Few arches implement STATE_WATCHPOINTS()->pc while all of them implement
sim_pc_get. Lets switch the sim-watch core for monitoring pc events to
the sim_pc_get API so this module works for all ports, and then we can
delete this old back channel of snooping in the port's cpu state -- the
code needs the pointer to the pc storage so that it can read out bytes
and compare them to the watchrange.
This also fixes the logic on multi-cpu sims by removing the limitation
of only being able to watch CPU0's state.
The AC_CONFIG_HEADER macro is long deprecated, so switch to the
newer form. This also gets rid of the position limitation, and
drops support for an argument to SIM_AC_COMMON which we haven't
used anywhere.
These settings might have made sense in darker compiler times, but I
think they're largely obsolete now. Looking through the values that
get used in HDEFINES, it's quite limited, and configure itself should
handle them. If we still need something, we can leverage standard
autoconf macros instead, after we get a clear user report.
TDEFINES was never set anywhere and was always empty, so prune that.
This fixes PR27184, a failure to compile gdb due to
cdefs.h being out of sync with glibc on ppc64le targets
which are compiled with -mabi=ieeelongdouble and glibc
2.32.
Likewise, update usage of _GL_ATTRIBUTE_FORMAT_PRINTF to
_GL_ATTRIBUTE_FORMAT_PRINTF_STANDARD.
Likewise, disable newly added rpl_free gnulib api in
gdbserver support libraries.
Likewise, undefine read/write macros before redefining them
on mingw targets.
Likewise, wrap C++ usage of free with GNULIB_NAMESPACE namespace
as needed.
Change-Id: I86517613c0d8ac8f5ea45bbc4ebe2b54a3aef29f
These are likely not very useful, remove them.
gdb/ChangeLog:
* symmisc.c (std_in, std_out, std_err): Remove.
(_initialize_symmisc): Don't set std_in, std_out and std_err.
Change-Id: I140bfffd7fb655d39c32333bb53924b91b1eb13c
The test-case nextoverthrow.exp is failing on targets with unstripped libc.
This is a regression since commit 1940319c0e "[gdb] Fix internal-error in
process_event_stop_test".
The problem is that this code in create_exception_master_breakpoint:
...
for (objfile *sepdebug = obj->separate_debug_objfile;
sepdebug != nullptr; sepdebug = sepdebug->separate_debug_objfile)
if (create_exception_master_breakpoint_hook (sepdebug))
...
iterates over all the separate debug object files, but fails to handle the
case that obj itself has the debug info we're looking for.
Fix this by using the separate_debug_objfiles () range instead, which does
iterate both over obj and the obj->separate_debug_objfile chain.
Tested on x86_64-linux.
gdb/ChangeLog:
2021-02-05 Tom de Vries <tdevries@suse.de>
PR breakpoints/27330
* breakpoint.c (create_exception_master_breakpoint): Handle case that
glibc object file has debug info.
When running test-case gdb.cp/cpexprs-debug-types.exp with target board
unix/gdb:debug_flags=-gdwarf-5, I run into:
...
(gdb) file cpexprs-debug-types^M
Reading symbols from cpexprs-debug-types...^M
ERROR: Couldn't load cpexprs-debug-types into GDB (eof).
ERROR: Couldn't send delete breakpoints to GDB.
ERROR: GDB process no longer exists
GDB process exited with wait status 23054 exp9 0 0 CHILDKILLED SIGABRT SIGABRT
...
We're running into this abort in process_psymtab_comp_unit:
...
switch (reader.comp_unit_die->tag)
{
case DW_TAG_compile_unit:
this_cu->unit_type = DW_UT_compile;
break;
case DW_TAG_partial_unit:
this_cu->unit_type = DW_UT_partial;
break;
default:
abort ();
}
...
because reader.comp_unit_die->tag == DW_TAG_type_unit.
Fix this by adding a DW_TAG_type_unit case.
Tested on x86_64-linux.
gdb/ChangeLog:
2021-02-05 Tom de Vries <tdevries@suse.de>
PR symtab/27333
* dwarf2/read.c (process_psymtab_comp_unit): Handle DW_TAG_type_unit.
