2004-02-02 06:35:24 +08:00
|
|
|
/* Auxiliary vector support for GDB, the GNU debugger.
|
|
|
|
|
2020-01-01 14:20:01 +08:00
|
|
|
Copyright (C) 2004-2020 Free Software Foundation, Inc.
|
2004-02-02 06:35:24 +08:00
|
|
|
|
|
|
|
This file is part of GDB.
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
2007-08-24 02:08:50 +08:00
|
|
|
the Free Software Foundation; either version 3 of the License, or
|
2004-02-02 06:35:24 +08:00
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
2007-08-24 02:08:50 +08:00
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
2004-02-02 06:35:24 +08:00
|
|
|
|
|
|
|
#include "defs.h"
|
2019-04-07 03:38:10 +08:00
|
|
|
#include "target.h"
|
2019-04-03 10:04:24 +08:00
|
|
|
#include "gdbtypes.h"
|
2019-04-07 03:38:10 +08:00
|
|
|
#include "command.h"
|
2019-04-03 10:04:24 +08:00
|
|
|
#include "inferior.h"
|
|
|
|
#include "valprint.h"
|
2019-04-07 03:38:10 +08:00
|
|
|
#include "gdbcore.h"
|
|
|
|
#include "observable.h"
|
Rename common to gdbsupport
This is the next patch in the ongoing series to move gdbsever to the
top level.
This patch just renames the "common" directory. The idea is to do
this move in two parts: first rename the directory (this patch), then
move the directory to the top. This approach makes the patches a bit
more tractable.
I chose the name "gdbsupport" for the directory. However, as this
patch was largely written by sed, we could pick a new name without too
much difficulty.
Tested by the buildbot.
gdb/ChangeLog
2019-07-09 Tom Tromey <tom@tromey.com>
* contrib/ari/gdb_ari.sh: Change common to gdbsupport.
* configure: Rebuild.
* configure.ac: Change common to gdbsupport.
* gdbsupport: Rename from common.
* acinclude.m4: Change common to gdbsupport.
* Makefile.in (CONFIG_SRC_SUBDIR, COMMON_SFILES)
(HFILES_NO_SRCDIR, stamp-version, ALLDEPFILES): Change common to
gdbsupport.
* aarch64-tdep.c, ada-lang.c, ada-lang.h, agent.c, alloc.c,
amd64-darwin-tdep.c, amd64-dicos-tdep.c, amd64-fbsd-nat.c,
amd64-fbsd-tdep.c, amd64-linux-nat.c, amd64-linux-tdep.c,
amd64-nbsd-tdep.c, amd64-obsd-tdep.c, amd64-sol2-tdep.c,
amd64-tdep.c, amd64-windows-tdep.c, arch-utils.c,
arch/aarch64-insn.c, arch/aarch64.c, arch/aarch64.h, arch/amd64.c,
arch/amd64.h, arch/arm-get-next-pcs.c, arch/arm-linux.c,
arch/arm.c, arch/i386.c, arch/i386.h, arch/ppc-linux-common.c,
arch/riscv.c, arch/riscv.h, arch/tic6x.c, arm-tdep.c, auto-load.c,
auxv.c, ax-gdb.c, ax-general.c, ax.h, breakpoint.c, breakpoint.h,
btrace.c, btrace.h, build-id.c, build-id.h, c-lang.h, charset.c,
charset.h, cli/cli-cmds.c, cli/cli-cmds.h, cli/cli-decode.c,
cli/cli-dump.c, cli/cli-option.h, cli/cli-script.c,
coff-pe-read.c, command.h, compile/compile-c-support.c,
compile/compile-c.h, compile/compile-cplus-symbols.c,
compile/compile-cplus-types.c, compile/compile-cplus.h,
compile/compile-loc2c.c, compile/compile.c, completer.c,
completer.h, contrib/ari/gdb_ari.sh, corefile.c, corelow.c,
cp-support.c, cp-support.h, cp-valprint.c, csky-tdep.c, ctf.c,
darwin-nat.c, debug.c, defs.h, disasm-selftests.c, disasm.c,
disasm.h, dtrace-probe.c, dwarf-index-cache.c,
dwarf-index-cache.h, dwarf-index-write.c, dwarf2-frame.c,
dwarf2expr.c, dwarf2loc.c, dwarf2read.c, event-loop.c,
event-top.c, exceptions.c, exec.c, extension.h, fbsd-nat.c,
features/aarch64-core.c, features/aarch64-fpu.c,
features/aarch64-pauth.c, features/aarch64-sve.c,
features/i386/32bit-avx.c, features/i386/32bit-avx512.c,
features/i386/32bit-core.c, features/i386/32bit-linux.c,
features/i386/32bit-mpx.c, features/i386/32bit-pkeys.c,
features/i386/32bit-segments.c, features/i386/32bit-sse.c,
features/i386/64bit-avx.c, features/i386/64bit-avx512.c,
features/i386/64bit-core.c, features/i386/64bit-linux.c,
features/i386/64bit-mpx.c, features/i386/64bit-pkeys.c,
features/i386/64bit-segments.c, features/i386/64bit-sse.c,
features/i386/x32-core.c, features/riscv/32bit-cpu.c,
features/riscv/32bit-csr.c, features/riscv/32bit-fpu.c,
features/riscv/64bit-cpu.c, features/riscv/64bit-csr.c,
features/riscv/64bit-fpu.c, features/tic6x-c6xp.c,
features/tic6x-core.c, features/tic6x-gp.c, filename-seen-cache.h,
findcmd.c, findvar.c, fork-child.c, gcore.c, gdb_bfd.c, gdb_bfd.h,
gdb_proc_service.h, gdb_regex.c, gdb_select.h, gdb_usleep.c,
gdbarch-selftests.c, gdbthread.h, gdbtypes.h, gnu-nat.c,
go32-nat.c, guile/guile.c, guile/scm-ports.c,
guile/scm-safe-call.c, guile/scm-type.c, i386-fbsd-nat.c,
i386-fbsd-tdep.c, i386-go32-tdep.c, i386-linux-nat.c,
i386-linux-tdep.c, i386-tdep.c, i387-tdep.c,
ia64-libunwind-tdep.c, ia64-linux-nat.c, inf-child.c,
inf-ptrace.c, infcall.c, infcall.h, infcmd.c, inferior-iter.h,
inferior.c, inferior.h, inflow.c, inflow.h, infrun.c, infrun.h,
inline-frame.c, language.h, linespec.c, linux-fork.c, linux-nat.c,
linux-tdep.c, linux-thread-db.c, location.c, machoread.c,
macrotab.h, main.c, maint.c, maint.h, memattr.c, memrange.h,
mi/mi-cmd-break.h, mi/mi-cmd-env.c, mi/mi-cmd-stack.c,
mi/mi-cmd-var.c, mi/mi-interp.c, mi/mi-main.c, mi/mi-parse.h,
minsyms.c, mips-linux-tdep.c, namespace.h,
nat/aarch64-linux-hw-point.c, nat/aarch64-linux-hw-point.h,
nat/aarch64-linux.c, nat/aarch64-sve-linux-ptrace.c,
nat/amd64-linux-siginfo.c, nat/fork-inferior.c,
nat/linux-btrace.c, nat/linux-btrace.h, nat/linux-namespaces.c,
nat/linux-nat.h, nat/linux-osdata.c, nat/linux-personality.c,
nat/linux-procfs.c, nat/linux-ptrace.c, nat/linux-ptrace.h,
nat/linux-waitpid.c, nat/mips-linux-watch.c,
nat/mips-linux-watch.h, nat/ppc-linux.c, nat/x86-dregs.c,
nat/x86-dregs.h, nat/x86-linux-dregs.c, nat/x86-linux.c,
nto-procfs.c, nto-tdep.c, objfile-flags.h, objfiles.c, objfiles.h,
obsd-nat.c, observable.h, osdata.c, p-valprint.c, parse.c,
parser-defs.h, ppc-linux-nat.c, printcmd.c, probe.c, proc-api.c,
procfs.c, producer.c, progspace.h, psymtab.h,
python/py-framefilter.c, python/py-inferior.c, python/py-ref.h,
python/py-type.c, python/python.c, record-btrace.c, record-full.c,
record.c, record.h, regcache-dump.c, regcache.c, regcache.h,
remote-fileio.c, remote-fileio.h, remote-sim.c, remote.c,
riscv-tdep.c, rs6000-aix-tdep.c, rust-exp.y, s12z-tdep.c,
selftest-arch.c, ser-base.c, ser-event.c, ser-pipe.c, ser-tcp.c,
ser-unix.c, skip.c, solib-aix.c, solib-target.c, solib.c,
source-cache.c, source.c, source.h, sparc-nat.c, spu-linux-nat.c,
stack.c, stap-probe.c, symfile-add-flags.h, symfile.c, symfile.h,
symtab.c, symtab.h, target-descriptions.c, target-descriptions.h,
target-memory.c, target.c, target.h, target/waitstatus.c,
target/waitstatus.h, thread-iter.h, thread.c, tilegx-tdep.c,
top.c, top.h, tracefile-tfile.c, tracefile.c, tracepoint.c,
tracepoint.h, tui/tui-io.c, ui-file.c, ui-out.h,
unittests/array-view-selftests.c,
unittests/child-path-selftests.c, unittests/cli-utils-selftests.c,
unittests/common-utils-selftests.c,
unittests/copy_bitwise-selftests.c, unittests/environ-selftests.c,
unittests/format_pieces-selftests.c,
unittests/function-view-selftests.c,
unittests/lookup_name_info-selftests.c,
unittests/memory-map-selftests.c, unittests/memrange-selftests.c,
unittests/mkdir-recursive-selftests.c,
unittests/observable-selftests.c,
unittests/offset-type-selftests.c, unittests/optional-selftests.c,
unittests/parse-connection-spec-selftests.c,
unittests/ptid-selftests.c, unittests/rsp-low-selftests.c,
unittests/scoped_fd-selftests.c,
unittests/scoped_mmap-selftests.c,
unittests/scoped_restore-selftests.c,
unittests/string_view-selftests.c, unittests/style-selftests.c,
unittests/tracepoint-selftests.c, unittests/unpack-selftests.c,
unittests/utils-selftests.c, unittests/xml-utils-selftests.c,
utils.c, utils.h, valarith.c, valops.c, valprint.c, value.c,
value.h, varobj.c, varobj.h, windows-nat.c, x86-linux-nat.c,
xml-support.c, xml-support.h, xml-tdesc.h, xstormy16-tdep.c,
xtensa-linux-nat.c, dwarf2read.h: Change common to gdbsupport.
gdb/gdbserver/ChangeLog
2019-07-09 Tom Tromey <tom@tromey.com>
* configure: Rebuild.
* configure.ac: Change common to gdbsupport.
* acinclude.m4: Change common to gdbsupport.
* Makefile.in (SFILES, OBS, GDBREPLAY_OBS, IPA_OBJS)
(version-generated.c, gdbsupport/%-ipa.o, gdbsupport/%.o): Change
common to gdbsupport.
* ax.c, event-loop.c, fork-child.c, gdb_proc_service.h,
gdbreplay.c, gdbthread.h, hostio-errno.c, hostio.c, i387-fp.c,
inferiors.c, inferiors.h, linux-aarch64-tdesc-selftest.c,
linux-amd64-ipa.c, linux-i386-ipa.c, linux-low.c,
linux-tic6x-low.c, linux-x86-low.c, linux-x86-tdesc-selftest.c,
linux-x86-tdesc.c, lynx-i386-low.c, lynx-low.c, mem-break.h,
nto-x86-low.c, regcache.c, regcache.h, remote-utils.c, server.c,
server.h, spu-low.c, symbol.c, target.h, tdesc.c, tdesc.h,
thread-db.c, tracepoint.c, win32-i386-low.c, win32-low.c: Change
common to gdbsupport.
2019-05-06 10:29:24 +08:00
|
|
|
#include "gdbsupport/filestuff.h"
|
2019-04-07 03:38:10 +08:00
|
|
|
#include "objfiles.h"
|
|
|
|
|
|
|
|
#include "auxv.h"
|
|
|
|
#include "elf/common.h"
|
|
|
|
|
|
|
|
#include <unistd.h>
|
|
|
|
#include <fcntl.h>
|
2004-02-02 06:35:24 +08:00
|
|
|
|
|
|
|
|
2014-01-30 08:23:14 +08:00
|
|
|
/* Implement the to_xfer_partial target_ops method. This function
|
|
|
|
handles access via /proc/PID/auxv, which is a common method for
|
|
|
|
native targets. */
|
2004-02-02 06:35:24 +08:00
|
|
|
|
Return target_xfer_status in to_xfer_partial
This patch does the conversion of to_xfer_partial from
LONGEST (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len);
to
enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
It changes to_xfer_partial return the transfer status and the transfered
length by *XFERED_LEN. Generally, the return status has three stats,
- TARGET_XFER_OK,
- TARGET_XFER_EOF,
- TARGET_XFER_E_XXXX,
See the comments to them in 'enum target_xfer_status'. Note that
Pedro suggested not name TARGET_XFER_DONE, as it is confusing,
compared with "TARGET_XFER_OK". We finally name it TARGET_XFER_EOF.
With this change, GDB core can handle unavailable data in a convenient
way.
The rationale behind this change was mentioned here
https://sourceware.org/ml/gdb-patches/2013-10/msg00761.html
Consider an object/value like this:
0 100 150 200 512
DDDDDDDDDDDxxxxxxxxxDDDDDD...DDIIIIIIIIIIII..III
where D is valid data, and xxx is unavailable data, and I is beyond
the end of the object (Invalid). Currently, if we start the
xfer at 0, requesting, say 512 bytes, we'll first get back 100 bytes.
The xfer machinery then retries fetching [100,512), and gets back
TARGET_XFER_E_UNAVAILABLE. That's sufficient when you're either
interested in either having the whole of the 512 bytes available,
or erroring out. But, in this scenario, we're interested in
the data at [150,512). The problem is that the last
TARGET_XFER_E_UNAVAILABLE gives us no indication where to
start the read next. We'd need something like:
get me [0,512) >>>
<<< here's [0,100), *xfered_len is 100, returns TARGET_XFER_OK
get me [100,512) >>> (**1)
<<< [100,150) is unavailable, *xfered_len is 50, return TARGET_XFER_E_UNAVAILABLE.
get me [150,512) >>>
<<< here's [150,200), *xfered_len is 50, return TARGET_XFER_OK.
get me [200,512) >>>
<<< no more data, return TARGET_XFER_EOF.
This naturally implies pushing down the decision of whether
to return TARGET_XFER_E_UNAVAILABLE or something else
down to the target. (Which kinds of leads back to tfile
itself reading from RO memory from file (though we could
export a function in exec.c for that that tfile delegates to,
instead of re-adding the old code).
Beside this change, we also add a macro TARGET_XFER_STATUS_ERROR_P to
check whether a status is an error or not, to stop using "status < 0".
This patch also eliminates the comparison between status and 0.
No target implementations to to_xfer_partial adapts this new
interface. The interface still behaves as before.
gdb:
2014-02-11 Yao Qi <yao@codesourcery.com>
* target.h (enum target_xfer_error): Rename to ...
(enum target_xfer_status): ... it. New. All users updated.
(enum target_xfer_status) <TARGET_XFER_OK>, <TARGET_XFER_EOF>:
New.
(TARGET_XFER_STATUS_ERROR_P): New macro.
(target_xfer_error_to_string): Remove declaration.
(target_xfer_status_to_string): Declare.
(target_xfer_partial_ftype): Adjust it.
(struct target_ops) <to_xfer_partial>: Return
target_xfer_status. Add argument xfered_len. Update
comments.
* target.c (target_xfer_error_to_string): Rename to ...
(target_xfer_status_to_string): ... it. New. All callers
updated.
(target_read_live_memory): Likewise. Call target_xfer_partial
instead of target_read.
(memory_xfer_live_readonly_partial): Return
target_xfer_status. Add argument xfered_len.
(raw_memory_xfer_partial): Likewise.
(memory_xfer_partial_1): Likewise.
(memory_xfer_partial): Likewise.
(target_xfer_partial): Likewise. Check *XFERED_LEN is set
properly. Update debug message.
(default_xfer_partial, current_xfer_partial): Likewise.
(target_write_partial): Likewise.
(target_read_partial): Likewise. All callers updated.
(read_whatever_is_readable): Likewise.
(target_write_with_progress): Likewise.
(target_read_alloc_1): Likewise.
* aix-thread.c (aix_thread_xfer_partial): Likewise.
* auxv.c (procfs_xfer_auxv): Likewise.
(ld_so_xfer_auxv, memory_xfer_auxv): Likewise.
* bfd-target.c (target_bfd_xfer_partial): Likewise.
* bsd-kvm.c (bsd_kvm_xfer_partial): Likewise.
* bsd-uthread.c (bsd_uthread_xfer_partia): Likewise.
* corefile.c (read_memory): Adjust.
* corelow.c (core_xfer_partial): Likewise.
* ctf.c (ctf_xfer_partial): Likewise.
* darwin-nat.c (darwin_read_dyld_info): Likewise. All callers
updated.
(darwin_xfer_partial): Likewise.
* exec.c (section_table_xfer_memory_partial): Likewise. All
callers updated.
(exec_xfer_partial): Likewise.
* exec.h (section_table_xfer_memory_partial): Update
declaration.
* gnu-nat.c (gnu_xfer_memory): Likewise. Assert 'res' is not
negative.
(gnu_xfer_partial): Likewise.
* ia64-hpux-nat.c (ia64_hpux_xfer_memory_no_bs): Likewise.
(ia64_hpux_xfer_memory, ia64_hpux_xfer_uregs): Likewise.
(ia64_hpux_xfer_solib_got): Likewise.
* inf-ptrace.c (inf_ptrace_xfer_partial): Likewise. Change
type of 'partial_len' to ULONGEST.
* inf-ttrace.c (inf_ttrace_xfer_partial): Likewise.
* linux-nat.c (linux_xfer_siginfo ): Likewise.
(linux_nat_xfer_partial): Likewise.
(linux_proc_xfer_partial, linux_xfer_partial): Likewise.
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Likewise.
* monitor.c (monitor_xfer_memory): Likewise.
(monitor_xfer_partial): Likewise.
* procfs.c (procfs_xfer_partial): Likewise.
* record-btrace.c (record_btrace_xfer_partial): Likewise.
* record-full.c (record_full_xfer_partial): Likewise.
(record_full_core_xfer_partial): Likewise.
* remote-sim.c (gdbsim_xfer_memory): Likewise.
(gdbsim_xfer_partial): Likewise.
* remote.c (remote_write_bytes_aux): Likewise. All callers
updated.
(remote_write_bytes, remote_read_bytes): Likewise. All
callers updated.
(remote_flash_erase): Likewise. All callers updated.
(remote_write_qxfer): Likewise. All callers updated.
(remote_read_qxfer): Likewise. All callers updated.
(remote_xfer_partial): Likewise.
* rs6000-nat.c (rs6000_xfer_partial): Likewise.
(rs6000_xfer_shared_libraries): Likewise.
* sol-thread.c (sol_thread_xfer_partial): Likewise.
(sol_thread_xfer_partial): Likewise.
* sparc-nat.c (sparc_xfer_wcookie): Likewise.
(sparc_xfer_partial): Likewise.
* spu-linux-nat.c (spu_proc_xfer_spu): Likewise. All callers
updated.
(spu_xfer_partial): Likewise.
* spu-multiarch.c (spu_xfer_partial): Likewise.
* tracepoint.c (tfile_xfer_partial): Likewise.
* windows-nat.c (windows_xfer_memory): Likewise.
(windows_xfer_shared_libraries): Likewise.
(windows_xfer_partial): Likewise.
* valprint.c: Replace 'target_xfer_error' with
'target_xfer_status' in comments.
2014-01-27 20:35:33 +08:00
|
|
|
static enum target_xfer_status
|
2010-01-15 05:15:00 +08:00
|
|
|
procfs_xfer_auxv (gdb_byte *readbuf,
|
2005-05-24 02:20:03 +08:00
|
|
|
const gdb_byte *writebuf,
|
2004-02-02 06:35:24 +08:00
|
|
|
ULONGEST offset,
|
Return target_xfer_status in to_xfer_partial
This patch does the conversion of to_xfer_partial from
LONGEST (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len);
to
enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
It changes to_xfer_partial return the transfer status and the transfered
length by *XFERED_LEN. Generally, the return status has three stats,
- TARGET_XFER_OK,
- TARGET_XFER_EOF,
- TARGET_XFER_E_XXXX,
See the comments to them in 'enum target_xfer_status'. Note that
Pedro suggested not name TARGET_XFER_DONE, as it is confusing,
compared with "TARGET_XFER_OK". We finally name it TARGET_XFER_EOF.
With this change, GDB core can handle unavailable data in a convenient
way.
The rationale behind this change was mentioned here
https://sourceware.org/ml/gdb-patches/2013-10/msg00761.html
Consider an object/value like this:
0 100 150 200 512
DDDDDDDDDDDxxxxxxxxxDDDDDD...DDIIIIIIIIIIII..III
where D is valid data, and xxx is unavailable data, and I is beyond
the end of the object (Invalid). Currently, if we start the
xfer at 0, requesting, say 512 bytes, we'll first get back 100 bytes.
The xfer machinery then retries fetching [100,512), and gets back
TARGET_XFER_E_UNAVAILABLE. That's sufficient when you're either
interested in either having the whole of the 512 bytes available,
or erroring out. But, in this scenario, we're interested in
the data at [150,512). The problem is that the last
TARGET_XFER_E_UNAVAILABLE gives us no indication where to
start the read next. We'd need something like:
get me [0,512) >>>
<<< here's [0,100), *xfered_len is 100, returns TARGET_XFER_OK
get me [100,512) >>> (**1)
<<< [100,150) is unavailable, *xfered_len is 50, return TARGET_XFER_E_UNAVAILABLE.
get me [150,512) >>>
<<< here's [150,200), *xfered_len is 50, return TARGET_XFER_OK.
get me [200,512) >>>
<<< no more data, return TARGET_XFER_EOF.
This naturally implies pushing down the decision of whether
to return TARGET_XFER_E_UNAVAILABLE or something else
down to the target. (Which kinds of leads back to tfile
itself reading from RO memory from file (though we could
export a function in exec.c for that that tfile delegates to,
instead of re-adding the old code).
Beside this change, we also add a macro TARGET_XFER_STATUS_ERROR_P to
check whether a status is an error or not, to stop using "status < 0".
This patch also eliminates the comparison between status and 0.
No target implementations to to_xfer_partial adapts this new
interface. The interface still behaves as before.
gdb:
2014-02-11 Yao Qi <yao@codesourcery.com>
* target.h (enum target_xfer_error): Rename to ...
(enum target_xfer_status): ... it. New. All users updated.
(enum target_xfer_status) <TARGET_XFER_OK>, <TARGET_XFER_EOF>:
New.
(TARGET_XFER_STATUS_ERROR_P): New macro.
(target_xfer_error_to_string): Remove declaration.
(target_xfer_status_to_string): Declare.
(target_xfer_partial_ftype): Adjust it.
(struct target_ops) <to_xfer_partial>: Return
target_xfer_status. Add argument xfered_len. Update
comments.
* target.c (target_xfer_error_to_string): Rename to ...
(target_xfer_status_to_string): ... it. New. All callers
updated.
(target_read_live_memory): Likewise. Call target_xfer_partial
instead of target_read.
(memory_xfer_live_readonly_partial): Return
target_xfer_status. Add argument xfered_len.
(raw_memory_xfer_partial): Likewise.
(memory_xfer_partial_1): Likewise.
(memory_xfer_partial): Likewise.
(target_xfer_partial): Likewise. Check *XFERED_LEN is set
properly. Update debug message.
(default_xfer_partial, current_xfer_partial): Likewise.
(target_write_partial): Likewise.
(target_read_partial): Likewise. All callers updated.
(read_whatever_is_readable): Likewise.
(target_write_with_progress): Likewise.
(target_read_alloc_1): Likewise.
* aix-thread.c (aix_thread_xfer_partial): Likewise.
* auxv.c (procfs_xfer_auxv): Likewise.
(ld_so_xfer_auxv, memory_xfer_auxv): Likewise.
* bfd-target.c (target_bfd_xfer_partial): Likewise.
* bsd-kvm.c (bsd_kvm_xfer_partial): Likewise.
* bsd-uthread.c (bsd_uthread_xfer_partia): Likewise.
* corefile.c (read_memory): Adjust.
* corelow.c (core_xfer_partial): Likewise.
* ctf.c (ctf_xfer_partial): Likewise.
