefix-nop.
* ld.texinfo: Likewise.
* testsuite/ld-i386/call3c.d: Check for linker error.
* testsuite/ld-x86-64/call1c.d: Likewise.
ELFv2 functions with localentry:0 are those with a single entry point,
ie. global entry == local entry, and that have no requirement on r2 or
r12, and guarantee r2 is unchanged on return. Such an external
function can be called via the PLT without saving r2 or restoring it
on return, avoiding a common load-hit-store for small functions. The
optimization is attractive. The TOC pointer load-hit-store is a major
reason why calls to small functions that need no register saves, or
with shrink-wrap, no register saves on a fast path, are slow on
powerpc64le.
To be safe, this optimization needs ld.so support to check that the
run-time matches link-time function implementation. If a function
in a shared library with st_other localentry non-zero is called
without saving and restoring r2, r2 will be trashed on return, leading
to segfaults. For that reason the optimization does not happen for
weak functions since a weak definition is a fairly solid hint that the
function will likely be overridden. I'm also not enabling the
optimization by default unless glibc-2.26 is detected, which should
have the ld.so checks implemented.
bfd/
* elf64-ppc.c (struct ppc_link_hash_table): Add has_plt_localentry0.
(ppc64_elf_merge_symbol_attribute): Merge localentry bits from
dynamic objects.
(is_elfv2_localentry0): New function.
(ppc64_elf_tls_setup): Default params->plt_localentry0.
(plt_stub_size): Adjust size for tls_get_addr_opt stub.
(build_tls_get_addr_stub): Use a simpler stub when r2 is not saved.
(ppc64_elf_size_stubs): Leave stub_type as ppc_stub_plt_call for
optimized localentry:0 stubs.
(ppc64_elf_build_stubs): Save r2 in ELFv2 __glink_PLTresolve.
(ppc64_elf_relocate_section): Leave nop unchanged for optimized
localentry:0 stubs.
(ppc64_elf_finish_dynamic_sections): Set PPC64_OPT_LOCALENTRY in
DT_PPC64_OPT.
* elf64-ppc.h (struct ppc64_elf_params): Add plt_localentry0.
include/
* elf/ppc64.h (PPC64_OPT_LOCALENTRY): Define.
ld/
* emultempl/ppc64elf.em (params): Init plt_localentry0 field.
(enum ppc64_opt): New, replacing OPTION_* defines. Add
OPTION_PLT_LOCALENTRY, and OPTION_NO_PLT_LOCALENTRY.
(PARSE_AND_LIST_*): Support --plt-localentry and --no-plt-localentry.
* testsuite/ld-powerpc/elfv2so.d: Update.
* testsuite/ld-powerpc/powerpc.exp (TLS opt 5): Use --no-plt-localentry.
* testsuite/ld-powerpc/tlsopt5.d: Update.
Verify that debug section is removed by garbage collection when there
is a .note.gnu.property section.
* testsuite/ld-i386/i386.exp: Run property-x86-4a and
property-x86-4b.
* testsuite/ld-x86-64/x86-64.exp: Likewise.
* testsuite/ld-i386/property-x86-4a.d: New file.
* testsuite/ld-i386/property-x86-4a.s: Likewise.
* testsuite/ld-i386/property-x86-4b.d: Likewise.
* testsuite/ld-i386/property-x86-4b.s: Likewise.
* testsuite/ld-x86-64/property-x86-4a.d: Likewise.
* testsuite/ld-x86-64/property-x86-4a.s: Likewise.
* testsuite/ld-x86-64/property-x86-4b.d: Likewise.
* testsuite/ld-x86-64/property-x86-4b.s: Likewise.
PR ld/21251
* ldfile.c (ldfile_add_library_path): If the path starts with
$SYSROOT then use the sysroot as the real prefix.
* ldlang.c (lang_add_input_file): Treat $SYSROOT in the same
way as =.
* ldlex.l: Add $SYSROOT as allow prefix for a filename.
* ld.texinfo (-L): Document that $SYSROOT acts like = when
prefixing a library search path.
(INPUT): Likewise.
* testsuite/ld-scripts/sysroot-prefix.exp: Add $SYSROOT prefix
tests.
-gdwarf-sections doesn't work on targets that lack support to emit
address size relative relocs. The testcase as it was avoided
-gdwarf-sections doing anything by providing a non-empty .debug_line.
It's better to not use -gdwarf-sections. Also, the testcase failed
to match the output for 16-bit address targets like avr.
PR ld/20882
* testsuite/ld-gc/pr20882.d: Don't pass -gdwarf-sections to gas.
Allow for 16-bit address targets and match expected data fully.
* testsuite/ld-gc/pr20882a.s: Delete .debug_line section.
* testsuite/ld-gc/pr20882b.s: Likewise.
* testsuite/ld-gc/pr20882c.s: Likewise.
If a debug section is referenced by a kept debug section, it should
also be kept.
Some targets, like mips, keep input files when there are some special
sections, like .gnu.attributes, even if input file is unused otherwise.
In this case, all debug sections are kept. The new test will fail on
such targets. We can either fix those targets or XFAIL the test.
bfd/
PR ld/20882
* elflink.c (elf_gc_mark_debug_section): New function.
(_bfd_elf_gc_mark_extra_sections): Mark any debug sections
referenced by kept debug sections.
ld/
PR ld/20882
* testsuite/ld-gc/gc.exp: Run pr20882.
* testsuite/ld-gc/pr20882.d: New file.
* testsuite/ld-gc/pr20882a.s: Likewise.
* testsuite/ld-gc/pr20882b.s: Likewise.
* testsuite/ld-gc/pr20882c.s: Likewise.
If there are more than GNU property note in an input, we should merge
X86_ISA_1_USED and X86_ISA_1_NEEDED properties.
bfd/
* elf32-i386.c (elf_i386_parse_gnu_properties): Merge
GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_ISA_1_NEEDED
properties.
* elf64-x86-64.c (elf_x86_64_parse_gnu_properties): Likewise.
ld/
* testsuite/ld-i386/i386.exp: Run property-x86-3.
* testsuite/ld-x86-64/x86-64.exp: Likewise.
* testsuite/ld-i386/property-x86-3.d: New file.
* testsuite/ld-i386/property-x86-3.s: Likewise.
* testsuite/ld-x86-64/property-x86-3.d: Likewise.