Using a hello world a.out, I run into a segfault:
...
$ gcc hello.c
$ gdb -batch a.out -ex "catch syscall -1" -ex r
Catchpoint 1 (syscall -1)
Aborted (core dumped)
...
Fix this by erroring out if a negative syscall number is used in the
catch syscall command.
Tested on x86_64-linux.
gdb/ChangeLog:
2021-02-05 Tom de Vries <tdevries@suse.de>
PR breakpoints/27313
* break-catch-syscall.c (catch_syscall_split_args): Reject negative
syscall numbers.
gdb/testsuite/ChangeLog:
2021-02-05 Tom de Vries <tdevries@suse.de>
PR breakpoints/27313
* gdb.base/catch-syscall.exp: Check that "catch syscall -1" is
rejected.
I noticed that several parsers shared the same code to write a symbol
reference to an expression. This patch factors this code out into a
new function.
Regression tested on x86-64 Fedora 32.
gdb/ChangeLog
2021-02-05 Tom Tromey <tom@tromey.com>
* parser-defs.h (write_exp_symbol_reference): Declare.
* parse.c (write_exp_symbol_reference): New function.
* p-exp.y (variable): Use write_exp_symbol_reference.
* m2-exp.y (variable): Use write_exp_symbol_reference.
* f-exp.y (variable): Use write_exp_symbol_reference.
* d-exp.y (PrimaryExpression): Use write_exp_symbol_reference.
* c-exp.y (variable): Use write_exp_symbol_reference.
When an executable contains an index such as a .gdb_index or .debug_names
section, gdb ignores the DW_AT_subprogram attribute.
This problem has been filed as PR symtab/24549.
Add KFAILs for this PR in test-cases gdb.dwarf2/main-subprogram.exp and
gdb.fortran/mixed-lang-stack.exp.
Tested on x86_64-linux.
gdb/testsuite/ChangeLog:
2021-02-05 Tom de Vries <tdevries@suse.de>
* gdb.dwarf2/main-subprogram.exp: Add KFAIL for PR symtab/24549.
* gdb.fortran/mixed-lang-stack.exp: Same.
I'm running into this assertion failure:
...
$ gdb -batch -ex "p (void *)0 - 5i"
gdbtypes.c:3430: internal-error: \
type* init_complex_type(const char*, type*): Assertion \
`target_type->code () == TYPE_CODE_INT \
|| target_type->code () == TYPE_CODE_FLT' failed.
A problem internal to GDB has been detected,
further debugging may prove unreliable.
...
This is a regression since commit c34e871466 "Implement complex arithmetic".
Before that commit we had:
...
(gdb) p (void *)0 - 5i
Argument to arithmetic operation not a number or boolean.
...
Fix this in complex_binop by throwing an error, such that we have:
...
(gdb) print (void *)0 - 5i
Argument to complex arithmetic operation not supported.
...
Tested on x86_64-linux.
gdb/ChangeLog:
2021-02-05 Tom de Vries <tdevries@suse.de>
PR exp/27265
* valarith.c (complex_binop): Throw an error if complex type can't
be created.
gdb/testsuite/ChangeLog:
2021-02-05 Tom de Vries <tdevries@suse.de>
PR exp/27265
* gdb.base/complex-parts.exp: Add tests.
When running test-case gdb.dwarf2/clang-debug-names.exp, I run into the
following warning:
...
(gdb) file clang-debug-names^M
Reading symbols from clang-debug-names...^M
warning: Section .debug_aranges in clang-debug-names has duplicate \
debug_info_offset 0xc7, ignoring .debug_aranges.^M
...
This is caused by a missing return in commit 3ee6bb113a "[gdb/symtab] Fix
incomplete CU list assert in .debug_names".
Fix this by adding the missing return, such that we have instead this warning:
...
(gdb) file clang-debug-names^M
Reading symbols from clang-debug-names...^M
warning: Section .debug_aranges in clang-debug-names \
entry at offset 0 debug_info_offset 0 does not exists, \
ignoring .debug_aranges.^M
...
which is a known problem filed as PR25969 - "Ignoring .debug_aranges with
clang .debug_names".
