* alpha-tdep.h: New file. Includes several Alpha target constants

taken from...
* config/alpha/tm-alpha.h: ...here.  Remove macros that we now
let gdbarch deal with.
(GDB_MULTI_ARCH): Define as GDB_MULTI_ARCH_PARTIAL.
* Makefile.in (alpha-nat.o): Add alpha-tdep.h and $(BFD_SRC)/elf-bfd
to dependency list.
* alpha-nat.c: Include alpha-tdep.h.  Update for adjusted
Alpha target register names.
* alphabsd-nat.c: Likewise.
* alpha-tdep.c: Include alpha-tdep.h.  Update for adjusted
Alpha target register names.  Make serveral routines static.
(alpha_get_saved_register): New function.
(alpha_abi_names): New.
(process_note_abi_tag_sections): New function.
(get_elfosabi): New function.
(alpha_gdbarch_init): New function.
(alpha_dump_tdep): New function.
(_initialize_alpha_tdep): Register alpha_gdbarch_init.
This commit is contained in:
Jason Thorpe 2002-04-21 16:52:39 +00:00
parent d49d1e0a2f
commit dc129d8238
7 changed files with 606 additions and 379 deletions

View File

@ -1,3 +1,25 @@
2002-04-21 Jason Thorpe <thorpej@wasabisystems.com>
* alpha-tdep.h: New file. Includes several Alpha target constants
taken from...
* config/alpha/tm-alpha.h: ...here. Remove macros that we now
let gdbarch deal with.
(GDB_MULTI_ARCH): Define as GDB_MULTI_ARCH_PARTIAL.
* Makefile.in (alpha-nat.o): Add alpha-tdep.h and $(BFD_SRC)/elf-bfd
to dependency list.
* alpha-nat.c: Include alpha-tdep.h. Update for adjusted
Alpha target register names.
* alphabsd-nat.c: Likewise.
* alpha-tdep.c: Include alpha-tdep.h. Update for adjusted
Alpha target register names. Make serveral routines static.
(alpha_get_saved_register): New function.
(alpha_abi_names): New.
(process_note_abi_tag_sections): New function.
(get_elfosabi): New function.
(alpha_gdbarch_init): New function.
(alpha_dump_tdep): New function.
(_initialize_alpha_tdep): Register alpha_gdbarch_init.
2002-04-21 Andrew Cagney <ac131313@redhat.com>
* frame.c (find_saved_register): Delete #ifdef

View File

@ -1238,11 +1238,11 @@ a68v-nat.o: a68v-nat.c $(defs_h) $(gdbcore_h) $(inferior_h) \
$(regcache_h)
alpha-nat.o: alpha-nat.c $(defs_h) $(gdbcore_h) $(inferior_h) $(target_h) \
$(regcache_h)
$(regcache_h) alpha-tdep.h
alpha-tdep.o: alpha-tdep.c $(defs_h) $(gdbcmd_h) $(gdbcore_h) \
$(inferior_h) $(symtab_h) $(dis_asm_h) $(gdb_string_h) $(linespec_h) \
$(regcache_h) $(doublest_h)
$(regcache_h) $(doublest_h) $(BFD_SRC)/elf-bfd.h alpha-tdep.h
annotate.o: annotate.c $(defs_h) $(annotate_h) $(value_h) $(target_h) $(gdbtypes_h)

View File

@ -24,6 +24,9 @@
#include "gdbcore.h"
#include "target.h"
#include "regcache.h"
#include "alpha-tdep.h"
#include <sys/ptrace.h>
#ifdef __linux__
#include <asm/reg.h>
@ -62,7 +65,7 @@ get_longjmp_target (CORE_ADDR *pc)
CORE_ADDR jb_addr;
char raw_buffer[MAX_REGISTER_RAW_SIZE];
jb_addr = read_register (A0_REGNUM);
jb_addr = read_register (ALPHA_A0_REGNUM);
if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, raw_buffer,
sizeof (CORE_ADDR)))
@ -171,10 +174,11 @@ fetch_elf_core_registers (char *core_reg_sect, unsigned core_reg_size,
else
{
/* The General Registers. */
memcpy (&registers[REGISTER_BYTE (V0_REGNUM)], core_reg_sect, 31 * 8);
memcpy (&registers[REGISTER_BYTE (ALPHA_V0_REGNUM)], core_reg_sect,
31 * 8);
memcpy (&registers[REGISTER_BYTE (PC_REGNUM)], core_reg_sect + 31 * 8, 8);
memset (&registers[REGISTER_BYTE (ZERO_REGNUM)], 0, 8);
memset (&register_valid[V0_REGNUM], 1, 32);
memset (&registers[REGISTER_BYTE (ALPHA_ZERO_REGNUM)], 0, 8);
memset (&register_valid[ALPHA_V0_REGNUM], 1, 32);
register_valid[PC_REGNUM] = 1;
}
}
@ -227,7 +231,7 @@ supply_gregset (gdb_gregset_t *gregsetp)
supply_register (PC_REGNUM, (char *) (regp + 31));
/* Fill inaccessible registers with zero. */
supply_register (ZERO_REGNUM, zerobuf);
supply_register (ALPHA_ZERO_REGNUM, zerobuf);
supply_register (FP_REGNUM, zerobuf);
}

