This patch adds support in GAS to create generic GAS instructions
(a.k.a., the ginsn) for the x86 backend (AMD64 ABI only at this time).
Using this ginsn infrastructure, GAS can then synthesize CFI for
hand-written asm for x86_64.
A ginsn is a target-independent representation of the machine
instructions. One machine instruction may need one or more ginsn.
This patch also adds skeleton support for printing ginsn in the listing
output for debugging purposes.
Since the current use-case of ginsn is to synthesize CFI, the x86 target
needs to generate ginsns necessary for the following machine
instructions only:
- All change of flow instructions, including all conditional and
unconditional branches, call and return from functions.
- All register saves and unsaves to the stack.
- All instructions affecting the two registers that could potentially
be used as the base register for CFA tracking. For SCFI, the base
register for CFA tracking is limited to REG_SP and REG_FP only for
now.
The representation of ginsn is kept simple:
- GAS instruction has GINSN_NUM_SRC_OPNDS (defined to be 2 at this time)
number of source operands and one destination operand at this time.
- GAS instruction uses DWARF register numbers in its representation and
does not track register size.
- GAS instructions carry location information (file name and line
number).
- GAS instructions are ID's with a natural number in order of their
addtion to the list. This can be used as a proxy for the static
program order of the corresponding machine instructions.
Note that, GAS instruction (ginsn) format does not support
GINSN_TYPE_PUSH and GINSN_TYPE_POP. Some architectures, like aarch64,
do not have push and pop instructions, but rather STP/LDP/STR/LDR etc.
instructions. Further these instructions have a variety of addressing
modes, like offset, pre-indexing and post-indexing etc. Among other
things, one of differences in these addressing modes is _when_ the addr
register is updated with the result of the address calculation: before
or after the memory operation. To best support such needs, the generic
instructions like GINSN_TYPE_LOAD, GINSN_TYPE_STORE together with
GINSN_TYPE_ADD, and GINSN_TYPE_SUB may be used.
The functionality provided in ginsn.c and scfi.c is compiled in when a
target defines TARGET_USE_SCFI and TARGET_USE_GINSN. This can be
revisited later when there are other use-cases of creating ginsn's in
GAS, apart from the current use-case of synthesizing CFI for
hand-written asm.
Support is added only for System V AMD64 ABI for ELF at this time. If
the user enables SCFI with --32, GAS issues an error:
"Fatal error: SCFI is not supported for this ABI"
For synthesizing (DWARF) CFI, the SCFI machinery requires the programmer
to adhere to some pre-requisites for their asm:
- Hand-written asm block must begin with a .type foo, @function
It is highly recommended to, additionally, also ensure that:
- Hand-written asm block ends with a .size foo, .-foo
The SCFI machinery encodes some rules which align with the standard
calling convention specified by the ABI. Apart from the rules, the SCFI
machinery employs some heuristics. For example:
- The base register for CFA tracking may be either REG_SP or REG_FP.
- If the base register for CFA tracking is REG_SP, the precise amount of
stack usage (and hence, the value of REG_SP) must be known at all times.
- If using dynamic stack allocation, the function must switch to
FP-based CFA. This means using instructions like the following (in
AMD64) in prologue:
pushq %rbp
movq %rsp, %rbp
and analogous instructions in epilogue.
- Save and Restore of callee-saved registers must be symmetrical.
However, the SCFI machinery at this time only warns if any such
asymmetry is seen.
These heuristics/rules are architecture-independent and are meant to
employed for all architectures/ABIs using SCFI in the future.
gas/
* Makefile.am: Add new files.
* Makefile.in: Regenerated.
* as.c (defined): Handle documentation and listing option for
ginsns and SCFI.
* config/obj-elf.c (obj_elf_size): Invoke ginsn_data_end.
(obj_elf_type): Invoke ginsn_data_begin.
* config/tc-i386.c (x86_scfi_callee_saved_p): New function.
(ginsn_prefix_66H_p): Likewise.