* testsuite/ld-x86-64/property-x86-3.s: Likewise.
Rename .plt.bnd to .plt.sec to indicate that this is used as the second
PLT section. There is no change in run-time behavior. We also scan the
.plt.sec section to synthesize PLT symbols.
bfd/
* elf64-x86-64.c (elf_x86_64_link_hash_entry): Rename plt_bnd
to plt_second.
(elf_x86_64_link_hash_table): Rename plt_bnd/plt_bnd_eh_frame
to plt_second/plt_second_eh_frame.
(elf_x86_64_link_hash_newfunc): Updated.
(elf_x86_64_allocate_dynrelocs): Likewise.
(elf_x86_64_size_dynamic_sections): Likewise.
(elf_x86_64_relocate_section): Likewise.
(elf_x86_64_finish_dynamic_symbol): Likewise.
(elf_x86_64_finish_dynamic_sections): Likewise.
(elf_x86_64_plt_type): Rename plt_bnd to plt_second.
(elf_x86_64_get_synthetic_symtab): Updated. Also scan the
.plt.sec section.
(elf_backend_setup_gnu_properties): Updated. Create the
.plt.sec section instead of the .plt.sec section.
ld/
* emulparams/elf_x86_64.sh (TINY_READONLY_SECTION): Replace
.plt.bnd with .plt.sec.
* testsuite/ld-x86-64/bnd-ifunc-1-now.d: Likewise.
* testsuite/ld-x86-64/bnd-ifunc-2-now.d: Likewise.
* testsuite/ld-x86-64/bnd-ifunc-2.d: Likewise.
* testsuite/ld-x86-64/bnd-plt-1-now.d: Likewise.
* testsuite/ld-x86-64/bnd-plt-1.d: Likewise.
* testsuite/ld-x86-64/mpx3.dd: Likewise.
* testsuite/ld-x86-64/mpx3n.dd: Likewise.
* testsuite/ld-x86-64/mpx4.dd: Likewise.
* testsuite/ld-x86-64/mpx4n.dd: Likewise.
* testsuite/ld-x86-64/plt-main-bnd-now.rd: Likewise.
* testsuite/ld-x86-64/pr21038b-now.d: Likewise.
* testsuite/ld-x86-64/pr21038b.d: Likewise.
* testsuite/ld-x86-64/pr21038c-now.d: Likewise.
* testsuite/ld-x86-64/pr21038c.d: Likewise.
This patch partially reverses:
commit 25070364b0
Author: H.J. Lu <hjl.tools@gmail.com>
Date: Sat May 16 07:00:21 2015 -0700
Don't generate PLT relocations for now binding
to support LD_AUDIT and LD_PROFILE with -z now. If there is an existing
GOT relocation, it is still used to avoid PLT relocation against the same
function symbol.
bfd/
* elf32-i386.c (elf_i386_allocate_dynrelocs): Partially revert
commit 25070364b0.
* elf64-x86-64.c (elf_x86_64_allocate_dynrelocs): Likewse.
ld/
* testsuite/ld-i386/plt-pic2.dd: Updated.
* testsuite/ld-i386/plt2.dd: Likewise.
* testsuite/ld-i386/plt2.rd: Likewise.
* testsuite/ld-i386/pr17689now.rd: Likewise.
* testsuite/ld-ifunc/ifunc-16-i386-now.d: Likewise.
* testsuite/ld-ifunc/ifunc-16-x86-64-now.d: Likewise.
* testsuite/ld-ifunc/pr17154-i386-now.d: Likewise.
* testsuite/ld-ifunc/pr17154-x86-64-now.d: Likewise.
* testsuite/ld-x86-64/bnd-branch-1-now.d: Likewise.
* testsuite/ld-x86-64/bnd-ifunc-2-now.d: Likewise.
* testsuite/ld-x86-64/bnd-plt-1-now.d: Likewise.
* testsuite/ld-x86-64/plt2.dd: Likewise.
* testsuite/ld-x86-64/plt2.rd: Likewise.
* testsuite/ld-x86-64/pr17689now.rd: Likewise.
* testsuite/ld-x86-64/pr21038b-now.d: Likewise.
* testsuite/ld-x86-64/pr21038c-now.d: Likewise.
When -z bndplt is used, we must use the .plt.bnd entry for IFUNC function
address.
bfd/
PR ld/21481
* elf64-x86-64.c (elf_x86_64_finish_dynamic_symbol): Use .plt.bnd
for IFUNC function address.
ld/
PR ld/21481
* testsuite/ld-x86-64/pr21481a.c: New file.
* testsuite/ld-x86-64/pr21481b.S: Likewise.
* testsuite/ld-x86-64/x86-64.exp: Run PR ld/21481 tests.
On x86-64, the procedure linkage table (PLT) is used to
1. Call external function.
2. Call internal IFUNC function. The best implementation is selected
for the target processor at run-time.
3. Act as the canonical function address.
4. Support LD_AUDIT to audit external function calls.
5. Support LD_PROFILE to profile external function calls.
PLT looks like:
PLT0: push GOT[1]
jmp *GOT[2]
nop
PLT1: jmp *GOT[name1_index]
push name1_reloc_index
jmp PLT0
GOT is an array of addresses. Initially the GOT entry of name1 is
filled with the address of the "push name1_reloc_index" instruction.
The function, name1, is called via "jmp *GOT[name1]" in the PLT entry.
Even when lazy binding is disabled by "-z now", the PLT0 entry may
still be used with LD_AUDIT or LD_PROFILE if PLT entry is used for
canonical function address.
When linker is invoked with "-z bndplt", a different PLT layout in .plt
is used:
PLT0: push GOT[1]
bnd jmp *GOT[2]
nop
PLT1: push name1_reloc_index
bnd jmp PLT0
nop
together with a second PLT section, .pl.bnd:
PLT1: bnd jmp *GOT[name1_index]
nop
where the GOT entry of name1 is filled with the address of the push
instruction of the corresponding entry in .plt.
1. With lazy binding, when the external function, name1, is called the
first time, dynamic linker is called via PLT0 to update GOT[name1_index]
with the actual address of name1 and transfers control to name1
afterwards.
2. PLT is also used to call a local IFUNC function, name1, run-time
loader updates GOT[name1_index] when loading the module.