* darwin-nat.c (darwin_read_dyld_info): Likewise. All callers
updated.
(darwin_xfer_partial): Likewise.
* exec.c (section_table_xfer_memory_partial): Likewise. All
callers updated.
(exec_xfer_partial): Likewise.
* exec.h (section_table_xfer_memory_partial): Update
declaration.
* gnu-nat.c (gnu_xfer_memory): Likewise. Assert 'res' is not
negative.
(gnu_xfer_partial): Likewise.
* ia64-hpux-nat.c (ia64_hpux_xfer_memory_no_bs): Likewise.
(ia64_hpux_xfer_memory, ia64_hpux_xfer_uregs): Likewise.
(ia64_hpux_xfer_solib_got): Likewise.
* inf-ptrace.c (inf_ptrace_xfer_partial): Likewise. Change
type of 'partial_len' to ULONGEST.
* inf-ttrace.c (inf_ttrace_xfer_partial): Likewise.
* linux-nat.c (linux_xfer_siginfo ): Likewise.
(linux_nat_xfer_partial): Likewise.
(linux_proc_xfer_partial, linux_xfer_partial): Likewise.
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Likewise.
* monitor.c (monitor_xfer_memory): Likewise.
(monitor_xfer_partial): Likewise.
* procfs.c (procfs_xfer_partial): Likewise.
* record-btrace.c (record_btrace_xfer_partial): Likewise.
* record-full.c (record_full_xfer_partial): Likewise.
(record_full_core_xfer_partial): Likewise.
* remote-sim.c (gdbsim_xfer_memory): Likewise.
(gdbsim_xfer_partial): Likewise.
* remote.c (remote_write_bytes_aux): Likewise. All callers
updated.
(remote_write_bytes, remote_read_bytes): Likewise. All
callers updated.
(remote_flash_erase): Likewise. All callers updated.
(remote_write_qxfer): Likewise. All callers updated.
(remote_read_qxfer): Likewise. All callers updated.
(remote_xfer_partial): Likewise.
* rs6000-nat.c (rs6000_xfer_partial): Likewise.
(rs6000_xfer_shared_libraries): Likewise.
* sol-thread.c (sol_thread_xfer_partial): Likewise.
(sol_thread_xfer_partial): Likewise.
* sparc-nat.c (sparc_xfer_wcookie): Likewise.
(sparc_xfer_partial): Likewise.
* spu-linux-nat.c (spu_proc_xfer_spu): Likewise. All callers
updated.
(spu_xfer_partial): Likewise.
* spu-multiarch.c (spu_xfer_partial): Likewise.
* tracepoint.c (tfile_xfer_partial): Likewise.
* windows-nat.c (windows_xfer_memory): Likewise.
(windows_xfer_shared_libraries): Likewise.
(windows_xfer_partial): Likewise.
* valprint.c: Replace 'target_xfer_error' with
'target_xfer_status' in comments.
2014-01-27 20:35:33 +08:00
|
|
|
ULONGEST len,
|
|
|
|
ULONGEST *xfered_len)
|
2004-02-02 06:35:24 +08:00
|
|
|
{
|
|
|
|
int fd;
|
Return target_xfer_status in to_xfer_partial
This patch does the conversion of to_xfer_partial from
LONGEST (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len);
to
enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
It changes to_xfer_partial return the transfer status and the transfered
length by *XFERED_LEN. Generally, the return status has three stats,
- TARGET_XFER_OK,
- TARGET_XFER_EOF,
- TARGET_XFER_E_XXXX,
See the comments to them in 'enum target_xfer_status'. Note that
Pedro suggested not name TARGET_XFER_DONE, as it is confusing,
compared with "TARGET_XFER_OK". We finally name it TARGET_XFER_EOF.
With this change, GDB core can handle unavailable data in a convenient
way.
The rationale behind this change was mentioned here
https://sourceware.org/ml/gdb-patches/2013-10/msg00761.html
Consider an object/value like this:
0 100 150 200 512
DDDDDDDDDDDxxxxxxxxxDDDDDD...DDIIIIIIIIIIII..III
where D is valid data, and xxx is unavailable data, and I is beyond
the end of the object (Invalid). Currently, if we start the
xfer at 0, requesting, say 512 bytes, we'll first get back 100 bytes.
The xfer machinery then retries fetching [100,512), and gets back
TARGET_XFER_E_UNAVAILABLE. That's sufficient when you're either
interested in either having the whole of the 512 bytes available,
or erroring out. But, in this scenario, we're interested in
the data at [150,512). The problem is that the last
TARGET_XFER_E_UNAVAILABLE gives us no indication where to
start the read next. We'd need something like:
get me [0,512) >>>
<<< here's [0,100), *xfered_len is 100, returns TARGET_XFER_OK
get me [100,512) >>> (**1)
<<< [100,150) is unavailable, *xfered_len is 50, return TARGET_XFER_E_UNAVAILABLE.
get me [150,512) >>>
<<< here's [150,200), *xfered_len is 50, return TARGET_XFER_OK.
get me [200,512) >>>
<<< no more data, return TARGET_XFER_EOF.
This naturally implies pushing down the decision of whether
to return TARGET_XFER_E_UNAVAILABLE or something else
down to the target. (Which kinds of leads back to tfile
itself reading from RO memory from file (though we could
export a function in exec.c for that that tfile delegates to,
instead of re-adding the old code).
Beside this change, we also add a macro TARGET_XFER_STATUS_ERROR_P to
check whether a status is an error or not, to stop using "status < 0".
This patch also eliminates the comparison between status and 0.
No target implementations to to_xfer_partial adapts this new
interface. The interface still behaves as before.
gdb:
2014-02-11 Yao Qi <yao@codesourcery.com>
* target.h (enum target_xfer_error): Rename to ...
(enum target_xfer_status): ... it. New. All users updated.
(enum target_xfer_status) <TARGET_XFER_OK>, <TARGET_XFER_EOF>:
New.
(TARGET_XFER_STATUS_ERROR_P): New macro.
(target_xfer_error_to_string): Remove declaration.
(target_xfer_status_to_string): Declare.
(target_xfer_partial_ftype): Adjust it.
(struct target_ops) <to_xfer_partial>: Return
target_xfer_status. Add argument xfered_len. Update
comments.
* target.c (target_xfer_error_to_string): Rename to ...
(target_xfer_status_to_string): ... it. New. All callers
updated.
(target_read_live_memory): Likewise. Call target_xfer_partial
instead of target_read.
(memory_xfer_live_readonly_partial): Return
target_xfer_status. Add argument xfered_len.
(raw_memory_xfer_partial): Likewise.
(memory_xfer_partial_1): Likewise.
(memory_xfer_partial): Likewise.
(target_xfer_partial): Likewise. Check *XFERED_LEN is set
properly. Update debug message.
(default_xfer_partial, current_xfer_partial): Likewise.
(target_write_partial): Likewise.
(target_read_partial): Likewise. All callers updated.
(read_whatever_is_readable): Likewise.
(target_write_with_progress): Likewise.
(target_read_alloc_1): Likewise.
* aix-thread.c (aix_thread_xfer_partial): Likewise.
* auxv.c (procfs_xfer_auxv): Likewise.
(ld_so_xfer_auxv, memory_xfer_auxv): Likewise.
* bfd-target.c (target_bfd_xfer_partial): Likewise.
* bsd-kvm.c (bsd_kvm_xfer_partial): Likewise.
* bsd-uthread.c (bsd_uthread_xfer_partia): Likewise.
* corefile.c (read_memory): Adjust.
* corelow.c (core_xfer_partial): Likewise.
* ctf.c (ctf_xfer_partial): Likewise.
* darwin-nat.c (darwin_read_dyld_info): Likewise. All callers
updated.
(darwin_xfer_partial): Likewise.
* exec.c (section_table_xfer_memory_partial): Likewise. All
callers updated.
(exec_xfer_partial): Likewise.
* exec.h (section_table_xfer_memory_partial): Update
declaration.
* gnu-nat.c (gnu_xfer_memory): Likewise. Assert 'res' is not
negative.
(gnu_xfer_partial): Likewise.
* ia64-hpux-nat.c (ia64_hpux_xfer_memory_no_bs): Likewise.
(ia64_hpux_xfer_memory, ia64_hpux_xfer_uregs): Likewise.
(ia64_hpux_xfer_solib_got): Likewise.
* inf-ptrace.c (inf_ptrace_xfer_partial): Likewise. Change
type of 'partial_len' to ULONGEST.
* inf-ttrace.c (inf_ttrace_xfer_partial): Likewise.
* linux-nat.c (linux_xfer_siginfo ): Likewise.
(linux_nat_xfer_partial): Likewise.
(linux_proc_xfer_partial, linux_xfer_partial): Likewise.
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Likewise.
* monitor.c (monitor_xfer_memory): Likewise.
(monitor_xfer_partial): Likewise.
* procfs.c (procfs_xfer_partial): Likewise.
* record-btrace.c (record_btrace_xfer_partial): Likewise.
* record-full.c (record_full_xfer_partial): Likewise.
(record_full_core_xfer_partial): Likewise.
* remote-sim.c (gdbsim_xfer_memory): Likewise.
(gdbsim_xfer_partial): Likewise.
* remote.c (remote_write_bytes_aux): Likewise. All callers
updated.
(remote_write_bytes, remote_read_bytes): Likewise. All
callers updated.
(remote_flash_erase): Likewise. All callers updated.
(remote_write_qxfer): Likewise. All callers updated.
(remote_read_qxfer): Likewise. All callers updated.
(remote_xfer_partial): Likewise.
* rs6000-nat.c (rs6000_xfer_partial): Likewise.
(rs6000_xfer_shared_libraries): Likewise.
* sol-thread.c (sol_thread_xfer_partial): Likewise.
(sol_thread_xfer_partial): Likewise.
* sparc-nat.c (sparc_xfer_wcookie): Likewise.
(sparc_xfer_partial): Likewise.
* spu-linux-nat.c (spu_proc_xfer_spu): Likewise. All callers
updated.
(spu_xfer_partial): Likewise.
* spu-multiarch.c (spu_xfer_partial): Likewise.
* tracepoint.c (tfile_xfer_partial): Likewise.
* windows-nat.c (windows_xfer_memory): Likewise.
(windows_xfer_shared_libraries): Likewise.
(windows_xfer_partial): Likewise.
* valprint.c: Replace 'target_xfer_error' with
'target_xfer_status' in comments.
2014-01-27 20:35:33 +08:00
|
|
|
ssize_t l;
|
2004-02-02 06:35:24 +08:00
|
|
|
|
2018-08-08 05:43:08 +08:00
|
|
|
std::string pathname = string_printf ("/proc/%d/auxv", inferior_ptid.pid ());
|
PR gdb/7912:
* Makefile.in (SFILES): Add filestuff.c
(COMMON_OBS): Add filestuff.o.
(filestuff.o): New target.
* auto-load.c (auto_load_objfile_script_1): Use
gdb_fopen_cloexec.
* auxv.c (procfs_xfer_auxv): Use gdb_open_cloexec.
* cli/cli-cmds.c (shell_escape): Call close_most_fds.
* cli/cli-dump.c (fopen_with_cleanup): Use gdb_fopen_cloexec.
* common/agent.c (gdb_connect_sync_socket): Use
gdb_socket_cloexec.
* common/filestuff.c: New file.
* common/filestuff.h: New file.
* common/linux-osdata.c (linux_common_core_of_thread)
(command_from_pid, commandline_from_pid, print_source_lines)
(linux_xfer_osdata_shm, linux_xfer_osdata_sem)
(linux_xfer_osdata_msg, linux_xfer_osdata_modules): Use
gdb_fopen_cloexec.
* common/linux-procfs.c (linux_proc_get_int)
(linux_proc_pid_has_state): Use gdb_fopen_cloexec.
* config.in, configure: Rebuild.
* configure.ac: Don't check for sys/socket.h. Check for
fdwalk, pipe2.
* corelow.c (core_open): Use gdb_open_cloexec.
* dwarf2read.c (write_psymtabs_to_index): Use gdb_fopen_cloexec.
* fork-child.c (fork_inferior): Call close_most_fds.
* gdb_bfd.c (gdb_bfd_open): Use gdb_open_cloexec.
* inf-child.c (inf_child_fileio_readlink): Use gdb_open_cloexec.
* linux-nat.c (linux_nat_thread_name, linux_proc_pending_signals):
Use gdb_fopen_cloexec.
(linux_proc_xfer_partial, linux_proc_xfer_spu): Use
gdb_open_cloexec.
(linux_async_pipe): Use gdb_pipe_cloexec.
* remote-fileio.c (remote_fileio_func_open): Use
gdb_open_cloexec.
* remote.c (remote_file_put, remote_file_get): Use
gdb_fopen_cloexec.
* ser-pipe.c (pipe_open): Use gdb_socketpair_cloexec,
close_most_fds.
* ser-tcp.c (net_open): Use gdb_socket_cloexec.
* ser-unix.c (hardwire_open): Use gdb_open_cloexec.
* solib.c (solib_find): Use gdb_open_cloexec.
* source.c (openp, find_and_open_source): Use gdb_open_cloexec.
* tracepoint.c (tfile_start): Use gdb_fopen_cloexec.
(tfile_open): Use gdb_open_cloexec.
* tui/tui-io.c (tui_initialize_io): Use gdb_pipe_cloexec.
* ui-file.c (gdb_fopen): Use gdb_fopen_cloexec.
* xml-support.c (xml_fetch_content_from_file): Use
gdb_fopen_cloexec.
* main.c (captured_main): Call notice_open_fds.
gdbserver
* Makefile.in (SFILES): Add filestuff.c.
(OBS): Add filestuff.o.
(filestuff.o): New target.
* config.in, configure: Rebuild.
* configure.ac: Check for fdwalk, pipe2.
2013-04-23 00:46:15 +08:00
|
|
|
fd = gdb_open_cloexec (pathname, writebuf != NULL ? O_WRONLY : O_RDONLY, 0);
|
2004-02-02 06:35:24 +08:00
|
|
|
if (fd < 0)
|
2014-01-27 17:32:33 +08:00
|
|
|
return TARGET_XFER_E_IO;
|
2004-02-02 06:35:24 +08:00
|
|
|
|
|
|
|
if (offset != (ULONGEST) 0
|
|
|
|
&& lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
|
Return target_xfer_status in to_xfer_partial
This patch does the conversion of to_xfer_partial from
LONGEST (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len);
to
enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
It changes to_xfer_partial return the transfer status and the transfered
length by *XFERED_LEN. Generally, the return status has three stats,
- TARGET_XFER_OK,
- TARGET_XFER_EOF,
- TARGET_XFER_E_XXXX,
See the comments to them in 'enum target_xfer_status'. Note that
Pedro suggested not name TARGET_XFER_DONE, as it is confusing,
compared with "TARGET_XFER_OK". We finally name it TARGET_XFER_EOF.
With this change, GDB core can handle unavailable data in a convenient
way.
The rationale behind this change was mentioned here
https://sourceware.org/ml/gdb-patches/2013-10/msg00761.html
Consider an object/value like this:
0 100 150 200 512
DDDDDDDDDDDxxxxxxxxxDDDDDD...DDIIIIIIIIIIII..III
where D is valid data, and xxx is unavailable data, and I is beyond
the end of the object (Invalid). Currently, if we start the
xfer at 0, requesting, say 512 bytes, we'll first get back 100 bytes.
The xfer machinery then retries fetching [100,512), and gets back
TARGET_XFER_E_UNAVAILABLE. That's sufficient when you're either
interested in either having the whole of the 512 bytes available,
or erroring out. But, in this scenario, we're interested in
the data at [150,512). The problem is that the last
TARGET_XFER_E_UNAVAILABLE gives us no indication where to
start the read next. We'd need something like:
get me [0,512) >>>
<<< here's [0,100), *xfered_len is 100, returns TARGET_XFER_OK
get me [100,512) >>> (**1)
<<< [100,150) is unavailable, *xfered_len is 50, return TARGET_XFER_E_UNAVAILABLE.
get me [150,512) >>>
<<< here's [150,200), *xfered_len is 50, return TARGET_XFER_OK.
get me [200,512) >>>
<<< no more data, return TARGET_XFER_EOF.
This naturally implies pushing down the decision of whether
to return TARGET_XFER_E_UNAVAILABLE or something else
down to the target. (Which kinds of leads back to tfile
itself reading from RO memory from file (though we could
export a function in exec.c for that that tfile delegates to,
instead of re-adding the old code).
Beside this change, we also add a macro TARGET_XFER_STATUS_ERROR_P to
check whether a status is an error or not, to stop using "status < 0".
This patch also eliminates the comparison between status and 0.
No target implementations to to_xfer_partial adapts this new
interface. The interface still behaves as before.
gdb:
2014-02-11 Yao Qi <yao@codesourcery.com>
* target.h (enum target_xfer_error): Rename to ...
(enum target_xfer_status): ... it. New. All users updated.
(enum target_xfer_status) <TARGET_XFER_OK>, <TARGET_XFER_EOF>:
New.
(TARGET_XFER_STATUS_ERROR_P): New macro.
(target_xfer_error_to_string): Remove declaration.
(target_xfer_status_to_string): Declare.
(target_xfer_partial_ftype): Adjust it.
(struct target_ops) <to_xfer_partial>: Return
target_xfer_status. Add argument xfered_len. Update
comments.
* target.c (target_xfer_error_to_string): Rename to ...
(target_xfer_status_to_string): ... it. New. All callers
updated.
(target_read_live_memory): Likewise. Call target_xfer_partial
instead of target_read.
(memory_xfer_live_readonly_partial): Return
target_xfer_status. Add argument xfered_len.
(raw_memory_xfer_partial): Likewise.
(memory_xfer_partial_1): Likewise.
(memory_xfer_partial): Likewise.
(target_xfer_partial): Likewise. Check *XFERED_LEN is set
properly. Update debug message.
(default_xfer_partial, current_xfer_partial): Likewise.
(target_write_partial): Likewise.
(target_read_partial): Likewise. All callers updated.
(read_whatever_is_readable): Likewise.
(target_write_with_progress): Likewise.
(target_read_alloc_1): Likewise.
* aix-thread.c (aix_thread_xfer_partial): Likewise.
* auxv.c (procfs_xfer_auxv): Likewise.
(ld_so_xfer_auxv, memory_xfer_auxv): Likewise.
* bfd-target.c (target_bfd_xfer_partial): Likewise.
* bsd-kvm.c (bsd_kvm_xfer_partial): Likewise.
* bsd-uthread.c (bsd_uthread_xfer_partia): Likewise.
* corefile.c (read_memory): Adjust.
* corelow.c (core_xfer_partial): Likewise.
* ctf.c (ctf_xfer_partial): Likewise.
* darwin-nat.c (darwin_read_dyld_info): Likewise. All callers
updated.
(darwin_xfer_partial): Likewise.
* exec.c (section_table_xfer_memory_partial): Likewise. All
callers updated.
(exec_xfer_partial): Likewise.
* exec.h (section_table_xfer_memory_partial): Update
declaration.
* gnu-nat.c (gnu_xfer_memory): Likewise. Assert 'res' is not
negative.
(gnu_xfer_partial): Likewise.
* ia64-hpux-nat.c (ia64_hpux_xfer_memory_no_bs): Likewise.
(ia64_hpux_xfer_memory, ia64_hpux_xfer_uregs): Likewise.
(ia64_hpux_xfer_solib_got): Likewise.
* inf-ptrace.c (inf_ptrace_xfer_partial): Likewise. Change
type of 'partial_len' to ULONGEST.
* inf-ttrace.c (inf_ttrace_xfer_partial): Likewise.
* linux-nat.c (linux_xfer_siginfo ): Likewise.
(linux_nat_xfer_partial): Likewise.
(linux_proc_xfer_partial, linux_xfer_partial): Likewise.
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Likewise.
* monitor.c (monitor_xfer_memory): Likewise.
(monitor_xfer_partial): Likewise.
* procfs.c (procfs_xfer_partial): Likewise.
* record-btrace.c (record_btrace_xfer_partial): Likewise.
* record-full.c (record_full_xfer_partial): Likewise.
(record_full_core_xfer_partial): Likewise.
* remote-sim.c (gdbsim_xfer_memory): Likewise.
(gdbsim_xfer_partial): Likewise.
* remote.c (remote_write_bytes_aux): Likewise. All callers
updated.
(remote_write_bytes, remote_read_bytes): Likewise. All
callers updated.
(remote_flash_erase): Likewise. All callers updated.
(remote_write_qxfer): Likewise. All callers updated.
(remote_read_qxfer): Likewise. All callers updated.
(remote_xfer_partial): Likewise.
* rs6000-nat.c (rs6000_xfer_partial): Likewise.
(rs6000_xfer_shared_libraries): Likewise.
* sol-thread.c (sol_thread_xfer_partial): Likewise.
(sol_thread_xfer_partial): Likewise.
* sparc-nat.c (sparc_xfer_wcookie): Likewise.
(sparc_xfer_partial): Likewise.
* spu-linux-nat.c (spu_proc_xfer_spu): Likewise. All callers
updated.
(spu_xfer_partial): Likewise.
* spu-multiarch.c (spu_xfer_partial): Likewise.
* tracepoint.c (tfile_xfer_partial): Likewise.
* windows-nat.c (windows_xfer_memory): Likewise.
(windows_xfer_shared_libraries): Likewise.
(windows_xfer_partial): Likewise.
* valprint.c: Replace 'target_xfer_error' with
'target_xfer_status' in comments.
2014-01-27 20:35:33 +08:00
|
|
|
l = -1;
|
2004-02-02 06:35:24 +08:00
|
|
|
else if (readbuf != NULL)
|
Return target_xfer_status in to_xfer_partial
This patch does the conversion of to_xfer_partial from
LONGEST (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len);
to
enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
It changes to_xfer_partial return the transfer status and the transfered
length by *XFERED_LEN. Generally, the return status has three stats,
- TARGET_XFER_OK,
- TARGET_XFER_EOF,
- TARGET_XFER_E_XXXX,
See the comments to them in 'enum target_xfer_status'. Note that
Pedro suggested not name TARGET_XFER_DONE, as it is confusing,
compared with "TARGET_XFER_OK". We finally name it TARGET_XFER_EOF.
With this change, GDB core can handle unavailable data in a convenient
way.
The rationale behind this change was mentioned here
https://sourceware.org/ml/gdb-patches/2013-10/msg00761.html
Consider an object/value like this:
0 100 150 200 512
DDDDDDDDDDDxxxxxxxxxDDDDDD...DDIIIIIIIIIIII..III
where D is valid data, and xxx is unavailable data, and I is beyond
the end of the object (Invalid). Currently, if we start the
xfer at 0, requesting, say 512 bytes, we'll first get back 100 bytes.
The xfer machinery then retries fetching [100,512), and gets back
TARGET_XFER_E_UNAVAILABLE. That's sufficient when you're either
interested in either having the whole of the 512 bytes available,
or erroring out. But, in this scenario, we're interested in
the data at [150,512). The problem is that the last
TARGET_XFER_E_UNAVAILABLE gives us no indication where to
start the read next. We'd need something like:
get me [0,512) >>>
<<< here's [0,100), *xfered_len is 100, returns TARGET_XFER_OK
get me [100,512) >>> (**1)
<<< [100,150) is unavailable, *xfered_len is 50, return TARGET_XFER_E_UNAVAILABLE.
get me [150,512) >>>
<<< here's [150,200), *xfered_len is 50, return TARGET_XFER_OK.
get me [200,512) >>>
<<< no more data, return TARGET_XFER_EOF.
This naturally implies pushing down the decision of whether
to return TARGET_XFER_E_UNAVAILABLE or something else
down to the target. (Which kinds of leads back to tfile
itself reading from RO memory from file (though we could
export a function in exec.c for that that tfile delegates to,
instead of re-adding the old code).
Beside this change, we also add a macro TARGET_XFER_STATUS_ERROR_P to
check whether a status is an error or not, to stop using "status < 0".
This patch also eliminates the comparison between status and 0.
No target implementations to to_xfer_partial adapts this new
interface. The interface still behaves as before.
gdb:
2014-02-11 Yao Qi <yao@codesourcery.com>
* target.h (enum target_xfer_error): Rename to ...
(enum target_xfer_status): ... it. New. All users updated.
(enum target_xfer_status) <TARGET_XFER_OK>, <TARGET_XFER_EOF>:
New.
(TARGET_XFER_STATUS_ERROR_P): New macro.
(target_xfer_error_to_string): Remove declaration.
(target_xfer_status_to_string): Declare.
(target_xfer_partial_ftype): Adjust it.
(struct target_ops) <to_xfer_partial>: Return
target_xfer_status. Add argument xfered_len. Update
comments.