View File

@ -33,6 +33,48 @@
#include "linespec.h"
#include "regcache.h"
#include "doublest.h"
#include "arch-utils.h"
#include "elf-bfd.h"
#include "alpha-tdep.h"
static gdbarch_init_ftype alpha_gdbarch_init;
static gdbarch_register_name_ftype alpha_register_name;
static gdbarch_register_raw_size_ftype alpha_register_raw_size;
static gdbarch_register_virtual_size_ftype alpha_register_virtual_size;
static gdbarch_register_virtual_type_ftype alpha_register_virtual_type;
static gdbarch_register_byte_ftype alpha_register_byte;
static gdbarch_cannot_fetch_register_ftype alpha_cannot_fetch_register;
static gdbarch_cannot_store_register_ftype alpha_cannot_store_register;
static gdbarch_register_convertible_ftype alpha_register_convertible;
static gdbarch_register_convert_to_virtual_ftype
alpha_register_convert_to_virtual;
static gdbarch_register_convert_to_raw_ftype alpha_register_convert_to_raw;
static gdbarch_store_struct_return_ftype alpha_store_struct_return;
static gdbarch_extract_return_value_ftype alpha_extract_return_value;
static gdbarch_store_return_value_ftype alpha_store_return_value;
static gdbarch_extract_struct_value_address_ftype
alpha_extract_struct_value_address;
static gdbarch_use_struct_convention_ftype alpha_use_struct_convention;
static gdbarch_frame_args_address_ftype alpha_frame_args_address;
static gdbarch_frame_locals_address_ftype alpha_frame_locals_address;
static gdbarch_skip_prologue_ftype alpha_skip_prologue;
static gdbarch_get_saved_register_ftype alpha_get_saved_register;
static gdbarch_saved_pc_after_call_ftype alpha_saved_pc_after_call;
static gdbarch_frame_chain_ftype alpha_frame_chain;
static gdbarch_frame_saved_pc_ftype alpha_frame_saved_pc;
static gdbarch_frame_init_saved_regs_ftype alpha_frame_init_saved_regs;
static gdbarch_push_arguments_ftype alpha_push_arguments;
static gdbarch_push_dummy_frame_ftype alpha_push_dummy_frame;
static gdbarch_pop_frame_ftype alpha_pop_frame;
static gdbarch_fix_call_dummy_ftype alpha_fix_call_dummy;
static gdbarch_init_frame_pc_first_ftype alpha_init_frame_pc_first;
static gdbarch_init_extra_frame_info_ftype alpha_init_extra_frame_info;
struct frame_extra_info
{
@ -275,7 +317,7 @@ push_sigtramp_desc (CORE_ADDR low_addr)
}
char *
static char *
alpha_register_name (int regno)
{
static char *register_names[] =
@ -298,44 +340,44 @@ alpha_register_name (int regno)
return (register_names[regno]);
}
int
static int
alpha_cannot_fetch_register (int regno)
{
return (regno == FP_REGNUM || regno == ZERO_REGNUM);
return (regno == FP_REGNUM || regno == ALPHA_ZERO_REGNUM);
}
int
static int
alpha_cannot_store_register (int regno)
{
return (regno == FP_REGNUM || regno == ZERO_REGNUM);
return (regno == FP_REGNUM || regno == ALPHA_ZERO_REGNUM);
}
int
static int
alpha_register_convertible (int regno)
{
return (regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31);
}
struct type *
static struct type *
alpha_register_virtual_type (int regno)
{
return ((regno >= FP0_REGNUM && regno < (FP0_REGNUM+31))
? builtin_type_double : builtin_type_long);
}
int
static int
alpha_register_byte (int regno)
{
return (regno * 8);
}
int
static int
alpha_register_raw_size (int regno)
{
return 8;
}
int
static int
alpha_register_virtual_size (int regno)
{
return 8;
@ -433,7 +475,7 @@ alpha_find_saved_regs (struct frame_info *frame)
frame->saved_regs[PC_REGNUM] = frame->saved_regs[returnreg];
}
void
static void
alpha_frame_init_saved_regs (struct frame_info *fi)
{
if (fi->saved_regs == NULL)
@ -441,7 +483,7 @@ alpha_frame_init_saved_regs (struct frame_info *fi)
fi->saved_regs[SP_REGNUM] = fi->frame;
}
void
static void
alpha_init_frame_pc_first (int fromleaf, struct frame_info *prev)
{
prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) :
@ -468,7 +510,7 @@ read_next_frame_reg (struct frame_info *fi, int regno)
return read_register (regno);
}
CORE_ADDR
static CORE_ADDR
alpha_frame_saved_pc (struct frame_info *frame)
{
alpha_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
@ -483,7 +525,55 @@ alpha_frame_saved_pc (struct frame_info *frame)
return read_next_frame_reg (frame, pcreg);
}
CORE_ADDR
static void
alpha_get_saved_register (char *raw_buffer,
int *optimized,
CORE_ADDR *addrp,
struct frame_info *frame,
int regnum,
enum lval_type *lval)
{
CORE_ADDR addr;
if (!target_has_registers)
error ("No registers.");
/* Normal systems don't optimize out things with register numbers. */
if (optimized != NULL)
*optimized = 0;
addr = find_saved_register (frame, regnum);
if (addr != 0)
{
if (lval != NULL)
*lval = lval_memory;
if (regnum == SP_REGNUM)
{
if (raw_buffer != NULL)
{
/* Put it back in target format. */
store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
(LONGEST) addr);
}
if (addrp != NULL)
*addrp = 0;
return;
}
if (raw_buffer != NULL)
target_read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
}
else
{
if (lval != NULL)
*lval = lval_register;
addr = REGISTER_BYTE (regnum);
if (raw_buffer != NULL)
read_register_gen (regnum, raw_buffer);
}
if (addrp != NULL)
*addrp = addr;
}
static CORE_ADDR
alpha_saved_pc_after_call (struct frame_info *frame)
{
CORE_ADDR pc = frame->pc;
@ -497,7 +587,7 @@ alpha_saved_pc_after_call (struct frame_info *frame)
pc = tmp;
proc_desc = find_proc_desc (pc, frame->next);
pcreg = proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM;
pcreg = proc_desc ? PROC_PC_REG (proc_desc) : ALPHA_RA_REGNUM;
if (frame->signal_handler_caller)
return alpha_frame_saved_pc (frame);
@ -507,7 +597,7 @@ alpha_saved_pc_after_call (struct frame_info *frame)
static struct alpha_extra_func_info temp_proc_desc;
static CORE_ADDR temp_saved_regs[NUM_REGS];
static CORE_ADDR temp_saved_regs[ALPHA_NUM_REGS];
/* Nonzero if instruction at PC is a return instruction. "ret
