From 462ab71d9bdd16f6153956afe9239c27f99dbf6f Mon Sep 17 00:00:00 2001 From: Ken Raeburn Date: Thu, 14 Jul 1994 21:58:13 +0000 Subject: [PATCH] deleted atof-ns32k.c, no longer used --- gas/ChangeLog | 2 + gas/config/atof-ns32k.c | 452 ---------------------------------------- 2 files changed, 2 insertions(+), 452 deletions(-) delete mode 100644 gas/config/atof-ns32k.c diff --git a/gas/ChangeLog b/gas/ChangeLog index 8628e87f54c..10e115da40c 100644 --- a/gas/ChangeLog +++ b/gas/ChangeLog @@ -1,5 +1,7 @@ Thu Jul 14 13:21:06 1994 Ken Raeburn (raeburn@cujo.cygnus.com) + * config/atof-ns32k.c: Deleted. + * config/obj-aout.c (obj_aout_frob_symbol): Use bfd_ind_section_ptr and bfd_und_section_ptr. diff --git a/gas/config/atof-ns32k.c b/gas/config/atof-ns32k.c deleted file mode 100644 index 8562b5a6e10..00000000000 --- a/gas/config/atof-ns32k.c +++ /dev/null @@ -1,452 +0,0 @@ -/* atof_ns32k.c - turn a Flonum into a ns32k floating point number - Copyright (C) 1987 Free Software Foundation, Inc. - -This file is part of GAS, the GNU Assembler. - -GAS is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 1, or (at your option) -any later version. - -GAS is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with GAS; see the file COPYING. If not, write to -the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ - -/* this is atof-m68k.c hacked for ns32k */ - -#include "as.h" - -extern FLONUM_TYPE generic_floating_point_number; /* Flonums returned here. */ - -extern const char EXP_CHARS[]; -/* Precision in LittleNums. */ -#define MAX_PRECISION (4) -#define F_PRECISION (2) -#define D_PRECISION (4) - -/* Length in LittleNums of guard bits. */ -#define GUARD (2) - -int /* Number of chars in flonum type 'letter'. */ -atof_sizeof (letter) - char letter; -{ - int return_value; - - /* - * Permitting uppercase letters is probably a bad idea. - * Please use only lower-cased letters in case the upper-cased - * ones become unsupported! - */ - switch (letter) - { - case 'f': - return_value = F_PRECISION; - break; - - case 'd': - return_value = D_PRECISION; - break; - - default: - return_value = 0; - break; - } - return (return_value); -} - -static unsigned long int mask[] = -{ - 0x00000000, - 0x00000001, - 0x00000003, - 0x00000007, - 0x0000000f, - 0x0000001f, - 0x0000003f, - 0x0000007f, - 0x000000ff, - 0x000001ff, - 0x000003ff, - 0x000007ff, - 0x00000fff, - 0x00001fff, - 0x00003fff, - 0x00007fff, - 0x0000ffff, - 0x0001ffff, - 0x0003ffff, - 0x0007ffff, - 0x000fffff, - 0x001fffff, - 0x003fffff, - 0x007fffff, - 0x00ffffff, - 0x01ffffff, - 0x03ffffff, - 0x07ffffff, - 0x0fffffff, - 0x1fffffff, - 0x3fffffff, - 0x7fffffff, - 0xffffffff -}; - -static int bits_left_in_littlenum; -static int littlenums_left; -static LITTLENUM_TYPE *littlenum_pointer; - -static int -next_bits (number_of_bits) - int number_of_bits; -{ - int return_value; - - if (!littlenums_left) - return 0; - if (number_of_bits >= bits_left_in_littlenum) - { - return_value = mask[bits_left_in_littlenum] & *littlenum_pointer; - number_of_bits -= bits_left_in_littlenum; - return_value <<= number_of_bits; - if (littlenums_left) - { - bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS - number_of_bits; - littlenum_pointer--; - --littlenums_left; - return_value |= (*littlenum_pointer >> bits_left_in_littlenum) & mask[number_of_bits]; - } - } - else - { - bits_left_in_littlenum -= number_of_bits; - return_value = mask[number_of_bits] & (*littlenum_pointer >> bits_left_in_littlenum); - } - return (return_value); -} - -static void -make_invalid_floating_point_number (words) - LITTLENUM_TYPE *words; -{ - words[0] = ((unsigned) -1) >> 1; /* Zero the leftmost bit */ - words[1] = -1; - words[2] = -1; - words[3] = -1; -} - -/***********************************************************************\ -* * -* Warning: this returns 16-bit LITTLENUMs, because that is * -* what the VAX thinks in. It is up to the caller to figure * -* out any alignment problems and to conspire for the bytes/word * -* to be emitted in the right order. Bigendians beware! * -* * -\***********************************************************************/ - -char * /* Return pointer past text consumed. */ -atof_ns32k (str, what_kind, words) - char *str; /* Text to convert to binary. */ - char what_kind; /* 'd', 'f', 'g', 'h' */ - LITTLENUM_TYPE *words; /* Build the binary