2003-11-20 Andrew Cagney <cagney@redhat.com>

* gdb.base/structs.exp: Update copyright.  Rewrite.
	* gdb.base/structs.c: Update copyright.  Rewrite.
This commit is contained in:
Andrew Cagney 2003-11-20 17:11:55 +00:00
parent 2b211c59a2
commit e53890ae03
3 changed files with 885 additions and 164 deletions

View File

@ -1,5 +1,8 @@
2003-11-20 Andrew Cagney <cagney@redhat.com>
* gdb.base/structs.exp: Update copyright. Rewrite.
* gdb.base/structs.c: Update copyright. Rewrite.
* lib/gdb.exp (gdb_internal_error_resync): Issue a perror when the
resync count exceeded.

View File

@ -1,4 +1,6 @@
/* Copyright 1996, 1999 Free Software Foundation, Inc.
/* This testcase is part of GDB, the GNU debugger.
Copyright 1996, 1999, 2003 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -17,37 +19,110 @@
Please email any bugs, comments, and/or additions to this file to:
bug-gdb@prep.ai.mit.edu */
struct struct1 { char a;};
struct struct2 { char a, b;};
struct struct3 { char a, b, c; };
struct struct4 { char a, b, c, d; };
struct struct5 { char a, b, c, d, e; };
struct struct6 { char a, b, c, d, e, f; };
struct struct7 { char a, b, c, d, e, f, g; };
struct struct8 { char a, b, c, d, e, f, g, h; };
struct struct9 { char a, b, c, d, e, f, g, h, i; };
struct struct10 { char a, b, c, d, e, f, g, h, i, j; };
struct struct11 { char a, b, c, d, e, f, g, h, i, j, k; };
struct struct12 { char a, b, c, d, e, f, g, h, i, j, k, l; };
struct struct16 { char a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p; };
/* Useful abreviations. */
typedef void t;
typedef char tc;
typedef short ts;
typedef int ti;
typedef long tl;
typedef long long tll;
typedef float tf;
typedef double td;
typedef long double tld;
struct struct1 foo1 = {'1'}, L1;
struct struct2 foo2 = { 'a', 'b'}, L2;
struct struct3 foo3 = { 'A', 'B', 'C'}, L3;
struct struct4 foo4 = {'1', '2', '3', '4'}, L4;
struct struct5 foo5 = {'a', 'b', 'c', 'd', 'e'}, L5;
struct struct6 foo6 = {'A', 'B', 'C', 'D', 'E', 'F'}, L6;
struct struct7 foo7 = {'1', '2', '3', '4', '5', '6', '7'}, L7;
struct struct8 foo8 = {'1', '2', '3', '4', '5', '6', '7', '8'}, L8;
struct struct9 foo9 = {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i'}, L9;
struct struct10 foo10 = {
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'}, L10;
struct struct11 foo11 = {
'1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B'}, L11;
struct struct12 foo12 = {
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L'}, L12;
struct struct16 foo16 = {
'a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p'}, L16;
/* Force the type of each field. */
#ifndef tA
typedef t tA;
#endif
#ifndef tB
typedef tA tB;
#endif
#ifndef tC
typedef tB tC;
#endif
#ifndef tD
typedef tC tD;
#endif
#ifndef tE
typedef tD tE;
#endif
#ifndef tF
typedef tE tF;
#endif
#ifndef tG
typedef tF tG;
#endif
#ifndef tH
typedef tG tH;
#endif
#ifndef tI
typedef tH tI;
#endif
#ifndef tJ
typedef tI tJ;
#endif
#ifndef tK
typedef tJ tK;
#endif
#ifndef tL
typedef tK tL;
#endif
#ifndef tM
typedef tL tM;
#endif
#ifndef tN
typedef tM tN;
#endif
#ifndef tO
typedef tN tO;
#endif
#ifndef tP
typedef tO tP;
#endif
#ifndef tQ
typedef tP tQ;
#endif
#ifndef tR
typedef tQ tR;
#endif
struct struct1 {tA a;};
struct struct2 {tA a; tB b;};
struct struct3 {tA a; tB b; tC c; };
struct struct4 {tA a; tB b; tC c; tD d; };
struct struct5 {tA a; tB b; tC c; tD d; tE e; };
struct struct6 {tA a; tB b; tC c; tD d; tE e; tF f; };
struct struct7 {tA a; tB b; tC c; tD d; tE e; tF f; tG g; };
struct struct8 {tA a; tB b; tC c; tD d; tE e; tF f; tG g; tH h; };
struct struct9 {tA a; tB b; tC c; tD d; tE e; tF f; tG g; tH h; tI i; };
struct struct10 {tA a; tB b; tC c; tD d; tE e; tF f; tG g; tH h; tI i; tJ j; };
struct struct11 {tA a; tB b; tC c; tD d; tE e; tF f; tG g; tH h; tI i; tJ j; tK k; };
struct struct12 {tA a; tB b; tC c; tD d; tE e; tF f; tG g; tH h; tI i; tJ j; tK k; tL l; };
struct struct13 {tA a; tB b; tC c; tD d; tE e; tF f; tG g; tH h; tI i; tJ j; tK k; tL l; tM m; };
struct struct14 {tA a; tB b; tC c; tD d; tE e; tF f; tG g; tH h; tI i; tJ j; tK k; tL l; tM m; tN n; };
struct struct15 {tA a; tB b; tC c; tD d; tE e; tF f; tG g; tH h; tI i; tJ j; tK k; tL l; tM m; tN n; tO o; };
struct struct16 {tA a; tB b; tC c; tD d; tE e; tF f; tG g; tH h; tI i; tJ j; tK k; tL l; tM m; tN n; tO o; tP p; };