$zero,($ra),1" on alpha. */
@ -646,7 +736,8 @@ heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
e.g. via the minimal symbol table, might obviate this hack. */
if (pcreg == -1
&& cur_pc < (start_pc + 80)
&& (reg == T7_REGNUM || reg == T9_REGNUM || reg == RA_REGNUM))
&& (reg == ALPHA_T7_REGNUM || reg == ALPHA_T9_REGNUM
|| reg == ALPHA_RA_REGNUM))
pcreg = reg;
}
else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
@ -672,7 +763,8 @@ heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
&& (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
{
int reg = (word & 0x03e00000) >> 21;
if (reg == T7_REGNUM || reg == T9_REGNUM || reg == RA_REGNUM)
if (reg == ALPHA_T7_REGNUM || reg == ALPHA_T9_REGNUM
|| reg == ALPHA_RA_REGNUM)
{
pcreg = reg;
break;
@ -687,12 +779,12 @@ heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
}
if (has_frame_reg)
PROC_FRAME_REG (&temp_proc_desc) = GCC_FP_REGNUM;
PROC_FRAME_REG (&temp_proc_desc) = ALPHA_GCC_FP_REGNUM;
else
PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
PROC_FRAME_OFFSET (&temp_proc_desc) = frame_size;
PROC_REG_MASK (&temp_proc_desc) = reg_mask;
PROC_PC_REG (&temp_proc_desc) = (pcreg == -1) ? RA_REGNUM : pcreg;
PROC_PC_REG (&temp_proc_desc) = (pcreg == -1) ? ALPHA_RA_REGNUM : pcreg;
PROC_LOCALOFF (&temp_proc_desc) = 0; /* XXX - bogus */
return &temp_proc_desc;
}
@ -874,7 +966,7 @@ find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame)
alpha_extra_func_info_t cached_proc_desc;
CORE_ADDR
static CORE_ADDR
alpha_frame_chain (struct frame_info *frame)
{
alpha_extra_func_info_t proc_desc;
@ -920,7 +1012,7 @@ alpha_print_extra_frame_info (struct frame_info *fi)
paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
}
void
static void
alpha_init_extra_frame_info (int fromleaf, struct frame_info *frame)
{
/* Use proc_desc calculated in frame_chain */
@ -932,7 +1024,7 @@ alpha_init_extra_frame_info (int fromleaf, struct frame_info *frame)
frame->saved_regs = NULL;
frame->extra_info->localoff = 0;
frame->extra_info->pc_reg = RA_REGNUM;
frame->extra_info->pc_reg = ALPHA_RA_REGNUM;
frame->extra_info->proc_desc = proc_desc == &temp_proc_desc ? 0 : proc_desc;
if (proc_desc)
{
@ -975,19 +1067,19 @@ alpha_init_extra_frame_info (int fromleaf, struct frame_info *frame)
memcpy (frame->saved_regs, temp_saved_regs,
SIZEOF_FRAME_SAVED_REGS);
frame->saved_regs[PC_REGNUM]
= frame->saved_regs[RA_REGNUM];
= frame->saved_regs[ALPHA_RA_REGNUM];
}
}
}
}
CORE_ADDR
static CORE_ADDR
alpha_frame_locals_address (struct frame_info *fi)
{
return (fi->frame - fi->extra_info->localoff);
}
CORE_ADDR
static CORE_ADDR
alpha_frame_args_address (struct frame_info *fi)
{
return (fi->frame - (ALPHA_NUM_ARG_REGS * 8));
@ -1027,7 +1119,7 @@ alpha_setup_arbitrary_frame (int argc, CORE_ADDR *argv)
If the called function is returning a structure, the address of the
structure to be returned is passed as a hidden first argument. */
CORE_ADDR
static CORE_ADDR
alpha_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
int struct_return, CORE_ADDR struct_addr)
{
@ -1102,14 +1194,14 @@ alpha_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
LONGEST val;
val = read_memory_integer (sp + i * 8, 8);
write_register (A0_REGNUM + i, val);
write_register (FPA0_REGNUM + i, val);
write_register (ALPHA_A0_REGNUM + i, val);
write_register (ALPHA_FPA0_REGNUM + i, val);
}
return sp + arg_regs_size;
}
void
static void
alpha_push_dummy_frame (void)
{
int ireg;
@ -1117,7 +1209,7 @@ alpha_push_dummy_frame (void)
alpha_extra_func_info_t proc_desc;
CORE_ADDR sp = read_register (SP_REGNUM);
CORE_ADDR save_address;
char raw_buffer[MAX_REGISTER_RAW_SIZE];
char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
unsigned long mask;
link = (struct linked_proc_info *) xmalloc (sizeof (struct linked_proc_info));
@ -1172,14 +1264,14 @@ alpha_push_dummy_frame (void)
registers follow in ascending order.
The PC is saved immediately below the SP. */
save_address = sp + PROC_REG_OFFSET (proc_desc);
store_address (raw_buffer, 8, read_register (RA_REGNUM));
store_address (raw_buffer, 8, read_register (ALPHA_RA_REGNUM));
write_memory (save_address, raw_buffer, 8);
save_address += 8;
mask = PROC_REG_MASK (proc_desc) & 0xffffffffL;
for (ireg = 0; mask; ireg++, mask >>= 1)
if (mask & 1)
{
if (ireg == RA_REGNUM)
if (ireg == ALPHA_RA_REGNUM)
continue;
store_address (raw_buffer, 8, read_register (ireg));
write_memory (save_address, raw_buffer, 8);
@ -1222,10 +1314,10 @@ alpha_push_dummy_frame (void)
PROC_HIGH_ADDR (proc_desc) = PROC_LOW_ADDR (proc_desc) + 4;
SET_PROC_DESC_IS_DUMMY (proc_desc);
PROC_PC_REG (proc_desc) = RA_REGNUM;
PROC_PC_REG (proc_desc) = ALPHA_RA_REGNUM;
}
void
static void
alpha_pop_frame (void)
{
register int regnum;
@ -1368,7 +1460,7 @@ alpha_skip_prologue_internal (CORE_ADDR pc, int lenient)
return pc + offset;
}
CORE_ADDR
static CORE_ADDR
alpha_skip_prologue (CORE_ADDR addr)
{
return (alpha_skip_prologue_internal (addr, 0));
@ -1392,7 +1484,7 @@ alpha_in_lenient_prologue (CORE_ADDR startaddr, CORE_ADDR pc)
or
memory format is an integer with 4 bytes or less, as the representation
of integers in floating point registers is different. */
void
static void
alpha_register_convert_to_virtual (int regnum, struct type *valtype,
char *raw_buffer, char *virtual_buffer)
{
@ -1418,7 +1510,7 @@ alpha_register_convert_to_virtual (int regnum, struct type *valtype,
error ("Cannot retrieve value from floating point register");
}
void
static void
alpha_register_convert_to_raw (struct type *valtype, int regnum,
char *virtual_buffer, char *raw_buffer)
{
@ -1450,7 +1542,7 @@ alpha_register_convert_to_raw (struct type *valtype, int regnum,
/* Given a return value in `regbuf' with a type `valtype',
extract and copy its value into `valbuf'. */
void