here. */ -{ - FLONUM_TYPE f; - LITTLENUM_TYPE bits[MAX_PRECISION + MAX_PRECISION + GUARD]; - /* Extra bits for zeroed low-order bits. */ - /* The 1st MAX_PRECISION are zeroed, */ - /* the last contain flonum bits. */ - char *return_value; - int precision; /* Number of 16-bit words in the format. */ - long int exponent_bits; - - long int exponent_1; - long int exponent_2; - long int exponent_3; - long int exponent_4; - int exponent_skippage; - LITTLENUM_TYPE word1; - LITTLENUM_TYPE *lp; - - return_value = str; - f.low = bits + MAX_PRECISION; - f.high = NULL; - f.leader = NULL; - f.exponent = NULL; - f.sign = '\0'; - - /* Use more LittleNums than seems */ - /* necessary: the highest flonum may have */ - /* 15 leading 0 bits, so could be useless. */ - - bzero (bits, sizeof (LITTLENUM_TYPE) * MAX_PRECISION); - - switch (what_kind) - { - case 'f': - precision = F_PRECISION; - exponent_bits = 8; - break; - - case 'd': - precision = D_PRECISION; - exponent_bits = 11; - break; - - default: - make_invalid_floating_point_number (words); - return NULL; - } - - f.high = f.low + precision - 1 + GUARD; - - if (atof_generic (&return_value, ".", EXP_CHARS, &f)) - { - as_warn ("Error converting floating point number (Exponent overflow?)"); - make_invalid_floating_point_number (words); - return NULL; - } - - if (f.low > f.leader) - { - /* 0.0e0 seen. */ - bzero (words, sizeof (LITTLENUM_TYPE) * precision); - return return_value; - } - - if (f.sign != '+' && f.sign != '-') - { - make_invalid_floating_point_number (words); - return NULL; - } - - - /* - * All vaxen floating_point formats (so far) have: - * Bit 15 is sign bit. - * Bits 14:n are excess-whatever exponent. - * Bits n-1:0 (if any) are most significant bits of fraction. - * Bits 15:0 of the next word are the next most significant bits. - * And so on for each other word. - * - * So we need: number of bits of exponent, number of bits of - * mantissa. - */ - bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS; - littlenum_pointer = f.leader; - littlenums_left = 1 + f.leader - f.low; - /* Seek (and forget) 1st significant bit */ - for (exponent_skippage = 0; !next_bits (1); exponent_skippage++) - ; - exponent_1 = f.exponent + f.leader + 1 - f.low; - /* Radix LITTLENUM_RADIX, point just higher than f.leader. */ - exponent_2 = exponent_1 * LITTLENUM_NUMBER_OF_BITS; - /* Radix 2. */ - exponent_3 = exponent_2 - exponent_skippage; - /* Forget leading zeros, forget 1st bit. */ - exponent_4 = exponent_3 + ((1 << (exponent_bits - 1)) - 2); - /* Offset exponent. */ - - if (exponent_4 & ~mask[exponent_bits]) - { - /* - * Exponent overflow. Lose immediately. - */ - - /* - * We leave return_value alone: admit we read the - * number, but return a floating exception - * because we can't encode the number. - */ - - as_warn ("Exponent overflow in floating-point number"); - make_invalid_floating_point_number (words); - return return_value; - } - lp = words; - - /* Word 1. Sign, exponent and perhaps high bits. */ - /* Assume 2's complement integers. */ - word1 = ((exponent_4 & mask[exponent_bits]) << (15 - exponent_bits)) | - ((f.sign == '+') ? 0 : 0x8000) | next_bits (15 - exponent_bits); - *lp++ = word1; - - /* The rest of the words are just mantissa bits. */ - for (; lp < words + precision; lp++) - *lp = next_bits (LITTLENUM_NUMBER_OF_BITS); - - if (next_bits (1)) - { - unsigned long int carry; - /* - * Since the NEXT bit is a 1, round UP the mantissa. - * The cunning design of these hidden-1 floats permits - * us to let the mantissa overflow into the exponent, and - * it 'does the right thing'. However, we lose if the - * highest-order bit of the lowest-order word flips. - * Is that clear? - */ - - - /* #if (sizeof(carry)) < ((sizeof(bits[0]) * BITS_PER_CHAR) + 2) - Please allow at least 1 more bit in carry than is in a LITTLENUM. - We need that extra bit to hold a carry during a LITTLENUM carry - propagation. Another extra bit (kept 0) will assure us that we - don't get a sticky sign bit after shifting right, and that - permits us to propagate the carry without any masking of bits. -#endif */ - for (carry = 1, lp--; carry && (lp >= words); lp--) - { - carry = *lp + carry; - *lp = carry; - carry >>= LITTLENUM_NUMBER_OF_BITS; - } - if ((word1 ^ *words) & (1 << (LITTLENUM_NUMBER_OF_BITS - 1))) - { - /* We leave return_value alone: admit we