(ginsn_dw2_regnum): Likewise.
(x86_ginsn_addsub_reg_mem): Likewise.
(x86_ginsn_addsub_mem_reg): Likewise.
(x86_ginsn_alu_imm): Likewise.
(x86_ginsn_move): Likewise.
(x86_ginsn_lea): Likewise.
(x86_ginsn_jump): Likewise.
(x86_ginsn_jump_cond): Likewise.
(x86_ginsn_enter): Likewise.
(x86_ginsn_safe_to_skip): Likewise.
(x86_ginsn_unhandled): Likewise.
(x86_ginsn_new): New functionality to generate ginsns.
(md_assemble): Invoke x86_ginsn_new.
(s_insn): Likewise.
(i386_target_format): Add hard error for usage of SCFI with non AMD64 ABIs.
* config/tc-i386.h (TARGET_USE_GINSN): New definition.
(TARGET_USE_SCFI): Likewise.
(SCFI_MAX_REG_ID): Likewise.
(REG_FP): Likewise.
(REG_SP): Likewise.
(SCFI_INIT_CFA_OFFSET): Likewise.
(SCFI_CALLEE_SAVED_REG_P): Likewise.
(x86_scfi_callee_saved_p): Likewise.
* gas/listing.h (LISTING_GINSN_SCFI): New define for ginsn and
SCFI.
* gas/read.c (read_a_source_file): Close SCFI processing at end
of file read.
* gas/scfidw2gen.c (scfi_process_cfi_label): Add implementation.
(scfi_process_cfi_signal_frame): Likewise.
* subsegs.h (struct frch_ginsn_data): New forward declaration.
(struct frchain): New member for ginsn data.
* gas/subsegs.c (subseg_set_rest): Initialize the new member.
* symbols.c (colon): Invoke ginsn_frob_label to convey
user-defined labels to ginsn infrastructure.
* ginsn.c: New file.
* ginsn.h: New file.
* scfi.c: New file.
* scfi.h: New file.
Adds two new external authors to etc/update-copyright.py to cover
bfd/ax_tls.m4, and adds gprofng to dirs handled automatically, then
updates copyright messages as follows:
1) Update cgen/utils.scm emitted copyrights.
2) Run "etc/update-copyright.py --this-year" with an extra external
author I haven't committed, 'Kalray SA.', to cover gas testsuite
files (which should have their copyright message removed).
3) Build with --enable-maintainer-mode --enable-cgen-maint=yes.
4) Check out */po/*.pot which we don't update frequently.
The newer update-copyright.py fixes file encoding too, removing cr/lf
on binutils/bfdtest2.c and ld/testsuite/ld-cygwin/exe-export.exp, and
embedded cr in binutils/testsuite/binutils-all/ar.exp string match.
So that the notes obstack can be used for persistent storage in
parse_args.
* as.c (parse_args): Use notes_alloc and notes_strdup.
(free_notes): New function.
(main): Init notes obstack, and arrange to be freed on exit.
* read.c (read_begin): Don't init notes obstack.
(read_end): Free cond_obstack.
* subsegs.c (subsegs_end): Don't free cond_obstack or notes.
Lots of memory used in gas should go on this obstack. The patch also
frees all the gas obstacks on exit, which isn't a completely trivial
task.
* subsegs.c (alloc_seginfo): New function.
(subseg_change, subseg_get): Use it.
(subsegs_end): New function.
* as.h (subsegs_end): Declare.
* output-file.c: Include subsegs.h
(stash_frchain_obs): New function.
(output_file_close): Save obstacks attached to output bfd before
closing. Call subsegs_end with the array of obstacks.
The result of running etc/update-copyright.py --this-year, fixing all
the files whose mode is changed by the script, plus a build with
--enable-maintainer-mode --enable-cgen-maint=yes, then checking
out */po/*.pot which we don't update frequently.
The copy of cgen was with commit d1dd5fcc38ead reverted as that commit
breaks building of bfp opcodes files.