static void
alpha_extract_return_value (struct type *valtype,
char regbuf[REGISTER_BYTES], char *valbuf)
{
@ -1459,17 +1551,18 @@ alpha_extract_return_value (struct type *valtype,
regbuf + REGISTER_BYTE (FP0_REGNUM),
valbuf);
else
memcpy (valbuf, regbuf + REGISTER_BYTE (V0_REGNUM), TYPE_LENGTH (valtype));
memcpy (valbuf, regbuf + REGISTER_BYTE (ALPHA_V0_REGNUM),
TYPE_LENGTH (valtype));
}
/* Given a return value in `regbuf' with a type `valtype',
write its value into the appropriate register. */
void
static void
alpha_store_return_value (struct type *valtype, char *valbuf)
{
char raw_buffer[MAX_REGISTER_RAW_SIZE];
int regnum = V0_REGNUM;
char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
int regnum = ALPHA_V0_REGNUM;
int length = TYPE_LENGTH (valtype);
if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
@ -1517,7 +1610,7 @@ alpha_call_dummy_address (void)
return SYMBOL_VALUE_ADDRESS (sym) + 4;
}
void
static void
alpha_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
struct value **args, struct type *type, int gcc_p)
{
@ -1525,8 +1618,8 @@ alpha_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
if (bp_address == 0)
error ("no place to put call");
write_register (RA_REGNUM, bp_address);
write_register (T12_REGNUM, fun);
write_register (ALPHA_RA_REGNUM, bp_address);
write_register (ALPHA_T12_REGNUM, fun);
}
/* On the Alpha, the call dummy code is nevery copied to user space
@ -1534,25 +1627,25 @@ alpha_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
matter. */
LONGEST alpha_call_dummy_words[] = { 0 };
int
static int
alpha_use_struct_convention (int gcc_p, struct type *type)
{
/* Structures are returned by ref in extra arg0. */
return 1;
}
void
static void
alpha_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
{
/* Store the address of the place in which to copy the structure the
subroutine will return. Handled by alpha_push_arguments. */
}
CORE_ADDR
static CORE_ADDR
alpha_extract_struct_value_address (char *regbuf)
{
return (extract_address (regbuf + REGISTER_BYTE (V0_REGNUM),
REGISTER_RAW_SIZE (V0_REGNUM)));
return (extract_address (regbuf + REGISTER_BYTE (ALPHA_V0_REGNUM),
REGISTER_RAW_SIZE (ALPHA_V0_REGNUM)));
}
/* alpha_software_single_step() is called just before we want to resume
@ -1664,11 +1757,331 @@ alpha_software_single_step (enum target_signal sig, int insert_breakpoints_p)
}
}
/* This table matches the indices assigned to enum alpha_abi. Keep
them in sync. */
static const char * const alpha_abi_names[] =
{
"<unknown>",
"OSF/1",
"GNU/Linux",
"FreeBSD",
"NetBSD",
NULL
};
static void
process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
{
enum alpha_abi *os_ident_ptr = obj;
const char *name;
unsigned int sectsize;
name = bfd_get_section_name (abfd, sect);
sectsize = bfd_section_size (abfd, sect);
if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
{
unsigned int name_length, data_length, note_type;
char *note;
/* If the section is larger than this, it's probably not what we are
looking for. */
if (sectsize > 128)
sectsize = 128;
note = alloca (sectsize);
bfd_get_section_contents (abfd, sect, note,
(file_ptr) 0, (bfd_size_type) sectsize);
name_length = bfd_h_get_32 (abfd, note);
data_length = bfd_h_get_32 (abfd, note + 4);
note_type = bfd_h_get_32 (abfd, note + 8);
if (name_length == 4 && data_length == 16 && note_type == 1
&& strcmp (note + 12, "GNU") == 0)
{
int os_number = bfd_h_get_32 (abfd, note + 16);
/* The case numbers are from abi-tags in glibc. */
switch (os_number)
{
case 0 :
*os_ident_ptr = ALPHA_ABI_LINUX;
break;
case 1 :
internal_error
(__FILE__, __LINE__,
"process_note_abi_sections: Hurd objects not supported");
break;
case 2 :
internal_error
(__FILE__, __LINE__,
"process_note_abi_sections: Solaris objects not supported");
break;
default :
internal_error
(__FILE__, __LINE__,
"process_note_abi_sections: unknown OS number %d",
os_number);
break;
}
}
}
/* NetBSD uses a similar trick. */
else if (strcmp (name, ".note.netbsd.ident") == 0 && sectsize > 0)
{
unsigned int name_length, desc_length, note_type;
char *note;
/* If the section is larger than this, it's probably not what we are
looking for. */
if (sectsize > 128)
sectsize = 128;
note = alloca (sectsize);
bfd_get_section_contents (abfd, sect, note,
(file_ptr) 0, (bfd_size_type) sectsize);
name_length = bfd_h_get_32 (abfd, note);
desc_length = bfd_h_get_32 (abfd, note + 4);
note_type = bfd_h_get_32 (abfd, note + 8);
if (name_length == 7 && desc_length == 4 && note_type == 1
&& strcmp (note + 12, "NetBSD") == 0)
/* XXX Should we check the version here?
Probably not necessary yet. */
*os_ident_ptr = ALPHA_ABI_NETBSD;
}
}
static int
get_elfosabi (bfd *abfd)
{
int elfosabi;
enum alpha_abi alpha_abi = ALPHA_ABI_UNKNOWN;
elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
/* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate
what we're on a SYSV system. However, GNU/Linux uses a note section
to record OS/ABI info, but leaves e_ident[EI_OSABI] zero. So we
have to check the note sections too. */
if (elfosabi == 0)
{
bfd_map_over_sections (abfd,
process_note_abi_tag_sections,
&alpha_abi);
}
if (alpha_abi != ALPHA_ABI_UNKNOWN)
return alpha_abi;
switch (elfosabi)
{
case ELFOSABI_NONE:
/* Leave it as unknown. */
break;
case ELFOSABI_NETBSD:
return ALPHA_ABI_NETBSD;
case ELFOSABI_FREEBSD:
return ALPHA_ABI_FREEBSD;
case ELFOSABI_LINUX:
return ALPHA_ABI_LINUX;
}
return ALPHA_ABI_UNKNOWN;
}
/* Initialize the current architecture based on INFO. If possible, re-use an
architecture from ARCHES, which is a list of architectures already created
during this debugging session.
Called e.g. at program startup, when reading a core file, and when reading
a binary file. */
static struct gdbarch *
alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