This patch
1. Remove PLT layout configurations from x86-64 backend_data.
2. Add generic, lay and non-lazy PLT layout configurations to x86-64
link_hash_table. Generic PLT layout includes the PLT entry templates,
information how to update the first instruction in PLT and PLT eh_frame
informaton, which are initialized in x86-64 setup_gnu_properties, based
on "-z bndplt" and target selection. PLT section alignment is also set
to PLT entry size for non-NaCl target.
3. Remove elf_x86_64_create_dynamic_sections. create_dynamic_sections
isn't always called, but GOT relocations need GOT relocations. Instead,
create all x86-64 specific dynamic sections with alignment to their entry
size in x86-64 setup_gnu_properties, which initializes elf.dynobj, so
that x86-64 check_relocs can be simplified.
4. Rewrite elf_x86_64_get_synthetic_symtab to check PLT sections against
all dynamic relocations to support both lazy and non-lazy PLTs.
There is no change in PLT. The only externally visible change is the
improvement of synthetic PLT symbols for .plt.got.
bfd/
* elf64-x86-64.c (PLT_ENTRY_SIZE): Renamed to ...
(LAZY_PLT_ENTRY_SIZE): This.
(NON_LAZY_PLT_ENTRY_SIZE): New.
(elf_x86_64_plt0_entry): Renamed to ...
(elf_x86_64_lazy_plt0_entry): This.
(elf_x86_64_plt_entry): Renamed to ...
(elf_x86_64_lazy_plt_entry): This.
(elf_x86_64_bnd_plt0_entry): Renamed to ...
(elf_x86_64_lazy_bnd_plt0_entry): This.
(elf_x86_64_legacy_plt_entry): Removed.
(elf_x86_64_bnd_plt_entry): Renamed to ...
(elf_x86_64_lazy_bnd_plt_entry): This.
(elf_x86_64_legacy_plt2_entry): Renamed to ...
(elf_x86_64_non_lazy_plt_entry): This.
(elf_x86_64_bnd_plt2_entry): Renamed to ...
(elf_x86_64_non_lazy_bnd_plt_entry): This.
(elf_x86_64_eh_frame_plt): Renamed to ...
(elf_x86_64_eh_frame_lazy_plt): This.
(elf_x86_64_eh_frame_bnd_plt): Renamed to ...
(elf_x86_64_eh_frame_lazy_bnd_plt): This.
(elf_x86_64_eh_frame_plt_got): Renamed to ...
(elf_x86_64_eh_frame_non_lazy_plt): This.
(elf_x86_64_lazy_plt_layout): New.
(elf_x86_64_non_lazy_plt_layout): Likewise.
(elf_x86_64_plt_layout): Likewise.
(elf_x86_64_backend_data): Remove PLT layout information. Add
os for target system.
(GET_PLT_ENTRY_SIZE): Removed.
(elf_x86_64_lazy_plt): New.
(elf_x86_64_non_lazy_plt): Likewise.
(elf_x86_64_lazy_bnd_plt): Likewise.
(elf_x86_64_non_lazy_bnd_plt): Likewise.
(elf_x86-64_arch_bed): Updated.
(elf_x86_64_link_hash_table): Add plt, lazy_plt and non_lazy_plt.
(elf_x86_64_create_dynamic_sections): Removed.
(elf_x86_64_check_relocs): Don't check elf.dynobj. Don't call
_bfd_elf_create_ifunc_sections nor _bfd_elf_create_got_section.
(elf_x86-64_adjust_dynamic_symbol): Updated.
(elf_x86_64_allocate_dynrelocs): Updated. Pass 0 as PLT header
size to _bfd_elf_allocate_ifunc_dyn_relocs and don't allocate
size for PLT0 if there is no PLT0. Get plt_entry_size from
non_lazy_plt for non-lazy PLT entries.
(elf_x86_64_size_dynamic_sections): Updated. Get plt_entry_size
from non_lazy_plt for non-lazy PLT entries.
(elf_x86-64_relocate_section): Updated. Properly get PLT index
if there is no PLT0.
(elf_x86_64_finish_dynamic_symbol): Updated. Fill the first slot
in the PLT entry with generic PLT layout. Fill the non-lazy PLT
entries with non-lazy PLT layout. Don't fill the second and third
slots in the PLT entry if there is no PLT0.
(elf_x86_64_finish_dynamic_sections): Updated. Don't fill PLT0
if there is no PLT0. Set sh_entsize on the .plt.got section.
(compare_relocs): New.
(elf_x86_64_plt_type): Likewise.
(elf_x86_64_plt): Likewise.
(elf_x86_64_nacl_plt): New. Forward declaration.
(elf_x86_64_get_plt_sym_val): Removed.
(elf_x86_64_get_synthetic_symtab): Rewrite to check PLT sections
against all dynamic relocations.
(elf_x86_64_link_setup_gnu_properties): New function.
(elf_backend_create_dynamic_sections): Updated.
(elf_backend_setup_gnu_properties): New.
(elf_x86_64_nacl_plt): New.
(elf_x86_64_nacl_arch_bed): Updated.
ld/
* testsuite/ld-ifunc/ifunc-16-x86-64-now.d: New file.
* testsuite/ld-ifunc/ifunc-2-local-x86-64-now.d: Likewise.
* testsuite/ld-ifunc/ifunc-2-x86-64-now.d: Likewise.
* testsuite/ld-ifunc/pr17154-x86-64-now.d: Likewise.
* testsuite/ld-x86-64/bnd-branch-1-now.d: Likewise.
* testsuite/ld-x86-64/bnd-ifunc-1-now.d: Likewise.
* testsuite/ld-x86-64/bnd-ifunc-2-now.d: Likewise.
* testsuite/ld-x86-64/bnd-plt-1-now.d: Likewise.
* testsuite/ld-x86-64/mpx3n.dd: Likewise.
* testsuite/ld-x86-64/mpx4n.dd: Likewise.
* testsuite/ld-x86-64/plt-main-bnd-now.rd: Likewise.
* testsuite/ld-x86-64/plt2.dd: Likewise.
* testsuite/ld-x86-64/plt2.rd: Likewise.
* testsuite/ld-x86-64/plt2.s: Likewise.
* testsuite/ld-x86-64/pr20830a-now.d: Likewise.
* testsuite/ld-x86-64/pr20830b-now.d: Likewise.