struct struct17 {tA a; tB b; tC c; tD d; tE e; tF f; tG g; tH h; tI i; tJ j; tK k; tL l; tM m; tN n; tO o; tP p; tQ q; };
struct struct18 {tA a; tB b; tC c; tD d; tE e; tF f; tG g; tH h; tI i; tJ j; tK k; tL l; tM m; tN n; tO o; tP p; tQ q; tR r; };
struct struct1 foo1 = {'1'}, L1;
struct struct2 foo2 = {'a','2'}, L2;
struct struct3 foo3 = {'1','b','3'}, L3;
struct struct4 foo4 = {'a','2','c','4'}, L4;
struct struct5 foo5 = {'1','b','3','d','5'}, L5;
struct struct6 foo6 = {'a','2','c','4','e','6'}, L6;
struct struct7 foo7 = {'1','b','3','d','5','f','7'}, L7;
struct struct8 foo8 = {'a','2','c','4','e','6','g','8'}, L8;
struct struct9 foo9 = {'1','b','3','d','5','f','7','h','9'}, L9;
struct struct10 foo10 = {'a','2','c','4','e','6','g','8','i','A'}, L10;
struct struct11 foo11 = {'1','b','3','d','5','f','7','h','9','j','B'}, L11;
struct struct12 foo12 = {'a','2','c','4','e','6','g','8','i','A','k','C'}, L12;
struct struct13 foo13 = {'1','b','3','d','5','f','7','h','9','j','B','l','D'}, L13;
struct struct14 foo14 = {'a','2','c','4','e','6','g','8','i','A','k','C','m','E'}, L14;
struct struct15 foo15 = {'1','b','3','d','5','f','7','h','9','j','B','l','D','n','F'}, L15;
struct struct16 foo16 = {'a','2','c','4','e','6','g','8','i','A','k','C','m','E','o','G'}, L16;
struct struct17 foo17 = {'1','b','3','d','5','f','7','h','9','j','B','l','D','n','F','p','H'}, L17;
struct struct18 foo18 = {'a','2','c','4','e','6','g','8','i','A','k','C','m','E','o','G','q','I'}, L18;
struct struct1 fun1()
{
@ -97,10 +172,30 @@ struct struct12 fun12()
{
return foo12;
}
struct struct13 fun13()
{
return foo13;
}
struct struct14 fun14()
{
return foo14;
}
struct struct15 fun15()
{
return foo15;
}
struct struct16 fun16()
{
return foo16;
}
struct struct17 fun17()
{
return foo17;
}
struct struct18 fun18()
{
return foo18;
}
#ifdef PROTOTYPES
void Fun1(struct struct1 foo1)
@ -211,6 +306,33 @@ void Fun12(foo12)
L12 = foo12;
}
#ifdef PROTOTYPES
void Fun13(struct struct13 foo13)
#else
void Fun13(foo13)
struct struct13 foo13;
#endif
{
L13 = foo13;
}
#ifdef PROTOTYPES
void Fun14(struct struct14 foo14)
#else
void Fun14(foo14)
struct struct14 foo14;
#endif
{
L14 = foo14;
}
#ifdef PROTOTYPES
void Fun15(struct struct15 foo15)
#else
void Fun15(foo15)
struct struct15 foo15;
#endif
{
L15 = foo15;
}
#ifdef PROTOTYPES
void Fun16(struct struct16 foo16)
#else
void Fun16(foo16)
@ -219,6 +341,64 @@ void Fun16(foo16)
{
L16 = foo16;
}
#ifdef PROTOTYPES
void Fun17(struct struct17 foo17)
#else
void Fun17(foo17)
struct struct17 foo17;
#endif
{
L17 = foo17;
}
#ifdef PROTOTYPES
void Fun18(struct struct18 foo18)
#else
void Fun18(foo18)
struct struct18 foo18;
#endif
{
L18 = foo18;
}
zed ()
{
L1.a = L2.a = L3.a = L4.a = L5.a = L6.a = L7.a = L8.a = L9.a = L10.a = L11.a = L12.a = L13.a = L14.a = L15.a = L16.a = L17.a = L18.a = 'Z';
L2.b = L3.b = L4.b = L5.b = L6.b = L7.b = L8.b = L9.b = L10.b = L11.b = L12.b = L13.b = L14.b = L15.b = L16.b = L17.b = L18.b = 'Z';
L3.c = L4.c = L5.c = L6.c = L7.c = L8.c = L9.c = L10.c = L11.c = L12.c = L13.c = L14.c = L15.c = L16.c = L17.c = L18.c = 'Z';
L4.d = L5.d = L6.d = L7.d = L8.d = L9.d = L10.d = L11.d = L12.d = L13.d = L14.d = L15.d = L16.d = L17.d = L18.d = 'Z';
L5.e = L6.e = L7.e = L8.e = L9.e = L10.e = L11.e = L12.e = L13.e = L14.e = L15.e = L16.e = L17.e = L18.e = 'Z';
L6.f = L7.f = L8.f = L9.f = L10.f = L11.f = L12.f = L13.f = L14.f = L15.f = L16.f = L17.f = L18.f = 'Z';
L7.g = L8.g = L9.g = L10.g = L11.g = L12.g = L13.g = L14.g = L15.g = L16.g = L17.g = L18.g = 'Z';
L8.h = L9.h = L10.h = L11.h = L12.h = L13.h = L14.h = L15.h = L16.h = L17.h = L18.h = 'Z';
L9.i = L10.i = L11.i = L12.i = L13.i = L14.i = L15.i = L16.i = L17.i = L18.i = 'Z';
L10.j = L11.j = L12.j = L13.j = L14.j = L15.j = L16.j = L17.j = L18.j = 'Z';
L11.k = L12.k = L13.k = L14.k = L15.k = L16.k = L17.k = L18.k = 'Z';
L12.l = L13.l = L14.l = L15.l = L16.l = L17.l = L18.l = 'Z';
L13.m = L14.m = L15.m = L16.m = L17.m = L18.m = 'Z';
L14.n = L15.n = L16.n = L17.n = L18.n = 'Z';
L15.o = L16.o = L17.o = L18.o = 'Z';
L16.p = L17.p = L18.p = 'Z';
L17.q = L18.q = 'Z';
L18.r = 'Z';
}
int main()
{
@ -226,24 +406,7 @@ int main()
set_debug_traps();
breakpoint();
#endif
/* TEST C FUNCTIONS */
L1 = fun1();
L2 = fun2();
L3 = fun3();
L4 = fun4();
L5 = fun5();
L6 = fun6();
L7 = fun7();
L8 = fun8();
L9 = fun9();
L10 = fun10();
L11 = fun11();
L12 = fun12();
L16 = fun16();