struct gdbarch_tdep *tdep;
struct gdbarch *gdbarch;
enum alpha_abi alpha_abi = ALPHA_ABI_UNKNOWN;
/* Try to determine the ABI of the object we are loading. */
if (info.abfd != NULL)
{
switch (bfd_get_flavour (info.abfd))
{
case bfd_target_elf_flavour:
alpha_abi = get_elfosabi (info.abfd);
break;
case bfd_target_ecoff_flavour:
/* Assume it's OSF/1. */
alpha_abi = ALPHA_ABI_OSF1;
break;
default:
/* Not sure what to do here, leave the ABI as unknown. */
break;
}
}
/* Find a candidate among extant architectures. */
for (arches = gdbarch_list_lookup_by_info (arches, &info);
arches != NULL;
arches = gdbarch_list_lookup_by_info (arches->next, &info))
{
/* Make sure the ABI selection matches. */
tdep = gdbarch_tdep (arches->gdbarch);
if (tdep && tdep->alpha_abi == alpha_abi)
return arches->gdbarch;
}
tdep = xmalloc (sizeof (struct gdbarch_tdep));
gdbarch = gdbarch_alloc (&info, tdep);
tdep->alpha_abi = alpha_abi;
if (alpha_abi < ALPHA_ABI_INVALID)
tdep->abi_name = alpha_abi_names[alpha_abi];
else
{
internal_error (__FILE__, __LINE__, "Invalid setting of alpha_abi %d",
(int) alpha_abi);
tdep->abi_name = "<invalid>";
}
/* Type sizes */
set_gdbarch_short_bit (gdbarch, 16);
set_gdbarch_int_bit (gdbarch, 32);
set_gdbarch_long_bit (gdbarch, 64);
set_gdbarch_long_long_bit (gdbarch, 64);
set_gdbarch_float_bit (gdbarch, 32);
set_gdbarch_double_bit (gdbarch, 64);
set_gdbarch_long_double_bit (gdbarch, 64);
set_gdbarch_ptr_bit (gdbarch, 64);
/* Register info */
set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
set_gdbarch_fp_regnum (gdbarch, ALPHA_FP_REGNUM);
set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
set_gdbarch_register_name (gdbarch, alpha_register_name);
set_gdbarch_register_size (gdbarch, ALPHA_REGISTER_SIZE);
set_gdbarch_register_bytes (gdbarch, ALPHA_REGISTER_BYTES);
set_gdbarch_register_byte (gdbarch, alpha_register_byte);
set_gdbarch_register_raw_size (gdbarch, alpha_register_raw_size);
set_gdbarch_max_register_raw_size (gdbarch, ALPHA_MAX_REGISTER_RAW_SIZE);
set_gdbarch_register_virtual_size (gdbarch, alpha_register_virtual_size);
set_gdbarch_max_register_virtual_size (gdbarch,
ALPHA_MAX_REGISTER_VIRTUAL_SIZE);
set_gdbarch_register_virtual_type (gdbarch, alpha_register_virtual_type);
set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
set_gdbarch_register_convertible (gdbarch, alpha_register_convertible);
set_gdbarch_register_convert_to_virtual (gdbarch,
alpha_register_convert_to_virtual);
set_gdbarch_register_convert_to_raw (gdbarch, alpha_register_convert_to_raw);
set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
set_gdbarch_frameless_function_invocation (gdbarch,
generic_frameless_function_invocation_not);
set_gdbarch_saved_pc_after_call (gdbarch, alpha_saved_pc_after_call);
set_gdbarch_frame_chain (gdbarch, alpha_frame_chain);
set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
set_gdbarch_frame_saved_pc (gdbarch, alpha_frame_saved_pc);
set_gdbarch_frame_init_saved_regs (gdbarch, alpha_frame_init_saved_regs);
set_gdbarch_get_saved_register (gdbarch, alpha_get_saved_register);
set_gdbarch_use_struct_convention (gdbarch, alpha_use_struct_convention);
set_gdbarch_extract_return_value (gdbarch, alpha_extract_return_value);
set_gdbarch_store_struct_return (gdbarch, alpha_store_struct_return);
set_gdbarch_store_return_value (gdbarch, alpha_store_return_value);
set_gdbarch_extract_struct_value_address (gdbarch,
alpha_extract_struct_value_address);
/* Settings for calling functions in the inferior. */
set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
set_gdbarch_call_dummy_length (gdbarch, 0);
set_gdbarch_push_arguments (gdbarch, alpha_push_arguments);
set_gdbarch_pop_frame (gdbarch, alpha_pop_frame);
/* On the Alpha, the call dummy code is never copied to user space,
stopping the user call is achieved via a bp_call_dummy breakpoint.
But we need a fake CALL_DUMMY definition to enable the proper
call_function_by_hand and to avoid zero length array warnings. */
set_gdbarch_call_dummy_p (gdbarch, 1);
set_gdbarch_call_dummy_words (gdbarch, alpha_call_dummy_words);
set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
set_gdbarch_frame_args_address (gdbarch, alpha_frame_args_address);
set_gdbarch_frame_locals_address (gdbarch, alpha_frame_locals_address);
set_gdbarch_init_extra_frame_info (gdbarch, alpha_init_extra_frame_info);
/* Alpha OSF/1 inhibits execution of code on the stack. But there is
no need for a dummy on the Alpha. PUSH_ARGUMENTS takes care of all
argument handling and bp_call_dummy takes care of stopping the dummy. */
set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
set_gdbarch_call_dummy_address (gdbarch, alpha_call_dummy_address);
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
set_gdbarch_push_dummy_frame (gdbarch, alpha_push_dummy_frame);
set_gdbarch_fix_call_dummy (gdbarch, alpha_fix_call_dummy);
set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
set_gdbarch_init_frame_pc_first (gdbarch, alpha_init_frame_pc_first);
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
set_gdbarch_decr_pc_after_break (gdbarch, 4);
set_gdbarch_frame_args_skip (gdbarch, 0);
return gdbarch;
}
static void
alpha_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
if (tdep == NULL)
return;
if (tdep->abi_name != NULL)
fprintf_unfiltered (file, "alpha_dump_tdep: ABI = %s\n", tdep->abi_name);
else
internal_error (__FILE__, __LINE__,
"alpha_dump_tdep: illegal setting of tdep->alpha_abi (%d)",
(int) tdep->alpha_abi);
}
void
_initialize_alpha_tdep (void)
{
struct cmd_list_element *c;
gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, alpha_dump_tdep);
tm_print_insn = print_insn_alpha;
/* Let the user set the fence post for heuristic_proc_start. */