* target.c (target_xfer_error_to_string): Rename to ...
(target_xfer_status_to_string): ... it. New. All callers
updated.
(target_read_live_memory): Likewise. Call target_xfer_partial
instead of target_read.
(memory_xfer_live_readonly_partial): Return
target_xfer_status. Add argument xfered_len.
(raw_memory_xfer_partial): Likewise.
(memory_xfer_partial_1): Likewise.
(memory_xfer_partial): Likewise.
(target_xfer_partial): Likewise. Check *XFERED_LEN is set
properly. Update debug message.
(default_xfer_partial, current_xfer_partial): Likewise.
(target_write_partial): Likewise.
(target_read_partial): Likewise. All callers updated.
(read_whatever_is_readable): Likewise.
(target_write_with_progress): Likewise.
(target_read_alloc_1): Likewise.
* aix-thread.c (aix_thread_xfer_partial): Likewise.
* auxv.c (procfs_xfer_auxv): Likewise.
(ld_so_xfer_auxv, memory_xfer_auxv): Likewise.
* bfd-target.c (target_bfd_xfer_partial): Likewise.
* bsd-kvm.c (bsd_kvm_xfer_partial): Likewise.
* bsd-uthread.c (bsd_uthread_xfer_partia): Likewise.
* corefile.c (read_memory): Adjust.
* corelow.c (core_xfer_partial): Likewise.
* ctf.c (ctf_xfer_partial): Likewise.
* darwin-nat.c (darwin_read_dyld_info): Likewise. All callers
updated.
(darwin_xfer_partial): Likewise.
* exec.c (section_table_xfer_memory_partial): Likewise. All
callers updated.
(exec_xfer_partial): Likewise.
* exec.h (section_table_xfer_memory_partial): Update
declaration.
* gnu-nat.c (gnu_xfer_memory): Likewise. Assert 'res' is not
negative.
(gnu_xfer_partial): Likewise.
* ia64-hpux-nat.c (ia64_hpux_xfer_memory_no_bs): Likewise.
(ia64_hpux_xfer_memory, ia64_hpux_xfer_uregs): Likewise.
(ia64_hpux_xfer_solib_got): Likewise.
* inf-ptrace.c (inf_ptrace_xfer_partial): Likewise. Change
type of 'partial_len' to ULONGEST.
* inf-ttrace.c (inf_ttrace_xfer_partial): Likewise.
* linux-nat.c (linux_xfer_siginfo ): Likewise.
(linux_nat_xfer_partial): Likewise.
(linux_proc_xfer_partial, linux_xfer_partial): Likewise.
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Likewise.
* monitor.c (monitor_xfer_memory): Likewise.
(monitor_xfer_partial): Likewise.
* procfs.c (procfs_xfer_partial): Likewise.
* record-btrace.c (record_btrace_xfer_partial): Likewise.
* record-full.c (record_full_xfer_partial): Likewise.
(record_full_core_xfer_partial): Likewise.
* remote-sim.c (gdbsim_xfer_memory): Likewise.
(gdbsim_xfer_partial): Likewise.
* remote.c (remote_write_bytes_aux): Likewise. All callers
updated.
(remote_write_bytes, remote_read_bytes): Likewise. All
callers updated.
(remote_flash_erase): Likewise. All callers updated.
(remote_write_qxfer): Likewise. All callers updated.
(remote_read_qxfer): Likewise. All callers updated.
(remote_xfer_partial): Likewise.
* rs6000-nat.c (rs6000_xfer_partial): Likewise.
(rs6000_xfer_shared_libraries): Likewise.
* sol-thread.c (sol_thread_xfer_partial): Likewise.
(sol_thread_xfer_partial): Likewise.
* sparc-nat.c (sparc_xfer_wcookie): Likewise.
(sparc_xfer_partial): Likewise.
* spu-linux-nat.c (spu_proc_xfer_spu): Likewise. All callers
updated.
(spu_xfer_partial): Likewise.
* spu-multiarch.c (spu_xfer_partial): Likewise.
* tracepoint.c (tfile_xfer_partial): Likewise.
* windows-nat.c (windows_xfer_memory): Likewise.
(windows_xfer_shared_libraries): Likewise.
(windows_xfer_partial): Likewise.
* valprint.c: Replace 'target_xfer_error' with
'target_xfer_status' in comments.
2014-01-27 20:35:33 +08:00
|
|
|
l = read (fd, readbuf, (size_t) len);
|
2004-02-02 06:35:24 +08:00
|
|
|
else
|
Return target_xfer_status in to_xfer_partial
This patch does the conversion of to_xfer_partial from
LONGEST (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len);
to
enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
It changes to_xfer_partial return the transfer status and the transfered
length by *XFERED_LEN. Generally, the return status has three stats,
- TARGET_XFER_OK,
- TARGET_XFER_EOF,
- TARGET_XFER_E_XXXX,
See the comments to them in 'enum target_xfer_status'. Note that
Pedro suggested not name TARGET_XFER_DONE, as it is confusing,
compared with "TARGET_XFER_OK". We finally name it TARGET_XFER_EOF.
With this change, GDB core can handle unavailable data in a convenient
way.
The rationale behind this change was mentioned here
https://sourceware.org/ml/gdb-patches/2013-10/msg00761.html
Consider an object/value like this:
0 100 150 200 512
DDDDDDDDDDDxxxxxxxxxDDDDDD...DDIIIIIIIIIIII..III
where D is valid data, and xxx is unavailable data, and I is beyond
the end of the object (Invalid). Currently, if we start the
xfer at 0, requesting, say 512 bytes, we'll first get back 100 bytes.
The xfer machinery then retries fetching [100,512), and gets back
TARGET_XFER_E_UNAVAILABLE. That's sufficient when you're either
interested in either having the whole of the 512 bytes available,
or erroring out. But, in this scenario, we're interested in
the data at [150,512). The problem is that the last
TARGET_XFER_E_UNAVAILABLE gives us no indication where to
start the read next. We'd need something like:
get me [0,512) >>>
<<< here's [0,100), *xfered_len is 100, returns TARGET_XFER_OK
get me [100,512) >>> (**1)
<<< [100,150) is unavailable, *xfered_len is 50, return TARGET_XFER_E_UNAVAILABLE.
get me [150,512) >>>
<<< here's [150,200), *xfered_len is 50, return TARGET_XFER_OK.
get me [200,512) >>>
<<< no more data, return TARGET_XFER_EOF.
This naturally implies pushing down the decision of whether
to return TARGET_XFER_E_UNAVAILABLE or something else
down to the target. (Which kinds of leads back to tfile
itself reading from RO memory from file (though we could
export a function in exec.c for that that tfile delegates to,
instead of re-adding the old code).
Beside this change, we also add a macro TARGET_XFER_STATUS_ERROR_P to
check whether a status is an error or not, to stop using "status < 0".
This patch also eliminates the comparison between status and 0.
No target implementations to to_xfer_partial adapts this new
interface. The interface still behaves as before.
gdb:
2014-02-11 Yao Qi <yao@codesourcery.com>
* target.h (enum target_xfer_error): Rename to ...
(enum target_xfer_status): ... it. New. All users updated.
(enum target_xfer_status) <TARGET_XFER_OK>, <TARGET_XFER_EOF>:
New.
(TARGET_XFER_STATUS_ERROR_P): New macro.
(target_xfer_error_to_string): Remove declaration.
(target_xfer_status_to_string): Declare.
(target_xfer_partial_ftype): Adjust it.
(struct target_ops) <to_xfer_partial>: Return
target_xfer_status. Add argument xfered_len. Update
comments.
* target.c (target_xfer_error_to_string): Rename to ...
(target_xfer_status_to_string): ... it. New. All callers
updated.
(target_read_live_memory): Likewise. Call target_xfer_partial
instead of target_read.
(memory_xfer_live_readonly_partial): Return
target_xfer_status. Add argument xfered_len.
(raw_memory_xfer_partial): Likewise.
(memory_xfer_partial_1): Likewise.
(memory_xfer_partial): Likewise.
(target_xfer_partial): Likewise. Check *XFERED_LEN is set
properly. Update debug message.
(default_xfer_partial, current_xfer_partial): Likewise.
(target_write_partial): Likewise.
(target_read_partial): Likewise. All callers updated.
(read_whatever_is_readable): Likewise.
(target_write_with_progress): Likewise.
(target_read_alloc_1): Likewise.
* aix-thread.c (aix_thread_xfer_partial): Likewise.
* auxv.c (procfs_xfer_auxv): Likewise.
(ld_so_xfer_auxv, memory_xfer_auxv): Likewise.
* bfd-target.c (target_bfd_xfer_partial): Likewise.
* bsd-kvm.c (bsd_kvm_xfer_partial): Likewise.
* bsd-uthread.c (bsd_uthread_xfer_partia): Likewise.
* corefile.c (read_memory): Adjust.
* corelow.c (core_xfer_partial): Likewise.
* ctf.c (ctf_xfer_partial): Likewise.
* darwin-nat.c (darwin_read_dyld_info): Likewise. All callers
updated.
(darwin_xfer_partial): Likewise.
* exec.c (section_table_xfer_memory_partial): Likewise. All
callers updated.
(exec_xfer_partial): Likewise.
* exec.h (section_table_xfer_memory_partial): Update
declaration.
* gnu-nat.c (gnu_xfer_memory): Likewise. Assert 'res' is not
negative.
(gnu_xfer_partial): Likewise.
* ia64-hpux-nat.c (ia64_hpux_xfer_memory_no_bs): Likewise.
(ia64_hpux_xfer_memory, ia64_hpux_xfer_uregs): Likewise.
(ia64_hpux_xfer_solib_got): Likewise.
* inf-ptrace.c (inf_ptrace_xfer_partial): Likewise. Change
type of 'partial_len' to ULONGEST.
* inf-ttrace.c (inf_ttrace_xfer_partial): Likewise.
* linux-nat.c (linux_xfer_siginfo ): Likewise.
(linux_nat_xfer_partial): Likewise.
(linux_proc_xfer_partial, linux_xfer_partial): Likewise.
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Likewise.
* monitor.c (monitor_xfer_memory): Likewise.
(monitor_xfer_partial): Likewise.
* procfs.c (procfs_xfer_partial): Likewise.
* record-btrace.c (record_btrace_xfer_partial): Likewise.
* record-full.c (record_full_xfer_partial): Likewise.
(record_full_core_xfer_partial): Likewise.
* remote-sim.c (gdbsim_xfer_memory): Likewise.
(gdbsim_xfer_partial): Likewise.
* remote.c (remote_write_bytes_aux): Likewise. All callers
updated.
(remote_write_bytes, remote_read_bytes): Likewise. All
callers updated.
(remote_flash_erase): Likewise. All callers updated.
(remote_write_qxfer): Likewise. All callers updated.
(remote_read_qxfer): Likewise. All callers updated.
(remote_xfer_partial): Likewise.
* rs6000-nat.c (rs6000_xfer_partial): Likewise.
(rs6000_xfer_shared_libraries): Likewise.
* sol-thread.c (sol_thread_xfer_partial): Likewise.
(sol_thread_xfer_partial): Likewise.
* sparc-nat.c (sparc_xfer_wcookie): Likewise.
(sparc_xfer_partial): Likewise.
* spu-linux-nat.c (spu_proc_xfer_spu): Likewise. All callers
updated.
(spu_xfer_partial): Likewise.
* spu-multiarch.c (spu_xfer_partial): Likewise.
* tracepoint.c (tfile_xfer_partial): Likewise.
* windows-nat.c (windows_xfer_memory): Likewise.
(windows_xfer_shared_libraries): Likewise.
(windows_xfer_partial): Likewise.
* valprint.c: Replace 'target_xfer_error' with
'target_xfer_status' in comments.
2014-01-27 20:35:33 +08:00
|
|
|
l = write (fd, writebuf, (size_t) len);
|
2004-02-02 06:35:24 +08:00
|
|
|
|
|
|
|
(void) close (fd);
|
|
|
|
|
Return target_xfer_status in to_xfer_partial
This patch does the conversion of to_xfer_partial from
LONGEST (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len);
to
enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
It changes to_xfer_partial return the transfer status and the transfered
length by *XFERED_LEN. Generally, the return status has three stats,
- TARGET_XFER_OK,
- TARGET_XFER_EOF,
- TARGET_XFER_E_XXXX,
See the comments to them in 'enum target_xfer_status'. Note that
Pedro suggested not name TARGET_XFER_DONE, as it is confusing,
compared with "TARGET_XFER_OK". We finally name it TARGET_XFER_EOF.
With this change, GDB core can handle unavailable data in a convenient
way.
The rationale behind this change was mentioned here
https://sourceware.org/ml/gdb-patches/2013-10/msg00761.html
Consider an object/value like this:
0 100 150 200 512
DDDDDDDDDDDxxxxxxxxxDDDDDD...DDIIIIIIIIIIII..III
where D is valid data, and xxx is unavailable data, and I is beyond
the end of the object (Invalid). Currently, if we start the
xfer at 0, requesting, say 512 bytes, we'll first get back 100 bytes.
The xfer machinery then retries fetching [100,512), and gets back
TARGET_XFER_E_UNAVAILABLE. That's sufficient when you're either
interested in either having the whole of the 512 bytes available,
or erroring out. But, in this scenario, we're interested in
the data at [150,512). The problem is that the last
TARGET_XFER_E_UNAVAILABLE gives us no indication where to
start the read next. We'd need something like:
get me [0,512) >>>
<<< here's [0,100), *xfered_len is 100, returns TARGET_XFER_OK
get me [100,512) >>> (**1)
<<< [100,150) is unavailable, *xfered_len is 50, return TARGET_XFER_E_UNAVAILABLE.
get me [150,512) >>>
<<< here's [150,200), *xfered_len is 50, return TARGET_XFER_OK.
get me [200,512) >>>
<<< no more data, return TARGET_XFER_EOF.
This naturally implies pushing down the decision of whether
to return TARGET_XFER_E_UNAVAILABLE or something else
down to the target. (Which kinds of leads back to tfile
itself reading from RO memory from file (though we could
export a function in exec.c for that that tfile delegates to,
instead of re-adding the old code).
Beside this change, we also add a macro TARGET_XFER_STATUS_ERROR_P to
check whether a status is an error or not, to stop using "status < 0".
This patch also eliminates the comparison between status and 0.
No target implementations to to_xfer_partial adapts this new
interface. The interface still behaves as before.
gdb:
2014-02-11 Yao Qi <yao@codesourcery.com>
* target.h (enum target_xfer_error): Rename to ...
(enum target_xfer_status): ... it. New. All users updated.
(enum target_xfer_status) <TARGET_XFER_OK>, <TARGET_XFER_EOF>:
New.
(TARGET_XFER_STATUS_ERROR_P): New macro.
(target_xfer_error_to_string): Remove declaration.
(target_xfer_status_to_string): Declare.
(target_xfer_partial_ftype): Adjust it.
(struct target_ops) <to_xfer_partial>: Return
target_xfer_status. Add argument xfered_len. Update
comments.
* target.c (target_xfer_error_to_string): Rename to ...
(target_xfer_status_to_string): ... it. New. All callers
updated.
(target_read_live_memory): Likewise. Call target_xfer_partial
instead of target_read.
(memory_xfer_live_readonly_partial): Return
target_xfer_status. Add argument xfered_len.
(raw_memory_xfer_partial): Likewise.
(memory_xfer_partial_1): Likewise.
(memory_xfer_partial): Likewise.
(target_xfer_partial): Likewise. Check *XFERED_LEN is set
properly. Update debug message.
(default_xfer_partial, current_xfer_partial): Likewise.
(target_write_partial): Likewise.
(target_read_partial): Likewise. All callers updated.
(read_whatever_is_readable): Likewise.
(target_write_with_progress): Likewise.
(target_read_alloc_1): Likewise.
* aix-thread.c (aix_thread_xfer_partial): Likewise.
* auxv.c (procfs_xfer_auxv): Likewise.
(ld_so_xfer_auxv, memory_xfer_auxv): Likewise.
* bfd-target.c (target_bfd_xfer_partial): Likewise.
* bsd-kvm.c (bsd_kvm_xfer_partial): Likewise.
* bsd-uthread.c (bsd_uthread_xfer_partia): Likewise.
* corefile.c (read_memory): Adjust.
* corelow.c (core_xfer_partial): Likewise.
* ctf.c (ctf_xfer_partial): Likewise.
* darwin-nat.c (darwin_read_dyld_info): Likewise. All callers
updated.
(darwin_xfer_partial): Likewise.
* exec.c (section_table_xfer_memory_partial): Likewise. All
callers updated.
(exec_xfer_partial): Likewise.
* exec.h (section_table_xfer_memory_partial): Update
declaration.
* gnu-nat.c (gnu_xfer_memory): Likewise. Assert 'res' is not
negative.
(gnu_xfer_partial): Likewise.
* ia64-hpux-nat.c (ia64_hpux_xfer_memory_no_bs): Likewise.
(ia64_hpux_xfer_memory, ia64_hpux_xfer_uregs): Likewise.
(ia64_hpux_xfer_solib_got): Likewise.
* inf-ptrace.c (inf_ptrace_xfer_partial): Likewise. Change
type of 'partial_len' to ULONGEST.
* inf-ttrace.c (inf_ttrace_xfer_partial): Likewise.
* linux-nat.c (linux_xfer_siginfo ): Likewise.
(linux_nat_xfer_partial): Likewise.
(linux_proc_xfer_partial, linux_xfer_partial): Likewise.
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Likewise.
* monitor.c (monitor_xfer_memory): Likewise.
(monitor_xfer_partial): Likewise.
* procfs.c (procfs_xfer_partial): Likewise.
* record-btrace.c (record_btrace_xfer_partial): Likewise.
* record-full.c (record_full_xfer_partial): Likewise.
(record_full_core_xfer_partial): Likewise.
* remote-sim.c (gdbsim_xfer_memory): Likewise.
(gdbsim_xfer_partial): Likewise.
* remote.c (remote_write_bytes_aux): Likewise. All callers
updated.
(remote_write_bytes, remote_read_bytes): Likewise. All
callers updated.
(remote_flash_erase): Likewise. All callers updated.
(remote_write_qxfer): Likewise. All callers updated.
(remote_read_qxfer): Likewise. All callers updated.
(remote_xfer_partial): Likewise.
* rs6000-nat.c (rs6000_xfer_partial): Likewise.
(rs6000_xfer_shared_libraries): Likewise.
* sol-thread.c (sol_thread_xfer_partial): Likewise.
(sol_thread_xfer_partial): Likewise.
* sparc-nat.c (sparc_xfer_wcookie): Likewise.
(sparc_xfer_partial): Likewise.
* spu-linux-nat.c (spu_proc_xfer_spu): Likewise. All callers
updated.
(spu_xfer_partial): Likewise.
* spu-multiarch.c (spu_xfer_partial): Likewise.
* tracepoint.c (tfile_xfer_partial): Likewise.
* windows-nat.c (windows_xfer_memory): Likewise.
(windows_xfer_shared_libraries): Likewise.
(windows_xfer_partial): Likewise.
* valprint.c: Replace 'target_xfer_error' with
'target_xfer_status' in comments.
2014-01-27 20:35:33 +08:00
|
|
|
if (l < 0)
|
|
|
|
return TARGET_XFER_E_IO;
|
|
|
|
else if (l == 0)
|
|
|
|
return TARGET_XFER_EOF;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
*xfered_len = (ULONGEST) l;
|
|
|
|
return TARGET_XFER_OK;
|
|
|
|
}
|
2004-02-02 06:35:24 +08:00
|
|
|
}
|
|
|
|
|
2010-01-15 05:15:00 +08:00
|
|
|
/* This function handles access via ld.so's symbol `_dl_auxv'. */
|
|
|
|
|
Return target_xfer_status in to_xfer_partial
This patch does the conversion of to_xfer_partial from
LONGEST (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len);
to
enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
It changes to_xfer_partial return the transfer status and the transfered
length by *XFERED_LEN. Generally, the return status has three stats,
- TARGET_XFER_OK,
- TARGET_XFER_EOF,
- TARGET_XFER_E_XXXX,
See the comments to them in 'enum target_xfer_status'. Note that
Pedro suggested not name TARGET_XFER_DONE, as it is confusing,
compared with "TARGET_XFER_OK". We finally name it TARGET_XFER_EOF.
With this change, GDB core can handle unavailable data in a convenient
way.
The rationale behind this change was mentioned here
https://sourceware.org/ml/gdb-patches/2013-10/msg00761.html
Consider an object/value like this:
0 100 150 200 512
DDDDDDDDDDDxxxxxxxxxDDDDDD...DDIIIIIIIIIIII..III
where D is valid data, and xxx is unavailable data, and I is beyond
the end of the object (Invalid). Currently, if we start the
xfer at 0, requesting, say 512 bytes, we'll first get back 100 bytes.
The xfer machinery then retries fetching [100,512), and gets back
TARGET_XFER_E_UNAVAILABLE. That's sufficient when you're either
interested in either having the whole of the 512 bytes available,
or erroring out. But, in this scenario, we're interested in
the data at [150,512). The problem is that the last
TARGET_XFER_E_UNAVAILABLE gives us no indication where to
start the read next. We'd need something like:
get me [0,512) >>>
<<< here's [0,100), *xfered_len is 100, returns TARGET_XFER_OK
get me [100,512) >>> (**1)
<<< [100,150) is unavailable, *xfered_len is 50, return TARGET_XFER_E_UNAVAILABLE.
get me [150,512) >>>
<<< here's [150,200), *xfered_len is 50, return TARGET_XFER_OK.
get me [200,512) >>>
<<< no more data, return TARGET_XFER_EOF.
This naturally implies pushing down the decision of whether
to return TARGET_XFER_E_UNAVAILABLE or something else
down to the target. (Which kinds of leads back to tfile
itself reading from RO memory from file (though we could
export a function in exec.c for that that tfile delegates to,
instead of re-adding the old code).
Beside this change, we also add a macro TARGET_XFER_STATUS_ERROR_P to
check whether a status is an error or not, to stop using "status < 0".
This patch also eliminates the comparison between status and 0.
No target implementations to to_xfer_partial adapts this new
interface. The interface still behaves as before.
gdb:
2014-02-11 Yao Qi <yao@codesourcery.com>
* target.h (enum target_xfer_error): Rename to ...
(enum target_xfer_status): ... it. New. All users updated.
(enum target_xfer_status) <TARGET_XFER_OK>, <TARGET_XFER_EOF>:
New.
(TARGET_XFER_STATUS_ERROR_P): New macro.
(target_xfer_error_to_string): Remove declaration.
(target_xfer_status_to_string): Declare.
(target_xfer_partial_ftype): Adjust it.
(struct target_ops) <to_xfer_partial>: Return
target_xfer_status. Add argument xfered_len. Update
comments.
* target.c (target_xfer_error_to_string): Rename to ...
(target_xfer_status_to_string): ... it. New. All callers
updated.
(target_read_live_memory): Likewise. Call target_xfer_partial
instead of target_read.
(memory_xfer_live_readonly_partial): Return
target_xfer_status. Add argument xfered_len.
(raw_memory_xfer_partial): Likewise.
(memory_xfer_partial_1): Likewise.
(memory_xfer_partial): Likewise.
(target_xfer_partial): Likewise. Check *XFERED_LEN is set
properly. Update debug message.
(default_xfer_partial, current_xfer_partial): Likewise.
(target_write_partial): Likewise.
(target_read_partial): Likewise. All callers updated.
(read_whatever_is_readable): Likewise.
(target_write_with_progress): Likewise.
(target_read_alloc_1): Likewise.
* aix-thread.c (aix_thread_xfer_partial): Likewise.
* auxv.c (procfs_xfer_auxv): Likewise.
(ld_so_xfer_auxv, memory_xfer_auxv): Likewise.
* bfd-target.c (target_bfd_xfer_partial): Likewise.
* bsd-kvm.c (bsd_kvm_xfer_partial): Likewise.
* bsd-uthread.c (bsd_uthread_xfer_partia): Likewise.
* corefile.c (read_memory): Adjust.
* corelow.c (core_xfer_partial): Likewise.
* ctf.c (ctf_xfer_partial): Likewise.
* darwin-nat.c (darwin_read_dyld_info): Likewise. All callers
updated.
(darwin_xfer_partial): Likewise.
* exec.c (section_table_xfer_memory_partial): Likewise. All
callers updated.
(exec_xfer_partial): Likewise.
* exec.h (section_table_xfer_memory_partial): Update
declaration.
* gnu-nat.c (gnu_xfer_memory): Likewise. Assert 'res' is not
negative.
(gnu_xfer_partial): Likewise.