* testsuite/ld-x86-64/pr21038a-now.d: Likewise.
* testsuite/ld-x86-64/pr21038b-now.d: Likewise.
* testsuite/ld-x86-64/pr21038c-now.d: Likewise.
* testsuite/ld-x86-64/load1b-nacl.d: Updated.
* testsuite/ld-x86-64/load1b.d: Likewise.
* testsuite/ld-x86-64/plt-main-bnd.dd: Likewise.
* testsuite/ld-x86-64/pr20253-1h.d: Likewise.
* testsuite/ld-x86-64/pr20830a.d: Update the .plt.got section
with func@plt.
* testsuite/ld-x86-64/pr20830b.d: Likewise.
* testsuite/ld-x86-64/pr21038a.d: Likewise.
* testsuite/ld-x86-64/pr21038c.d: Likewise.
* testsuite/ld-x86-64/mpx.exp: Add some -z now tests.
* testsuite/ld-x86-64/x86-64.exp: Likewise.
On i386, the procedure linkage table (PLT) is used to
1. Call external function.
2. Call internal IFUNC function. The best implementation is selected
for the target processor at run-time.
3. Act as the canonical function address.
4. Support LD_AUDIT to audit external function calls.
5. Support LD_PROFILE to profile external function calls.
PLT looks like:
PLT0: push GOT[1]
jmp *GOT[2]
nop
PLT1: jmp *GOT[name1_index]
push name1_reloc_index
jmp PLT0
GOT is an array of addresses. Initially the GOT entry of name1 is
filled with the address of the "push name1_reloc_index" instruction.
The function, name1, is called via "jmp *GOT[name1]" in the PLT entry.
Even when lazy binding is disabled by "-z now", the PLT0 entry may
still be used with LD_AUDIT or LD_PROFILE if PLT entry is used for
canonical function address.
1. With lazy binding, when the external function, name1, is called the
first time, dynamic linker is called via PLT0 to update GOT[name1_index]
with the actual address of name1 and transfers control to name1
afterwards.
2. PLT is also used to call a local IFUNC function, name1, run-time
loader updates GOT[name1_index] when loading the module.
This patch
1. Remove PLT layout configurations from i386 backend_data.
2. Add generic, lay and non-lazy PLT layout configurations to i386
link_hash_table. Generic PLT layout includes the PLT entry templates,
information how to update the first instruction in PLT and PLT eh_frame
informaton, which are initialized in i386 setup_gnu_properties, based
on PIC and target selection. PLT section alignment is also set to PLT
entry size for non-NaCl/VxWorks target.
3. Remove elf_i386_create_dynamic_sections. create_dynamic_sections
isn't always called, but GOT relocations need GOT relocations. Instead,
create all i386 specific dynamic sections in i386 setup_gnu_properties,
which initializes elf.dynobj, so that i386 check_relocs can be simplified.
4. Rewrite elf_i386_get_synthetic_symtab to check PLT sections against
all dynamic relocations to support both lazy and non-lazy PLTs.
bfd/
* elf32-i386.c (PLT_ENTRY_SIZE): Renamed to ...
(LAZY_PLT_ENTRY_SIZE): This.
(NON_LAZY_PLT_ENTRY_SIZE): New.
(elf_i386_plt0_entry): Renamed to ...
(elf_i386_lazy_plt0_entry): This.
(elf_i386_plt_entry): Renamed to ...
(elf_i386_lazy_plt_entry): This.
(elf_i386_pic_plt0_entry): Renamed to ...
(elf_i386_pic_lazy_plt0_entry): This.
(elf_i386_pic_plt_entry): Renamed to ...
(elf_i386_pic_lazy_plt_entry): This.
(elf_i386_got_plt_entry): Renamed to ...
(elf_i386_non_lazy_plt_entry): This.
(elf_i386_pic_got_plt_entry): Renamed to ...
(elf_i386_pic_non_lazy_plt_entry): This.
(elf_i386_eh_frame_plt): Renamed to ...
(elf_i386_eh_frame_lazy_plt): This.
(elf_i386_eh_frame_plt_got): Renamed to ...
(elf_i386_eh_frame_non_lazy_plt): This.
(elf_i386_plt_layout): Renamed to ...
(elf_i386_lazy_plt_layout): This. Remove eh_frame_plt_got and
eh_frame_plt_got_size.
(elf_i386_non_lazy_plt_layout): New.
(elf_i386_plt_layout): Likewise.
(elf_i386_non_lazy_plt): Likewise.
(GET_PLT_ENTRY_SIZE): Removed.
(elf_i386_plt): Renamed to ...
(elf_i386_lazy_plt): This.
(elf_i386_backend_data): Remove plt. Rename is_vxworks to os.
(elf_i386_arch_bed): Updated.
(elf_i386_link_hash_table): Add plt, lazy_plt and non_lazy_plt.
(elf_i386_create_dynamic_sections): Removed.
(elf_i386_check_relocs): Don't check elf.dynobj. Don't call
_bfd_elf_create_ifunc_sections nor _bfd_elf_create_got_section.
(elf_i386_adjust_dynamic_symbol): Updated.
(elf_i386_allocate_dynrelocs): Updated. Pass 0 as PLT header
size to _bfd_elf_allocate_ifunc_dyn_relocs and don't allocate
size for PLT0 if there is no PLT0.
(elf_i386_size_dynamic_sections): Updated. Check whether GOT
output section is discarded only if GOT isn't empty.
(elf_i386_relocate_section): Updated. Properly get PLT index
if there is no PLT0.
(elf_i386_finish_dynamic_symbol): Updated. Don't fill the
second and third slots in the PLT entry if there is no PLT0.
(elf_i386_finish_dynamic_sections): Updated. Don't fill PLT0
if there is no PLT0. Set sh_entsize on the .plt.got section.
(elf_i386_nacl_plt): Forward declaration.
(elf_i386_get_plt_sym_val): Removed.
(elf_i386_get_synthetic_symtab): Rewrite to check PLT sections
against all dynamic relocations.
(elf_i386_link_setup_gnu_properties): New function.
(elf_backend_create_dynamic_sections): Updated.
(elf_backend_setup_gnu_properties): New.
(elf_i386_nacl_plt): Updated.
(elf_i386_nacl_arch_bed): Likewise.