Tested on x86_64-linux.
gdb/ChangeLog:
2021-02-05 Tom de Vries <tdevries@suse.de>
PR symtab/27307
* dwarf2/read.c (create_cus_from_debug_names_list): Add missing
return.
gdb/testsuite/ChangeLog:
2021-02-05 Tom de Vries <tdevries@suse.de>
PR symtab/27307
* gdb.dwarf2/clang-debug-names.exp: Check file command warnings.
Fix indentation in !map.augmentation_is_gdb part of
create_cus_from_debug_names_list.
gdb/ChangeLog:
2021-02-05 Tom de Vries <tdevries@suse.de>
* dwarf2/read.c (create_cus_from_debug_names_list): Fix indentation.
These tests fail since 1c9c9b9b55, due to not being able to access
some scripts:
FAIL: Absolute non-overflowing relocs
FAIL: ld-i386/iamcu-1
FAIL: ld-i386/iamcu-2
The problem is that when built with --enable-shared the ld-new
executable sits in a .libs/ directory.
* Makefile.am (check-DEJAGNU): Set up ldscripts link in .libs.
* Makefile.in: Regenerate.
This is a hand-written implementation that should have fairly complete
coverage for the base integer instruction set ("i"), and for the atomic
("a") and integer multiplication+division ("m") extensions. It also
covers 32-bit & 64-bit targets.
The unittest coverage is a bit weak atm, but should get better.
tdesc-regs.exp test fails for ARC because the test is not
using the correct XML files as target description. With
this change, the correct directory and files are used.
v2 (after Andrew's remark [1]):
- Update the feature file names again. Test results now:
Test run by shahab on Tue Jan 26 11:31:16 2021
Target is arc-default-elf32
Host is x86_64-unknown-linux-gnu
=== gdb tests ===
Schedule of variations:
arc-nsim
Running target arc-nsim
Running /src/gdb/testsuite/gdb.xml/tdesc-regs.exp ...
PASS: gdb.xml/tdesc-regs.exp: set tdesc file single-reg.xml
PASS: gdb.xml/tdesc-regs.exp: cd to directory holding xml
PASS: gdb.xml/tdesc-regs.exp: set tdesc filename test-extra-regs.xml...
PASS: gdb.xml/tdesc-regs.exp: ptype $extrareg
PASS: gdb.xml/tdesc-regs.exp: ptype $uintreg
PASS: gdb.xml/tdesc-regs.exp: ptype $vecreg
PASS: gdb.xml/tdesc-regs.exp: ptype $unionreg
PASS: gdb.xml/tdesc-regs.exp: ptype $unionreg.v4
PASS: gdb.xml/tdesc-regs.exp: ptype $structreg
PASS: gdb.xml/tdesc-regs.exp: ptype $structreg.v4
PASS: gdb.xml/tdesc-regs.exp: ptype $bitfields
PASS: gdb.xml/tdesc-regs.exp: ptype $flags
PASS: gdb.xml/tdesc-regs.exp: ptype $mixed_flags
PASS: gdb.xml/tdesc-regs.exp: maintenance print reggroups
PASS: gdb.xml/tdesc-regs.exp: core-only.xml: set tdesc filename...
PASS: gdb.xml/tdesc-regs.exp: core-only.xml: ptype $extrareg
=== gdb Summary ===
# of expected passes 16
[1]
https://sourceware.org/pipermail/gdb-patches/2021-January/175465.html
gdb/testsuite/ChangeLog:
* gdb.xml/tdesc-regs.exp: Use correct core-regs for ARC.
For the same reason explained in the previous patch (which was for the
record-btrace target), move clearing of the async event handler of the
record-full target to the wait method.
I'm not sure if/where that target needs to re-set its async event
handler in the wait method. Since it only supports a single thread,
there probably can't be multiple events to report at the same time.
gdb/ChangeLog:
* record-full.c (record_full_async_inferior_event_handler):
Don't clear async event handler.
(record_full_base_target::wait): Clear async event handler at
beginning.
Change-Id: I146fbdb53d99e3a32766ac7cd337ac5ed7fd9adf
For the same reason explained in the previous patch (which was for the
remote target), move clearing of the async event handler of the
record-btrace target to the wait method.