foo1.a = foo2.a = foo3.a = foo4.a = foo5.a = foo6.a = foo7.a = foo8.a =
foo9.a = foo10.a = foo11.a = foo12.a = foo16.a = '$';
int i;
Fun1(foo1);
Fun2(foo2);
@ -257,7 +420,40 @@ int main()
Fun10(foo10);
Fun11(foo11);
Fun12(foo12);
Fun13(foo13);
Fun14(foo14);
Fun15(foo15);
Fun16(foo16);
Fun17(foo17);
Fun18(foo18);
/* An infinite loop that first clears all the variables and then
calls each function. This "hack" is to make testing random
functions easier - "advance funN" is guaranteed to have always
been preceeded by a global variable clearing zed call. */
while (1)
{
zed ();
L1 = fun1();
L2 = fun2();
L3 = fun3();
L4 = fun4();
L5 = fun5();
L6 = fun6();
L7 = fun7();
L8 = fun8();
L9 = fun9();
L10 = fun10();
L11 = fun11();
L12 = fun12();
L13 = fun13();
L14 = fun14();
L15 = fun15();
L16 = fun16();
L17 = fun17();
L18 = fun18();
}
return 0;
}

View File

@ -1,4 +1,6 @@
# Copyright 1996, 1997, 1999 Free Software Foundation, Inc.
# This testcase is part of GDB, the GNU debugger.
# Copyright 1996, 1997, 1999, 2003 Free Software Foundation, Inc.
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
@ -17,8 +19,6 @@
# Please email any bugs, comments, and/or additions to this file to:
# bug-gdb@prep.ai.mit.edu
# This file was written by Jeff Law. (law@cygnus.com)
if $tracelevel then {
strace $tracelevel
}
@ -26,142 +26,664 @@ if $tracelevel then {
set prms_id 0
set bug_id 0
set prototypes 1
set testfile "structs"
set srcfile ${testfile}.c
set binfile ${objdir}/${subdir}/${testfile}
# build the first test case
if { [gdb_compile "${srcdir}/${subdir}/${srcfile}" "${binfile}" executable {debug}] != "" } {
# built the second test case since we can't use prototypes
warning "Prototypes not supported, rebuilding with -DNO_PROTOTYPES"
if { [gdb_compile "${srcdir}/${subdir}/${srcfile}" "${binfile}" executable {debug additional_flags=-DNO_PROTOTYPES}] != "" } {
gdb_suppress_entire_file "Testcase compile failed, so all tests in this file will automatically fail."
}
set prototypes 0
}
# Create and source the file that provides information about the compiler
# used to compile the test case.
if [get_compiler_info ${binfile}] {
return -1;
}
# Some targets can't call functions, so don't even bother with this
# test.
if [target_info exists gdb,cannot_call_functions] {
setup_xfail "*-*-*" 2416
setup_xfail "*-*-*"
fail "This target can not call functions"
continue
}
set testfile "structs"
set srcfile ${testfile}.c
set binfile ${objdir}/${subdir}/${testfile}
# Call FUNC with no arguments, and expect to see the regexp RESULT in
# the output. If we get back the error message "Function return value
# unknown", call that an unsupported test; on some architectures, it's
# impossible to find structs returned by value reliably.
proc call_struct_func { func result } {
# Create and source the file that provides information about the
# compiler used to compile the test case.
if [get_compiler_info ${binfile}] {
return -1;
}
# Compile a variant of structs.c using TYPES to specify the type of
# the first N struct elements (the remaining elements take the type of
# the last TYPES field). Run the compmiled program up to "main".
# Also updates the global "testfile" to reflect the most recent build.
proc start_structs_test { types } {
global testfile
global srcfile
global binfile
global objdir
global subdir
global srcdir
global gdb_prompt
set command "p ${func}()"
send_gdb "${command}\n"
gdb_expect {
-re "$result\[\r\n\]+$gdb_prompt $" {
pass "$command"
}
-re "Function return value unknown.\[\r\n\]+$gdb_prompt $" {
unsupported "$command"
}
-re "$gdb_prompt $" {
fail "$command"
}
timeout {
fail "$command (timeout)"
}
# Create the additional flags
set flags "debug"
set testfile "structs"
set n 0
for {set n 0} {$n<[llength ${types}]} {incr n} {
set m [I2A ${n}]
set t [lindex ${types} $n]
lappend flags "additional_flags=-Dt${m}=${t}"
append testfile "-" "$t"
}
set binfile ${objdir}/${subdir}/${testfile}
if { [gdb_compile "${srcdir}/${subdir}/${srcfile}" "${binfile}" executable "${flags}"] != "" } {
# built the second test case since we can't use prototypes
warning "Prototypes not supported, rebuilding with -DNO_PROTOTYPES"
if { [gdb_compile "${srcdir}/${subdir}/${srcfile}" "${binfile}" executable "${flags} additional_flags=-DNO_PROTOTYPES"] != "" } {
gdb_suppress_entire_file "Testcase compile failed, so all tests in this file will automatically fail."