(elf_i386_vxworks_arch_bed): Likewise.
ld/
* testsuite/ld-i386/i386.exp: Add some -z now tests.
* testsuite/ld-i386/plt-pic2.dd: New file.
* testsuite/ld-i386/plt2.dd: Likewise.
* testsuite/ld-i386/plt2.rd: Likewise.
* testsuite/ld-i386/plt2.s: Likewise.
* testsuite/ld-ifunc/ifunc-16-i386-now.d: Likewise.
* testsuite/ld-ifunc/ifunc-2-i386-now.d: Likewise.
* testsuite/ld-ifunc/ifunc-2-local-i386-now.d: Likewise.
* testsuite/ld-ifunc/pr17154-i386-now.d: Likewise.
* testsuite/ld-i386/pr20830.d: Update the .plt.got section
with func@plt.
For ELF targets --out-implib currently generates an executable file
(e_type is ET_EXEC) despite the file being expected to be linked against
some other object file to make an executable later. It seems therefore
more sensible to make the import library a relocatable object file
(e_type set to ET_REL).
Incidentally, as dicted by requirement 8 of
"ARM v8-M Security Extensions: Requirements on Development Tools"
(document ARM-ECM-0359818) version 1.0, import libraries generated when
using --cmse-implib *must* be relocatable object file so this commit
also adds an assert there in case the type of ELF import library is
changed again in the future.
2017-05-08 Thomas Preud'homme <thomas.preudhomme@arm.com>
bfd/
* elflink.c (elf_output_implib): Remove executable flag from import
library bfd.
* elf32-arm.c (elf32_arm_filter_implib_symbols): Assert that the import
library is a relocatable object file.
ld/
* testsuite/ld-arm/arm-elf.exp
(Secure gateway import library generation): Check e_type field
of import library and executable produced.
* testsuite/ld-arm/cmse-implib.type: Expectations for e_type field.
Fix a host of problems related to adjustment of
symbol values and sizes when relaxing for avr.
1. Adjust symbol size first before adjusting symbol
value. Otherwise, a symbol whose value just got adjusted to the
relaxed address also ends up getting resized. See pr21404-1.s.
2. Reduce symbol sizes only if their span is below an
alignment boundary. Otherwise, the size gets decremented once when the
actual instruction is relaxed and padding bytes are added, and again
when the padding bytes are deleted (if padding ends up being unnecessary).
pr21404-2.s addresses that, and this bug is really the root cause of PR21404.
3. Adjust all symbol values before an alignment boundary.
Previous code did not adjust symbol values if they fell in the
would-be padded area, resulting in incorrect symbol values in some
cases (see pr21404-3.s).
4. Increase symbol sizes if alignment directives require so.
As pr21404-4.s shows
.global nonzero_sym
L1:
jmp L1
nonzero_sym:
nop
nop
.p2align 2
.size nonzero_sym, .-nonzero_sym
The two nops satisfy the 4 byte alignment at assembly time and
therefore the size of nonzero_sym is 4. Relaxation shortens
the 4 byte jmp to a 2 byte rjmp, and to satisfy 4 byte alignment
the code places 2 extra padding bytes after the nops, increasing
nonzero_sym's size by 2. This wasn't handled before.
If the assembly code does not have any align directives, then the
boundary is the section size, and symbol values and sizes == boundary
should also get adjusted. To handle that case, add a did_pad variable
and use that to determine whether it should use < boundary or <= boundary.
Also get rid of reloc_toaddr, which is now redundant. toaddr is now not
adjusted to handle the above case - the newly added
did_pad variable does the job.
pr21404-{5,6,7,8} are the same testcases written for local symbols, as
the code handles them slightly differently.
Implement the relaxation of MIPS16 PC-relative synthetic LA, DLA, LW and
LD instructions to an equivalent sequence of instructions produced where
the address operand requested is out of range, absolute or requires
linker relocation, for ABIs that use 32-bit addressing and non-PIC code.
The sequence generated uses the register specified for the destination
operand as a temporary and begins with LI to load the high 16-bit part
of the address, then continues with SLL by 16 bits to move that part
into place and finally completes with a suitable operation corresponding
to the synthetic instruction used, one of: 2-argument ADDIU, 2-argument
DADDIU, absolute LW, and absolute LD respectively, providing the low
16-bit part of the address. All instructions use the extended encoding.
As a special exception accept absolute addresses for relaxation even in
PIC code.
For example:
la $2, 0x12345678
produces code as:
li $2, 0x1234
sll $2, $2, 16
addiu $2, 0x5678
would.
Where linker relocation is required emit an R_MIPS16_HI16 relocation on
the initial LI instruction and an R_MIPS16_LO16 relocation on the final
operation.
For example (where `foo' is not local):
lw $3, foo
produces code as:
li $3, %hi(foo)
sll $3, $3, 16
lw $3, %lo(foo)($3)
would.
Emit assembly warnings as appropriate where this new relaxation triggers
in the `nomacro' mode or for an instruction manually placed in a branch
delay slot in the `noreorder' mode. Refrain from relaxation where an
explicit instruction size suffix has been used and in the `noautoextend'
mode.
gas/
* config/tc-mips.c (RELAX_MIPS16_ENCODE): Add `pic', `sym32' and
`nomacro' flags.
(RELAX_MIPS16_PIC, RELAX_MIPS16_SYM32, RELAX_MIPS16_NOMACRO):
New macros.
(RELAX_MIPS16_USER_SMALL, RELAX_MIPS16_USER_EXT)
(RELAX_MIPS16_DSLOT, RELAX_MIPS16_JAL_DSLOT)
(RELAX_MIPS16_EXTENDED, RELAX_MIPS16_MARK_EXTENDED)
(RELAX_MIPS16_CLEAR_EXTENDED, RELAX_MIPS16_ALWAYS_EXTENDED)
(RELAX_MIPS16_MARK_ALWAYS_EXTENDED)
(RELAX_MIPS16_CLEAR_ALWAYS_EXTENDED): Shift bits.
(RELAX_MIPS16_MACRO, RELAX_MIPS16_MARK_MACRO)
(RELAX_MIPS16_CLEAR_MACRO): New macros.
(append_insn): Pass `mips_pic', HAVE_32BIT_SYMBOLS and
`mips_opts.warn_about_macros' settings to RELAX_MIPS16_ENCODE.