* ia64-hpux-nat.c (ia64_hpux_xfer_memory_no_bs): Likewise.
(ia64_hpux_xfer_memory, ia64_hpux_xfer_uregs): Likewise.
(ia64_hpux_xfer_solib_got): Likewise.
* inf-ptrace.c (inf_ptrace_xfer_partial): Likewise. Change
type of 'partial_len' to ULONGEST.
* inf-ttrace.c (inf_ttrace_xfer_partial): Likewise.
* linux-nat.c (linux_xfer_siginfo ): Likewise.
(linux_nat_xfer_partial): Likewise.
(linux_proc_xfer_partial, linux_xfer_partial): Likewise.
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Likewise.
* monitor.c (monitor_xfer_memory): Likewise.
(monitor_xfer_partial): Likewise.
* procfs.c (procfs_xfer_partial): Likewise.
* record-btrace.c (record_btrace_xfer_partial): Likewise.
* record-full.c (record_full_xfer_partial): Likewise.
(record_full_core_xfer_partial): Likewise.
* remote-sim.c (gdbsim_xfer_memory): Likewise.
(gdbsim_xfer_partial): Likewise.
* remote.c (remote_write_bytes_aux): Likewise. All callers
updated.
(remote_write_bytes, remote_read_bytes): Likewise. All
callers updated.
(remote_flash_erase): Likewise. All callers updated.
(remote_write_qxfer): Likewise. All callers updated.
(remote_read_qxfer): Likewise. All callers updated.
(remote_xfer_partial): Likewise.
* rs6000-nat.c (rs6000_xfer_partial): Likewise.
(rs6000_xfer_shared_libraries): Likewise.
* sol-thread.c (sol_thread_xfer_partial): Likewise.
(sol_thread_xfer_partial): Likewise.
* sparc-nat.c (sparc_xfer_wcookie): Likewise.
(sparc_xfer_partial): Likewise.
* spu-linux-nat.c (spu_proc_xfer_spu): Likewise. All callers
updated.
(spu_xfer_partial): Likewise.
* spu-multiarch.c (spu_xfer_partial): Likewise.
* tracepoint.c (tfile_xfer_partial): Likewise.
* windows-nat.c (windows_xfer_memory): Likewise.
(windows_xfer_shared_libraries): Likewise.
(windows_xfer_partial): Likewise.
* valprint.c: Replace 'target_xfer_error' with
'target_xfer_status' in comments.
2014-01-27 20:35:33 +08:00
|
|
|
static enum target_xfer_status
|
2010-01-15 05:15:00 +08:00
|
|
|
ld_so_xfer_auxv (gdb_byte *readbuf,
|
|
|
|
const gdb_byte *writebuf,
|
|
|
|
ULONGEST offset,
|
Return target_xfer_status in to_xfer_partial
This patch does the conversion of to_xfer_partial from
LONGEST (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len);
to
enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
It changes to_xfer_partial return the transfer status and the transfered
length by *XFERED_LEN. Generally, the return status has three stats,
- TARGET_XFER_OK,
- TARGET_XFER_EOF,
- TARGET_XFER_E_XXXX,
See the comments to them in 'enum target_xfer_status'. Note that
Pedro suggested not name TARGET_XFER_DONE, as it is confusing,
compared with "TARGET_XFER_OK". We finally name it TARGET_XFER_EOF.
With this change, GDB core can handle unavailable data in a convenient
way.
The rationale behind this change was mentioned here
https://sourceware.org/ml/gdb-patches/2013-10/msg00761.html
Consider an object/value like this:
0 100 150 200 512
DDDDDDDDDDDxxxxxxxxxDDDDDD...DDIIIIIIIIIIII..III
where D is valid data, and xxx is unavailable data, and I is beyond
the end of the object (Invalid). Currently, if we start the
xfer at 0, requesting, say 512 bytes, we'll first get back 100 bytes.
The xfer machinery then retries fetching [100,512), and gets back
TARGET_XFER_E_UNAVAILABLE. That's sufficient when you're either
interested in either having the whole of the 512 bytes available,
or erroring out. But, in this scenario, we're interested in
the data at [150,512). The problem is that the last
TARGET_XFER_E_UNAVAILABLE gives us no indication where to
start the read next. We'd need something like:
get me [0,512) >>>
<<< here's [0,100), *xfered_len is 100, returns TARGET_XFER_OK
get me [100,512) >>> (**1)
<<< [100,150) is unavailable, *xfered_len is 50, return TARGET_XFER_E_UNAVAILABLE.
get me [150,512) >>>
<<< here's [150,200), *xfered_len is 50, return TARGET_XFER_OK.
get me [200,512) >>>
<<< no more data, return TARGET_XFER_EOF.
This naturally implies pushing down the decision of whether
to return TARGET_XFER_E_UNAVAILABLE or something else
down to the target. (Which kinds of leads back to tfile
itself reading from RO memory from file (though we could
export a function in exec.c for that that tfile delegates to,
instead of re-adding the old code).
Beside this change, we also add a macro TARGET_XFER_STATUS_ERROR_P to
check whether a status is an error or not, to stop using "status < 0".
This patch also eliminates the comparison between status and 0.
No target implementations to to_xfer_partial adapts this new
interface. The interface still behaves as before.
gdb:
2014-02-11 Yao Qi <yao@codesourcery.com>
* target.h (enum target_xfer_error): Rename to ...
(enum target_xfer_status): ... it. New. All users updated.
(enum target_xfer_status) <TARGET_XFER_OK>, <TARGET_XFER_EOF>:
New.
(TARGET_XFER_STATUS_ERROR_P): New macro.
(target_xfer_error_to_string): Remove declaration.
(target_xfer_status_to_string): Declare.
(target_xfer_partial_ftype): Adjust it.
(struct target_ops) <to_xfer_partial>: Return
target_xfer_status. Add argument xfered_len. Update
comments.
* target.c (target_xfer_error_to_string): Rename to ...
(target_xfer_status_to_string): ... it. New. All callers
updated.
(target_read_live_memory): Likewise. Call target_xfer_partial
instead of target_read.
(memory_xfer_live_readonly_partial): Return
target_xfer_status. Add argument xfered_len.
(raw_memory_xfer_partial): Likewise.
(memory_xfer_partial_1): Likewise.
(memory_xfer_partial): Likewise.
(target_xfer_partial): Likewise. Check *XFERED_LEN is set
properly. Update debug message.
(default_xfer_partial, current_xfer_partial): Likewise.
(target_write_partial): Likewise.
(target_read_partial): Likewise. All callers updated.
(read_whatever_is_readable): Likewise.
(target_write_with_progress): Likewise.
(target_read_alloc_1): Likewise.
* aix-thread.c (aix_thread_xfer_partial): Likewise.
* auxv.c (procfs_xfer_auxv): Likewise.
(ld_so_xfer_auxv, memory_xfer_auxv): Likewise.
* bfd-target.c (target_bfd_xfer_partial): Likewise.
* bsd-kvm.c (bsd_kvm_xfer_partial): Likewise.
* bsd-uthread.c (bsd_uthread_xfer_partia): Likewise.
* corefile.c (read_memory): Adjust.
* corelow.c (core_xfer_partial): Likewise.
* ctf.c (ctf_xfer_partial): Likewise.
* darwin-nat.c (darwin_read_dyld_info): Likewise. All callers
updated.
(darwin_xfer_partial): Likewise.
* exec.c (section_table_xfer_memory_partial): Likewise. All
callers updated.
(exec_xfer_partial): Likewise.
* exec.h (section_table_xfer_memory_partial): Update
declaration.
* gnu-nat.c (gnu_xfer_memory): Likewise. Assert 'res' is not
negative.
(gnu_xfer_partial): Likewise.
* ia64-hpux-nat.c (ia64_hpux_xfer_memory_no_bs): Likewise.
(ia64_hpux_xfer_memory, ia64_hpux_xfer_uregs): Likewise.
(ia64_hpux_xfer_solib_got): Likewise.
* inf-ptrace.c (inf_ptrace_xfer_partial): Likewise. Change
type of 'partial_len' to ULONGEST.
* inf-ttrace.c (inf_ttrace_xfer_partial): Likewise.
* linux-nat.c (linux_xfer_siginfo ): Likewise.
(linux_nat_xfer_partial): Likewise.
(linux_proc_xfer_partial, linux_xfer_partial): Likewise.
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Likewise.
* monitor.c (monitor_xfer_memory): Likewise.
(monitor_xfer_partial): Likewise.
* procfs.c (procfs_xfer_partial): Likewise.
* record-btrace.c (record_btrace_xfer_partial): Likewise.
* record-full.c (record_full_xfer_partial): Likewise.
(record_full_core_xfer_partial): Likewise.
* remote-sim.c (gdbsim_xfer_memory): Likewise.
(gdbsim_xfer_partial): Likewise.
* remote.c (remote_write_bytes_aux): Likewise. All callers
updated.
(remote_write_bytes, remote_read_bytes): Likewise. All
callers updated.
(remote_flash_erase): Likewise. All callers updated.
(remote_write_qxfer): Likewise. All callers updated.
(remote_read_qxfer): Likewise. All callers updated.
(remote_xfer_partial): Likewise.
* rs6000-nat.c (rs6000_xfer_partial): Likewise.
(rs6000_xfer_shared_libraries): Likewise.
* sol-thread.c (sol_thread_xfer_partial): Likewise.
(sol_thread_xfer_partial): Likewise.
* sparc-nat.c (sparc_xfer_wcookie): Likewise.
(sparc_xfer_partial): Likewise.
* spu-linux-nat.c (spu_proc_xfer_spu): Likewise. All callers
updated.
(spu_xfer_partial): Likewise.
* spu-multiarch.c (spu_xfer_partial): Likewise.
* tracepoint.c (tfile_xfer_partial): Likewise.
* windows-nat.c (windows_xfer_memory): Likewise.
(windows_xfer_shared_libraries): Likewise.
(windows_xfer_partial): Likewise.
* valprint.c: Replace 'target_xfer_error' with
'target_xfer_status' in comments.
2014-01-27 20:35:33 +08:00
|
|
|
ULONGEST len, ULONGEST *xfered_len)
|
2010-01-15 05:15:00 +08:00
|
|
|
{
|
use bound_minsym as result for lookup_minimal_symbol et al
This patch changes a few minimal symbol lookup functions to return a
bound_minimal_symbol rather than a pointer to the minsym. This change
helps prepare gdb for computing a minimal symbol's address at the
point of use.
Note that this changes even those functions that ostensibly search a
single objfile. That was necessary because, in fact, those functions
can search an objfile and its separate debug objfiles; and it is
important for the caller to know in which objfile the minimal symbol
was actually found.
The bulk of this patch is mechanical.
2014-02-26 Tom Tromey <tromey@redhat.com>
* ada-lang.c (ada_update_initial_language): Update.
(ada_main_name, ada_has_this_exception_support): Update.
* ada-tasks.c (ada_tasks_inferior_data_sniffer): Update.
* aix-thread.c (pdc_symbol_addrs, pd_enable): Update.
* arm-tdep.c (arm_skip_stub): Update.
* auxv.c (ld_so_xfer_auxv): Update.
* avr-tdep.c (avr_scan_prologue): Update.
* ax-gdb.c (gen_var_ref): Update.
* breakpoint.c (struct breakpoint_objfile_data)
<overlay_msym, longjmp_msym, terminate_msym, exception_msym>: Change
type to bound_minimal_symbol.
(create_overlay_event_breakpoint)
(create_longjmp_master_breakpoint)
(create_std_terminate_master_breakpoint)
(create_exception_master_breakpoint): Update.
* bsd-uthread.c (bsd_uthread_lookup_address): Update.
* c-exp.y (classify_name): Update.
* coffread.c (coff_symfile_read): Update.
* common/agent.c (agent_look_up_symbols): Update.
* d-lang.c (d_main_name): Update.
* dbxread.c (find_stab_function_addr, end_psymtab): Update.
* dec-thread.c (enable_dec_thread): Update.
* dwarf2loc.c (call_site_to_target_addr): Update.
* elfread.c (elf_gnu_ifunc_resolve_by_got): Update.
* eval.c (evaluate_subexp_standard): Update.
* findvar.c (struct minsym_lookup_data) <result>: Change type
to bound_minimal_symbol.
<objfile>: Remove.
(minsym_lookup_iterator_cb, default_read_var_value): Update.
* frame.c (inside_main_func): Update.
* frv-tdep.c (frv_frame_this_id): Update.
* gcore.c (call_target_sbrk): Update.
* glibc-tdep.c (glibc_skip_solib_resolver): Update.
* gnu-v3-abi.c (gnuv3_get_typeid, gnuv3_skip_trampoline):
Update.
* go-lang.c (go_main_name): Update.
* hppa-hpux-tdep.c (hppa_hpux_skip_trampoline_code)
(hppa_hpux_find_import_stub_for_addr): Update.
* hppa-tdep.c (hppa_extract_17, hppa_lookup_stub_minimal_symbol):
Update. Change return type.
* hppa-tdep.h (hppa_lookup_stub_minimal_symbol): Change return
type.
* jit.c (jit_breakpoint_re_set_internal): Update.
* linux-fork.c (inferior_call_waitpid, checkpoint_command):
Update.
* linux-nat.c (get_signo): Update.
* linux-thread-db.c (inferior_has_bug): Update
* m32c-tdep.c (m32c_return_value)
(m32c_m16c_address_to_pointer): Update.
* m32r-tdep.c (m32r_frame_this_id): Update.
* m68hc11-tdep.c (m68hc11_get_register_info): Update.
* machoread.c (macho_resolve_oso_sym_with_minsym): Update.
* minsyms.c (lookup_minimal_symbol_internal): Rename to
lookup_minimal_symbol. Change return type.
(lookup_minimal_symbol): Remove.
(lookup_bound_minimal_symbol): Update.
(lookup_minimal_symbol_text): Change return type.
(lookup_minimal_symbol_solib_trampoline): Change return type.
* minsyms.h (lookup_minimal_symbol, lookup_minimal_symbol_text)
(lookup_minimal_symbol_solib_trampoline): Change return type.
* mips-linux-tdep.c (mips_linux_skip_resolver): Update.
* objc-lang.c (lookup_objc_class, lookup_child_selector)
(value_nsstring, find_imps): Update.
* obsd-tdep.c (obsd_skip_solib_resolver): Update.
* p-lang.c (pascal_main_name): Update.
* ppc-linux-tdep.c (ppc_linux_spe_context_lookup): Update.
* ppc-sysv-tdep.c (convert_code_addr_to_desc_addr): Update.
* proc-service.c (ps_pglobal_lookup): Update.
* ravenscar-thread.c (get_running_thread_msymbol): Change
return type.
(has_ravenscar_runtime, get_running_thread_id): Update.
* remote.c (remote_check_symbols): Update.
* sol-thread.c (ps_pglobal_lookup): Update.
* sol2-tdep.c (sol2_skip_solib_resolver): Update.
* solib-dsbt.c (lm_base): Update.
* solib-frv.c (lm_base, frv_relocate_section_addresses):
Update.
* solib-irix.c (locate_base): Update.
* solib-som.c (som_solib_create_inferior_hook)
(som_solib_desire_dynamic_linker_symbols, link_map_start):
Update.
* solib-spu.c (spu_enable_break): Update.
* solib-svr4.c (elf_locate_base, enable_break): Update.
* spu-tdep.c (spu_get_overlay_table, spu_catch_start)
(flush_ea_cache): Update.
* stabsread.c (define_symbol): Update.
* symfile.c (simple_read_overlay_table): Update.
* symtab.c (find_pc_sect_line): Update.
* tracepoint.c (scope_info): Update.
* tui-disasm.c (tui_get_begin_asm_address): Update.
* value.c (value_static_field): Update.
2013-10-15 09:53:29 +08:00
|
|
|
struct bound_minimal_symbol msym;
|
2010-01-15 05:15:00 +08:00
|
|
|
CORE_ADDR data_address, pointer_address;
|
* gdbarch.sh (target_gdbarch): Remove macro.
(get_target_gdbarch): Rename to target_gdbarch.
* gdbarch.c, gdbarch.h: Rebuild.
* ada-tasks.c, aix-thread.c, amd64-linux-nat.c, arch-utils.c,
arm-tdep.c, auxv.c, breakpoint.c, bsd-uthread.c, corefile.c,
darwin-nat-info.c, dcache.c, dsrec.c, exec.c, fbsd-nat.c,
filesystem.c, gcore.c, gnu-nat.c, i386-darwin-nat.c, i386-nat.c,
ia64-vms-tdep.c, inf-ptrace.c, infcmd.c, jit.c, linux-nat.c,
linux-tdep.c, linux-thread-db.c, m32r-rom.c, memattr.c,
mep-tdep.c, microblaze-tdep.c, mips-linux-nat.c,
mips-linux-tdep.c, mips-tdep.c, monitor.c, moxie-tdep.c,
nto-procfs.c, nto-tdep.c, ppc-linux-nat.c, proc-service.c,
procfs.c, progspace.c, ravenscar-thread.c, record.c,
remote-m32r-sdi.c, remote-mips.c, remote-sim.c, remote.c,
rl78-tdep.c, rs6000-nat.c, rx-tdep.c, s390-nat.c, sol-thread.c,
solib-darwin.c, solib-dsbt.c, solib-frv.c, solib-ia64-hpux.c,
solib-irix.c, solib-pa64.c, solib-som.c, solib-spu.c,
solib-sunos.c, solib-svr4.c, solib.c, spu-linux-nat.c,
spu-multiarch.c, spu-tdep.c, symfile-mem.c, symfile.c, symtab.c,
target-descriptions.c, target.c, target.h, tracepoint.c,
windows-nat.c, windows-tdep.c, xcoffsolib.c, cli/cli-dump.c,
common/agent.c, mi/mi-interp.c, python/py-finishbreakpoint.c,
python/py-inferior.c, python/python.c: Update.
2012-11-10 03:58:03 +08:00
|
|
|
struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
|
2010-01-15 05:15:00 +08:00
|
|
|
size_t ptr_size = TYPE_LENGTH (ptr_type);
|
|
|
|
size_t auxv_pair_size = 2 * ptr_size;
|
2015-09-26 02:08:06 +08:00
|
|
|
gdb_byte *ptr_buf = (gdb_byte *) alloca (ptr_size);
|
2010-01-15 05:15:00 +08:00
|
|
|
LONGEST retval;
|
|
|
|
size_t block;
|
|
|
|
|
|
|
|
msym = lookup_minimal_symbol ("_dl_auxv", NULL, NULL);
|
use bound_minsym as result for lookup_minimal_symbol et al
This patch changes a few minimal symbol lookup functions to return a
bound_minimal_symbol rather than a pointer to the minsym. This change
helps prepare gdb for computing a minimal symbol's address at the
point of use.
Note that this changes even those functions that ostensibly search a
single objfile. That was necessary because, in fact, those functions
can search an objfile and its separate debug objfiles; and it is
important for the caller to know in which objfile the minimal symbol
was actually found.
The bulk of this patch is mechanical.
2014-02-26 Tom Tromey <tromey@redhat.com>
* ada-lang.c (ada_update_initial_language): Update.
(ada_main_name, ada_has_this_exception_support): Update.
* ada-tasks.c (ada_tasks_inferior_data_sniffer): Update.
* aix-thread.c (pdc_symbol_addrs, pd_enable): Update.
* arm-tdep.c (arm_skip_stub): Update.
* auxv.c (ld_so_xfer_auxv): Update.
* avr-tdep.c (avr_scan_prologue): Update.
* ax-gdb.c (gen_var_ref): Update.
* breakpoint.c (struct breakpoint_objfile_data)
<overlay_msym, longjmp_msym, terminate_msym, exception_msym>: Change
type to bound_minimal_symbol.
(create_overlay_event_breakpoint)
(create_longjmp_master_breakpoint)
(create_std_terminate_master_breakpoint)
(create_exception_master_breakpoint): Update.
* bsd-uthread.c (bsd_uthread_lookup_address): Update.
* c-exp.y (classify_name): Update.
* coffread.c (coff_symfile_read): Update.
* common/agent.c (agent_look_up_symbols): Update.
* d-lang.c (d_main_name): Update.
* dbxread.c (find_stab_function_addr, end_psymtab): Update.
* dec-thread.c (enable_dec_thread): Update.
* dwarf2loc.c (call_site_to_target_addr): Update.
* elfread.c (elf_gnu_ifunc_resolve_by_got): Update.
* eval.c (evaluate_subexp_standard): Update.
* findvar.c (struct minsym_lookup_data) <result>: Change type
to bound_minimal_symbol.
<objfile>: Remove.
(minsym_lookup_iterator_cb, default_read_var_value): Update.
* frame.c (inside_main_func): Update.
* frv-tdep.c (frv_frame_this_id): Update.
* gcore.c (call_target_sbrk): Update.
* glibc-tdep.c (glibc_skip_solib_resolver): Update.
* gnu-v3-abi.c (gnuv3_get_typeid, gnuv3_skip_trampoline):
Update.
* go-lang.c (go_main_name): Update.
* hppa-hpux-tdep.c (hppa_hpux_skip_trampoline_code)
(hppa_hpux_find_import_stub_for_addr): Update.
* hppa-tdep.c (hppa_extract_17, hppa_lookup_stub_minimal_symbol):
Update. Change return type.
* hppa-tdep.h (hppa_lookup_stub_minimal_symbol): Change return
type.
* jit.c (jit_breakpoint_re_set_internal): Update.
* linux-fork.c (inferior_call_waitpid, checkpoint_command):
Update.
* linux-nat.c (get_signo): Update.
* linux-thread-db.c (inferior_has_bug): Update
* m32c-tdep.c (m32c_return_value)
(m32c_m16c_address_to_pointer): Update.
* m32r-tdep.c (m32r_frame_this_id): Update.
* m68hc11-tdep.c (m68hc11_get_register_info): Update.
* machoread.c (macho_resolve_oso_sym_with_minsym): Update.
* minsyms.c (lookup_minimal_symbol_internal): Rename to
lookup_minimal_symbol. Change return type.
(lookup_minimal_symbol): Remove.
(lookup_bound_minimal_symbol): Update.
(lookup_minimal_symbol_text): Change return type.
(lookup_minimal_symbol_solib_trampoline): Change return type.
* minsyms.h (lookup_minimal_symbol, lookup_minimal_symbol_text)
(lookup_minimal_symbol_solib_trampoline): Change return type.
* mips-linux-tdep.c (mips_linux_skip_resolver): Update.
* objc-lang.c (lookup_objc_class, lookup_child_selector)
(value_nsstring, find_imps): Update.
* obsd-tdep.c (obsd_skip_solib_resolver): Update.
* p-lang.c (pascal_main_name): Update.
* ppc-linux-tdep.c (ppc_linux_spe_context_lookup): Update.
* ppc-sysv-tdep.c (convert_code_addr_to_desc_addr): Update.
* proc-service.c (ps_pglobal_lookup): Update.
* ravenscar-thread.c (get_running_thread_msymbol): Change
return type.
(has_ravenscar_runtime, get_running_thread_id): Update.
* remote.c (remote_check_symbols): Update.
* sol-thread.c (ps_pglobal_lookup): Update.
* sol2-tdep.c (sol2_skip_solib_resolver): Update.
* solib-dsbt.c (lm_base): Update.
* solib-frv.c (lm_base, frv_relocate_section_addresses):
Update.
* solib-irix.c (locate_base): Update.
* solib-som.c (som_solib_create_inferior_hook)
(som_solib_desire_dynamic_linker_symbols, link_map_start):
Update.
* solib-spu.c (spu_enable_break): Update.
* solib-svr4.c (elf_locate_base, enable_break): Update.
* spu-tdep.c (spu_get_overlay_table, spu_catch_start)
(flush_ea_cache): Update.
* stabsread.c (define_symbol): Update.
* symfile.c (simple_read_overlay_table): Update.
* symtab.c (find_pc_sect_line): Update.
* tracepoint.c (scope_info): Update.
* tui-disasm.c (tui_get_begin_asm_address): Update.
* value.c (value_static_field): Update.
2013-10-15 09:53:29 +08:00
|
|
|
if (msym.minsym == NULL)
|
2014-01-27 17:32:33 +08:00
|
|
|
return TARGET_XFER_E_IO;
|
2010-01-15 05:15:00 +08:00
|
|
|
|
use bound_minsym as result for lookup_minimal_symbol et al
This patch changes a few minimal symbol lookup functions to return a
bound_minimal_symbol rather than a pointer to the minsym. This change
helps prepare gdb for computing a minimal symbol's address at the
point of use.