read the - * number, but return a floating exception - * because we can't encode the number. - */ - make_invalid_floating_point_number (words); - return return_value; - } - } - return (return_value); -} - -/* This is really identical to atof_ns32k except for some details */ - -gen_to_words (words, precision, exponent_bits) - LITTLENUM_TYPE *words; - long int exponent_bits; -{ - int return_value = 0; - - long int exponent_1; - long int exponent_2; - long int exponent_3; - long int exponent_4; - int exponent_skippage; - LITTLENUM_TYPE word1; - LITTLENUM_TYPE *lp; - - if (generic_floating_point_number.low > generic_floating_point_number.leader) - { - /* 0.0e0 seen. */ - bzero (words, sizeof (LITTLENUM_TYPE) * precision); - return return_value; - } - - /* - * All vaxen floating_point formats (so far) have: - * Bit 15 is sign bit. - * Bits 14:n are excess-whatever exponent. - * Bits n-1:0 (if any) are most significant bits of fraction. - * Bits 15:0 of the next word are the next most significant bits. - * And so on for each other word. - * - * So we need: number of bits of exponent, number of bits of - * mantissa. - */ - bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS; - littlenum_pointer = generic_floating_point_number.leader; - littlenums_left = 1 + generic_floating_point_number.leader - generic_floating_point_number.low; - /* Seek (and forget) 1st significant bit */ - for (exponent_skippage = 0; !next_bits (1); exponent_skippage++) - ; - exponent_1 = generic_floating_point_number.exponent + generic_floating_point_number.leader + 1 - - generic_floating_point_number.low; - /* Radix LITTLENUM_RADIX, point just higher than generic_floating_point_number.leader. */ - exponent_2 = exponent_1 * LITTLENUM_NUMBER_OF_BITS; - /* Radix 2. */ - exponent_3 = exponent_2 - exponent_skippage; - /* Forget leading zeros, forget 1st bit. */ - exponent_4 = exponent_3 + ((1 << (exponent_bits - 1)) - 2); - /* Offset exponent. */ - - if (exponent_4 & ~mask[exponent_bits]) - { - /* - * Exponent overflow. Lose immediately. - */ - - /* - * We leave return_value alone: admit we read the - * number, but return a floating exception - * because we can't encode the number. - */ - - make_invalid_floating_point_number (words); - return return_value; - } - lp = words; - - /* Word 1. Sign, exponent and perhaps high bits. */ - /* Assume 2's complement integers. */ - word1 = ((exponent_4 & mask[exponent_bits]) << (15 - exponent_bits)) | - ((generic_floating_point_number.sign == '+') ? 0 : 0x8000) | next_bits (15 - exponent_bits); - *lp++ = word1; - - /* The rest of the words are just mantissa bits. */ - for (; lp < words + precision; lp++) - *lp = next_bits (LITTLENUM_NUMBER_OF_BITS); - - if (next_bits (1)) - { - unsigned long int carry; - /* - * Since the NEXT bit is a 1, round UP the mantissa. - * The cunning design of these hidden-1 floats permits - * us to let the mantissa overflow into the exponent, and - * it 'does the right thing'. However, we lose if the - * highest-order bit of the lowest-order word flips. - * Is that clear? - */ - - - /* #if (sizeof(carry)) < ((sizeof(bits[0]) * BITS_PER_CHAR) + 2) - Please allow at least 1 more bit in carry than is in a LITTLENUM. - We need that extra bit to hold a carry during a LITTLENUM carry - propagation. Another extra bit (kept 0) will assure us that we - don't get a sticky sign bit after shifting right, and that - permits us to propagate the carry without any masking of bits. -#endif */ - for (carry = 1, lp--; carry && (lp >= words); lp--) - { - carry = *lp + carry; - *lp = carry; - carry >>= LITTLENUM_NUMBER_OF_BITS; - } - if ((word1 ^ *words) & (1 << (LITTLENUM_NUMBER_OF_BITS - 1))) - { - /* We leave return_value alone: admit we read the - * number, but return a floating exception - * because we can't encode the number. - */ - make_invalid_floating_point_number (words); - return return_value; - } - } - return (return_value); -} - -/* This routine is a real kludge. Someone really should do it better, but - I'm too lazy, and I don't understand this stuff all too well anyway - (JF) - */ -void -int_to_gen (x) - long x; -{ - char buf[20]; - char *bufp; - - sprintf (buf, "%ld", x); - bufp = &buf[0]; - if (atof_generic (&bufp, ".", EXP_CHARS, &generic_floating_point_number)) - as_warn ("Error converting number to floating point (Exponent overflow?)"); -}