99
gdb/alpha-tdep.h Normal file
View File

@ -0,0 +1,99 @@
/* Common target dependent code for GDB on Alpha systems.
Copyright 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2002 Free
Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#ifndef ALPHA_TDEP_H
#define ALPHA_TDEP_H
/* Say how long (ordinary) registers are. This is a piece of bogosity
used in push_word and a few other places; REGISTER_RAW_SIZE is the
real way to know how big a register is. */
#define ALPHA_REGISTER_SIZE 8
/* Number of machine registers. */
#define ALPHA_NUM_REGS 66
/* Total amount of space needed to store our copies of the machine's
register state. */
#define ALPHA_REGISTER_BYTES (ALPHA_NUM_REGS * 8)
/* Largest value REGISTER_RAW_SIZE can have. */
#define ALPHA_MAX_REGISTER_RAW_SIZE 8
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
#define ALPHA_MAX_REGISTER_VIRTUAL_SIZE 8
/* Register numbers of various important registers.
Note that most of these values are "real" register numbers,
and correspond to the general registers of the machine,
and FP_REGNUM is a "phony" register number which is too large
to be an actual register number as far as the user is concerned
but serves to get the desired value when passed to read_register. */
#define ALPHA_V0_REGNUM 0 /* Function integer return value */
#define ALPHA_T7_REGNUM 8 /* Return address register for OSF/1 __add* */
#define ALPHA_GCC_FP_REGNUM 15 /* Used by gcc as frame register */
#define ALPHA_A0_REGNUM 16 /* Loc of first arg during a subr call */
#define ALPHA_T9_REGNUM 23 /* Return address register for OSF/1 __div* */
#define ALPHA_T12_REGNUM 27 /* Contains start addr of current proc */
#define ALPHA_SP_REGNUM 30 /* Contains address of top of stack */
#define ALPHA_RA_REGNUM 26 /* Contains return address value */
#define ALPHA_ZERO_REGNUM 31 /* Read-only register, always 0 */
#define ALPHA_FP0_REGNUM 32 /* Floating point register 0 */
#define ALPHA_FPA0_REGNUM 48 /* First float arg during a subr call */
#define ALPHA_FPCR_REGNUM 63 /* Floating point control register */
#define ALPHA_PC_REGNUM 64 /* Contains program counter */
#define ALPHA_FP_REGNUM 65 /* Virtual frame pointer */
/* The alpha has two different virtual pointers for arguments and locals.
The virtual argument pointer is pointing to the bottom of the argument
transfer area, which is located immediately below the virtual frame
pointer. Its size is fixed for the native compiler, it is either zero
(for the no arguments case) or large enough to hold all argument registers.
gcc uses a variable sized argument transfer area. As it has
to stay compatible with the native debugging tools it has to use the same
virtual argument pointer and adjust the argument offsets accordingly.
The virtual local pointer is localoff bytes below the virtual frame
pointer, the value of localoff is obtained from the PDR. */
#define ALPHA_NUM_ARG_REGS 6
/* ABI variants that we know about. If you add to this enum, please
update the table of names in alpha-tdep.c. */
enum alpha_abi
{
ALPHA_ABI_UNKNOWN = 0,
ALPHA_ABI_OSF1,
ALPHA_ABI_LINUX,
ALPHA_ABI_FREEBSD,
ALPHA_ABI_NETBSD,
ALPHA_ABI_INVALID /* Keep this last. */
};
/* Target-dependent structure in gdbarch. */
struct gdbarch_tdep
{
enum alpha_abi alpha_abi; /* OS/ABI of inferior. */
const char *abi_name; /* Name of the above. */
};
#endif /* ALPHA_TDEP_H */

View File

@ -22,6 +22,8 @@
#include "inferior.h"
#include "regcache.h"
#include "alpha-tdep.h"
#include <sys/types.h>
#include <sys/ptrace.h>
#include <machine/reg.h>
@ -103,7 +105,7 @@ supply_fpregset (fpregset_t *fpregsetp)
supply_register (i, (char *) &fpregsetp->fpr_regs[i - FP0_REGNUM]);
}
supply_register (FPCR_REGNUM, (char *) &fpregsetp->fpr_cr);
supply_register (ALPHA_FPCR_REGNUM, (char *) &fpregsetp->fpr_cr);
}
/* Fill register REGNO (if it is a floating-point register) in
@ -119,8 +121,8 @@ fill_fpregset (fpregset_t *fpregsetp, int regno)
if ((regno == -1 || regno == i) && ! CANNOT_STORE_REGISTER (i))
regcache_collect (i, (char *) &fpregsetp->fpr_regs[i - FP0_REGNUM]);
if (regno == -1 || regno == FPCR_REGNUM)
regcache_collect (FPCR_REGNUM, (char *) &fpregsetp->fpr_cr);
if (regno == -1 || regno == ALPHA_FPCR_REGNUM)
regcache_collect (ALPHA_FPCR_REGNUM, (char *) &fpregsetp->fpr_cr);
}
@ -130,7 +132,7 @@ static int
getregs_supplies (int regno)
{
return ((regno >= V0_REGNUM && regno <= ZERO_REGNUM)
return ((regno >= ALPHA_V0_REGNUM && regno <= ALPHA_ZERO_REGNUM)
|| regno >= PC_REGNUM);
}