}
}
# Start with a fresh gdb.
gdb_start
gdb_reinitialize_dir $srcdir/$subdir
gdb_load ${binfile}
# Make certain that the output is consistent
gdb_test "set print sevenbit-strings" "" \
"set print sevenbit-strings; ${testfile}"
gdb_test "set print address off" "" \
"set print address off; ${testfile}"
gdb_test "set width 0" "" \
"set width 0; ${testfile}"
# Advance to main
if { ![runto_main] } then {
gdb_suppress_tests;
}
# check that at the struct containing all the relevant types is correct
set foo_t "type = struct struct[llength ${types}] \{"
for {set n 0} {$n<[llength ${types}]} {incr n} {
append foo_t "\[\r\n \]+[lindex ${types} $n] [i2a $n];"
}
append foo_t "\[\r\n \]+\}"
gdb_test "ptype foo[llength ${types}]" "${foo_t}" \
"ptype foo[llength ${types}]; ${testfile}"
}
# The expected value for fun${n}, L${n} and foo${n}. First element is
# empty to make indexing easier. "foo" returns the modified value,
# "zed" returns the invalid value.
proc foo { n } {
return [lindex {
"{}"
"{a = 49 '1'}"
"{a = 97 'a', b = 50 '2'}"
"{a = 49 '1', b = 98 'b', c = 51 '3'}"
"{a = 97 'a', b = 50 '2', c = 99 'c', d = 52 '4'}"
"{a = 49 '1', b = 98 'b', c = 51 '3', d = 100 'd', e = 53 '5'}"
"{a = 97 'a', b = 50 '2', c = 99 'c', d = 52 '4', e = 101 'e', f = 54 '6'}"
"{a = 49 '1', b = 98 'b', c = 51 '3', d = 100 'd', e = 53 '5', f = 102 'f', g = 55 '7'}"
"{a = 97 'a', b = 50 '2', c = 99 'c', d = 52 '4', e = 101 'e', f = 54 '6', g = 103 'g', h = 56 '8'}"
"{a = 49 '1', b = 98 'b', c = 51 '3', d = 100 'd', e = 53 '5', f = 102 'f', g = 55 '7', h = 104 'h', i = 57 '9'}"
"{a = 97 'a', b = 50 '2', c = 99 'c', d = 52 '4', e = 101 'e', f = 54 '6', g = 103 'g', h = 56 '8', i = 105 'i', j = 65 'A'}"
"{a = 49 '1', b = 98 'b', c = 51 '3', d = 100 'd', e = 53 '5', f = 102 'f', g = 55 '7', h = 104 'h', i = 57 '9', j = 106 'j', k = 66 'B'}"
"{a = 97 'a', b = 50 '2', c = 99 'c', d = 52 '4', e = 101 'e', f = 54 '6', g = 103 'g', h = 56 '8', i = 105 'i', j = 65 'A', k = 107 'k', l = 67 'C'}"
"{a = 49 '1', b = 98 'b', c = 51 '3', d = 100 'd', e = 53 '5', f = 102 'f', g = 55 '7', h = 104 'h', i = 57 '9', j = 106 'j', k = 66 'B', l = 108 'l', m = 68 'D'}"
"{a = 97 'a', b = 50 '2', c = 99 'c', d = 52 '4', e = 101 'e', f = 54 '6', g = 103 'g', h = 56 '8', i = 105 'i', j = 65 'A', k = 107 'k', l = 67 'C', m = 109 'm', n = 69 'E'}"
"{a = 49 '1', b = 98 'b', c = 51 '3', d = 100 'd', e = 53 '5', f = 102 'f', g = 55 '7', h = 104 'h', i = 57 '9', j = 106 'j', k = 66 'B', l = 108 'l', m = 68 'D', n = 110 'n', o = 70 'F'}"
"{a = 97 'a', b = 50 '2', c = 99 'c', d = 52 '4', e = 101 'e', f = 54 '6', g = 103 'g', h = 56 '8', i = 105 'i', j = 65 'A', k = 107 'k', l = 67 'C', m = 109 'm', n = 69 'E', o = 111 'o', p = 71 'G'}"
"{a = 49 '1', b = 98 'b', c = 51 '3', d = 100 'd', e = 53 '5', f = 102 'f', g = 55 '7', h = 104 'h', i = 57 '9', j = 106 'j', k = 66 'B', l = 108 'l', m = 68 'D', n = 110 'n', o = 70 'F', p = 112 'p', q = 72 'H'}"
} $n]
}
proc zed { n } {
return [lindex {
"{}"
"{a = 90 'Z'}"
"{a = 90 'Z', b = 90 'Z'}"
"{a = 90 'Z', b = 90 'Z', c = 90 'Z'}"
"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z'}"
"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z', e = 90 'Z'}"
"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z', e = 90 'Z', f = 90 'Z'}"
"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z', e = 90 'Z', f = 90 'Z', g = 90 'Z'}"
"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z', e = 90 'Z', f = 90 'Z', g = 90 'Z', h = 90 'Z'}"
"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z', e = 90 'Z', f = 90 'Z', g = 90 'Z', h = 90 'Z', i = 90 'Z'}"
"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z', e = 90 'Z', f = 90 'Z', g = 90 'Z', h = 90 'Z', i = 90 'Z', j = 90 'Z'}"
"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z', e = 90 'Z', f = 90 'Z', g = 90 'Z', h = 90 'Z', i = 90 'Z', j = 90 'Z', k = 90 'Z'}"
"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z', e = 90 'Z', f = 90 'Z', g = 90 'Z', h = 90 'Z', i = 90 'Z', j = 90 'Z', k = 90 'Z', l = 90 'Z'}"
"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z', e = 90 'Z', f = 90 'Z', g = 90 'Z', h = 90 'Z', i = 90 'Z', j = 90 'Z', k = 90 'Z', l = 90 'Z', m = 90 'Z'}"
"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z', e = 90 'Z', f = 90 'Z', g = 90 'Z', h = 90 'Z', i = 90 'Z', j = 90 'Z', k = 90 'Z', l = 90 'Z', m = 90 'Z', n = 90 'Z'}"
"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z', e = 90 'Z', f = 90 'Z', g = 90 'Z', h = 90 'Z', i = 90 'Z', j = 90 'Z', k = 90 'Z', l = 90 'Z', m = 90 'Z', n = 90 'Z', o = 90 'Z'}"
"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z', e = 90 'Z', f = 90 'Z', g = 90 'Z', h = 90 'Z', i = 90 'Z', j = 90 'Z', k = 90 'Z', l = 90 'Z', m = 90 'Z', n = 90 'Z', o = 90 'Z', p = 90 'Z'}"
"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z', e = 90 'Z', f = 90 'Z', g = 90 'Z', h = 90 'Z', i = 90 'Z', j = 90 'Z', k = 90 'Z', l = 90 'Z', m = 90 'Z', n = 90 'Z', o = 90 'Z', p = 90 'Z', q = 90 'Z'}"
} $n]