(mips16_macro_frag): New function.
(md_estimate_size_before_relax): Handle HI16/LO16 relaxation.
(mips_relax_frag): Likewise.
(md_convert_frag): Likewise.
* testsuite/gas/mips/mips16@relax-swap3.d: Remove error output,
add dump patterns.
* testsuite/gas/mips/mips16e@relax-swap3.d: New test
subarchitecture.
* testsuite/gas/mips/micromips@relax-swap3.d: Remove trailing
NOP padding.
* testsuite/gas/mips/mips16-pcrel-reloc-2.d: Remove error
output, add dump patterns.
* testsuite/gas/mips/mips16-pcrel-reloc-3.d: Remove error
output, add dump patterns.
* testsuite/gas/mips/mips16-pcrel-reloc-6.d: Remove error
output, add dump patterns.
* testsuite/gas/mips/mips16-pcrel-reloc-7.d: Remove error
output, add dump patterns.
* testsuite/gas/mips/mips16-pcrel-addend-2.d: Remove error
output, add dump patterns.
* testsuite/gas/mips/mips16-pcrel-addend-3.d: Remove error
output, add dump patterns.
* testsuite/gas/mips/mips16-pcrel-absolute.d: Remove error
output, add dump patterns.
* testsuite/gas/mips/mips16-pcrel-absolute-1.d: Remove error
output, add dump patterns.
* testsuite/gas/mips/mips16@relax-swap3.l: Remove file.
* testsuite/gas/mips/mips16-pcrel-reloc-2.l: Remove file.
* testsuite/gas/mips/mips16-pcrel-reloc-3.l: Remove file.
* testsuite/gas/mips/mips16-pcrel-reloc-6.l: Remove file.
* testsuite/gas/mips/mips16-pcrel-reloc-7.l: Remove file.
* testsuite/gas/mips/mips16-pcrel-addend-2.l: Remove file.
* testsuite/gas/mips/mips16-pcrel-addend-3.l: Remove file.
* testsuite/gas/mips/mips16-pcrel-absolute.l: Remove file.
* testsuite/gas/mips/mips16-pcrel-absolute-1.l: Remove file.
* testsuite/gas/mips/relax-swap3.s: Adjust trailing padding.
* testsuite/gas/mips/mips16-pcrel-0.d: New test.
* testsuite/gas/mips/mips16-pcrel-1.d: New test.
* testsuite/gas/mips/mips16-pcrel-2.d: New test.
* testsuite/gas/mips/mips16-pcrel-3.d: New test.
* testsuite/gas/mips/mips16-pcrel-4.d: New test.
* testsuite/gas/mips/mips16-pcrel-5.d: New test.
* testsuite/gas/mips/mips16-pcrel-pic-0.d: New test.
* testsuite/gas/mips/mips16-pcrel-pic-1.d: New test.
* testsuite/gas/mips/mips16-pcrel-n32-0.d: New test.
* testsuite/gas/mips/mips16-pcrel-n32-1.d: New test.
* testsuite/gas/mips/mips16-pcrel-n64-sym32-0.d: New test.
* testsuite/gas/mips/mips16-pcrel-n64-sym32-1.d: New test.
* testsuite/gas/mips/mips16-pcrel-n64-0.d: New test.
* testsuite/gas/mips/mips16-pcrel-n64-1.d: New test.
* testsuite/gas/mips/mips16-pcrel-delay-0.d: New test.
* testsuite/gas/mips/mips16-pcrel-delay-1.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-4.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-5.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-6.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-7.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-8.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-9.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-pic-8.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-pic-9.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-n32-8.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-n32-9.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-n64-sym32-8.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-n64-sym32-9.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-n64-8.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-n64-9.d: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-2.d: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-3.d: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-4.d: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-5.d: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-6.d: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-7.d: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-pic-4.d: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-pic-6.d: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-n32-4.d: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-n32-6.d: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-n64-4.d: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-n64-6.d: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-n64-sym32-4.d: New
test.
* testsuite/gas/mips/mips16-pcrel-absolute-n64-sym32-6.d: New
test.
* testsuite/gas/mips/mips16-pcrel-absolute-pic-n32-4.d: New
test.
* testsuite/gas/mips/mips16-pcrel-absolute-pic-n32-6.d: New
test.
* testsuite/gas/mips/mips16-pcrel-absolute-pic-n64-4.d: New
test.
* testsuite/gas/mips/mips16-pcrel-absolute-pic-n64-6.d: New
test.
* testsuite/gas/mips/mips16-pcrel-absolute-pic-n64-sym32-4.d:
New test.
* testsuite/gas/mips/mips16-pcrel-absolute-pic-n64-sym32-6.d:
New test.
* testsuite/gas/mips/mips16-pcrel-0.l: New stderr output.
* testsuite/gas/mips/mips16-pcrel-1.l: New stderr output.
* testsuite/gas/mips/mips16-pcrel-2.l: New stderr output.
* testsuite/gas/mips/mips16-pcrel-3.l: New stderr output.
* testsuite/gas/mips/mips16-pcrel-4.l: New stderr output.
* testsuite/gas/mips/mips16-pcrel-5.l: New stderr output.
* testsuite/gas/mips/mips16-pcrel-delay-0.l: New stderr output.
* testsuite/gas/mips/mips16-pcrel-delay-1.l: New stderr output.
* testsuite/gas/mips/mips16-pcrel-addend-8.l: New stderr output.
* testsuite/gas/mips/mips16-pcrel-addend-9.l: New stderr output.
* testsuite/gas/mips/mips16-pcrel-absolute-4.l: New stderr
output.
* testsuite/gas/mips/mips16-pcrel-absolute-6.l: New stderr
output.
* testsuite/gas/mips/mips16-pcrel-0.s: New test source.
* testsuite/gas/mips/mips16-pcrel-1.s: New test source.
* testsuite/gas/mips/mips16-pcrel-2.s: New test source.
* testsuite/gas/mips/mips16-pcrel-3.s: New test source.
* testsuite/gas/mips/mips16-pcrel-4.s: New test source.
* testsuite/gas/mips/mips16-pcrel-5.s: New test source.
* testsuite/gas/mips/mips16-pcrel-delay-0.s: New test source.
* testsuite/gas/mips/mips16-pcrel-delay-1.s: New test source.