View File

@ -24,6 +24,8 @@
#ifndef TM_ALPHA_H
#define TM_ALPHA_H
#define GDB_MULTI_ARCH GDB_MULTI_ARCH_PARTIAL
#include "regcache.h"
#include "bfd.h"
#include "coff/sym.h" /* Needed for PDR below. */
@ -34,12 +36,6 @@ struct type;
struct value;
struct symbol;
/* Redefine some target bit sizes from the default. */
#define TARGET_LONG_BIT 64
#define TARGET_LONG_LONG_BIT 64
#define TARGET_PTR_BIT 64
/* Number of traps that happen between exec'ing the shell
* to run an inferior, and when we finally get to
* the inferior code. This is 2 on most implementations.
@ -51,326 +47,21 @@ struct symbol;
#define FUNCTION_START_OFFSET 0
/* Advance PC across any function entry prologue instructions
to reach some "real" code. */
#define SKIP_PROLOGUE(pc) alpha_skip_prologue((pc))
extern CORE_ADDR alpha_skip_prologue (CORE_ADDR addr);
/* Immediately after a function call, return the saved pc.
Can't always go through the frames for this because on some machines
the new frame is not set up until the new function executes
some instructions. */
#define SAVED_PC_AFTER_CALL(frame) alpha_saved_pc_after_call(frame)
extern CORE_ADDR alpha_saved_pc_after_call (struct frame_info *);
/* Are we currently handling a signal ? */
#define IN_SIGTRAMP(pc, name) alpha_osf_in_sigtramp ((pc), (name))
extern int alpha_osf_in_sigtramp (CORE_ADDR, char *);
/* Stack grows downward. */
#define INNER_THAN(lhs,rhs) core_addr_lessthan ((lhs), (rhs))
#define BREAKPOINT {0x80, 0, 0, 0} /* call_pal bpt */
/* Amount PC must be decremented by after a breakpoint.
This is often the number of bytes in BREAKPOINT
but not always. */
#ifndef DECR_PC_AFTER_BREAK
#define DECR_PC_AFTER_BREAK 4
#endif
/* Say how long (ordinary) registers are. This is a piece of bogosity
used in push_word and a few other places; REGISTER_RAW_SIZE is the
real way to know how big a register is. */
#define REGISTER_SIZE 8
/* Number of machine registers */
#define NUM_REGS 66
/* Return the name of register REGNO. */
#define REGISTER_NAME(regno) alpha_register_name ((regno))
extern char *alpha_register_name (int);
/* Register numbers of various important registers.
Note that most of these values are "real" register numbers,
and correspond to the general registers of the machine,
and FP_REGNUM is a "phony" register number which is too large
to be an actual register number as far as the user is concerned
but serves to get the desired value when passed to read_register. */
#define V0_REGNUM 0 /* Function integer return value */
#define T7_REGNUM 8 /* Return address register for OSF/1 __add* */
#define GCC_FP_REGNUM 15 /* Used by gcc as frame register */
#define A0_REGNUM 16 /* Loc of first arg during a subr call */
#define T9_REGNUM 23 /* Return address register for OSF/1 __div* */
#define T12_REGNUM 27 /* Contains start addr of current proc */
#define SP_REGNUM 30 /* Contains address of top of stack */
#define RA_REGNUM 26 /* Contains return address value */
#define ZERO_REGNUM 31 /* Read-only register, always 0 */
#define FP0_REGNUM 32 /* Floating point register 0 */
#define FPA0_REGNUM 48 /* First float arg during a subr call */
#define FPCR_REGNUM 63 /* Floating point control register */
#define PC_REGNUM 64 /* Contains program counter */
#define FP_REGNUM 65 /* Virtual frame pointer */
#define CANNOT_FETCH_REGISTER(regno) \
alpha_cannot_fetch_register ((regno))
extern int alpha_cannot_fetch_register (int);
#define CANNOT_STORE_REGISTER(regno) \
alpha_cannot_store_register ((regno))
extern int alpha_cannot_store_register (int);
/* Total amount of space needed to store our copies of the machine's
register state, the array `registers'. */
#define REGISTER_BYTES (NUM_REGS * 8)
/* Index within `registers' of the first byte of the space for
register N. */
#define REGISTER_BYTE(N) alpha_register_byte ((N))
extern int alpha_register_byte (int);
/* Number of bytes of storage in the actual machine representation
for register N. On Alphas, all regs are 8 bytes. */
#define REGISTER_RAW_SIZE(N) alpha_register_raw_size ((N))
extern int alpha_register_raw_size (int);
/* Number of bytes of storage in the program's representation
for register N. On Alphas, all regs are 8 bytes. */
#define REGISTER_VIRTUAL_SIZE(N) alpha_register_virtual_size ((N))
extern int alpha_register_virtual_size (int);
/* Largest value REGISTER_RAW_SIZE can have. */
#define MAX_REGISTER_RAW_SIZE 8
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
#define MAX_REGISTER_VIRTUAL_SIZE 8
/* Nonzero if register N requires conversion
from raw format to virtual format.
The alpha needs a conversion between register and memory format if
the register is a floating point register and
memory format is float, as the register format must be double
or
memory format is an integer with 4 bytes or less, as the representation
of integers in floating point registers is different. */
#define REGISTER_CONVERTIBLE(N) alpha_register_convertible ((N))
extern int alpha_register_convertible (int);
/* Convert data from raw format for register REGNUM in buffer FROM
to virtual format with type TYPE in buffer TO. */
#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM, TYPE, FROM, TO) \
alpha_register_convert_to_virtual (REGNUM, TYPE, FROM, TO)
extern void
alpha_register_convert_to_virtual (int, struct type *, char *, char *);
/* Convert data from virtual format with type TYPE in buffer FROM
to raw format for register REGNUM in buffer TO. */
#define REGISTER_CONVERT_TO_RAW(TYPE, REGNUM, FROM, TO) \
alpha_register_convert_to_raw (TYPE, REGNUM, FROM, TO)
extern void
alpha_register_convert_to_raw (struct type *, int, char *, char *);
/* Return the GDB type object for the "standard" data type
of data in register N. */
#define REGISTER_VIRTUAL_TYPE(N) alpha_register_virtual_type ((N))
extern struct type * alpha_register_virtual_type (int);
/* Store the address of the place in which to copy the structure the
subroutine will return. Handled by alpha_push_arguments. */
#define STORE_STRUCT_RETURN(addr, sp) \
alpha_store_struct_return ((addr), (sp))
extern void alpha_store_struct_return (CORE_ADDR, CORE_ADDR);
/**/
/* Extract from an array REGBUF containing the (raw) register state
a function return value of type TYPE, and copy that, in virtual format,
into VALBUF. */
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
alpha_extract_return_value(TYPE, REGBUF, VALBUF)
extern void alpha_extract_return_value (struct type *, char *, char *);
/* Write into appropriate registers a function return value
of type TYPE, given in virtual format. */