Note that this changes even those functions that ostensibly search a
single objfile. That was necessary because, in fact, those functions
can search an objfile and its separate debug objfiles; and it is
important for the caller to know in which objfile the minimal symbol
was actually found.
The bulk of this patch is mechanical.
2014-02-26 Tom Tromey <tromey@redhat.com>
* ada-lang.c (ada_update_initial_language): Update.
(ada_main_name, ada_has_this_exception_support): Update.
* ada-tasks.c (ada_tasks_inferior_data_sniffer): Update.
* aix-thread.c (pdc_symbol_addrs, pd_enable): Update.
* arm-tdep.c (arm_skip_stub): Update.
* auxv.c (ld_so_xfer_auxv): Update.
* avr-tdep.c (avr_scan_prologue): Update.
* ax-gdb.c (gen_var_ref): Update.
* breakpoint.c (struct breakpoint_objfile_data)
<overlay_msym, longjmp_msym, terminate_msym, exception_msym>: Change
type to bound_minimal_symbol.
(create_overlay_event_breakpoint)
(create_longjmp_master_breakpoint)
(create_std_terminate_master_breakpoint)
(create_exception_master_breakpoint): Update.
* bsd-uthread.c (bsd_uthread_lookup_address): Update.
* c-exp.y (classify_name): Update.
* coffread.c (coff_symfile_read): Update.
* common/agent.c (agent_look_up_symbols): Update.
* d-lang.c (d_main_name): Update.
* dbxread.c (find_stab_function_addr, end_psymtab): Update.
* dec-thread.c (enable_dec_thread): Update.
* dwarf2loc.c (call_site_to_target_addr): Update.
* elfread.c (elf_gnu_ifunc_resolve_by_got): Update.
* eval.c (evaluate_subexp_standard): Update.
* findvar.c (struct minsym_lookup_data) <result>: Change type
to bound_minimal_symbol.
<objfile>: Remove.
(minsym_lookup_iterator_cb, default_read_var_value): Update.
* frame.c (inside_main_func): Update.
* frv-tdep.c (frv_frame_this_id): Update.
* gcore.c (call_target_sbrk): Update.
* glibc-tdep.c (glibc_skip_solib_resolver): Update.
* gnu-v3-abi.c (gnuv3_get_typeid, gnuv3_skip_trampoline):
Update.
* go-lang.c (go_main_name): Update.
* hppa-hpux-tdep.c (hppa_hpux_skip_trampoline_code)
(hppa_hpux_find_import_stub_for_addr): Update.
* hppa-tdep.c (hppa_extract_17, hppa_lookup_stub_minimal_symbol):
Update. Change return type.
* hppa-tdep.h (hppa_lookup_stub_minimal_symbol): Change return
type.
* jit.c (jit_breakpoint_re_set_internal): Update.
* linux-fork.c (inferior_call_waitpid, checkpoint_command):
Update.
* linux-nat.c (get_signo): Update.
* linux-thread-db.c (inferior_has_bug): Update
* m32c-tdep.c (m32c_return_value)
(m32c_m16c_address_to_pointer): Update.
* m32r-tdep.c (m32r_frame_this_id): Update.
* m68hc11-tdep.c (m68hc11_get_register_info): Update.
* machoread.c (macho_resolve_oso_sym_with_minsym): Update.
* minsyms.c (lookup_minimal_symbol_internal): Rename to
lookup_minimal_symbol. Change return type.
(lookup_minimal_symbol): Remove.
(lookup_bound_minimal_symbol): Update.
(lookup_minimal_symbol_text): Change return type.
(lookup_minimal_symbol_solib_trampoline): Change return type.
* minsyms.h (lookup_minimal_symbol, lookup_minimal_symbol_text)
(lookup_minimal_symbol_solib_trampoline): Change return type.
* mips-linux-tdep.c (mips_linux_skip_resolver): Update.
* objc-lang.c (lookup_objc_class, lookup_child_selector)
(value_nsstring, find_imps): Update.
* obsd-tdep.c (obsd_skip_solib_resolver): Update.
* p-lang.c (pascal_main_name): Update.
* ppc-linux-tdep.c (ppc_linux_spe_context_lookup): Update.
* ppc-sysv-tdep.c (convert_code_addr_to_desc_addr): Update.
* proc-service.c (ps_pglobal_lookup): Update.
* ravenscar-thread.c (get_running_thread_msymbol): Change
return type.
(has_ravenscar_runtime, get_running_thread_id): Update.
* remote.c (remote_check_symbols): Update.
* sol-thread.c (ps_pglobal_lookup): Update.
* sol2-tdep.c (sol2_skip_solib_resolver): Update.
* solib-dsbt.c (lm_base): Update.
* solib-frv.c (lm_base, frv_relocate_section_addresses):
Update.
* solib-irix.c (locate_base): Update.
* solib-som.c (som_solib_create_inferior_hook)
(som_solib_desire_dynamic_linker_symbols, link_map_start):
Update.
* solib-spu.c (spu_enable_break): Update.
* solib-svr4.c (elf_locate_base, enable_break): Update.
* spu-tdep.c (spu_get_overlay_table, spu_catch_start)
(flush_ea_cache): Update.
* stabsread.c (define_symbol): Update.
* symfile.c (simple_read_overlay_table): Update.
* symtab.c (find_pc_sect_line): Update.
* tracepoint.c (scope_info): Update.
* tui-disasm.c (tui_get_begin_asm_address): Update.
* value.c (value_static_field): Update.
2013-10-15 09:53:29 +08:00
|
|
|
if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
|
2014-01-27 17:32:33 +08:00
|
|
|
return TARGET_XFER_E_IO;
|
2010-01-15 05:15:00 +08:00
|
|
|
|
2011-01-01 03:16:37 +08:00
|
|
|
/* POINTER_ADDRESS is a location where the `_dl_auxv' variable
|
|
|
|
resides. DATA_ADDRESS is the inferior value present in
|
|
|
|
`_dl_auxv', therefore the real inferior AUXV address. */
|
2010-01-15 05:15:00 +08:00
|
|
|
|
start change to progspace independence
This patch starts changing minimal symbols to be independent of the
program space.
Specifically, it adds a new objfile parameter to MSYMBOL_VALUE_ADDRESS
and changes all the code to use it. This is needed so we can change
gdb to apply the section offset when a minsym's address is computed,
as opposed to baking the offsets into the symbol itself.
A few spots still need the unrelocated address. For these, we
introduce MSYMBOL_VALUE_RAW_ADDRESS.
As a convenience, we also add the new macro BMSYMBOL_VALUE_ADDRESS,
which computes the address of a bound minimal symbol. This just does
the obvious thing with the fields.
Note that this change does not actually enable program space
independence. That requires more changes to gdb. However, to ensure
that these changes compile properly, this patch does add the needed
section lookup code to MSYMBOL_VALUE_ADDRESS -- it just ensures it has
no effect at runtime by multiplying the offset by 0.
2014-02-26 Tom Tromey <tromey@redhat.com>
* ada-lang.c (ada_main_name): Update.
(ada_add_standard_exceptions): Update.
* ada-tasks.c (ada_tasks_inferior_data_sniffer): Update.
* aix-thread.c (pdc_symbol_addrs, pd_enable): Update.
* arm-tdep.c (skip_prologue_function, arm_skip_stub): Update.
* auxv.c (ld_so_xfer_auxv): Update.
* avr-tdep.c (avr_scan_prologue): Update.
* ax-gdb.c (gen_var_ref): Update.
* blockframe.c (get_pc_function_start)
(find_pc_partial_function_gnu_ifunc): Update.
* breakpoint.c (create_overlay_event_breakpoint)
(create_longjmp_master_breakpoint)
(create_std_terminate_master_breakpoint)
(create_exception_master_breakpoint): Update.
* bsd-uthread.c (bsd_uthread_lookup_address): Update.
* c-valprint.c (c_val_print): Update.
* coff-pe-read.c (add_pe_forwarded_sym): Update.
* common/agent.c (agent_look_up_symbols): Update.
* dbxread.c (find_stab_function_addr, end_psymtab): Update.
* dwarf2loc.c (call_site_to_target_addr): Update.
* dwarf2read.c (dw2_find_pc_sect_symtab): Update.
* elfread.c (elf_gnu_ifunc_record_cache)
(elf_gnu_ifunc_resolve_by_got): Update.
* findvar.c (default_read_var_value): Update.
* frame.c (inside_main_func): Update.
* frv-tdep.c (frv_frame_this_id): Update.
* glibc-tdep.c (glibc_skip_solib_resolver): Update.
* gnu-v3-abi.c (gnuv3_get_typeid, gnuv3_skip_trampoline):
Update.
* hppa-hpux-tdep.c (hppa64_hpux_search_dummy_call_sequence)
(hppa_hpux_find_dummy_bpaddr): Update.
* hppa-tdep.c (hppa_symbol_address): Update.
* infcmd.c (until_next_command): Update.
* jit.c (jit_read_descriptor, jit_breakpoint_re_set_internal):
Update.
* linespec.c (minsym_found, add_minsym): Update.
* linux-nat.c (get_signo): Update.
* linux-thread-db.c (inferior_has_bug): Update.
* m32c-tdep.c (m32c_return_value)
(m32c_m16c_address_to_pointer): Update.
* m32r-tdep.c (m32r_frame_this_id): Update.
* m68hc11-tdep.c (m68hc11_get_register_info): Update.
* machoread.c (macho_resolve_oso_sym_with_minsym): Update.
* maint.c (maintenance_translate_address): Update.
* minsyms.c (lookup_minimal_symbol_by_pc_name): Update.
(frob_address): New function.
(lookup_minimal_symbol_by_pc_section_1): Use raw addresses,
frob_address. Rename parameter to "pc_in".
(compare_minimal_symbols, compact_minimal_symbols): Use raw
addresses.
(find_solib_trampoline_target, minimal_symbol_upper_bound):
Update.
* mips-linux-tdep.c (mips_linux_skip_resolver): Update.
* mips-tdep.c (mips_skip_pic_trampoline_code): Update.
* objc-lang.c (find_objc_msgsend): Update.
* objfiles.c (objfile_relocate1): Update.
* obsd-tdep.c (obsd_skip_solib_resolver): Update.
* p-valprint.c (pascal_val_print): Update.
* parse.c (write_exp_msymbol): Update.
* ppc-linux-tdep.c (ppc_linux_spe_context_lookup)
(ppc_elfv2_skip_entrypoint): Update.
* ppc-sysv-tdep.c (convert_code_addr_to_desc_addr): Update.
* printcmd.c (build_address_symbolic, msym_info)
(address_info): Update.
* proc-service.c (ps_pglobal_lookup): Update.
* psymtab.c (find_pc_sect_psymtab_closer)
(find_pc_sect_psymtab, find_pc_sect_symtab_from_partial):
Change msymbol parameter to bound_minimal_symbol.
* ravenscar-thread.c (get_running_thread_id): Update.
* remote.c (remote_check_symbols): Update.
* sh64-tdep.c (sh64_elf_make_msymbol_special): Use raw
address.
* sol2-tdep.c (sol2_skip_solib_resolver): Update.
* solib-dsbt.c (lm_base): Update.
* solib-frv.c (lm_base, main_got): Update.
* solib-irix.c (locate_base): Update.
* solib-som.c (som_solib_create_inferior_hook)
(link_map_start): Update.
* solib-spu.c (spu_enable_break, ocl_enable_break): Update.
* solib-svr4.c (elf_locate_base, enable_break): Update.
* spu-tdep.c (spu_get_overlay_table, spu_catch_start)
(flush_ea_cache): Update.
* stabsread.c (define_symbol, scan_file_globals): Update.
* stack.c (find_frame_funname): Update.
* symfile-debug.c (debug_qf_expand_symtabs_matching)
(debug_qf_find_pc_sect_symtab): Update.
* symfile.c (simple_read_overlay_table)
(simple_overlay_update): Update.
* symfile.h (struct quick_symbol_functions)
<find_pc_sect_symtab>: Change type of msymbol to
bound_minimal_symbol.
* symmisc.c (dump_msymbols): Update.
* symtab.c (find_pc_sect_symtab_via_partial)
(find_pc_sect_psymtab, find_pc_sect_line, skip_prologue_sal)
(search_symbols, print_msymbol_info): Update.
* symtab.h (MSYMBOL_VALUE_RAW_ADDRESS): New macro.
(MSYMBOL_VALUE_ADDRESS): Redefine.
(BMSYMBOL_VALUE_ADDRESS): New macro.
* tracepoint.c (scope_info): Update.
* tui/tui-disasm.c (tui_find_disassembly_address)
(tui_get_begin_asm_address): Update.
* valops.c (find_function_in_inferior): Update.
* value.c (value_static_field, value_fn_field): Update.
2013-08-15 22:46:35 +08:00
|
|
|
pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
|
2010-01-15 05:15:00 +08:00
|
|
|
|
2010-07-06 01:58:56 +08:00
|
|
|
/* The location of the _dl_auxv symbol may no longer be correct if
|
2011-01-01 03:16:37 +08:00
|
|
|
ld.so runs at a different address than the one present in the
|
|
|
|
file. This is very common case - for unprelinked ld.so or with a
|
|
|
|
PIE executable. PIE executable forces random address even for
|
|
|
|
libraries already being prelinked to some address. PIE
|
|
|
|
executables themselves are never prelinked even on prelinked
|
|
|
|
systems. Prelinking of a PIE executable would block their
|
|
|
|
purpose of randomizing load of everything including the
|
|
|
|
executable.
|
|
|
|
|
|
|
|
If the memory read fails, return -1 to fallback on another
|
|
|
|
mechanism for retrieving the AUXV.
|
|
|
|
|
|
|
|
In most cases of a PIE running under valgrind there is no way to
|
|
|
|
find out the base addresses of any of ld.so, executable or AUXV
|
|
|
|
as everything is randomized and /proc information is not relevant
|
|
|
|
for the virtual executable running under valgrind. We think that
|
|
|
|
we might need a valgrind extension to make it work. This is PR
|
|
|
|
11440. */
|
2010-07-06 01:58:56 +08:00
|
|
|
|
|
|
|
if (target_read_memory (pointer_address, ptr_buf, ptr_size) != 0)
|
2014-01-27 17:32:33 +08:00
|
|
|
return TARGET_XFER_E_IO;
|
2010-07-06 01:58:56 +08:00
|
|
|
|
|
|
|
data_address = extract_typed_address (ptr_buf, ptr_type);
|
2010-01-15 05:15:00 +08:00
|
|
|
|
2011-01-01 03:16:37 +08:00
|
|
|
/* Possibly still not initialized such as during an inferior
|
|
|
|
startup. */
|
2010-01-15 05:15:00 +08:00
|
|
|
if (data_address == 0)
|
2014-01-27 17:32:33 +08:00
|
|
|
return TARGET_XFER_E_IO;
|
2010-01-15 05:15:00 +08:00
|
|
|
|
|
|
|
data_address += offset;
|
|
|
|
|
|
|
|
if (writebuf != NULL)
|
|
|
|
{
|
|
|
|
if (target_write_memory (data_address, writebuf, len) == 0)
|
Return target_xfer_status in to_xfer_partial
This patch does the conversion of to_xfer_partial from
LONGEST (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len);
to
enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
It changes to_xfer_partial return the transfer status and the transfered
length by *XFERED_LEN. Generally, the return status has three stats,
- TARGET_XFER_OK,
- TARGET_XFER_EOF,
- TARGET_XFER_E_XXXX,
See the comments to them in 'enum target_xfer_status'. Note that
Pedro suggested not name TARGET_XFER_DONE, as it is confusing,
compared with "TARGET_XFER_OK". We finally name it TARGET_XFER_EOF.
With this change, GDB core can handle unavailable data in a convenient
way.
The rationale behind this change was mentioned here
https://sourceware.org/ml/gdb-patches/2013-10/msg00761.html
Consider an object/value like this:
0 100 150 200 512
DDDDDDDDDDDxxxxxxxxxDDDDDD...DDIIIIIIIIIIII..III
where D is valid data, and xxx is unavailable data, and I is beyond
the end of the object (Invalid). Currently, if we start the
xfer at 0, requesting, say 512 bytes, we'll first get back 100 bytes.
The xfer machinery then retries fetching [100,512), and gets back
TARGET_XFER_E_UNAVAILABLE. That's sufficient when you're either
interested in either having the whole of the 512 bytes available,
or erroring out. But, in this scenario, we're interested in
the data at [150,512). The problem is that the last
TARGET_XFER_E_UNAVAILABLE gives us no indication where to
start the read next. We'd need something like:
get me [0,512) >>>
<<< here's [0,100), *xfered_len is 100, returns TARGET_XFER_OK
get me [100,512) >>> (**1)
<<< [100,150) is unavailable, *xfered_len is 50, return TARGET_XFER_E_UNAVAILABLE.
get me [150,512) >>>
<<< here's [150,200), *xfered_len is 50, return TARGET_XFER_OK.
get me [200,512) >>>
<<< no more data, return TARGET_XFER_EOF.
This naturally implies pushing down the decision of whether
to return TARGET_XFER_E_UNAVAILABLE or something else
down to the target. (Which kinds of leads back to tfile
itself reading from RO memory from file (though we could
export a function in exec.c for that that tfile delegates to,
instead of re-adding the old code).
Beside this change, we also add a macro TARGET_XFER_STATUS_ERROR_P to
check whether a status is an error or not, to stop using "status < 0".
This patch also eliminates the comparison between status and 0.
No target implementations to to_xfer_partial adapts this new
interface. The interface still behaves as before.
gdb:
2014-02-11 Yao Qi <yao@codesourcery.com>
* target.h (enum target_xfer_error): Rename to ...
(enum target_xfer_status): ... it. New. All users updated.
(enum target_xfer_status) <TARGET_XFER_OK>, <TARGET_XFER_EOF>:
New.
(TARGET_XFER_STATUS_ERROR_P): New macro.
(target_xfer_error_to_string): Remove declaration.
(target_xfer_status_to_string): Declare.
(target_xfer_partial_ftype): Adjust it.
(struct target_ops) <to_xfer_partial>: Return
target_xfer_status. Add argument xfered_len. Update
comments.
* target.c (target_xfer_error_to_string): Rename to ...
(target_xfer_status_to_string): ... it. New. All callers
updated.
(target_read_live_memory): Likewise. Call target_xfer_partial
instead of target_read.
(memory_xfer_live_readonly_partial): Return
target_xfer_status. Add argument xfered_len.
(raw_memory_xfer_partial): Likewise.
(memory_xfer_partial_1): Likewise.
(memory_xfer_partial): Likewise.
(target_xfer_partial): Likewise. Check *XFERED_LEN is set
properly. Update debug message.
(default_xfer_partial, current_xfer_partial): Likewise.
(target_write_partial): Likewise.
(target_read_partial): Likewise. All callers updated.
(read_whatever_is_readable): Likewise.
(target_write_with_progress): Likewise.
(target_read_alloc_1): Likewise.
* aix-thread.c (aix_thread_xfer_partial): Likewise.
* auxv.c (procfs_xfer_auxv): Likewise.
(ld_so_xfer_auxv, memory_xfer_auxv): Likewise.
* bfd-target.c (target_bfd_xfer_partial): Likewise.
* bsd-kvm.c (bsd_kvm_xfer_partial): Likewise.
* bsd-uthread.c (bsd_uthread_xfer_partia): Likewise.
* corefile.c (read_memory): Adjust.
* corelow.c (core_xfer_partial): Likewise.
* ctf.c (ctf_xfer_partial): Likewise.
* darwin-nat.c (darwin_read_dyld_info): Likewise. All callers
updated.
(darwin_xfer_partial): Likewise.
* exec.c (section_table_xfer_memory_partial): Likewise. All
callers updated.
(exec_xfer_partial): Likewise.
* exec.h (section_table_xfer_memory_partial): Update
declaration.
* gnu-nat.c (gnu_xfer_memory): Likewise. Assert 'res' is not
negative.
(gnu_xfer_partial): Likewise.
* ia64-hpux-nat.c (ia64_hpux_xfer_memory_no_bs): Likewise.
(ia64_hpux_xfer_memory, ia64_hpux_xfer_uregs): Likewise.
(ia64_hpux_xfer_solib_got): Likewise.
* inf-ptrace.c (inf_ptrace_xfer_partial): Likewise. Change
type of 'partial_len' to ULONGEST.
* inf-ttrace.c (inf_ttrace_xfer_partial): Likewise.
* linux-nat.c (linux_xfer_siginfo ): Likewise.
(linux_nat_xfer_partial): Likewise.
(linux_proc_xfer_partial, linux_xfer_partial): Likewise.
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Likewise.
* monitor.c (monitor_xfer_memory): Likewise.
(monitor_xfer_partial): Likewise.
* procfs.c (procfs_xfer_partial): Likewise.
* record-btrace.c (record_btrace_xfer_partial): Likewise.
* record-full.c (record_full_xfer_partial): Likewise.
(record_full_core_xfer_partial): Likewise.
* remote-sim.c (gdbsim_xfer_memory): Likewise.
(gdbsim_xfer_partial): Likewise.
* remote.c (remote_write_bytes_aux): Likewise. All callers
updated.
(remote_write_bytes, remote_read_bytes): Likewise. All
callers updated.
(remote_flash_erase): Likewise. All callers updated.
(remote_write_qxfer): Likewise. All callers updated.
(remote_read_qxfer): Likewise. All callers updated.
(remote_xfer_partial): Likewise.
* rs6000-nat.c (rs6000_xfer_partial): Likewise.
(rs6000_xfer_shared_libraries): Likewise.
* sol-thread.c (sol_thread_xfer_partial): Likewise.
(sol_thread_xfer_partial): Likewise.
* sparc-nat.c (sparc_xfer_wcookie): Likewise.
(sparc_xfer_partial): Likewise.
* spu-linux-nat.c (spu_proc_xfer_spu): Likewise. All callers
updated.
(spu_xfer_partial): Likewise.
* spu-multiarch.c (spu_xfer_partial): Likewise.
* tracepoint.c (tfile_xfer_partial): Likewise.
* windows-nat.c (windows_xfer_memory): Likewise.
(windows_xfer_shared_libraries): Likewise.
(windows_xfer_partial): Likewise.
* valprint.c: Replace 'target_xfer_error' with
'target_xfer_status' in comments.
2014-01-27 20:35:33 +08:00
|
|
|
{
|
|
|
|
*xfered_len = (ULONGEST) len;
|
|
|
|
return TARGET_XFER_OK;
|
|
|
|
}
|
2010-01-15 05:15:00 +08:00
|
|
|
else
|
2014-01-27 17:32:33 +08:00
|
|
|
return TARGET_XFER_E_IO;
|
2010-01-15 05:15:00 +08:00
|
|
|
}
|
|
|
|
|
2011-01-01 03:16:37 +08:00
|
|
|
/* Stop if trying to read past the existing AUXV block. The final
|
|
|
|
AT_NULL was already returned before. */
|
2010-01-15 05:15:00 +08:00
|
|
|
|
|
|
|
if (offset >= auxv_pair_size)
|
|
|
|
{
|
|
|
|
if (target_read_memory (data_address - auxv_pair_size, ptr_buf,
|
|
|
|
ptr_size) != 0)
|
2014-01-27 17:32:33 +08:00
|
|
|
return TARGET_XFER_E_IO;
|
2010-01-15 05:15:00 +08:00
|
|
|
|
|
|
|
if (extract_typed_address (ptr_buf, ptr_type) == AT_NULL)
|
Return target_xfer_status in to_xfer_partial
This patch does the conversion of to_xfer_partial from
LONGEST (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len);
to
enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
It changes to_xfer_partial return the transfer status and the transfered
length by *XFERED_LEN. Generally, the return status has three stats,
- TARGET_XFER_OK,
- TARGET_XFER_EOF,
- TARGET_XFER_E_XXXX,
See the comments to them in 'enum target_xfer_status'. Note that
Pedro suggested not name TARGET_XFER_DONE, as it is confusing,
compared with "TARGET_XFER_OK". We finally name it TARGET_XFER_EOF.
With this change, GDB core can handle unavailable data in a convenient
way.
The rationale behind this change was mentioned here
https://sourceware.org/ml/gdb-patches/2013-10/msg00761.html
Consider an object/value like this:
0 100 150 200 512
DDDDDDDDDDDxxxxxxxxxDDDDDD...DDIIIIIIIIIIII..III
where D is valid data, and xxx is unavailable data, and I is beyond
the end of the object (Invalid). Currently, if we start the
xfer at 0, requesting, say 512 bytes, we'll first get back 100 bytes.