The record-btrace target already re-sets its async event handler in its
wait method, so that part doesn't need to be changed:
/* In async mode, we need to announce further events. */
if (target_is_async_p ())
record_btrace_maybe_mark_async_event (moving, no_history);
gdb/ChangeLog:
* record-btrace.c (record_btrace_handle_async_inferior_event):
Don't clear async event handler.
(record_btrace_target::wait): Clear async event handler at
beginning.
Change-Id: Ib32087a81bf94f1b884a938c8167ac8bbe09e362
The remote target's remote_async_inferior_event_token is a flag that
tells when it wants the infrun loop to call its wait method. The flag
is cleared in the async_event_handler's callback
(remote_async_inferior_event_handler), just before calling
inferior_event_handler. However, since inferior_event_handler may
actually call another target's wait method, there needs to be code that
checks if we need to re-raise the flag.
It would be simpler instead for remote_target::wait to clear the flag
when it returns an event and there are no more to report after that. If
another target's wait method gets called by inferior_event_handler, the
remote target's flag will stay naturally stay marked.
Note that this is already partially implemented in remote_target::wait,
since the remote target may have multiple events to report (and it can
only report one at the time):
if (target_is_async_p ())
{
remote_state *rs = get_remote_state ();
/* If there are are events left in the queue tell the event loop
to return here. */
if (!rs->stop_reply_queue.empty ())
mark_async_event_handler (rs->remote_async_inferior_event_token);
}
The code in remote_async_inferior_event_handler also checks for pending
events as well, in addition to the stop reply queue, so I've made
remote_target::wait check for that as well. I'm not completely sure
this is ok, since I don't understand very well how the pending events
mechanism works. But I figured it was safer to do this, worst case it
just leads to unnecessary calls to remote_target::wait.
gdb/ChangeLog:
* remote.c (remote_target::wait): Clear async event handler at
beginning, mark if needed at the end.
(remote_async_inferior_event_handler): Don't set or clear async
event handler.
Change-Id: I20117f5b5acc8a9972c90f16280249b766c1bf37
The `ready` flag of async event handlers is cleared by the async event
handler system right before invoking the associated callback, in
check_async_event_handlers.
This is not ideal with how the infrun subsystem consumes events: all
targets' async event handler callbacks essentially just invoke
`inferior_event_handler`, which eventually calls `fetch_inferior_event`
and `do_target_wait`. `do_target_wait` picks an inferior at random,
and thus a target at random (it could be the target whose `ready` flag
was cleared, or not), and pulls one event from it.
So it's possible that:
- the async event handler for a target A is called
- we end up consuming an event for target B
- all threads of target B are stopped, target_async(0) is called on it,
so its async event handler is cleared (e.g.
record_btrace_target::async)
As a result, target A still has events to report while its async event
handler is left unmarked, so these events are not consumed. To counter
this, at the end of their async event handler callbacks, targets check
if they still have something to report and re-mark their async event
handler (e.g. remote_async_inferior_event_handler).
The linux_nat target does not suffer from this because it doesn't use an
async event handler at the moment. It only uses a pipe registered with
the event loop. It is written to in the SIGCHLD handler (and in other
spots that want to get target wait method called) and read from in
the target's wait method. So if linux_nat happened to be target A in
the example above, the pipe would just stay readable, and the event loop
would wake up again, until linux_nat's wait method is finally called and
consumes the contents of the pipe.
I think it would be nicer if targets using async_event_handler worked in
a similar way, where the flag would stay set until the target's wait
method is actually called. As a first step towards that, this patch
moves the responsibility of clearing the ready flags of async event
handlers to the invoked callback.
All async event handler callbacks are modified to clear their ready flag
before doing anything else. So in practice, nothing changes with this
patch. It's only the responsibility of clearing the flag that is
shifted toward the callee.
gdb/ChangeLog:
* async-event.h (async_event_handler_func): Add documentation.
* async-event.c (check_async_event_handlers): Don't clear
async_event_handler ready flag.
* infrun.c (infrun_async_inferior_event_handler): Clear ready
flag.
* record-btrace.c (record_btrace_handle_async_inferior_event):
Likewise.