* testsuite/gas/mips/mips16-pcrel-addend-4.s: New test source.
* testsuite/gas/mips/mips16-pcrel-addend-5.s: New test source.
* testsuite/gas/mips/mips16-pcrel-addend-6.s: New test source.
* testsuite/gas/mips/mips16-pcrel-addend-7.s: New test source.
* testsuite/gas/mips/mips16-pcrel-addend-8.s: New test source.
* testsuite/gas/mips/mips16-pcrel-addend-9.s: New test source.
* testsuite/gas/mips/mips16-pcrel-absolute-2.s: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-3.s: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-4.s: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-5.s: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-6.s: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-7.s: New test.
* testsuite/gas/mips/mips.exp: Run the new tests.
ld/
* testsuite/ld-mips-elf/mips16-pcrel-0.d: New test.
* testsuite/ld-mips-elf/mips16-pcrel-1.d: New test.
* testsuite/ld-mips-elf/mips16-pcrel-addend-2.d: New test.
* testsuite/ld-mips-elf/mips16-pcrel-addend-6.d: New test.
* testsuite/ld-mips-elf/mips16-pcrel-n32-0.d: New test.
* testsuite/ld-mips-elf/mips16-pcrel-n32-1.d: New test.
* testsuite/ld-mips-elf/mips16-pcrel-n64-sym32-0.d: New test.
* testsuite/ld-mips-elf/mips16-pcrel-n64-sym32-1.d: New test.
* testsuite/ld-mips-elf/mips-elf.exp: Run the new tests.
Adjust testsuite/ld-elf/pr21384.d to accommodate additional dynamic
symbols on some targets.
* testsuite/ld-elf/pr21384.d: Adjusted to accommodate
additional dynamic symbols on some targets.
Complement commit 88a7ef1689 ("MIPS16/GAS: Restore unsupported
relocation diagnostics") and also propagate constant expressions, either
already reduced from absolute symbol references or created from literals
in the first place, used as a PC-relative operand with the MIPS16 LA,
LW, DLA and LD synthetic instructions to relaxation, matching the way
forward absolute symbol references have been handled as from the commit
referred and letting relaxation produce any necessary relocations, if
possible, for the absolute value requested to be reproduced at the run
time.
Call `symbol_append' for any expression symbol created for the purpose
of MIPS16 relaxation as with constant expressions now propagated from
earlier on such symbols may make it through and have R_MIPS16_PC16_S1
relocations emitted against, and therefore need to appear in the symbol
table produced.
gas/
* config/tc-mips.c (append_insn): Call `symbol_append' for any
expression symbol created for MIPS16 relaxation.
(match_mips16_insn): Don't encode a constant value as an
immediate with a PC-relative operand.
* testsuite/gas/mips/mips16-pcrel-absolute-1.d: New test.
* testsuite/gas/mips/mips16-branch-absolute-1.d: New test.
* testsuite/gas/mips/mips16-branch-absolute-2.d: New test.
* testsuite/gas/mips/mips16-branch-absolute-addend-1.d: New
test.
* testsuite/gas/mips/mips16-branch-absolute-n32-1.d: New test.
* testsuite/gas/mips/mips16-branch-absolute-n32-2.d: New test.
* testsuite/gas/mips/mips16-branch-absolute-addend-n32-1.d: New
test.
* testsuite/gas/mips/mips16-branch-absolute-n64-1.d: New test.
* testsuite/gas/mips/mips16-branch-absolute-n64-2.d: New test.
* testsuite/gas/mips/mips16-branch-absolute-addend-n64-1.d: New
test.
* testsuite/gas/mips/mips16-pcrel-absolute-1.l: New stderr
output.
* testsuite/gas/mips/mips16-pcrel-absolute-1.s: New test source.
* testsuite/gas/mips/mips16-branch-absolute-1.s: New test
source.
* testsuite/gas/mips/mips16-branch-absolute-2.s: New test
source.
* testsuite/gas/mips/mips16-branch-absolute-addend-1.s: New test
source.
* testsuite/gas/mips/mips.exp: Run the new tests.
ld/
* testsuite/ld-mips-elf/mips16-branch-absolute-1.d: New test.
* testsuite/ld-mips-elf/mips16-branch-absolute-2.d: New test.
* testsuite/ld-mips-elf/mips16-branch-absolute-addend-1.d: New
test.
* testsuite/ld-mips-elf/mips16-branch-absolute-n32-1.d: New
test.
* testsuite/ld-mips-elf/mips16-branch-absolute-n32-2.d: New
test.
* testsuite/ld-mips-elf/mips16-branch-absolute-addend-n32-1.d:
New test.
* testsuite/ld-mips-elf/mips16-branch-absolute-n64-1.d: New
test.
* testsuite/ld-mips-elf/mips16-branch-absolute-n64-2.d: New
test.
* testsuite/ld-mips-elf/mips16-branch-absolute-addend-n64-1.d:
New test.
* testsuite/ld-mips-elf/mips-elf.exp: Run the new tests.
* testsuite/ld-i386/tls.exp: Add -Wl,--no-as-needed to
"TLS without PLT (1)" and "TLS without PLT (3)".
* testsuite/ld-x86-64/tls.exp: Add -Wl,--no-as-needed to
to "TLS without PLT (3)".
Check if GNU2 TLS really works before running GNU2 TLS tests.
* testsuite/ld-i386/tls.exp: Run GNU2 TLS tests only if there
is working GNU2 TLS support.
* testsuite/ld-x86-64/tls.exp: Likewise.
* testsuite/lib/ld-lib.exp (check_gnu2_tls_available): New proc.
This patch creates dynamic sections in i386/x86-64 create_dynamic_sections
instead of creating them on demend. Linker will strip them if they are
empty. It changes order in x86-64 .eh_frame section. The extra DW_CFA_nop
paddings is due to
https://sourceware.org/bugzilla/show_bug.cgi?id=21441
bfd/
* elf32-i386.c (elf_i386_create_dynamic_sections): Create the
.plt.got section here.
(elf_i386_check_relocs): Don't create the .plt.got section.
* elf64-x86-64.c (elf_x86_64_create_dynamic_sections): Create
the .plt.got and .plt.bnd sections here.
