mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-23 01:53:38 +08:00
gdb: Start supporting AVX instruction
This patch introduces the information needed to properly identify the VEX prefix, used to signal an AVX and AVX2 instruction, and introduces a helper function to handle all AVX instruction, instead of adding to the 3000 line long recording function. This new function will temporarily set the current thread as "not executing" so that it can read from pseudo registers as we record, since most AVX/AVX2 instructions would benefit from recording ymm registers. The new helper also handles unsupported instructions so that the largest part of the i386_process_record doesn't have to be shifted by 2 spaces, which made an unreadably big patch file. The only expected difference to the end user added by this patch is a small change to the unsupported message. This patch also updates the test gdb.reverse/step-precsave.exp, by recognizing the new output. As a note for the future, we don't handle xmm16-31 and ymm16-31 because those require the EVEX prefix, meaning avx512 support. Approved-By: Tom Tromey <tom@tromey.com>
This commit is contained in:
parent
2f46cda83b
commit
13f0113676
@ -3122,7 +3122,8 @@ static const int amd64_record_regmap[] =
|
||||
AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
|
||||
AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
|
||||
AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
|
||||
AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
|
||||
AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM,
|
||||
AMD64_XMM0_REGNUM
|
||||
};
|
||||
|
||||
/* Implement the "in_indirect_branch_thunk" gdbarch function. */
|
||||
|
103
gdb/i386-tdep.c
103
gdb/i386-tdep.c
@ -4451,6 +4451,12 @@ struct i386_record_s
|
||||
int rip_offset;
|
||||
int popl_esp_hack;
|
||||
const int *regmap;
|
||||
|
||||
/* These are used by VEX and XOP prefixes. */
|
||||
uint8_t map_select;
|
||||
uint8_t vvvv;
|
||||
uint8_t pp;
|
||||
uint8_t l;
|
||||
};
|
||||
|
||||
/* Parse the "modrm" part of the memory address irp->addr points at.
|
||||
@ -4789,6 +4795,43 @@ static int i386_record_floats (struct gdbarch *gdbarch,
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* i386_process_record helper to deal with instructions that start
|
||||
with VEX prefix. */
|
||||
|
||||
static int
|
||||
i386_record_vex (struct i386_record_s *ir, uint8_t vex_w, uint8_t vex_r,
|
||||
int opcode, struct gdbarch *gdbarch)
|
||||
{
|
||||
/* We need this to find YMM (and once AVX-512 is supported, ZMM) registers.
|
||||
We should always save the largest available register, since an
|
||||
instruction that handles a smaller reg may zero out the higher bits,
|
||||
so we must have them saved. */
|
||||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
||||
|
||||
/* Since we are reading pseudo registers, we need to tell GDB that it is
|
||||
safe to do so, by saying we aren't _really_ running the inferior right
|
||||
now. */
|
||||
SCOPE_EXIT { inferior_thread ()->set_executing (true); };
|
||||
inferior_thread () -> set_executing (false);
|
||||
|
||||
switch (opcode)
|
||||
{
|
||||
default:
|
||||
gdb_printf (gdb_stderr,
|
||||
_("Process record does not support VEX instruction 0x%02x "
|
||||
"at address %s.\n"),
|
||||
(unsigned int) (opcode),
|
||||
paddress (gdbarch, ir->orig_addr));
|
||||
return -1;
|
||||
}
|
||||
|
||||
record_full_arch_list_add_reg (ir->regcache, ir->regmap[X86_RECORD_REIP_REGNUM]);
|
||||
if (record_full_arch_list_add_end ())
|
||||
return -1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Parse the current instruction, and record the values of the
|
||||
registers and memory that will be changed by the current
|
||||