* record-full.c (record_full_async_inferior_event_handler):
Likewise.
* remote-notif.c (remote_async_get_pending_events_handler):
Likewise.
* remote.c (remote_async_inferior_event_handler): Likewise.
Change-Id: I179ef8e99580eae642d332846fd13664dbddc0c1
The ctf_type_name_raw and ctf_type_aname_raw functions, which return the
raw, unadorned name of CTF types, have one unfortunate wrinkle: they
return NULL not only on error but when returning the name of types
without a name in writable dicts. This was unintended: it not only
makes it impossible to reliably tell if a given call to
ctf_type_name_raw failed (due to a bad string offset say), but also
complicates all its callers, who now have to check for both NULL and "".
The written-out form of CTF has no concept of a NULL pointer instead of
a string: all null strings are strtab offset 0, "". So the more we can
do to remove this distinction from the writable form, the less complex
the rest of our code needs to be.
Armour against NULL in multiple places, arranging to return "" from
ctf_type_name_raw if offset 0 is passed in, and removing a risky
optimization from ctf_str_add* that avoided doing anything if a NULL was
passed in: this added needless irregularity to the functions' API
surface, since "" and NULL should be treated identically, and in the
case of ctf_str_add_ref, we shouldn't skip adding the passed-in REF to
the list of references to be updated no matter what the content of the
string happens to be.
This means we can simplify the deduplicator a tiny bit, also fixing a
bug (latent when used by ld) where if the input dict was writable,
we failed to realise when types were nameless and could end up creating
deeply unhelpful synthetic forwards with no name, which we just banned
a few commits ago, so the link failed.
libctf/ChangeLog
2021-01-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-string.c (ctf_str_add): Treat adding a NULL as adding "".
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Likewise.
* ctf-types.c (ctf_type_name_raw): Always return "" for offset 0.
* ctf-dedup.c (ctf_dedup_multiple_input_dicts): Don't armour
against NULL name.
(ctf_dedup_maybe_synthesize_forward): Likewise.
We declare a variable to hold errors at two scopes, and then initialize
the inner one and jump to a scope where only the outer one is in scope.
The consequences are minor: only the version of the error message
printed in the debugging stream is impacted.
libctf/ChangeLog
2021-01-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-create.c (ctf_serialize): Fix shadowing.
Now that "anonymous typedef nodes" have been extirpated, we can mandate
that things that have names in C must have names in CTF too. (Unlike
the no-forwards embarrassment, the deduplicator does nothing special
with names: types that have names in C will have the same name in CTF.
So we can assume that the CTF rules and the C rules are the same.)
include/ChangeLog
2021-01-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ECTF_NONAME): New.
(ECTF_NERR): Adjust.
libctf/ChangeLog
2021-01-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-create.c (ctf_add_encoded): Add check for non-empty name.
(ctf_add_forward): Likewise.
(ctf_add_typedef): Likewise.
There is special code in libctf to handle typedefs with no name, which
the code calls "anonymous typedef nodes".
These monsters are obviously not something C programs can include: the
whole point of a ttypedef is to introduce a new name. Looking back at
the history of DWARF in GCC, the only thing (outside C++ anonymous
namespaces) which can generate a DW_TAG_typedef without a DW_AT_name is
obsolete code to handle the long-removed -feliminate-dwarf2-dups option.
Looking at OpenSolaris, typedef nodes with no name couldn't be generated
by the DWARF->CTF converter at all (and its deduplicator barfed on
them): the only reason for the existence of this code is a special case
working around a peculiarity of stabs whereby types could sometimes be
referenced before they were introduced.
We don't need to carry code in libctf to handle special cases in an
obsolete OpenSolaris converter (that yields a format that isn't readable
by libctf anyway). So drop it.
libctf/ChangeLog
2021-01-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-open.c (init_types): Rip out code to check anonymous typedef
nodes.
* ctf-create.c (ctf_add_reftype): Likewise.
* ctf-lookup.c (refresh_pptrtab): Likewise.
The variable section in a CTF dict is meant to contain the types of
variables that do not appear in the symbol table (mostly file-scope
static declarations). We implement this by having the compiler emit
all potential data symbols into both sections, then delete those
symbols from the variable section that correspond to data symbols the
linker has reported.