}
# Given N (0..25), return the corresponding alphabetic letter in lower
# or upper case. This is ment to be i18n proof.
proc i2a { n } {
return [string range "abcdefghijklmnopqrstuvwxyz" $n $n]
}
proc I2A { n } {
return [string toupper [i2a $n]]
}
# Use the file name, compiler and tuples to set up any needed KFAILs.
proc setup_kfails { file tuples bug } {
global testfile
if [string match $file $testfile] {
foreach f $tuples { setup_kfail $f $bug }
}
}
# FIXME: Before calling this proc, we should probably verify that
# we can call inferior functions and get a valid integral value
# returned.
# Note that it is OK to check for 0 or 1 as the returned values, because C
# specifies that the numeric value of a relational or logical expression
# (computed in the inferior) is 1 for true and 0 for false.
proc setup_compiler_kfails { file compiler format tuples bug } {
global testfile
if {[string match $file $testfile] && [test_compiler_info $compiler] && [test_debug_format $format]} {
foreach f $tuples { setup_kfail $f $bug }
}
}
proc do_function_calls {} {
global prototypes
global gcc_compiled
# Test GDB's ability to make inferior function calls to functions
# returning (or passing in a single structs.
# N identifies the number of elements in the struct that will be used
# for the test case. FAILS is a list of target tuples that will fail
# this test.
# start_structs_test() will have previously built a program with a
# specified combination of types for those elements. To ensure
# robustness of the output, "p/c" is used.
# This tests the code paths "which return-value convention?" and
# "extract return-value from registers" called by "infcall.c".
proc test_struct_calls { n } {
global testfile
global gdb_prompt
# First, call the "fun" functions and examine the value they return.
call_struct_func "fun1" " = {a = 49 '1'}"
call_struct_func "fun2" " = {a = 97 'a', b = 98 'b'}"
call_struct_func "fun3" " = {a = 65 'A', b = 66 'B', c = 67 'C'}"
call_struct_func "fun4" " = {a = 49 '1', b = 50 '2', c = 51 '3', d = 52 '4'}"
call_struct_func "fun5" " = {a = 97 'a', b = 98 'b', c = 99 'c', d = 100 'd', e = 101 'e'}"
call_struct_func "fun6" " = {a = 65 'A', b = 66 'B', c = 67 'C', d = 68 'D', e = 69 'E', f = 70 'F'}"
call_struct_func "fun7" " = {a = 49 '1', b = 50 '2', c = 51 '3', d = 52 '4', e = 53 '5', f = 54 '6', g = 55 '7'}"
call_struct_func "fun8" " = {a = 49 '1', b = 50 '2', c = 51 '3', d = 52 '4', e = 53 '5', f = 54 '6', g = 55 '7', h = 56 '8'}"
call_struct_func "fun9" " = {a = 97 'a', b = 98 'b', c = 99 'c', d = 100 'd', e = 101 'e', f = 102 'f', g = 103 'g', h = 104 'h', i = 105 'i'}"
call_struct_func "fun10" " = {a = 65 'A', b = 66 'B', c = 67 'C', d = 68 'D', e = 69 'E', f = 70 'F', g = 71 'G', h = 72 'H', i = 73 'I', j = 74 'J'}"
call_struct_func "fun11" " = {a = 49 '1', b = 50 '2', c = 51 '3', d = 52 '4', e = 53 '5', f = 54 '6', g = 55 '7', h = 56 '8', i = 57 '9', j = 65 'A', k = 66 'B'}"
call_struct_func "fun12" " = {a = 65 'A', b = 66 'B', c = 67 'C', d = 68 'D', e = 69 'E', f = 70 'F', g = 71 'G', h = 72 'H', i = 73 'I', j = 74 'J', k = 75 'K', l = 76 'L'}"
call_struct_func "fun16" " = {a = 97 'a', b = 98 'b', c = 99 'c', d = 100 'd', e = 101 'e', f = 102 'f', g = 103 'g', h = 104 'h', i = 105 'i', j = 106 'j', k = 107 'k', l = 108 'l', m = 109 'm', n = 110 'n', o = 111 'o', p = 112 'p'}"