The xfer machinery then retries fetching [100,512), and gets back
TARGET_XFER_E_UNAVAILABLE. That's sufficient when you're either
interested in either having the whole of the 512 bytes available,
or erroring out. But, in this scenario, we're interested in
the data at [150,512). The problem is that the last
TARGET_XFER_E_UNAVAILABLE gives us no indication where to
start the read next. We'd need something like:
get me [0,512) >>>
<<< here's [0,100), *xfered_len is 100, returns TARGET_XFER_OK
get me [100,512) >>> (**1)
<<< [100,150) is unavailable, *xfered_len is 50, return TARGET_XFER_E_UNAVAILABLE.
get me [150,512) >>>
<<< here's [150,200), *xfered_len is 50, return TARGET_XFER_OK.
get me [200,512) >>>
<<< no more data, return TARGET_XFER_EOF.
This naturally implies pushing down the decision of whether
to return TARGET_XFER_E_UNAVAILABLE or something else
down to the target. (Which kinds of leads back to tfile
itself reading from RO memory from file (though we could
export a function in exec.c for that that tfile delegates to,
instead of re-adding the old code).
Beside this change, we also add a macro TARGET_XFER_STATUS_ERROR_P to
check whether a status is an error or not, to stop using "status < 0".
This patch also eliminates the comparison between status and 0.
No target implementations to to_xfer_partial adapts this new
interface. The interface still behaves as before.
gdb:
2014-02-11 Yao Qi <yao@codesourcery.com>
* target.h (enum target_xfer_error): Rename to ...
(enum target_xfer_status): ... it. New. All users updated.
(enum target_xfer_status) <TARGET_XFER_OK>, <TARGET_XFER_EOF>:
New.
(TARGET_XFER_STATUS_ERROR_P): New macro.
(target_xfer_error_to_string): Remove declaration.
(target_xfer_status_to_string): Declare.
(target_xfer_partial_ftype): Adjust it.
(struct target_ops) <to_xfer_partial>: Return
target_xfer_status. Add argument xfered_len. Update
comments.
* target.c (target_xfer_error_to_string): Rename to ...
(target_xfer_status_to_string): ... it. New. All callers
updated.
(target_read_live_memory): Likewise. Call target_xfer_partial
instead of target_read.
(memory_xfer_live_readonly_partial): Return
target_xfer_status. Add argument xfered_len.
(raw_memory_xfer_partial): Likewise.
(memory_xfer_partial_1): Likewise.
(memory_xfer_partial): Likewise.
(target_xfer_partial): Likewise. Check *XFERED_LEN is set
properly. Update debug message.
(default_xfer_partial, current_xfer_partial): Likewise.
(target_write_partial): Likewise.
(target_read_partial): Likewise. All callers updated.
(read_whatever_is_readable): Likewise.
(target_write_with_progress): Likewise.
(target_read_alloc_1): Likewise.
* aix-thread.c (aix_thread_xfer_partial): Likewise.
* auxv.c (procfs_xfer_auxv): Likewise.
(ld_so_xfer_auxv, memory_xfer_auxv): Likewise.
* bfd-target.c (target_bfd_xfer_partial): Likewise.
* bsd-kvm.c (bsd_kvm_xfer_partial): Likewise.
* bsd-uthread.c (bsd_uthread_xfer_partia): Likewise.
* corefile.c (read_memory): Adjust.
* corelow.c (core_xfer_partial): Likewise.
* ctf.c (ctf_xfer_partial): Likewise.
* darwin-nat.c (darwin_read_dyld_info): Likewise. All callers
updated.
(darwin_xfer_partial): Likewise.
* exec.c (section_table_xfer_memory_partial): Likewise. All
callers updated.
(exec_xfer_partial): Likewise.
* exec.h (section_table_xfer_memory_partial): Update
declaration.
* gnu-nat.c (gnu_xfer_memory): Likewise. Assert 'res' is not
negative.
(gnu_xfer_partial): Likewise.
* ia64-hpux-nat.c (ia64_hpux_xfer_memory_no_bs): Likewise.
(ia64_hpux_xfer_memory, ia64_hpux_xfer_uregs): Likewise.
(ia64_hpux_xfer_solib_got): Likewise.
* inf-ptrace.c (inf_ptrace_xfer_partial): Likewise. Change
type of 'partial_len' to ULONGEST.
* inf-ttrace.c (inf_ttrace_xfer_partial): Likewise.
* linux-nat.c (linux_xfer_siginfo ): Likewise.
(linux_nat_xfer_partial): Likewise.
(linux_proc_xfer_partial, linux_xfer_partial): Likewise.
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Likewise.
* monitor.c (monitor_xfer_memory): Likewise.
(monitor_xfer_partial): Likewise.
* procfs.c (procfs_xfer_partial): Likewise.
* record-btrace.c (record_btrace_xfer_partial): Likewise.
* record-full.c (record_full_xfer_partial): Likewise.
(record_full_core_xfer_partial): Likewise.
* remote-sim.c (gdbsim_xfer_memory): Likewise.
(gdbsim_xfer_partial): Likewise.
* remote.c (remote_write_bytes_aux): Likewise. All callers
updated.
(remote_write_bytes, remote_read_bytes): Likewise. All
callers updated.
(remote_flash_erase): Likewise. All callers updated.
(remote_write_qxfer): Likewise. All callers updated.
(remote_read_qxfer): Likewise. All callers updated.
(remote_xfer_partial): Likewise.
* rs6000-nat.c (rs6000_xfer_partial): Likewise.
(rs6000_xfer_shared_libraries): Likewise.
* sol-thread.c (sol_thread_xfer_partial): Likewise.
(sol_thread_xfer_partial): Likewise.
* sparc-nat.c (sparc_xfer_wcookie): Likewise.
(sparc_xfer_partial): Likewise.
* spu-linux-nat.c (spu_proc_xfer_spu): Likewise. All callers
updated.
(spu_xfer_partial): Likewise.
* spu-multiarch.c (spu_xfer_partial): Likewise.
* tracepoint.c (tfile_xfer_partial): Likewise.
* windows-nat.c (windows_xfer_memory): Likewise.
(windows_xfer_shared_libraries): Likewise.
(windows_xfer_partial): Likewise.
* valprint.c: Replace 'target_xfer_error' with
'target_xfer_status' in comments.
2014-01-27 20:35:33 +08:00
|
|
|
return TARGET_XFER_EOF;
|
2010-01-15 05:15:00 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
retval = 0;
|
|
|
|
block = 0x400;
|
|
|
|
gdb_assert (block % auxv_pair_size == 0);
|
|
|
|
|
|
|
|
while (len > 0)
|
|
|
|
{
|
|
|
|
if (block > len)
|
|
|
|
block = len;
|
|
|
|
|
2011-01-01 03:16:37 +08:00
|
|
|
/* Reading sizes smaller than AUXV_PAIR_SIZE is not supported.
|
|
|
|
Tails unaligned to AUXV_PAIR_SIZE will not be read during a
|
|
|
|
call (they should be completed during next read with
|
|
|
|
new/extended buffer). */
|
2010-01-15 05:15:00 +08:00
|
|
|
|
|
|
|
block &= -auxv_pair_size;
|
|
|
|
if (block == 0)
|
Return target_xfer_status in to_xfer_partial
This patch does the conversion of to_xfer_partial from
LONGEST (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len);
to
enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
It changes to_xfer_partial return the transfer status and the transfered
length by *XFERED_LEN. Generally, the return status has three stats,
- TARGET_XFER_OK,
- TARGET_XFER_EOF,
- TARGET_XFER_E_XXXX,
See the comments to them in 'enum target_xfer_status'. Note that
Pedro suggested not name TARGET_XFER_DONE, as it is confusing,
compared with "TARGET_XFER_OK". We finally name it TARGET_XFER_EOF.
With this change, GDB core can handle unavailable data in a convenient
way.
The rationale behind this change was mentioned here
https://sourceware.org/ml/gdb-patches/2013-10/msg00761.html
Consider an object/value like this:
0 100 150 200 512
DDDDDDDDDDDxxxxxxxxxDDDDDD...DDIIIIIIIIIIII..III
where D is valid data, and xxx is unavailable data, and I is beyond
the end of the object (Invalid). Currently, if we start the
xfer at 0, requesting, say 512 bytes, we'll first get back 100 bytes.
The xfer machinery then retries fetching [100,512), and gets back
TARGET_XFER_E_UNAVAILABLE. That's sufficient when you're either
interested in either having the whole of the 512 bytes available,
or erroring out. But, in this scenario, we're interested in
the data at [150,512). The problem is that the last
TARGET_XFER_E_UNAVAILABLE gives us no indication where to
start the read next. We'd need something like:
get me [0,512) >>>
<<< here's [0,100), *xfered_len is 100, returns TARGET_XFER_OK
get me [100,512) >>> (**1)
<<< [100,150) is unavailable, *xfered_len is 50, return TARGET_XFER_E_UNAVAILABLE.
get me [150,512) >>>
<<< here's [150,200), *xfered_len is 50, return TARGET_XFER_OK.
get me [200,512) >>>
<<< no more data, return TARGET_XFER_EOF.
This naturally implies pushing down the decision of whether
to return TARGET_XFER_E_UNAVAILABLE or something else
down to the target. (Which kinds of leads back to tfile
itself reading from RO memory from file (though we could
export a function in exec.c for that that tfile delegates to,
instead of re-adding the old code).
Beside this change, we also add a macro TARGET_XFER_STATUS_ERROR_P to
check whether a status is an error or not, to stop using "status < 0".
This patch also eliminates the comparison between status and 0.
No target implementations to to_xfer_partial adapts this new
interface. The interface still behaves as before.
gdb:
2014-02-11 Yao Qi <yao@codesourcery.com>
* target.h (enum target_xfer_error): Rename to ...
(enum target_xfer_status): ... it. New. All users updated.
(enum target_xfer_status) <TARGET_XFER_OK>, <TARGET_XFER_EOF>:
New.
(TARGET_XFER_STATUS_ERROR_P): New macro.
(target_xfer_error_to_string): Remove declaration.
(target_xfer_status_to_string): Declare.
(target_xfer_partial_ftype): Adjust it.
(struct target_ops) <to_xfer_partial>: Return
target_xfer_status. Add argument xfered_len. Update
comments.
* target.c (target_xfer_error_to_string): Rename to ...
(target_xfer_status_to_string): ... it. New. All callers
updated.
(target_read_live_memory): Likewise. Call target_xfer_partial
instead of target_read.
(memory_xfer_live_readonly_partial): Return
target_xfer_status. Add argument xfered_len.
(raw_memory_xfer_partial): Likewise.
(memory_xfer_partial_1): Likewise.
(memory_xfer_partial): Likewise.
(target_xfer_partial): Likewise. Check *XFERED_LEN is set
properly. Update debug message.
(default_xfer_partial, current_xfer_partial): Likewise.
(target_write_partial): Likewise.
(target_read_partial): Likewise. All callers updated.
(read_whatever_is_readable): Likewise.
(target_write_with_progress): Likewise.
(target_read_alloc_1): Likewise.
* aix-thread.c (aix_thread_xfer_partial): Likewise.
* auxv.c (procfs_xfer_auxv): Likewise.
(ld_so_xfer_auxv, memory_xfer_auxv): Likewise.
* bfd-target.c (target_bfd_xfer_partial): Likewise.
* bsd-kvm.c (bsd_kvm_xfer_partial): Likewise.
* bsd-uthread.c (bsd_uthread_xfer_partia): Likewise.
* corefile.c (read_memory): Adjust.
* corelow.c (core_xfer_partial): Likewise.
* ctf.c (ctf_xfer_partial): Likewise.
* darwin-nat.c (darwin_read_dyld_info): Likewise. All callers
updated.
(darwin_xfer_partial): Likewise.
* exec.c (section_table_xfer_memory_partial): Likewise. All
callers updated.
(exec_xfer_partial): Likewise.
* exec.h (section_table_xfer_memory_partial): Update
declaration.
* gnu-nat.c (gnu_xfer_memory): Likewise. Assert 'res' is not
negative.
(gnu_xfer_partial): Likewise.
* ia64-hpux-nat.c (ia64_hpux_xfer_memory_no_bs): Likewise.
(ia64_hpux_xfer_memory, ia64_hpux_xfer_uregs): Likewise.
(ia64_hpux_xfer_solib_got): Likewise.
* inf-ptrace.c (inf_ptrace_xfer_partial): Likewise. Change
type of 'partial_len' to ULONGEST.
* inf-ttrace.c (inf_ttrace_xfer_partial): Likewise.
* linux-nat.c (linux_xfer_siginfo ): Likewise.
(linux_nat_xfer_partial): Likewise.
(linux_proc_xfer_partial, linux_xfer_partial): Likewise.
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Likewise.
* monitor.c (monitor_xfer_memory): Likewise.
(monitor_xfer_partial): Likewise.
* procfs.c (procfs_xfer_partial): Likewise.
* record-btrace.c (record_btrace_xfer_partial): Likewise.
* record-full.c (record_full_xfer_partial): Likewise.
(record_full_core_xfer_partial): Likewise.
* remote-sim.c (gdbsim_xfer_memory): Likewise.
(gdbsim_xfer_partial): Likewise.
* remote.c (remote_write_bytes_aux): Likewise. All callers
updated.
(remote_write_bytes, remote_read_bytes): Likewise. All
callers updated.
(remote_flash_erase): Likewise. All callers updated.
(remote_write_qxfer): Likewise. All callers updated.
(remote_read_qxfer): Likewise. All callers updated.
(remote_xfer_partial): Likewise.
* rs6000-nat.c (rs6000_xfer_partial): Likewise.
(rs6000_xfer_shared_libraries): Likewise.
* sol-thread.c (sol_thread_xfer_partial): Likewise.
(sol_thread_xfer_partial): Likewise.
* sparc-nat.c (sparc_xfer_wcookie): Likewise.
(sparc_xfer_partial): Likewise.
* spu-linux-nat.c (spu_proc_xfer_spu): Likewise. All callers
updated.
(spu_xfer_partial): Likewise.
* spu-multiarch.c (spu_xfer_partial): Likewise.
* tracepoint.c (tfile_xfer_partial): Likewise.
* windows-nat.c (windows_xfer_memory): Likewise.
(windows_xfer_shared_libraries): Likewise.
(windows_xfer_partial): Likewise.
* valprint.c: Replace 'target_xfer_error' with
'target_xfer_status' in comments.
2014-01-27 20:35:33 +08:00
|
|
|
break;
|
2010-01-15 05:15:00 +08:00
|
|
|
|
|
|
|
if (target_read_memory (data_address, readbuf, block) != 0)
|
|
|
|
{
|
|
|
|
if (block <= auxv_pair_size)
|
Return target_xfer_status in to_xfer_partial
This patch does the conversion of to_xfer_partial from
LONGEST (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len);
to
enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
It changes to_xfer_partial return the transfer status and the transfered
length by *XFERED_LEN. Generally, the return status has three stats,
- TARGET_XFER_OK,
- TARGET_XFER_EOF,
- TARGET_XFER_E_XXXX,
See the comments to them in 'enum target_xfer_status'. Note that
Pedro suggested not name TARGET_XFER_DONE, as it is confusing,
compared with "TARGET_XFER_OK". We finally name it TARGET_XFER_EOF.
With this change, GDB core can handle unavailable data in a convenient
way.
The rationale behind this change was mentioned here
https://sourceware.org/ml/gdb-patches/2013-10/msg00761.html
Consider an object/value like this:
0 100 150 200 512
DDDDDDDDDDDxxxxxxxxxDDDDDD...DDIIIIIIIIIIII..III
where D is valid data, and xxx is unavailable data, and I is beyond
the end of the object (Invalid). Currently, if we start the
xfer at 0, requesting, say 512 bytes, we'll first get back 100 bytes.
The xfer machinery then retries fetching [100,512), and gets back
TARGET_XFER_E_UNAVAILABLE. That's sufficient when you're either
interested in either having the whole of the 512 bytes available,
or erroring out. But, in this scenario, we're interested in
the data at [150,512). The problem is that the last
TARGET_XFER_E_UNAVAILABLE gives us no indication where to
start the read next. We'd need something like:
get me [0,512) >>>
<<< here's [0,100), *xfered_len is 100, returns TARGET_XFER_OK
get me [100,512) >>> (**1)
<<< [100,150) is unavailable, *xfered_len is 50, return TARGET_XFER_E_UNAVAILABLE.
get me [150,512) >>>
<<< here's [150,200), *xfered_len is 50, return TARGET_XFER_OK.
get me [200,512) >>>
<<< no more data, return TARGET_XFER_EOF.
This naturally implies pushing down the decision of whether
to return TARGET_XFER_E_UNAVAILABLE or something else
down to the target. (Which kinds of leads back to tfile
itself reading from RO memory from file (though we could
export a function in exec.c for that that tfile delegates to,
instead of re-adding the old code).
Beside this change, we also add a macro TARGET_XFER_STATUS_ERROR_P to
check whether a status is an error or not, to stop using "status < 0".
This patch also eliminates the comparison between status and 0.
No target implementations to to_xfer_partial adapts this new
interface. The interface still behaves as before.
gdb:
2014-02-11 Yao Qi <yao@codesourcery.com>
* target.h (enum target_xfer_error): Rename to ...
(enum target_xfer_status): ... it. New. All users updated.
(enum target_xfer_status) <TARGET_XFER_OK>, <TARGET_XFER_EOF>:
New.
(TARGET_XFER_STATUS_ERROR_P): New macro.
(target_xfer_error_to_string): Remove declaration.
(target_xfer_status_to_string): Declare.
(target_xfer_partial_ftype): Adjust it.
(struct target_ops) <to_xfer_partial>: Return
target_xfer_status. Add argument xfered_len. Update
comments.
* target.c (target_xfer_error_to_string): Rename to ...
(target_xfer_status_to_string): ... it. New. All callers
updated.
(target_read_live_memory): Likewise. Call target_xfer_partial
instead of target_read.
(memory_xfer_live_readonly_partial): Return
target_xfer_status. Add argument xfered_len.
(raw_memory_xfer_partial): Likewise.
(memory_xfer_partial_1): Likewise.
(memory_xfer_partial): Likewise.
(target_xfer_partial): Likewise. Check *XFERED_LEN is set
properly. Update debug message.
(default_xfer_partial, current_xfer_partial): Likewise.
(target_write_partial): Likewise.
(target_read_partial): Likewise. All callers updated.
(read_whatever_is_readable): Likewise.
(target_write_with_progress): Likewise.
(target_read_alloc_1): Likewise.
* aix-thread.c (aix_thread_xfer_partial): Likewise.
* auxv.c (procfs_xfer_auxv): Likewise.
(ld_so_xfer_auxv, memory_xfer_auxv): Likewise.
* bfd-target.c (target_bfd_xfer_partial): Likewise.
* bsd-kvm.c (bsd_kvm_xfer_partial): Likewise.
* bsd-uthread.c (bsd_uthread_xfer_partia): Likewise.
* corefile.c (read_memory): Adjust.
* corelow.c (core_xfer_partial): Likewise.
* ctf.c (ctf_xfer_partial): Likewise.
* darwin-nat.c (darwin_read_dyld_info): Likewise. All callers
updated.
(darwin_xfer_partial): Likewise.
* exec.c (section_table_xfer_memory_partial): Likewise. All
callers updated.
(exec_xfer_partial): Likewise.
* exec.h (section_table_xfer_memory_partial): Update
declaration.
* gnu-nat.c (gnu_xfer_memory): Likewise. Assert 'res' is not
negative.
(gnu_xfer_partial): Likewise.
* ia64-hpux-nat.c (ia64_hpux_xfer_memory_no_bs): Likewise.
(ia64_hpux_xfer_memory, ia64_hpux_xfer_uregs): Likewise.
(ia64_hpux_xfer_solib_got): Likewise.
* inf-ptrace.c (inf_ptrace_xfer_partial): Likewise. Change
type of 'partial_len' to ULONGEST.
* inf-ttrace.c (inf_ttrace_xfer_partial): Likewise.
* linux-nat.c (linux_xfer_siginfo ): Likewise.
(linux_nat_xfer_partial): Likewise.
(linux_proc_xfer_partial, linux_xfer_partial): Likewise.
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Likewise.
* monitor.c (monitor_xfer_memory): Likewise.
(monitor_xfer_partial): Likewise.
* procfs.c (procfs_xfer_partial): Likewise.
* record-btrace.c (record_btrace_xfer_partial): Likewise.
* record-full.c (record_full_xfer_partial): Likewise.
(record_full_core_xfer_partial): Likewise.
* remote-sim.c (gdbsim_xfer_memory): Likewise.
(gdbsim_xfer_partial): Likewise.
* remote.c (remote_write_bytes_aux): Likewise. All callers
updated.
(remote_write_bytes, remote_read_bytes): Likewise. All
callers updated.
(remote_flash_erase): Likewise. All callers updated.
(remote_write_qxfer): Likewise. All callers updated.
(remote_read_qxfer): Likewise. All callers updated.
(remote_xfer_partial): Likewise.
* rs6000-nat.c (rs6000_xfer_partial): Likewise.
(rs6000_xfer_shared_libraries): Likewise.
* sol-thread.c (sol_thread_xfer_partial): Likewise.
(sol_thread_xfer_partial): Likewise.
* sparc-nat.c (sparc_xfer_wcookie): Likewise.
(sparc_xfer_partial): Likewise.
* spu-linux-nat.c (spu_proc_xfer_spu): Likewise. All callers
updated.
(spu_xfer_partial): Likewise.
* spu-multiarch.c (spu_xfer_partial): Likewise.
* tracepoint.c (tfile_xfer_partial): Likewise.
* windows-nat.c (windows_xfer_memory): Likewise.
(windows_xfer_shared_libraries): Likewise.
(windows_xfer_partial): Likewise.
* valprint.c: Replace 'target_xfer_error' with
'target_xfer_status' in comments.
2014-01-27 20:35:33 +08:00
|
|
|
break;
|
2010-01-15 05:15:00 +08:00
|
|
|
|
|
|
|
block = auxv_pair_size;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
data_address += block;
|
|
|
|
len -= block;
|
|
|
|
|
2011-01-01 03:16:37 +08:00
|
|
|
/* Check terminal AT_NULL. This function is being called
|
|
|
|
indefinitely being extended its READBUF until it returns EOF
|
|
|
|
(0). */
|
2010-01-15 05:15:00 +08:00
|
|
|
|
|
|
|
while (block >= auxv_pair_size)
|
|
|
|
{
|
|
|
|
retval += auxv_pair_size;
|
|
|
|
|
|
|
|
if (extract_typed_address (readbuf, ptr_type) == AT_NULL)
|
Return target_xfer_status in to_xfer_partial
This patch does the conversion of to_xfer_partial from
LONGEST (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len);
to
enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
It changes to_xfer_partial return the transfer status and the transfered
length by *XFERED_LEN. Generally, the return status has three stats,
- TARGET_XFER_OK,
- TARGET_XFER_EOF,
- TARGET_XFER_E_XXXX,
See the comments to them in 'enum target_xfer_status'. Note that
Pedro suggested not name TARGET_XFER_DONE, as it is confusing,
compared with "TARGET_XFER_OK". We finally name it TARGET_XFER_EOF.
With this change, GDB core can handle unavailable data in a convenient
way.
The rationale behind this change was mentioned here
https://sourceware.org/ml/gdb-patches/2013-10/msg00761.html
Consider an object/value like this:
0 100 150 200 512
DDDDDDDDDDDxxxxxxxxxDDDDDD...DDIIIIIIIIIIII..III
where D is valid data, and xxx is unavailable data, and I is beyond
the end of the object (Invalid). Currently, if we start the
xfer at 0, requesting, say 512 bytes, we'll first get back 100 bytes.
The xfer machinery then retries fetching [100,512), and gets back
TARGET_XFER_E_UNAVAILABLE. That's sufficient when you're either
interested in either having the whole of the 512 bytes available,
or erroring out. But, in this scenario, we're interested in
the data at [150,512). The problem is that the last
TARGET_XFER_E_UNAVAILABLE gives us no indication where to
start the read next. We'd need something like:
get me [0,512) >>>
<<< here's [0,100), *xfered_len is 100, returns TARGET_XFER_OK
get me [100,512) >>> (**1)
<<< [100,150) is unavailable, *xfered_len is 50, return TARGET_XFER_E_UNAVAILABLE.
get me [150,512) >>>
<<< here's [150,200), *xfered_len is 50, return TARGET_XFER_OK.
get me [200,512) >>>
<<< no more data, return TARGET_XFER_EOF.
This naturally implies pushing down the decision of whether
to return TARGET_XFER_E_UNAVAILABLE or something else
down to the target. (Which kinds of leads back to tfile
itself reading from RO memory from file (though we could
export a function in exec.c for that that tfile delegates to,
instead of re-adding the old code).