instruction. Returns -1 if something goes wrong, 0 otherwise. */
|
||||
@ -4811,6 +4854,7 @@ i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
|
||||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
||||
uint8_t rex_w = -1;
|
||||
uint8_t rex_r = 0;
|
||||
bool vex_prefix = false;
|
||||
|
||||
memset (&ir, 0, sizeof (struct i386_record_s));
|
||||
ir.regcache = regcache;
|
||||
@ -4896,6 +4940,53 @@ i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
|
||||
else /* 32 bit target */
|
||||
goto out_prefixes;
|
||||
break;
|
||||
case 0xc4: /* 3-byte VEX prefixes (for AVX/AVX2 instructions). */
|
||||
{
|
||||
/* The first byte just identifies the VEX prefix. Data is stored
|
||||
on the following 2 bytes. */
|
||||
uint8_t byte;
|
||||
if (record_read_memory (gdbarch, ir.addr, &byte, 1))
|
||||
return -1;
|
||||
ir.addr++;
|
||||
|
||||
rex_r = !((byte >> 7) & 0x1);
|
||||
ir.rex_x = !((byte >> 6) & 0x1);
|
||||
ir.rex_b = !((byte >> 5) & 0x1);
|
||||
ir.map_select = byte & 0x1f;
|
||||
/* Collect the last byte of the prefix. */
|
||||
if (record_read_memory (gdbarch, ir.addr, &byte, 1))
|
||||
return -1;
|
||||
ir.addr++;
|
||||
rex_w = (byte >> 7) & 0x1;
|
||||
ir.vvvv = (~(byte >> 3) & 0xf);
|
||||
ir.l = (byte >> 2) & 0x1;
|
||||
ir.pp = byte & 0x3;
|
||||
vex_prefix = true;
|
||||
|
||||
break;
|
||||
}
|
||||
case 0xc5: /* 2-byte VEX prefix for AVX/AVX2 instructions. */
|
||||
{
|
||||
/* The first byte just identifies the VEX prefix. Data is stored
|
||||
on the following 2 bytes. */
|
||||
uint8_t byte;
|
||||
if (record_read_memory (gdbarch, ir.addr, &byte, 1))
|
||||
return -1;
|
||||
ir.addr++;
|
||||
|
||||
/* On the 2-byte versions, these are pre-defined. */
|
||||
ir.rex_x = 0;
|
||||
ir.rex_b = 0;
|
||||
rex_w = 0;
|
||||
ir.map_select = 1;
|
||||
|
||||
rex_r = !((byte >> 7) & 0x1);
|
||||
ir.vvvv = (~(byte >> 3) & 0xf);
|
||||
ir.l = (byte >> 2) & 0x1;
|
||||
ir.pp = byte & 0x3;
|
||||
vex_prefix = true;
|
||||
break;
|
||||
}
|
||||
default:
|
||||
goto out_prefixes;
|
||||
break;
|
||||
@ -4918,6 +5009,12 @@ i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
|
||||
|
||||
/* Now check op code. */
|
||||
opcode = (uint32_t) opcode8;
|
||||
if (vex_prefix)
|
||||
{
|
||||
/* If we found the VEX prefix, i386 will either record or warn that
|
||||
the instruction isn't supported, so we can return the VEX result. */
|
||||
return i386_record_vex (&ir, rex_w, rex_r, opcode, gdbarch);
|
||||
}
|
||||
reswitch:
|
||||
switch (opcode)
|
||||
{
|
||||
@ -7902,9 +7999,11 @@ static const int i386_record_regmap[] =
|
||||
{
|
||||
I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
|
||||
I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0,
|
||||
0, 0, 0, 0,
|
||||
I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
|
||||
I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
|
||||
I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM,
|
||||
/* xmm0_regnum */ 0
|
||||
};
|
||||
|
||||
/* Check that the given address appears suitable for a fast
|
||||
|
@ -325,6 +325,7 @@ enum record_i386_regnum
|
||||
X86_RECORD_ES_REGNUM,
|
||||
X86_RECORD_FS_REGNUM,
|
||||
X86_RECORD_GS_REGNUM,
|
||||
X86_RECORD_XMM0_REGNUM,
|
||||
};
|
||||
|
||||
#define I386_NUM_GREGS 16
|
||||
|
@ -46,7 +46,7 @@ with_timeout_factor 20 {
|
||||
-re -wrap "Breakpoint .* end of main .*" {
|
||||
pass $gdb_test_name
|
||||
}
|
||||
-re -wrap "Process record does not support instruction 0xc5 at.*" {
|
||||
-re -wrap "Process record does not support VEX instruction.*" {
|
||||
kfail "record/23188" $gdb_test_name
|
||||
}
|
||||
-re -wrap "Process record does not support instruction 0xfae64 at.*" {
|
||||
|
Loading…
Reference in New Issue
Block a user