# Check that GDB can always extract a struct-return value from an
# inferior function call. Since GDB always knows the location of an
# inferior function call's return value these should never fail
# Implemented by calling the parameterless function "fun$N" and then
# examining the return value printed by GDB.
# Now call the Fun functions to set the L* variables. This
# tests that gdb properly passes structures to functions.
gdb_test "p Fun1(foo1)" " = (void|0)"
gdb_test "p Fun2(foo2)" " = (void|0)"
gdb_test "p Fun3(foo3)" " = (void|0)"
gdb_test "p Fun4(foo4)" " = (void|0)"
gdb_test "p Fun5(foo5)" " = (void|0)"
gdb_test "p Fun6(foo6)" " = (void|0)"
gdb_test "p Fun7(foo7)" " = (void|0)"
gdb_test "p Fun8(foo8)" " = (void|0)"
gdb_test "p Fun9(foo9)" " = (void|0)"
gdb_test "p Fun10(foo10)" " = (void|0)"
gdb_test "p Fun11(foo11)" " = (void|0)"
gdb_test "p Fun12(foo12)" " = (void|0)"
gdb_test "p Fun16(foo16)" " = (void|0)"
set tests "call $n ${testfile}"
# Now print the L* variables and examine their values.
gdb_test "p L1" " = {a = 49 '1'}"
gdb_test "p L2" " = {a = 97 'a', b = 98 'b'}"
gdb_test "p L3" " = {a = 65 'A', b = 66 'B', c = 67 'C'}"
gdb_test "p L4" " = {a = 49 '1', b = 50 '2', c = 51 '3', d = 52 '4'}"
gdb_test "p L5" " = {a = 97 'a', b = 98 'b', c = 99 'c', d = 100 'd', e = 101 'e'}"
gdb_test "p L6" " = {a = 65 'A', b = 66 'B', c = 67 'C', d = 68 'D', e = 69 'E', f = 70 'F'}"
gdb_test "p L7" " = {a = 49 '1', b = 50 '2', c = 51 '3', d = 52 '4', e = 53 '5', f = 54 '6', g = 55 '7'}"
gdb_test "p L8" " = {a = 49 '1', b = 50 '2', c = 51 '3', d = 52 '4', e = 53 '5', f = 54 '6', g = 55 '7', h = 56 '8'}"
gdb_test "p L9" " = {a = 97 'a', b = 98 'b', c = 99 'c', d = 100 'd', e = 101 'e', f = 102 'f', g = 103 'g', h = 104 'h', i = 105 'i'}"
gdb_test "p L10" " = {a = 65 'A', b = 66 'B', c = 67 'C', d = 68 'D', e = 69 'E', f = 70 'F', g = 71 'G', h = 72 'H', i = 73 'I', j = 74 'J'}"
gdb_test "p L11" " = {a = 49 '1', b = 50 '2', c = 51 '3', d = 52 '4', e = 53 '5', f = 54 '6', g = 55 '7', h = 56 '8', i = 57 '9', j = 65 'A', k = 66 'B'}"
gdb_test "p L12" " = {a = 65 'A', b = 66 'B', c = 67 'C', d = 68 'D', e = 69 'E', f = 70 'F', g = 71 'G', h = 72 'H', i = 73 'I', j = 74 'J', k = 75 'K', l = 76 'L'}"
gdb_test "p L16" " = {a = 97 'a', b = 98 'b', c = 99 'c', d = 100 'd', e = 101 'e', f = 102 'f', g = 103 'g', h = 104 'h', i = 105 'i', j = 106 'j', k = 107 'k', l = 108 'l', m = 109 'm', n = 110 'n', o = 111 'o', p = 112 'p'}"
}
# Start with a fresh gdb.
# Call fun${n}, checking the printed return-value.
setup_kfails structs-*tld* i686-*-* gdb/1447
setup_compiler_kfails structs-tc-* gcc-3-3 "DWARF 2" i686-*-* gdb/1455
gdb_test "p/c fun${n}()" "[foo ${n}]" "p/c fun<n>(); ${tests}"
gdb_start
gdb_reinitialize_dir $srcdir/$subdir
gdb_load ${binfile}
# Check that GDB can always pass a structure to an inferior function.
# This test can never fail.
gdb_test "set print sevenbit-strings" ""
gdb_test "set print address off" ""
gdb_test "set width 0" ""
# Implemented by calling the one parameter function "Fun$N" which
# stores its parameter in the global variable "L$N". GDB then
# examining that global to confirm that the value is as expected.
if [target_info exists gdb,cannot_call_functions] {
setup_xfail "*-*-*" 2416
fail "This target can not call functions"
return 0
gdb_test "call Fun${n}(foo${n})" "" "call Fun<n>(foo<n>); ${tests}"
setup_kfails structs-*tld* i686-*-* gdb/1447
setup_compiler_kfails structs-tc-* gcc-3-3 "DWARF 2" i686-*-* gdb/1455
gdb_test "p/c L${n}" [foo ${n}] "p/c L<n>; ${tests}"
}
if { ![runto_main] } then {
gdb_suppress_tests;
# Test GDB's ability to both return a function (with "return" or
# "finish") and correctly extract/store any corresponding
# return-value.
# Check that GDB can consistently extract/store structure return
# values. There are two cases - returned in registers and returned in
# memory. For the latter case, the return value can't be found and a
# failure is "expected". However GDB must still both return the
# function and display the final source and line information.
# N identifies the number of elements in the struct that will be used
# for the test case. FAILS is a list of target tuples that will fail
# this test.
# This tests the code paths "which return-value convention?", "extract
# return-value from registers", and "store return-value in registers".
# Unlike "test struct calls", this test is expected to "fail" when the
# return-value is in memory (GDB can't find the location). The test
# is in three parts: test "return"; test "finish"; check that the two
# are consistent. GDB can sometimes work for one command and not the
# other.
proc test_struct_returns { n } {
global gdb_prompt
global testfile
set tests "return $n ${testfile}"
# Check that "return" works.
# GDB must always force the return of a function that has
# a struct result. Dependant on the ABI, it may, or may not be
# possible to store the return value in a register.
# The relevant code looks like "L{n} = fun{n}()". The test forces
# "fun{n}" to "return" with an explicit value. Since that code
# snippet will store the the returned value in "L{n}" the return
# is tested by examining "L{n}". This assumes that the
# compiler implemented this as fun{n}(&L{n}) and hence that when
# the value isn't stored "L{n}" remains unchanged. Also check for
# consistency between this and the "finish" case.
# Get into a call of fun${n}
gdb_test "advance fun${n}" \
"fun${n} .*\[\r\n\]+\[0-9\].*return foo${n}.*" \
"advance to fun<n> for return; ${tests}"
# Check that the program invalidated the relevant global.
setup_kfails structs-tld i686-*-* gdb/1447
gdb_test "p/c L${n}" " = [zed $n]" "zed L<n> for return; ${tests} .${testfile}."