Beside this change, we also add a macro TARGET_XFER_STATUS_ERROR_P to
check whether a status is an error or not, to stop using "status < 0".
This patch also eliminates the comparison between status and 0.
No target implementations to to_xfer_partial adapts this new
interface. The interface still behaves as before.
gdb:
2014-02-11 Yao Qi <yao@codesourcery.com>
* target.h (enum target_xfer_error): Rename to ...
(enum target_xfer_status): ... it. New. All users updated.
(enum target_xfer_status) <TARGET_XFER_OK>, <TARGET_XFER_EOF>:
New.
(TARGET_XFER_STATUS_ERROR_P): New macro.
(target_xfer_error_to_string): Remove declaration.
(target_xfer_status_to_string): Declare.
(target_xfer_partial_ftype): Adjust it.
(struct target_ops) <to_xfer_partial>: Return
target_xfer_status. Add argument xfered_len. Update
comments.
* target.c (target_xfer_error_to_string): Rename to ...
(target_xfer_status_to_string): ... it. New. All callers
updated.
(target_read_live_memory): Likewise. Call target_xfer_partial
instead of target_read.
(memory_xfer_live_readonly_partial): Return
target_xfer_status. Add argument xfered_len.
(raw_memory_xfer_partial): Likewise.
(memory_xfer_partial_1): Likewise.
(memory_xfer_partial): Likewise.
(target_xfer_partial): Likewise. Check *XFERED_LEN is set
properly. Update debug message.
(default_xfer_partial, current_xfer_partial): Likewise.
(target_write_partial): Likewise.
(target_read_partial): Likewise. All callers updated.
(read_whatever_is_readable): Likewise.
(target_write_with_progress): Likewise.
(target_read_alloc_1): Likewise.
* aix-thread.c (aix_thread_xfer_partial): Likewise.
* auxv.c (procfs_xfer_auxv): Likewise.
(ld_so_xfer_auxv, memory_xfer_auxv): Likewise.
* bfd-target.c (target_bfd_xfer_partial): Likewise.
* bsd-kvm.c (bsd_kvm_xfer_partial): Likewise.
* bsd-uthread.c (bsd_uthread_xfer_partia): Likewise.
* corefile.c (read_memory): Adjust.
* corelow.c (core_xfer_partial): Likewise.
* ctf.c (ctf_xfer_partial): Likewise.
* darwin-nat.c (darwin_read_dyld_info): Likewise. All callers
updated.
(darwin_xfer_partial): Likewise.
* exec.c (section_table_xfer_memory_partial): Likewise. All
callers updated.
(exec_xfer_partial): Likewise.
* exec.h (section_table_xfer_memory_partial): Update
declaration.
* gnu-nat.c (gnu_xfer_memory): Likewise. Assert 'res' is not
negative.
(gnu_xfer_partial): Likewise.
* ia64-hpux-nat.c (ia64_hpux_xfer_memory_no_bs): Likewise.
(ia64_hpux_xfer_memory, ia64_hpux_xfer_uregs): Likewise.
(ia64_hpux_xfer_solib_got): Likewise.
* inf-ptrace.c (inf_ptrace_xfer_partial): Likewise. Change
type of 'partial_len' to ULONGEST.
* inf-ttrace.c (inf_ttrace_xfer_partial): Likewise.
* linux-nat.c (linux_xfer_siginfo ): Likewise.
(linux_nat_xfer_partial): Likewise.
(linux_proc_xfer_partial, linux_xfer_partial): Likewise.
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Likewise.
* monitor.c (monitor_xfer_memory): Likewise.
(monitor_xfer_partial): Likewise.
* procfs.c (procfs_xfer_partial): Likewise.
* record-btrace.c (record_btrace_xfer_partial): Likewise.
* record-full.c (record_full_xfer_partial): Likewise.
(record_full_core_xfer_partial): Likewise.
* remote-sim.c (gdbsim_xfer_memory): Likewise.
(gdbsim_xfer_partial): Likewise.
* remote.c (remote_write_bytes_aux): Likewise. All callers
updated.
(remote_write_bytes, remote_read_bytes): Likewise. All
callers updated.
(remote_flash_erase): Likewise. All callers updated.
(remote_write_qxfer): Likewise. All callers updated.
(remote_read_qxfer): Likewise. All callers updated.
(remote_xfer_partial): Likewise.
* rs6000-nat.c (rs6000_xfer_partial): Likewise.
(rs6000_xfer_shared_libraries): Likewise.
* sol-thread.c (sol_thread_xfer_partial): Likewise.
(sol_thread_xfer_partial): Likewise.
* sparc-nat.c (sparc_xfer_wcookie): Likewise.
(sparc_xfer_partial): Likewise.
* spu-linux-nat.c (spu_proc_xfer_spu): Likewise. All callers
updated.
(spu_xfer_partial): Likewise.
* spu-multiarch.c (spu_xfer_partial): Likewise.
* tracepoint.c (tfile_xfer_partial): Likewise.
* windows-nat.c (windows_xfer_memory): Likewise.
(windows_xfer_shared_libraries): Likewise.
(windows_xfer_partial): Likewise.
* valprint.c: Replace 'target_xfer_error' with
'target_xfer_status' in comments.
2014-01-27 20:35:33 +08:00
|
|
|
{
|
|
|
|
*xfered_len = (ULONGEST) retval;
|
|
|
|
return TARGET_XFER_OK;
|
|
|
|
}
|
2010-01-15 05:15:00 +08:00
|
|
|
|
|
|
|
readbuf += auxv_pair_size;
|
|
|
|
block -= auxv_pair_size;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Return target_xfer_status in to_xfer_partial
This patch does the conversion of to_xfer_partial from
LONGEST (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len);
to
enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
It changes to_xfer_partial return the transfer status and the transfered
length by *XFERED_LEN. Generally, the return status has three stats,
- TARGET_XFER_OK,
- TARGET_XFER_EOF,
- TARGET_XFER_E_XXXX,
See the comments to them in 'enum target_xfer_status'. Note that
Pedro suggested not name TARGET_XFER_DONE, as it is confusing,
compared with "TARGET_XFER_OK". We finally name it TARGET_XFER_EOF.
With this change, GDB core can handle unavailable data in a convenient
way.
The rationale behind this change was mentioned here
https://sourceware.org/ml/gdb-patches/2013-10/msg00761.html
Consider an object/value like this:
0 100 150 200 512
DDDDDDDDDDDxxxxxxxxxDDDDDD...DDIIIIIIIIIIII..III
where D is valid data, and xxx is unavailable data, and I is beyond
the end of the object (Invalid). Currently, if we start the
xfer at 0, requesting, say 512 bytes, we'll first get back 100 bytes.
The xfer machinery then retries fetching [100,512), and gets back
TARGET_XFER_E_UNAVAILABLE. That's sufficient when you're either
interested in either having the whole of the 512 bytes available,
or erroring out. But, in this scenario, we're interested in
the data at [150,512). The problem is that the last
TARGET_XFER_E_UNAVAILABLE gives us no indication where to
start the read next. We'd need something like:
get me [0,512) >>>
<<< here's [0,100), *xfered_len is 100, returns TARGET_XFER_OK
get me [100,512) >>> (**1)
<<< [100,150) is unavailable, *xfered_len is 50, return TARGET_XFER_E_UNAVAILABLE.
get me [150,512) >>>
<<< here's [150,200), *xfered_len is 50, return TARGET_XFER_OK.
get me [200,512) >>>
<<< no more data, return TARGET_XFER_EOF.
This naturally implies pushing down the decision of whether
to return TARGET_XFER_E_UNAVAILABLE or something else
down to the target. (Which kinds of leads back to tfile
itself reading from RO memory from file (though we could
export a function in exec.c for that that tfile delegates to,
instead of re-adding the old code).
Beside this change, we also add a macro TARGET_XFER_STATUS_ERROR_P to
check whether a status is an error or not, to stop using "status < 0".
This patch also eliminates the comparison between status and 0.
No target implementations to to_xfer_partial adapts this new
interface. The interface still behaves as before.
gdb:
2014-02-11 Yao Qi <yao@codesourcery.com>
* target.h (enum target_xfer_error): Rename to ...
(enum target_xfer_status): ... it. New. All users updated.
(enum target_xfer_status) <TARGET_XFER_OK>, <TARGET_XFER_EOF>:
New.
(TARGET_XFER_STATUS_ERROR_P): New macro.
(target_xfer_error_to_string): Remove declaration.
(target_xfer_status_to_string): Declare.
(target_xfer_partial_ftype): Adjust it.
(struct target_ops) <to_xfer_partial>: Return
target_xfer_status. Add argument xfered_len. Update
comments.
* target.c (target_xfer_error_to_string): Rename to ...
(target_xfer_status_to_string): ... it. New. All callers
updated.
(target_read_live_memory): Likewise. Call target_xfer_partial
instead of target_read.
(memory_xfer_live_readonly_partial): Return
target_xfer_status. Add argument xfered_len.
(raw_memory_xfer_partial): Likewise.
(memory_xfer_partial_1): Likewise.
(memory_xfer_partial): Likewise.
(target_xfer_partial): Likewise. Check *XFERED_LEN is set
properly. Update debug message.
(default_xfer_partial, current_xfer_partial): Likewise.
(target_write_partial): Likewise.
(target_read_partial): Likewise. All callers updated.
(read_whatever_is_readable): Likewise.
(target_write_with_progress): Likewise.
(target_read_alloc_1): Likewise.
* aix-thread.c (aix_thread_xfer_partial): Likewise.
* auxv.c (procfs_xfer_auxv): Likewise.
(ld_so_xfer_auxv, memory_xfer_auxv): Likewise.
* bfd-target.c (target_bfd_xfer_partial): Likewise.
* bsd-kvm.c (bsd_kvm_xfer_partial): Likewise.
* bsd-uthread.c (bsd_uthread_xfer_partia): Likewise.
* corefile.c (read_memory): Adjust.
* corelow.c (core_xfer_partial): Likewise.
* ctf.c (ctf_xfer_partial): Likewise.
* darwin-nat.c (darwin_read_dyld_info): Likewise. All callers
updated.
(darwin_xfer_partial): Likewise.
* exec.c (section_table_xfer_memory_partial): Likewise. All
callers updated.
(exec_xfer_partial): Likewise.
* exec.h (section_table_xfer_memory_partial): Update
declaration.
* gnu-nat.c (gnu_xfer_memory): Likewise. Assert 'res' is not
negative.
(gnu_xfer_partial): Likewise.
* ia64-hpux-nat.c (ia64_hpux_xfer_memory_no_bs): Likewise.
(ia64_hpux_xfer_memory, ia64_hpux_xfer_uregs): Likewise.
(ia64_hpux_xfer_solib_got): Likewise.
* inf-ptrace.c (inf_ptrace_xfer_partial): Likewise. Change
type of 'partial_len' to ULONGEST.
* inf-ttrace.c (inf_ttrace_xfer_partial): Likewise.
* linux-nat.c (linux_xfer_siginfo ): Likewise.
(linux_nat_xfer_partial): Likewise.
(linux_proc_xfer_partial, linux_xfer_partial): Likewise.
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Likewise.
* monitor.c (monitor_xfer_memory): Likewise.
(monitor_xfer_partial): Likewise.
* procfs.c (procfs_xfer_partial): Likewise.
* record-btrace.c (record_btrace_xfer_partial): Likewise.
* record-full.c (record_full_xfer_partial): Likewise.
(record_full_core_xfer_partial): Likewise.
* remote-sim.c (gdbsim_xfer_memory): Likewise.
(gdbsim_xfer_partial): Likewise.
* remote.c (remote_write_bytes_aux): Likewise. All callers
updated.
(remote_write_bytes, remote_read_bytes): Likewise. All
callers updated.
(remote_flash_erase): Likewise. All callers updated.
(remote_write_qxfer): Likewise. All callers updated.
(remote_read_qxfer): Likewise. All callers updated.
(remote_xfer_partial): Likewise.
* rs6000-nat.c (rs6000_xfer_partial): Likewise.
(rs6000_xfer_shared_libraries): Likewise.
* sol-thread.c (sol_thread_xfer_partial): Likewise.
(sol_thread_xfer_partial): Likewise.
* sparc-nat.c (sparc_xfer_wcookie): Likewise.
(sparc_xfer_partial): Likewise.
* spu-linux-nat.c (spu_proc_xfer_spu): Likewise. All callers
updated.
(spu_xfer_partial): Likewise.
* spu-multiarch.c (spu_xfer_partial): Likewise.
* tracepoint.c (tfile_xfer_partial): Likewise.
* windows-nat.c (windows_xfer_memory): Likewise.
(windows_xfer_shared_libraries): Likewise.
(windows_xfer_partial): Likewise.
* valprint.c: Replace 'target_xfer_error' with
'target_xfer_status' in comments.
2014-01-27 20:35:33 +08:00
|
|
|
*xfered_len = (ULONGEST) retval;
|
|
|
|
return TARGET_XFER_OK;
|
2010-01-15 05:15:00 +08:00
|
|
|
}
|
|
|
|
|
2014-01-30 08:23:14 +08:00
|
|
|
/* Implement the to_xfer_partial target_ops method for
|
|
|
|
TARGET_OBJECT_AUXV. It handles access to AUXV. */
|
2010-01-15 05:15:00 +08:00
|
|
|
|
Return target_xfer_status in to_xfer_partial
This patch does the conversion of to_xfer_partial from
LONGEST (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len);
to
enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
It changes to_xfer_partial return the transfer status and the transfered
length by *XFERED_LEN. Generally, the return status has three stats,
- TARGET_XFER_OK,
- TARGET_XFER_EOF,
- TARGET_XFER_E_XXXX,
See the comments to them in 'enum target_xfer_status'. Note that
Pedro suggested not name TARGET_XFER_DONE, as it is confusing,
compared with "TARGET_XFER_OK". We finally name it TARGET_XFER_EOF.
With this change, GDB core can handle unavailable data in a convenient
way.
The rationale behind this change was mentioned here
https://sourceware.org/ml/gdb-patches/2013-10/msg00761.html
Consider an object/value like this:
0 100 150 200 512
DDDDDDDDDDDxxxxxxxxxDDDDDD...DDIIIIIIIIIIII..III
where D is valid data, and xxx is unavailable data, and I is beyond
the end of the object (Invalid). Currently, if we start the
xfer at 0, requesting, say 512 bytes, we'll first get back 100 bytes.
The xfer machinery then retries fetching [100,512), and gets back
TARGET_XFER_E_UNAVAILABLE. That's sufficient when you're either
interested in either having the whole of the 512 bytes available,
or erroring out. But, in this scenario, we're interested in
the data at [150,512). The problem is that the last
TARGET_XFER_E_UNAVAILABLE gives us no indication where to
start the read next. We'd need something like:
get me [0,512) >>>
<<< here's [0,100), *xfered_len is 100, returns TARGET_XFER_OK
get me [100,512) >>> (**1)
<<< [100,150) is unavailable, *xfered_len is 50, return TARGET_XFER_E_UNAVAILABLE.
get me [150,512) >>>
<<< here's [150,200), *xfered_len is 50, return TARGET_XFER_OK.
get me [200,512) >>>
<<< no more data, return TARGET_XFER_EOF.
This naturally implies pushing down the decision of whether
to return TARGET_XFER_E_UNAVAILABLE or something else
down to the target. (Which kinds of leads back to tfile
itself reading from RO memory from file (though we could
export a function in exec.c for that that tfile delegates to,
instead of re-adding the old code).
Beside this change, we also add a macro TARGET_XFER_STATUS_ERROR_P to
check whether a status is an error or not, to stop using "status < 0".
This patch also eliminates the comparison between status and 0.
No target implementations to to_xfer_partial adapts this new
interface. The interface still behaves as before.
gdb:
2014-02-11 Yao Qi <yao@codesourcery.com>
* target.h (enum target_xfer_error): Rename to ...
(enum target_xfer_status): ... it. New. All users updated.
(enum target_xfer_status) <TARGET_XFER_OK>, <TARGET_XFER_EOF>:
New.
(TARGET_XFER_STATUS_ERROR_P): New macro.
(target_xfer_error_to_string): Remove declaration.
(target_xfer_status_to_string): Declare.
(target_xfer_partial_ftype): Adjust it.
(struct target_ops) <to_xfer_partial>: Return
target_xfer_status. Add argument xfered_len. Update
comments.
* target.c (target_xfer_error_to_string): Rename to ...
(target_xfer_status_to_string): ... it. New. All callers
updated.
(target_read_live_memory): Likewise. Call target_xfer_partial
instead of target_read.
(memory_xfer_live_readonly_partial): Return
target_xfer_status. Add argument xfered_len.
(raw_memory_xfer_partial): Likewise.
(memory_xfer_partial_1): Likewise.
(memory_xfer_partial): Likewise.
(target_xfer_partial): Likewise. Check *XFERED_LEN is set
properly. Update debug message.
(default_xfer_partial, current_xfer_partial): Likewise.
(target_write_partial): Likewise.
(target_read_partial): Likewise. All callers updated.
(read_whatever_is_readable): Likewise.
(target_write_with_progress): Likewise.
(target_read_alloc_1): Likewise.
* aix-thread.c (aix_thread_xfer_partial): Likewise.
* auxv.c (procfs_xfer_auxv): Likewise.
(ld_so_xfer_auxv, memory_xfer_auxv): Likewise.
* bfd-target.c (target_bfd_xfer_partial): Likewise.
* bsd-kvm.c (bsd_kvm_xfer_partial): Likewise.
* bsd-uthread.c (bsd_uthread_xfer_partia): Likewise.
* corefile.c (read_memory): Adjust.
* corelow.c (core_xfer_partial): Likewise.
* ctf.c (ctf_xfer_partial): Likewise.
* darwin-nat.c (darwin_read_dyld_info): Likewise. All callers
updated.
(darwin_xfer_partial): Likewise.
* exec.c (section_table_xfer_memory_partial): Likewise. All
callers updated.
(exec_xfer_partial): Likewise.
* exec.h (section_table_xfer_memory_partial): Update
declaration.
* gnu-nat.c (gnu_xfer_memory): Likewise. Assert 'res' is not
negative.
(gnu_xfer_partial): Likewise.
* ia64-hpux-nat.c (ia64_hpux_xfer_memory_no_bs): Likewise.
(ia64_hpux_xfer_memory, ia64_hpux_xfer_uregs): Likewise.
(ia64_hpux_xfer_solib_got): Likewise.
* inf-ptrace.c (inf_ptrace_xfer_partial): Likewise. Change
type of 'partial_len' to ULONGEST.
* inf-ttrace.c (inf_ttrace_xfer_partial): Likewise.
* linux-nat.c (linux_xfer_siginfo ): Likewise.
(linux_nat_xfer_partial): Likewise.
(linux_proc_xfer_partial, linux_xfer_partial): Likewise.
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Likewise.
* monitor.c (monitor_xfer_memory): Likewise.
(monitor_xfer_partial): Likewise.
* procfs.c (procfs_xfer_partial): Likewise.
* record-btrace.c (record_btrace_xfer_partial): Likewise.
* record-full.c (record_full_xfer_partial): Likewise.
(record_full_core_xfer_partial): Likewise.
* remote-sim.c (gdbsim_xfer_memory): Likewise.
(gdbsim_xfer_partial): Likewise.
* remote.c (remote_write_bytes_aux): Likewise. All callers
updated.
(remote_write_bytes, remote_read_bytes): Likewise. All
callers updated.
(remote_flash_erase): Likewise. All callers updated.
(remote_write_qxfer): Likewise. All callers updated.
(remote_read_qxfer): Likewise. All callers updated.
(remote_xfer_partial): Likewise.
* rs6000-nat.c (rs6000_xfer_partial): Likewise.
(rs6000_xfer_shared_libraries): Likewise.
* sol-thread.c (sol_thread_xfer_partial): Likewise.
(sol_thread_xfer_partial): Likewise.
* sparc-nat.c (sparc_xfer_wcookie): Likewise.
(sparc_xfer_partial): Likewise.
* spu-linux-nat.c (spu_proc_xfer_spu): Likewise. All callers
updated.
(spu_xfer_partial): Likewise.
* spu-multiarch.c (spu_xfer_partial): Likewise.
* tracepoint.c (tfile_xfer_partial): Likewise.
* windows-nat.c (windows_xfer_memory): Likewise.
(windows_xfer_shared_libraries): Likewise.
(windows_xfer_partial): Likewise.
* valprint.c: Replace 'target_xfer_error' with
'target_xfer_status' in comments.
2014-01-27 20:35:33 +08:00
|
|
|
enum target_xfer_status
|
2010-01-15 05:15:00 +08:00
|
|
|
memory_xfer_auxv (struct target_ops *ops,
|
|
|
|
enum target_object object,
|
|
|
|
const char *annex,
|
|
|
|
gdb_byte *readbuf,
|
|
|
|
const gdb_byte *writebuf,
|
|
|
|
ULONGEST offset,
|
Return target_xfer_status in to_xfer_partial
This patch does the conversion of to_xfer_partial from
LONGEST (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len);
to
enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
It changes to_xfer_partial return the transfer status and the transfered
length by *XFERED_LEN. Generally, the return status has three stats,
- TARGET_XFER_OK,
- TARGET_XFER_EOF,
- TARGET_XFER_E_XXXX,
See the comments to them in 'enum target_xfer_status'. Note that
Pedro suggested not name TARGET_XFER_DONE, as it is confusing,
compared with "TARGET_XFER_OK". We finally name it TARGET_XFER_EOF.
With this change, GDB core can handle unavailable data in a convenient
way.
The rationale behind this change was mentioned here
https://sourceware.org/ml/gdb-patches/2013-10/msg00761.html
Consider an object/value like this:
0 100 150 200 512
DDDDDDDDDDDxxxxxxxxxDDDDDD...DDIIIIIIIIIIII..III
where D is valid data, and xxx is unavailable data, and I is beyond
the end of the object (Invalid). Currently, if we start the
xfer at 0, requesting, say 512 bytes, we'll first get back 100 bytes.
The xfer machinery then retries fetching [100,512), and gets back
TARGET_XFER_E_UNAVAILABLE. That's sufficient when you're either
interested in either having the whole of the 512 bytes available,
or erroring out. But, in this scenario, we're interested in
the data at [150,512). The problem is that the last
TARGET_XFER_E_UNAVAILABLE gives us no indication where to
start the read next. We'd need something like:
get me [0,512) >>>
<<< here's [0,100), *xfered_len is 100, returns TARGET_XFER_OK
get me [100,512) >>> (**1)
<<< [100,150) is unavailable, *xfered_len is 50, return TARGET_XFER_E_UNAVAILABLE.
get me [150,512) >>>
<<< here's [150,200), *xfered_len is 50, return TARGET_XFER_OK.
get me [200,512) >>>
<<< no more data, return TARGET_XFER_EOF.
This naturally implies pushing down the decision of whether
to return TARGET_XFER_E_UNAVAILABLE or something else
down to the target. (Which kinds of leads back to tfile
itself reading from RO memory from file (though we could
export a function in exec.c for that that tfile delegates to,
instead of re-adding the old code).
Beside this change, we also add a macro TARGET_XFER_STATUS_ERROR_P to
check whether a status is an error or not, to stop using "status < 0".
This patch also eliminates the comparison between status and 0.
No target implementations to to_xfer_partial adapts this new
interface. The interface still behaves as before.
gdb:
2014-02-11 Yao Qi <yao@codesourcery.com>
* target.h (enum target_xfer_error): Rename to ...
(enum target_xfer_status): ... it. New. All users updated.
(enum target_xfer_status) <TARGET_XFER_OK>, <TARGET_XFER_EOF>:
New.
(TARGET_XFER_STATUS_ERROR_P): New macro.
(target_xfer_error_to_string): Remove declaration.
(target_xfer_status_to_string): Declare.
(target_xfer_partial_ftype): Adjust it.
(struct target_ops) <to_xfer_partial>: Return
target_xfer_status. Add argument xfered_len. Update
comments.
* target.c (target_xfer_error_to_string): Rename to ...
(target_xfer_status_to_string): ... it. New. All callers
updated.
(target_read_live_memory): Likewise. Call target_xfer_partial
instead of target_read.
(memory_xfer_live_readonly_partial): Return
target_xfer_status. Add argument xfered_len.
(raw_memory_xfer_partial): Likewise.
(memory_xfer_partial_1): Likewise.
(memory_xfer_partial): Likewise.
(target_xfer_partial): Likewise. Check *XFERED_LEN is set
properly. Update debug message.
(default_xfer_partial, current_xfer_partial): Likewise.
(target_write_partial): Likewise.