#define STORE_RETURN_VALUE(TYPE,VALBUF) \
alpha_store_return_value(TYPE, VALBUF)
extern void alpha_store_return_value (struct type *, char *);
/* Extract from an array REGBUF containing the (raw) register state
the address in which a function should return its structure value,
as a CORE_ADDR (or an expression that can be used as one). */
/* The address is passed in a0 upon entry to the function, but when
the function exits, the compiler has copied the value to v0. This
convention is specified by the System V ABI, so I think we can rely
on it. */
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
alpha_extract_struct_value_address (REGBUF)
extern CORE_ADDR alpha_extract_struct_value_address (char *);
/* Structures are returned by ref in extra arg0 */
#define USE_STRUCT_CONVENTION(gcc_p, type) \
alpha_use_struct_convention ((gcc_p), (type))
extern int alpha_use_struct_convention (int, struct type *);
/* Describe the pointer in each stack frame to the previous stack frame
(its caller). */
/* FRAME_CHAIN takes a frame's nominal address
and produces the frame's chain-pointer. */
#define FRAME_CHAIN(thisframe) alpha_frame_chain (thisframe)
extern CORE_ADDR alpha_frame_chain (struct frame_info *);
/* Define other aspects of the stack frame. */
/* An expression that tells us whether the function invocation represented
by FI does not have a frame on the stack associated with it. */
/* We handle this differently for alpha, and maybe we should not */
#define FRAMELESS_FUNCTION_INVOCATION(FI) \
generic_frameless_function_invocation_not ((FI))
/* Saved Pc. */
#define FRAME_SAVED_PC(FRAME) alpha_frame_saved_pc(FRAME)
extern CORE_ADDR alpha_frame_saved_pc (struct frame_info *);
/* The alpha has two different virtual pointers for arguments and locals.
The virtual argument pointer is pointing to the bottom of the argument
transfer area, which is located immediately below the virtual frame
pointer. Its size is fixed for the native compiler, it is either zero
(for the no arguments case) or large enough to hold all argument registers.
gcc uses a variable sized argument transfer area. As it has
to stay compatible with the native debugging tools it has to use the same
virtual argument pointer and adjust the argument offsets accordingly.
The virtual local pointer is localoff bytes below the virtual frame
pointer, the value of localoff is obtained from the PDR. */
#define ALPHA_NUM_ARG_REGS 6
#define FRAME_ARGS_ADDRESS(fi) alpha_frame_args_address ((fi))
extern CORE_ADDR alpha_frame_args_address (struct frame_info *);
#define FRAME_LOCALS_ADDRESS(fi) alpha_frame_locals_address ((fi))
extern CORE_ADDR alpha_frame_locals_address (struct frame_info *);
/* Return number of args passed to a frame.
Can return -1, meaning no way to tell. */
#define FRAME_NUM_ARGS(fi) frame_num_args_unknown ((fi))
/* Return number of bytes at start of arglist that are not really args. */
#define FRAME_ARGS_SKIP 0
/* Put here the code to store, into a struct frame_saved_regs,
the addresses of the saved registers of frame described by FRAME_INFO.
This includes special registers such as pc and fp saved in special
ways in the stack frame. sp is even more special:
the address we return for it IS the sp for the next frame. */
#define FRAME_INIT_SAVED_REGS(frame_info) \
alpha_frame_init_saved_regs (frame_info)
extern void alpha_frame_init_saved_regs (struct frame_info *);
/* Things needed for making the inferior call functions. */
#define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
(alpha_push_arguments((nargs), (args), (sp), (struct_return), (struct_addr)))
extern CORE_ADDR
alpha_push_arguments (int, struct value **, CORE_ADDR, int, CORE_ADDR);
/* Push an empty stack frame, to record the current PC, etc. */
#define PUSH_DUMMY_FRAME alpha_push_dummy_frame()
extern void alpha_push_dummy_frame (void);
/* Discard from the stack the innermost frame, restoring all registers. */
#define POP_FRAME alpha_pop_frame()
extern void alpha_pop_frame (void);
/* Alpha OSF/1 inhibits execution of code on the stack.
But there is no need for a dummy on the alpha. PUSH_ARGUMENTS
takes care of all argument handling and bp_call_dummy takes care
of stopping the dummy. */
#define CALL_DUMMY_LOCATION AT_ENTRY_POINT
/* On the Alpha the call dummy code is never copied to user space,
stopping the user call is achieved via a bp_call_dummy breakpoint.
But we need a fake CALL_DUMMY definition to enable the proper
call_function_by_hand and to avoid zero length array warnings
in valops.c */
#define CALL_DUMMY_P (1)
#define CALL_DUMMY_WORDS alpha_call_dummy_words
extern LONGEST alpha_call_dummy_words[];
#define SIZEOF_CALL_DUMMY_WORDS 0
#define CALL_DUMMY_START_OFFSET (0)
#define CALL_DUMMY_BREAKPOINT_OFFSET (0)
#define CALL_DUMMY_ADDRESS() alpha_call_dummy_address()
extern CORE_ADDR alpha_call_dummy_address (void);
/* Insert the specified number of args and function address
into a call sequence of the above form stored at DUMMYNAME.
We only have to set RA_REGNUM to the dummy breakpoint address
and T12_REGNUM (the `procedure value register') to the function address. */
#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
alpha_fix_call_dummy ((dummyname), (pc), (fun), (nargs), (args), \
(type), (gcc_p))
extern void alpha_fix_call_dummy (char *, CORE_ADDR, CORE_ADDR, int,
struct value **, struct type *, int);
/* There's a mess in stack frame creation. See comments in blockframe.c
near reference to INIT_FRAME_PC_FIRST. */
#define INIT_FRAME_PC(fromleaf, prev) init_frame_pc_noop ((fromleaf), (prev))
#define INIT_FRAME_PC_FIRST(fromleaf, prev) \
alpha_init_frame_pc_first ((fromleaf), (prev))
extern void alpha_init_frame_pc_first (int, struct frame_info *);
/* Special symbol found in blocks associated with routines. We can hang
alpha_extra_func_info_t's off of this. */
#define MIPS_EFI_SYMBOL_NAME "__GDB_EFI_INFO__"
extern void ecoff_relocate_efi (struct symbol *, CORE_ADDR);
#define RA_REGNUM 26 /* XXXJRT needed by mdebugread.c */
/* Specific information about a procedure.
This overlays the ALPHA's PDR records,
alpharead.c (ab)uses this to save memory */
@ -390,10 +81,6 @@ typedef struct alpha_extra_func_info
#define mips_extra_func_info_t alpha_extra_func_info_t
#define INIT_EXTRA_FRAME_INFO(fromleaf, fci) \
alpha_init_extra_frame_info(fromleaf, fci)
extern void alpha_init_extra_frame_info (int, struct frame_info *);
#define PRINT_EXTRA_FRAME_INFO(fi) alpha_print_extra_frame_info ((fi))
extern void alpha_print_extra_frame_info (struct frame_info *);