Unfortunately, the check for this in ctf_serialize is wrong: rather than
checking the set of linker-reported symbols, we check the set of names
in the data object symtypetab section: if the linker has reported no
symbols at all (usually if ld -r has been run, or if a non-linker
program that does not use symbol tables is calling ctf_link) this will
include every single symbol, emptying the variable section completely.
Worse, when ld -r is in use, we want to force writeout of every
symtypetab entry on the inputs, in an indexed section, whether or not
the linker has reported them, since this isn't a final link yet and the
symbol table is not finalized (and may grow more symbols than the linker
has yet reported). But the check for this is flawed too: we were
relying on ctf_link_shuffle_syms not having been called if no symbols
exist, but that function is *always* called by ld even when ld -r is in
use: ctf_link_add_linker_symbol is the one that's not called when there
are no symbols.
We clearly need to rethink this. Using the emptiness of the set of
reported symbols as a test for ld -r is just ugly: the linker already
knows if ld -r is underway and can just tell us. So add a new linker
flag CTF_LINK_NO_FILTER_REPORTED_SYMS that is set to stop the linker
filtering the symbols in the symtypetab sections using the set that the
linker has reported: use the presence or absence of this flag to
determine whether to emit unindexed symtabs: we only remove entries from
the variable section when filtering symbols, and we only remove them if
they are in the reported symbol set, fixing the case where no symbols
are reported by the linker at all.
(The negative sense of the new CTF_LINK flag is intentional: the common
case, both for ld and for simple tools that want to do a ctf_link with
no ELF symbol table in sight, is probably to filter out symbols that no
linker has reported: i.e., for the simple tools, all of them.)
There's another wrinkle, though. It is quite possible for a non-linker
to add symbols to a dict via ctf_add_*_sym and then write it out via the
ctf_write APIs: perhaps it's preparing a dict for a later linker
invocation. Right now this would not lead to anything terribly
meaningful happening: ctf_serialize just assumes it was called via
ctf_link if symbols are present. So add an (internal-to-libctf) flag
that indicates that a writeout is happening via ctf_link_write, and set
it there (propagating it to child dicts as needed). ctf_serialize can
then spot when it is not being called by a linker, and arrange to always
write out an indexed, sorted symtypetab for fastest possible future
symbol lookup by name in that case. (The writeouts done by ld -r are
unsorted, because the only thing likely to use those symtabs is the
linker, which doesn't benefit from symtypetab sorting.)
Tests added for all three linking cases (ld -r, ld -shared, ld), with a
bit of testsuite framework enhancement to stop it unconditionally
linking the CTF to be checked by the lookup program with -shared, so
tests can now examine CTF linked with -r or indeed with no flags at all,
though the output filename is still foo.so even in this case.
Another test added for the non-linker case that endeavours to determine
whether the symtypetab is sorted by examining the order of entries
returned from ctf_symbol_next: nobody outside libctf should rely on
this ordering, but this test is not outside libctf :)
include/ChangeLog
2021-01-26 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (CTF_LINK_NO_FILTER_REPORTED_SYMS): New.
ld/ChangeLog
2021-01-26 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (lang_merge_ctf): Set CTF_LINK_NO_FILTER_REPORTED_SYMS
when appropriate.
libctf/ChangeLog
2021-01-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.c (_libctf_nonnull_): Add parameters.
(LCTF_LINKING): New flag.
(ctf_dict_t) <ctf_link_flags>: Mention it.
* ctf-link.c (ctf_link): Keep LCTF_LINKING set across call.
(ctf_write): Likewise, including in child dictionaries.
(ctf_link_shuffle_syms): Make sure ctf_dynsyms is NULL if there
are no reported symbols.
* ctf-create.c (symtypetab_delete_nonstatic_vars): Make sure
the variable has been reported as a symbol by the linker.
(symtypetab_skippable): Mention relationship between SYMFP and the
flags.
(symtypetab_density): Adjust nonnullity. Exit early if no symbols
were reported and force-indexing is off (i.e., we are doing a
final link).