# Force the "return". This checks that the return is always
# performed, and that GDB correctly reported this to the user.
# GDB 6.0 and earlier, when the return-value's location wasn't
# known, both failed to print a final "source and line" and misplaced
# the frame ("No frame").
# The test is writen so that it only reports one FAIL/PASS for the
# entire operation. The value returned is checked further down.
# "return_value_unknown", if non-empty, records why GDB realised
# that it didn't know where the return value was.
send_gdb "return foo${n}\n"
set test "return foo<n>; ${tests}"
set return_value_unknown 0
gdb_expect {
-re "The location" {
# Ulgh, a struct return, remember this (still need prompt).
set return_value_unknown 1
exp_continue
}
-re "A structure or union" {
# Ulgh, a struct return, remember this (still need prompt).
# Set it to something unique so that it won't match a
# struct return convention value.
# set return_value_unknown -1
set return_value_unknown 1
exp_continue
}
-re "Make fun${n} return now.*y or n. $" {
send_gdb "y\n"
gdb_expect {
-re "L${n} *= fun${n}.*${gdb_prompt} $" {
# Need to step off the function call
gdb_test "next" "L.* *= fun.*" "${test}"
}
-re "L[expr ${n} + 1] *= fun[expr ${n} + 1].*${gdb_prompt} $" {
pass "${test}"
}
timeout {
fail "${test} (timeout 2)"
}
}
}
-re "${gdb_prompt} $" {
fail "${test} (no query)"
}
timeout {
fail "${test} (timeout 1)"
}
}
# Check that the return-value is as expected. At this stage we're
# just checking that GDB has returned a value consistent with
# "return_value_unknown" set above.
send_gdb "p/c L${n}\n"
set test "value foo<n> returned; ${tests}"
setup_kfails structs-*tld* i686-*-* gdb/1447
gdb_expect {
-re " = [foo ${n}].*${gdb_prompt} $" {
if $return_value_unknown {
# This contradicts the above claim that GDB didn't
# know the location of the return-value.
fail "${test}"
} else {
pass "${test}"
}
}
-re " = [zed ${n}].*${gdb_prompt} $" {
if $return_value_unknown {
# The struct return case. Since any modification
# would be by reference, and that can't happen, the
# value should be unmodified and hence Z is expected.
# Is this a reasonable assumption?
pass "${test}"
} else {
# This contradicts the above claim that GDB knew
# the location of the return-value.
fail "${test}"
}
}
-re "${gdb_prompt} $" {
# Garbage returned, garbage printed
fail "${test}"
}
timeout {
fail "${test} (timeout)"
}
}
# Check that a "finish" works.
# This is almost but not quite the same as "call struct funcs".
# Architectures can have subtle differences in the two code paths.
# The relevant code snippet is "L{n} = fun{n}()". The program is
# advanced into a call to "fun{n}" and then that function is
# finished. The returned value that GDB prints, reformatted using
# "p/c", is checked.
# Get into "fun${n}()".
gdb_test "advance fun${n}" \
"fun${n} .*\[\r\n\]+\[0-9\].*return foo${n}.*" \
"advance to fun<n> for finish; ${tests}"
# Check that the program invalidated the relevant global.
setup_kfails structs-tld i686-*-* gdb/1447
gdb_test "p/c L${n}" " = [zed $n]" "zed L<n> for finish; ${tests}"
# Finish the function, set 'finish_value_unknown" to non-empty if the
# return-value was not found.
send_gdb "finish\n"
set test "finish foo${n}; ${tests}"
set finish_value_unknown 0
gdb_expect {
-re "Value returned is .*${gdb_prompt} $" {
pass "${test}"
}
-re "Cannot determine contents.*${gdb_prompt} $" {
# Expected bad value. For the moment this is ok.
set finish_value_unknown 1
pass "${test}"
}
-re ".*${gdb_prompt} $" {
# Garbage returned
fail "${test}"
}
timeout {
fail "${test} (timeout)"
}
}
# Re-print the last (return-value) using the more robust
# "p/c". If no return value was found, the 'Z' from the previous
# check that the variable was cleared, is printed.
send_gdb "p/c\n"
set test "value foo${n} finished; ${tests}"
setup_kfails structs-*tld* i686-*-* gdb/1447
gdb_expect {
-re "[foo ${n}]\[\r\n\]+${gdb_prompt} $" {
if $finish_value_unknown {
# This contradicts the above claim that GDB didn't
# know the location of the return-value.
fail "${test}"
} else {
pass "${test}"
}
}
-re "[zed ${n}]\[\r\n\]+${gdb_prompt} $" {
# The value didn't get found. This is "expected".
if $finish_value_unknown {
pass "${test}"
} else {
# This contradicts the above claim that GDB did
# know the location of the return-value.
fail "${test}"
}
}
-re ".*${gdb_prompt} $" {
# Garbage returned
fail "${test}"
}
timeout {
fail "${test} (timeout)"
}
}
# Finally, check that "return" and finish" have consistent
# behavior.
# Since both "return" and "finish" use equivalent "which
# return-value convention" logic, both commands should have
# identical can/can-not find return-value messages.
# Note that since "call" and "finish" use common code paths, a
# failure here is a strong indicator of problems with "store
# return-value" code paths. Suggest looking at "return_value"
# when investigating a fix.
set test "return and finish use same convention; ${tests}"
if {$finish_value_unknown == $return_value_unknown} {
pass "${test}"
} else {
kfail gdb/1444 "${test}"
}
}
do_function_calls;
# ABIs pass anything >8 or >16 bytes in memory but below that things
# randomly use register and/and structure conventions. Check all
# possible sized char structs in that range. But only a restricted
# range of the other types.
gdb_stop_suppressing_tests;