(elf_x86_64_check_relocs): Don't create the .plt.got nor
.plt.bnd sections.
ld/
* testsuite/ld-x86-64/pr21038a.d: Update DW_CFA_nop paddings
in .eh_frame section.
* testsuite/ld-x86-64/pr21038c.d: Update .eh_frame order.
x86, PLT relocation may contain R_386_TLS_DESC or R_X86_64_TLSDESC
even though there is no real PLT. We need to add DT_PLTRELSZ, DT_PLTREL
and DT_JMPREL if there is a .rel.plt/.rela.plt section.
bfd/
* elf32-i386.c (elf_i386_size_dynamic_sections): Alwasys add
DT_PLTRELSZ, DT_PLTREL and DT_JMPREL for .rel.plt section.
* elf64-x86-64.c (elf_x86_64_size_dynamic_sections): Alwasys
add DT_PLTRELSZ, DT_PLTREL and DT_JMPREL for .rela.plt section.
ld/
* testsuite/ld-i386/tlsdesc2.d: New test.
* testsuite/ld-x86-64/tlsdesc2.d: Likewise.
Complement commit e17b0c351f ("MIPS/BFD: Respect the ELF gABI dynamic
symbol table sort requirement") and correct an inconsistency in dynamic
symbol accounting data causing an assertion failure in the MIPS backend:
ld: BFD (GNU Binutils) 2.28.51.20170330 assertion fail
../../binutils-gdb/bfd/elfxx-mips.c:3860
in the course of making a GOT entry in a static binary to satisfy a GOT
relocation present in input, due to the local dynamic symbol count not
having been established.
To do so let backends request `_bfd_elf_link_renumber_dynsyms' to be
always called, rather than where a dynamic binary is linked only, and
then make this request in the MIPS backend.
bfd/
PR ld/21334
* elf-bfd.h (elf_backend_data): Add `always_renumber_dynsyms'
member.
* elfxx-target.h [!elf_backend_always_renumber_dynsyms]
(elf_backend_always_renumber_dynsyms): Define.
(elfNN_bed): Initialize `always_renumber_dynsyms' member.
* elfxx-mips.h (elf_backend_always_renumber_dynsyms): Define.
* elflink.c (bfd_elf_size_dynamic_sections): Also call
`_bfd_elf_link_renumber_dynsyms' if the backend has requested
it.
(bfd_elf_size_dynsym_hash_dynstr): Likewise.
ld/
PR ld/21334
* testsuite/ld-mips-elf/pr21334.dd: New test.
* testsuite/ld-mips-elf/pr21334.gd: New test.
* testsuite/ld-mips-elf/pr21334.ld: New test linker script.
* testsuite/ld-mips-elf/pr21334.s: New test source.
* testsuite/ld-mips-elf/mips-elf.exp: Run the new tests.
Force symbol dynamic if it isn't undefined weak. Generate relative
relocation for GOT reference against non-dynamic symbol in PIC to
avoid unnecessary dynamic symbols.
bfd/
* elf64-x86-64.c (elf_x86_64_link_hash_entry): Add
no_finish_dynamic_symbol.
(elf_x86_64_link_hash_newfunc): Set no_finish_dynamic_symbol to
0.
(elf_x86_64_allocate_dynrelocs): If a symbol isn't undefined
weak symbol, don't make it dynamic.
(elf_x86_64_relocate_section): If a symbol isn't dynamic in PIC,
set no_finish_dynamic_symbol and generate R_X86_64_RELATIVE
relocation for GOT reference.
(elf_x86_64_finish_dynamic_symbol): Abort if
no_finish_dynamic_symbol isn't 0.
ld/
* testsuite/ld-x86-64/no-plt.exp: Also check no-plt-1e.nd.
* testsuite/ld-x86-64/no-plt-1e.nd: New file.
commit f129e49f4d
Author: H.J. Lu <hjl.tools@gmail.com>
Date: Tue Jan 10 11:30:25 2017 -0800
Don't use elf_i386_eh_frame_plt directly
fixed i386 PLT eh_frame generation. Skip pr12570 tests since they are
for non-nacl targets.
* testsuite/ld-i386/pr12570a.d: Skip for nacl targets.
* testsuite/ld-i386/pr12570b.d: Likewise.
commit a27e437177
Author: Roland McGrath <roland@gnu.org>
Date: Thu Jul 28 22:35:15 2011 +0000
BFD vector for elf32-i386-nacl:
changed ELF_MAXPAGESIZE to 0x10000 for VxWorks. This patch fixes it
and updated testsuite/ld-i386/vxworks2.sd to add space for program
headers.
bfd/
PR ld/21425
* elf32-i386.c (ELF_MAXPAGESIZE): Set to 0x1000 for VxWorks.
ld/
PR ld/20815
* testsuite/ld-i386/vxworks2.sd: Add space for program headers.
A few tests in the ld testsuite were expecting the disassembler to
emit `rett' instructions in V9. This patch updates the tests to
expect `return' instead.
ld/ChangeLog:
2017-04-24 Jose E. Marchesi <jose.marchesi@oracle.com>
* testsuite/ld-sparc/tlssunbin64.dd: Expect `return' instructions
instead of `rett' in V9.
* testsuite/ld-sparc/tlssunnopic64.dd: Likewise.
* testsuite/ld-sparc/tlssunpic64.dd: Likewise.
GOT reference to global symbol in PIE will lead to dynamic symbol. It
becomes a problem when "time" or "times" is defined as a variable in
an executable, clashing with functions of the same name in libc. If
a symbol isn't undefined weak symbol, don't make it dynamic in PIE and
generate R_386_RELATIVE relocation.
bfd/
PR ld/21402
* elf32-i386.c (elf_i386_link_hash_entry): Add
no_finish_dynamic_symbol.
(elf_i386_link_hash_newfunc): Set no_finish_dynamic_symbol to 0.
(elf_i386_allocate_dynrelocs): If a symbol isn't undefined weak
symbol, don't make it dynamic in PIE.
(elf_i386_relocate_section): If a symbol isn't dynamic in PIE,
set no_finish_dynamic_symbol and generate R_386_RELATIVE
relocation for R_386_GOT32
(elf_i386_finish_dynamic_symbol): Abort if no_finish_dynamic_symbol
isn't 0.
ld/
PR ld/21402
* testsuite/ld-elf/indirect.exp: Don't skip PIE indirect5 and
indirect6 tests on i386.