(ctf_serialize): Handle the !LCTF_LINKING case by writing out an
indexed, sorted symtypetab (and allow SYMFP to be NULL in this
case). Turn sorting off if this is a non-final link. Only delete
nonstatic vars if we are filtering symbols and the linker has
reported some.
* testsuite/libctf-regression/nonstatic-var-section-ld-r*:
New test of variable and symtypetab section population when
ld -r is used.
* testsuite/libctf-regression/nonstatic-var-section-ld-executable.lk:
Likewise, when ld of an executable is used.
* testsuite/libctf-regression/nonstatic-var-section-ld.lk:
Likewise, when ld -shared alone is used.
* testsuite/libctf-regression/nonstatic-var-section-ld*.c:
Lookup programs for the above.
* testsuite/libctf-writable/symtypetab-nonlinker-writeout.*: New
test, testing survival of symbols across ctf_write paths.
* testsuite/lib/ctf-lib.exp (run_lookup_test): New option,
nonshared, suppressing linking of the SOURCE with -shared.
bfd/
PR 27311
* elflink.c (elf_link_add_object_symbols): Don't pull in as-needed
libraries for IR references on pass over libraries after LTO
recompilation.
ld/
* testsuite/ld-plugin/pr27311d.c: New test.
* testsuite/ld-plugin/lto.exp: Rename pr27311 to pr27311-1, compile
and link new test as pr27311-2.
Moving it to an inner scope makes it clearer where it's used (only while
handling the TARGET_WAITKIND_LOADED event).
gdb/ChangeLog:
* infrun.c (handle_inferior_event): Move stop_soon variable to
inner scope.
Change-Id: Ic57685a21714cfbb38f1487ee96cea1d12b44652
This does exactly the same as making decisions based on an override
in _bfd_elf_add_default_symbol, and is simpler.
PR 27311
* elflink.c (_bfd_elf_add_default_symbol): Revert last two changes.
(elf_link_add_object_symbols): Here too. Don't pull in as-needed
libraries when H is an indirect symbol after calling
_bfd_elf_add_default_symbol.
PR 27270
PR 27284
PR 26945
* ar.c: Don't include libbfd.h.
(write_archive): Replace xmalloc+strcpy with xstrdup. Use
bfd_stat rather than fstat on iostream. Move stat and fd tests
outside of _WIN32 ifdef. Delete skip_stat variable.
* arsup.c (temp_name, real_ofd): New static variables.
(ar_open): Use make_tempname and bfd_fdopenw.
(ar_save): Adjust to suit ar_open changes. Move stat output
of _WIN32 ifdef.
* objcopy.c: Don't include libbfd.h.
(copy_file): Use bfd_stat.
bfd/
PR 27311
* elflink.c (_bfd_elf_add_default_symbol): Clear override when
undecorated symbol will have a different version.
ld/
* testsuite/ld-ifunc/ifunc.exp (libpr16467b.so, libpr16467bn.so):
Link with --as-needed.
This adds a testcase that exercises detaching while GDB is stepping
over a breakpoint, in all combinations of:
- maint target non-stop off/on
- set non-stop on/off
- displaced stepping on/off
This exercises the bugs fixed in the previous 8 patches.
gdb/testsuite/ChangeLog:
* gdb.threads/detach-step-over.c: New file.
* gdb.threads/detach-step-over.exp: New file.
A following patch will add a testcase that has a number of threads
constantly stepping over a breakpoint, and then has GDB detach the
process, while threads are running. If we have more than one inferior
running, and we detach from just one of the inferiors, we expect that
the remaining inferior continues running. However, in all-stop, if
GDB needs to pause the target for the detach, nothing is re-resuming
the other inferiors after the detach. "info threads" shows the
threads as running, but they really aren't. This fixes it.
gdb/ChangeLog:
* infcmd.c (detach_command): Hold strong reference to target, and
if all-stop on entry, restart threads on exit.
* infrun.c (switch_back_to_stepped_thread): Factor out bits to ...
(restart_stepped_thread): ... this new function. Also handle
trap_expected.
(restart_after_all_stop_detach): New function.
* infrun.h (restart_after_all_stop_detach): Declare.