# NetBSD/PPC returns "unnatural" (3, 5, 6, 7) sized structs in memory.
# d10v is weird. 5/6 byte structs go in memory. 2 or more char
# structs go in memory. Everything else is in a register!
# Test every single char struct from 1..17 in size. This is what the
# original "structs" test was doing.
start_structs_test { tc }
test_struct_calls 1
test_struct_calls 2
test_struct_calls 3
test_struct_calls 4
test_struct_calls 5
test_struct_calls 6
test_struct_calls 7
test_struct_calls 8
test_struct_calls 9
test_struct_calls 10
test_struct_calls 11
test_struct_calls 12
test_struct_calls 13
test_struct_calls 14
test_struct_calls 15
test_struct_calls 16
test_struct_calls 17
test_struct_returns 1
test_struct_returns 2
test_struct_returns 3
test_struct_returns 4
test_struct_returns 5
test_struct_returns 6
test_struct_returns 7
test_struct_returns 8
# Let the fun begin.
# Assuming that any integer struct larger than 8 bytes goes in memory,
# come up with many and varied combinations of a return struct. For
# "struct calls" test just beyond that 8 byte boundary, for "struct
# returns" test up to that boundary.
# For floats, assumed that up to two struct elements can be stored in
# floating point registers, regardless of their size.
# The approx size of each structure it is computed assumed that tc=1,
# ts=2, ti=4, tl=4, tll=8, tf=4, td=8, tld=16, and that all fields are
# naturally aligned. Padding being added where needed. Note that
# these numbers are just approx, the d10v has ti=2, a 64-bit has has
# tl=8.
# Approx size: 2, 4, ...
start_structs_test { ts }
test_struct_calls 1
test_struct_calls 2
test_struct_calls 3
test_struct_calls 4
test_struct_calls 5
test_struct_returns 1
test_struct_returns 2
test_struct_returns 3
test_struct_returns 4
# Approx size: 4, 8, ...
start_structs_test { ti }
test_struct_calls 1
test_struct_calls 2
test_struct_calls 3
test_struct_returns 1
test_struct_returns 2
# Approx size: 4, 8, ...
start_structs_test { tl }
test_struct_calls 1
test_struct_calls 2
test_struct_calls 3
test_struct_returns 1
test_struct_returns 2
# Approx size: 8, 16, ...
start_structs_test { tll }
test_struct_calls 1
test_struct_calls 2
test_struct_returns 1
# Approx size: 4, 8, ...
start_structs_test { tf }
test_struct_calls 1
test_struct_calls 2
test_struct_calls 3
test_struct_returns 1
test_struct_returns 2
# Approx size: 8, 16, ...
start_structs_test { td }
test_struct_calls 1
test_struct_calls 2
test_struct_returns 1
# Approx size: 16, 32, ...
start_structs_test { tld }
test_struct_calls 1
test_struct_calls 2
test_struct_returns 1
# Approx size: 2+1=3, 4, ...
start_structs_test { ts tc }
test_struct_calls 2
test_struct_calls 3
test_struct_calls 4
test_struct_calls 5
test_struct_calls 6
test_struct_calls 7
test_struct_calls 8
test_struct_returns 2
# Approx size: 4+1=5, 6, ...
start_structs_test { ti tc }
test_struct_calls 2
test_struct_calls 3
test_struct_calls 4
test_struct_calls 5
test_struct_calls 6
test_struct_returns 2
# Approx size: 4+1=5, 6, ...
start_structs_test { tl tc }
test_struct_calls 2
test_struct_calls 3
test_struct_calls 4
test_struct_calls 5
test_struct_calls 6
test_struct_returns 2
# Approx size: 8+1=9, 10, ...
start_structs_test { tll tc }
test_struct_calls 2
# Approx size: 4+1=5, 6, ...
start_structs_test { tf tc }
test_struct_calls 2
test_struct_calls 3
test_struct_calls 4
test_struct_calls 5
test_struct_calls 6
test_struct_returns 2
# Approx size: 8+1=9, 10, ...
start_structs_test { td tc }
test_struct_calls 2
# Approx size: 16+1=17, 18, ...
start_structs_test { tld tc }
test_struct_calls 2
# Approx size: (1+1)+2=4, 6, ...
start_structs_test { tc ts }
test_struct_calls 2
test_struct_calls 3
test_struct_calls 4
test_struct_calls 5
test_struct_calls 6
test_struct_returns 2
# Approx size: (1+3)+4=8, 12, ...
start_structs_test { tc ti }
test_struct_calls 2
test_struct_calls 3
test_struct_calls 4
test_struct_returns 2
# Approx size: (1+3)+4=8, 12, ...
start_structs_test { tc tl }
test_struct_calls 2
test_struct_calls 3
test_struct_calls 4
test_struct_returns 2
# Approx size: (1+7)+8=16, 24, ...
start_structs_test { tc tll }
test_struct_calls 2
# Approx size: (1+3)+4=8, 12, ...
start_structs_test { tc tf }
test_struct_calls 2
test_struct_calls 3
test_struct_calls 4
# Approx size: (1+7)+8=16, 24, ...
start_structs_test { tc td }
test_struct_calls 2
# Approx size: (1+15)+16=32, 48, ...
start_structs_test { tc tld }
test_struct_calls 2
# Some float combinations
# Approx size: 8+4=12, 16, ...
# d10v: 4+4=8, 12, ...
start_structs_test { td tf }
test_struct_calls 2
test_struct_returns 2
# Approx size: (4+4)+8=16, 32, ...
# d10v: 4+4=8, 12, ...
start_structs_test { tf td }
test_struct_calls 2
test_struct_returns 2
return 0