(target_read_partial): Likewise. All callers updated.
(read_whatever_is_readable): Likewise.
(target_write_with_progress): Likewise.
(target_read_alloc_1): Likewise.
* aix-thread.c (aix_thread_xfer_partial): Likewise.
* auxv.c (procfs_xfer_auxv): Likewise.
(ld_so_xfer_auxv, memory_xfer_auxv): Likewise.
* bfd-target.c (target_bfd_xfer_partial): Likewise.
* bsd-kvm.c (bsd_kvm_xfer_partial): Likewise.
* bsd-uthread.c (bsd_uthread_xfer_partia): Likewise.
* corefile.c (read_memory): Adjust.
* corelow.c (core_xfer_partial): Likewise.
* ctf.c (ctf_xfer_partial): Likewise.
* darwin-nat.c (darwin_read_dyld_info): Likewise. All callers
updated.
(darwin_xfer_partial): Likewise.
* exec.c (section_table_xfer_memory_partial): Likewise. All
callers updated.
(exec_xfer_partial): Likewise.
* exec.h (section_table_xfer_memory_partial): Update
declaration.
* gnu-nat.c (gnu_xfer_memory): Likewise. Assert 'res' is not
negative.
(gnu_xfer_partial): Likewise.
* ia64-hpux-nat.c (ia64_hpux_xfer_memory_no_bs): Likewise.
(ia64_hpux_xfer_memory, ia64_hpux_xfer_uregs): Likewise.
(ia64_hpux_xfer_solib_got): Likewise.
* inf-ptrace.c (inf_ptrace_xfer_partial): Likewise. Change
type of 'partial_len' to ULONGEST.
* inf-ttrace.c (inf_ttrace_xfer_partial): Likewise.
* linux-nat.c (linux_xfer_siginfo ): Likewise.
(linux_nat_xfer_partial): Likewise.
(linux_proc_xfer_partial, linux_xfer_partial): Likewise.
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Likewise.
* monitor.c (monitor_xfer_memory): Likewise.
(monitor_xfer_partial): Likewise.
* procfs.c (procfs_xfer_partial): Likewise.
* record-btrace.c (record_btrace_xfer_partial): Likewise.
* record-full.c (record_full_xfer_partial): Likewise.
(record_full_core_xfer_partial): Likewise.
* remote-sim.c (gdbsim_xfer_memory): Likewise.
(gdbsim_xfer_partial): Likewise.
* remote.c (remote_write_bytes_aux): Likewise. All callers
updated.
(remote_write_bytes, remote_read_bytes): Likewise. All
callers updated.
(remote_flash_erase): Likewise. All callers updated.
(remote_write_qxfer): Likewise. All callers updated.
(remote_read_qxfer): Likewise. All callers updated.
(remote_xfer_partial): Likewise.
* rs6000-nat.c (rs6000_xfer_partial): Likewise.
(rs6000_xfer_shared_libraries): Likewise.
* sol-thread.c (sol_thread_xfer_partial): Likewise.
(sol_thread_xfer_partial): Likewise.
* sparc-nat.c (sparc_xfer_wcookie): Likewise.
(sparc_xfer_partial): Likewise.
* spu-linux-nat.c (spu_proc_xfer_spu): Likewise. All callers
updated.
(spu_xfer_partial): Likewise.
* spu-multiarch.c (spu_xfer_partial): Likewise.
* tracepoint.c (tfile_xfer_partial): Likewise.
* windows-nat.c (windows_xfer_memory): Likewise.
(windows_xfer_shared_libraries): Likewise.
(windows_xfer_partial): Likewise.
* valprint.c: Replace 'target_xfer_error' with
'target_xfer_status' in comments.
2014-01-27 20:35:33 +08:00
|
|
|
ULONGEST len, ULONGEST *xfered_len)
|
2010-01-15 05:15:00 +08:00
|
|
|
{
|
|
|
|
gdb_assert (object == TARGET_OBJECT_AUXV);
|
|
|
|
gdb_assert (readbuf || writebuf);
|
|
|
|
|
2011-01-01 03:16:37 +08:00
|
|
|
/* ld_so_xfer_auxv is the only function safe for virtual
|
|
|
|
executables being executed by valgrind's memcheck. Using
|
|
|
|
ld_so_xfer_auxv during inferior startup is problematic, because
|
|
|
|
ld.so symbol tables have not yet been relocated. So GDB uses
|
|
|
|
this function only when attaching to a process.
|
2010-07-06 02:00:40 +08:00
|
|
|
*/
|
2010-01-15 05:15:00 +08:00
|
|
|
|
|
|
|
if (current_inferior ()->attach_flag != 0)
|
|
|
|
{
|
Return target_xfer_status in to_xfer_partial
This patch does the conversion of to_xfer_partial from
LONGEST (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len);
to
enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
It changes to_xfer_partial return the transfer status and the transfered
length by *XFERED_LEN. Generally, the return status has three stats,
- TARGET_XFER_OK,
- TARGET_XFER_EOF,
- TARGET_XFER_E_XXXX,
See the comments to them in 'enum target_xfer_status'. Note that
Pedro suggested not name TARGET_XFER_DONE, as it is confusing,
compared with "TARGET_XFER_OK". We finally name it TARGET_XFER_EOF.
With this change, GDB core can handle unavailable data in a convenient
way.
The rationale behind this change was mentioned here
https://sourceware.org/ml/gdb-patches/2013-10/msg00761.html
Consider an object/value like this:
0 100 150 200 512
DDDDDDDDDDDxxxxxxxxxDDDDDD...DDIIIIIIIIIIII..III
where D is valid data, and xxx is unavailable data, and I is beyond
the end of the object (Invalid). Currently, if we start the
xfer at 0, requesting, say 512 bytes, we'll first get back 100 bytes.
The xfer machinery then retries fetching [100,512), and gets back
TARGET_XFER_E_UNAVAILABLE. That's sufficient when you're either
interested in either having the whole of the 512 bytes available,
or erroring out. But, in this scenario, we're interested in
the data at [150,512). The problem is that the last
TARGET_XFER_E_UNAVAILABLE gives us no indication where to
start the read next. We'd need something like:
get me [0,512) >>>
<<< here's [0,100), *xfered_len is 100, returns TARGET_XFER_OK
get me [100,512) >>> (**1)
<<< [100,150) is unavailable, *xfered_len is 50, return TARGET_XFER_E_UNAVAILABLE.
get me [150,512) >>>
<<< here's [150,200), *xfered_len is 50, return TARGET_XFER_OK.
get me [200,512) >>>
<<< no more data, return TARGET_XFER_EOF.
This naturally implies pushing down the decision of whether
to return TARGET_XFER_E_UNAVAILABLE or something else
down to the target. (Which kinds of leads back to tfile
itself reading from RO memory from file (though we could
export a function in exec.c for that that tfile delegates to,
instead of re-adding the old code).
Beside this change, we also add a macro TARGET_XFER_STATUS_ERROR_P to
check whether a status is an error or not, to stop using "status < 0".
This patch also eliminates the comparison between status and 0.
No target implementations to to_xfer_partial adapts this new
interface. The interface still behaves as before.
gdb:
2014-02-11 Yao Qi <yao@codesourcery.com>
* target.h (enum target_xfer_error): Rename to ...
(enum target_xfer_status): ... it. New. All users updated.
(enum target_xfer_status) <TARGET_XFER_OK>, <TARGET_XFER_EOF>:
New.
(TARGET_XFER_STATUS_ERROR_P): New macro.
(target_xfer_error_to_string): Remove declaration.
(target_xfer_status_to_string): Declare.
(target_xfer_partial_ftype): Adjust it.
(struct target_ops) <to_xfer_partial>: Return
target_xfer_status. Add argument xfered_len. Update
comments.
* target.c (target_xfer_error_to_string): Rename to ...
(target_xfer_status_to_string): ... it. New. All callers
updated.
(target_read_live_memory): Likewise. Call target_xfer_partial
instead of target_read.
(memory_xfer_live_readonly_partial): Return
target_xfer_status. Add argument xfered_len.
(raw_memory_xfer_partial): Likewise.
(memory_xfer_partial_1): Likewise.
(memory_xfer_partial): Likewise.
(target_xfer_partial): Likewise. Check *XFERED_LEN is set
properly. Update debug message.
(default_xfer_partial, current_xfer_partial): Likewise.
(target_write_partial): Likewise.
(target_read_partial): Likewise. All callers updated.
(read_whatever_is_readable): Likewise.
(target_write_with_progress): Likewise.
(target_read_alloc_1): Likewise.
* aix-thread.c (aix_thread_xfer_partial): Likewise.
* auxv.c (procfs_xfer_auxv): Likewise.
(ld_so_xfer_auxv, memory_xfer_auxv): Likewise.
* bfd-target.c (target_bfd_xfer_partial): Likewise.
* bsd-kvm.c (bsd_kvm_xfer_partial): Likewise.
* bsd-uthread.c (bsd_uthread_xfer_partia): Likewise.
* corefile.c (read_memory): Adjust.
* corelow.c (core_xfer_partial): Likewise.
* ctf.c (ctf_xfer_partial): Likewise.
* darwin-nat.c (darwin_read_dyld_info): Likewise. All callers
updated.
(darwin_xfer_partial): Likewise.
* exec.c (section_table_xfer_memory_partial): Likewise. All
callers updated.
(exec_xfer_partial): Likewise.
* exec.h (section_table_xfer_memory_partial): Update
declaration.
* gnu-nat.c (gnu_xfer_memory): Likewise. Assert 'res' is not
negative.
(gnu_xfer_partial): Likewise.
* ia64-hpux-nat.c (ia64_hpux_xfer_memory_no_bs): Likewise.
(ia64_hpux_xfer_memory, ia64_hpux_xfer_uregs): Likewise.
(ia64_hpux_xfer_solib_got): Likewise.
* inf-ptrace.c (inf_ptrace_xfer_partial): Likewise. Change
type of 'partial_len' to ULONGEST.
* inf-ttrace.c (inf_ttrace_xfer_partial): Likewise.
* linux-nat.c (linux_xfer_siginfo ): Likewise.
(linux_nat_xfer_partial): Likewise.
(linux_proc_xfer_partial, linux_xfer_partial): Likewise.
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Likewise.
* monitor.c (monitor_xfer_memory): Likewise.
(monitor_xfer_partial): Likewise.
* procfs.c (procfs_xfer_partial): Likewise.
* record-btrace.c (record_btrace_xfer_partial): Likewise.
* record-full.c (record_full_xfer_partial): Likewise.
(record_full_core_xfer_partial): Likewise.
* remote-sim.c (gdbsim_xfer_memory): Likewise.
(gdbsim_xfer_partial): Likewise.
* remote.c (remote_write_bytes_aux): Likewise. All callers
updated.
(remote_write_bytes, remote_read_bytes): Likewise. All
callers updated.
(remote_flash_erase): Likewise. All callers updated.
(remote_write_qxfer): Likewise. All callers updated.
(remote_read_qxfer): Likewise. All callers updated.
(remote_xfer_partial): Likewise.
* rs6000-nat.c (rs6000_xfer_partial): Likewise.
(rs6000_xfer_shared_libraries): Likewise.
* sol-thread.c (sol_thread_xfer_partial): Likewise.
(sol_thread_xfer_partial): Likewise.
* sparc-nat.c (sparc_xfer_wcookie): Likewise.
(sparc_xfer_partial): Likewise.
* spu-linux-nat.c (spu_proc_xfer_spu): Likewise. All callers
updated.
(spu_xfer_partial): Likewise.
* spu-multiarch.c (spu_xfer_partial): Likewise.
* tracepoint.c (tfile_xfer_partial): Likewise.
* windows-nat.c (windows_xfer_memory): Likewise.
(windows_xfer_shared_libraries): Likewise.
(windows_xfer_partial): Likewise.
* valprint.c: Replace 'target_xfer_error' with
'target_xfer_status' in comments.
2014-01-27 20:35:33 +08:00
|
|
|
enum target_xfer_status ret;
|
2010-01-15 05:15:00 +08:00
|
|
|
|
Return target_xfer_status in to_xfer_partial
This patch does the conversion of to_xfer_partial from
LONGEST (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len);
to
enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
It changes to_xfer_partial return the transfer status and the transfered
length by *XFERED_LEN. Generally, the return status has three stats,
- TARGET_XFER_OK,
- TARGET_XFER_EOF,
- TARGET_XFER_E_XXXX,
See the comments to them in 'enum target_xfer_status'. Note that
Pedro suggested not name TARGET_XFER_DONE, as it is confusing,
compared with "TARGET_XFER_OK". We finally name it TARGET_XFER_EOF.
With this change, GDB core can handle unavailable data in a convenient
way.
The rationale behind this change was mentioned here
https://sourceware.org/ml/gdb-patches/2013-10/msg00761.html
Consider an object/value like this:
0 100 150 200 512
DDDDDDDDDDDxxxxxxxxxDDDDDD...DDIIIIIIIIIIII..III
where D is valid data, and xxx is unavailable data, and I is beyond
the end of the object (Invalid). Currently, if we start the
xfer at 0, requesting, say 512 bytes, we'll first get back 100 bytes.
The xfer machinery then retries fetching [100,512), and gets back
TARGET_XFER_E_UNAVAILABLE. That's sufficient when you're either
interested in either having the whole of the 512 bytes available,
or erroring out. But, in this scenario, we're interested in
the data at [150,512). The problem is that the last
TARGET_XFER_E_UNAVAILABLE gives us no indication where to
start the read next. We'd need something like:
get me [0,512) >>>
<<< here's [0,100), *xfered_len is 100, returns TARGET_XFER_OK
get me [100,512) >>> (**1)
<<< [100,150) is unavailable, *xfered_len is 50, return TARGET_XFER_E_UNAVAILABLE.
get me [150,512) >>>
<<< here's [150,200), *xfered_len is 50, return TARGET_XFER_OK.
get me [200,512) >>>
<<< no more data, return TARGET_XFER_EOF.
This naturally implies pushing down the decision of whether
to return TARGET_XFER_E_UNAVAILABLE or something else
down to the target. (Which kinds of leads back to tfile
itself reading from RO memory from file (though we could
export a function in exec.c for that that tfile delegates to,
instead of re-adding the old code).
Beside this change, we also add a macro TARGET_XFER_STATUS_ERROR_P to
check whether a status is an error or not, to stop using "status < 0".
This patch also eliminates the comparison between status and 0.
No target implementations to to_xfer_partial adapts this new
interface. The interface still behaves as before.
gdb:
2014-02-11 Yao Qi <yao@codesourcery.com>
* target.h (enum target_xfer_error): Rename to ...
(enum target_xfer_status): ... it. New. All users updated.
(enum target_xfer_status) <TARGET_XFER_OK>, <TARGET_XFER_EOF>:
New.
(TARGET_XFER_STATUS_ERROR_P): New macro.
(target_xfer_error_to_string): Remove declaration.
(target_xfer_status_to_string): Declare.
(target_xfer_partial_ftype): Adjust it.
(struct target_ops) <to_xfer_partial>: Return
target_xfer_status. Add argument xfered_len. Update
comments.
* target.c (target_xfer_error_to_string): Rename to ...
(target_xfer_status_to_string): ... it. New. All callers
updated.
(target_read_live_memory): Likewise. Call target_xfer_partial
instead of target_read.
(memory_xfer_live_readonly_partial): Return
target_xfer_status. Add argument xfered_len.
(raw_memory_xfer_partial): Likewise.
(memory_xfer_partial_1): Likewise.
(memory_xfer_partial): Likewise.
(target_xfer_partial): Likewise. Check *XFERED_LEN is set
properly. Update debug message.
(default_xfer_partial, current_xfer_partial): Likewise.
(target_write_partial): Likewise.
(target_read_partial): Likewise. All callers updated.
(read_whatever_is_readable): Likewise.
(target_write_with_progress): Likewise.
(target_read_alloc_1): Likewise.
* aix-thread.c (aix_thread_xfer_partial): Likewise.
* auxv.c (procfs_xfer_auxv): Likewise.
(ld_so_xfer_auxv, memory_xfer_auxv): Likewise.
* bfd-target.c (target_bfd_xfer_partial): Likewise.
* bsd-kvm.c (bsd_kvm_xfer_partial): Likewise.
* bsd-uthread.c (bsd_uthread_xfer_partia): Likewise.
* corefile.c (read_memory): Adjust.
* corelow.c (core_xfer_partial): Likewise.
* ctf.c (ctf_xfer_partial): Likewise.
* darwin-nat.c (darwin_read_dyld_info): Likewise. All callers
updated.
(darwin_xfer_partial): Likewise.
* exec.c (section_table_xfer_memory_partial): Likewise. All
callers updated.
(exec_xfer_partial): Likewise.
* exec.h (section_table_xfer_memory_partial): Update
declaration.
* gnu-nat.c (gnu_xfer_memory): Likewise. Assert 'res' is not
negative.
(gnu_xfer_partial): Likewise.
* ia64-hpux-nat.c (ia64_hpux_xfer_memory_no_bs): Likewise.
(ia64_hpux_xfer_memory, ia64_hpux_xfer_uregs): Likewise.
(ia64_hpux_xfer_solib_got): Likewise.
* inf-ptrace.c (inf_ptrace_xfer_partial): Likewise. Change
type of 'partial_len' to ULONGEST.
* inf-ttrace.c (inf_ttrace_xfer_partial): Likewise.
* linux-nat.c (linux_xfer_siginfo ): Likewise.
(linux_nat_xfer_partial): Likewise.
(linux_proc_xfer_partial, linux_xfer_partial): Likewise.
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Likewise.
* monitor.c (monitor_xfer_memory): Likewise.
(monitor_xfer_partial): Likewise.
* procfs.c (procfs_xfer_partial): Likewise.
* record-btrace.c (record_btrace_xfer_partial): Likewise.
* record-full.c (record_full_xfer_partial): Likewise.
(record_full_core_xfer_partial): Likewise.
* remote-sim.c (gdbsim_xfer_memory): Likewise.
(gdbsim_xfer_partial): Likewise.
* remote.c (remote_write_bytes_aux): Likewise. All callers
updated.
(remote_write_bytes, remote_read_bytes): Likewise. All
callers updated.
(remote_flash_erase): Likewise. All callers updated.
(remote_write_qxfer): Likewise. All callers updated.
(remote_read_qxfer): Likewise. All callers updated.
(remote_xfer_partial): Likewise.
* rs6000-nat.c (rs6000_xfer_partial): Likewise.
(rs6000_xfer_shared_libraries): Likewise.
* sol-thread.c (sol_thread_xfer_partial): Likewise.
(sol_thread_xfer_partial): Likewise.
* sparc-nat.c (sparc_xfer_wcookie): Likewise.
(sparc_xfer_partial): Likewise.
* spu-linux-nat.c (spu_proc_xfer_spu): Likewise. All callers
updated.
(spu_xfer_partial): Likewise.
* spu-multiarch.c (spu_xfer_partial): Likewise.
* tracepoint.c (tfile_xfer_partial): Likewise.
* windows-nat.c (windows_xfer_memory): Likewise.
(windows_xfer_shared_libraries): Likewise.
(windows_xfer_partial): Likewise.
* valprint.c: Replace 'target_xfer_error' with
'target_xfer_status' in comments.
2014-01-27 20:35:33 +08:00
|
|
|
ret = ld_so_xfer_auxv (readbuf, writebuf, offset, len, xfered_len);
|
|
|
|
if (ret != TARGET_XFER_E_IO)
|
|
|
|
return ret;
|
2010-01-15 05:15:00 +08:00
|
|
|
}
|
|
|
|
|
Return target_xfer_status in to_xfer_partial
This patch does the conversion of to_xfer_partial from
LONGEST (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len);
to
enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
enum target_object object, const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
It changes to_xfer_partial return the transfer status and the transfered
length by *XFERED_LEN. Generally, the return status has three stats,
- TARGET_XFER_OK,
- TARGET_XFER_EOF,
- TARGET_XFER_E_XXXX,
See the comments to them in 'enum target_xfer_status'. Note that
Pedro suggested not name TARGET_XFER_DONE, as it is confusing,
compared with "TARGET_XFER_OK". We finally name it TARGET_XFER_EOF.
With this change, GDB core can handle unavailable data in a convenient
way.
The rationale behind this change was mentioned here
https://sourceware.org/ml/gdb-patches/2013-10/msg00761.html
Consider an object/value like this:
0 100 150 200 512
DDDDDDDDDDDxxxxxxxxxDDDDDD...DDIIIIIIIIIIII..III
where D is valid data, and xxx is unavailable data, and I is beyond
the end of the object (Invalid). Currently, if we start the
xfer at 0, requesting, say 512 bytes, we'll first get back 100 bytes.
The xfer machinery then retries fetching [100,512), and gets back
TARGET_XFER_E_UNAVAILABLE. That's sufficient when you're either
interested in either having the whole of the 512 bytes available,
or erroring out. But, in this scenario, we're interested in
the data at [150,512). The problem is that the last
TARGET_XFER_E_UNAVAILABLE gives us no indication where to
start the read next. We'd need something like:
get me [0,512) >>>
<<< here's [0,100), *xfered_len is 100, returns TARGET_XFER_OK
get me [100,512) >>> (**1)
<<< [100,150) is unavailable, *xfered_len is 50, return TARGET_XFER_E_UNAVAILABLE.
get me [150,512) >>>
<<< here's [150,200), *xfered_len is 50, return TARGET_XFER_OK.
get me [200,512) >>>
<<< no more data, return TARGET_XFER_EOF.
This naturally implies pushing down the decision of whether
to return TARGET_XFER_E_UNAVAILABLE or something else
down to the target. (Which kinds of leads back to tfile
itself reading from RO memory from file (though we could
export a function in exec.c for that that tfile delegates to,
instead of re-adding the old code).
Beside this change, we also add a macro TARGET_XFER_STATUS_ERROR_P to
check whether a status is an error or not, to stop using "status < 0".
This patch also eliminates the comparison between status and 0.
No target implementations to to_xfer_partial adapts this new
interface. The interface still behaves as before.
gdb:
2014-02-11 Yao Qi <yao@codesourcery.com>
* target.h (enum target_xfer_error): Rename to ...
(enum target_xfer_status): ... it. New. All users updated.
(enum target_xfer_status) <TARGET_XFER_OK>, <TARGET_XFER_EOF>:
New.
(TARGET_XFER_STATUS_ERROR_P): New macro.
(target_xfer_error_to_string): Remove declaration.
(target_xfer_status_to_string): Declare.
(target_xfer_partial_ftype): Adjust it.
(struct target_ops) <to_xfer_partial>: Return
target_xfer_status. Add argument xfered_len. Update
comments.
* target.c (target_xfer_error_to_string): Rename to ...
(target_xfer_status_to_string): ... it. New. All callers
updated.
(target_read_live_memory): Likewise. Call target_xfer_partial
instead of target_read.
(memory_xfer_live_readonly_partial): Return
target_xfer_status. Add argument xfered_len.
(raw_memory_xfer_partial): Likewise.
(memory_xfer_partial_1): Likewise.
(memory_xfer_partial): Likewise.
(target_xfer_partial): Likewise. Check *XFERED_LEN is set
properly. Update debug message.
(default_xfer_partial, current_xfer_partial): Likewise.
(target_write_partial): Likewise.
(target_read_partial): Likewise. All callers updated.
(read_whatever_is_readable): Likewise.
(target_write_with_progress): Likewise.
(target_read_alloc_1): Likewise.
* aix-thread.c (aix_thread_xfer_partial): Likewise.
* auxv.c (procfs_xfer_auxv): Likewise.
(ld_so_xfer_auxv, memory_xfer_auxv): Likewise.
* bfd-target.c (target_bfd_xfer_partial): Likewise.
* bsd-kvm.c (bsd_kvm_xfer_partial): Likewise.
* bsd-uthread.c (bsd_uthread_xfer_partia): Likewise.
* corefile.c (read_memory): Adjust.
* corelow.c (core_xfer_partial): Likewise.
* ctf.c (ctf_xfer_partial): Likewise.
* darwin-nat.c (darwin_read_dyld_info): Likewise. All callers
updated.
(darwin_xfer_partial): Likewise.
* exec.c (section_table_xfer_memory_partial): Likewise. All
callers updated.
(exec_xfer_partial): Likewise.
* exec.h (section_table_xfer_memory_partial): Update
declaration.
* gnu-nat.c (gnu_xfer_memory): Likewise. Assert 'res' is not
negative.
(gnu_xfer_partial): Likewise.
* ia64-hpux-nat.c (ia64_hpux_xfer_memory_no_bs): Likewise.
(ia64_hpux_xfer_memory, ia64_hpux_xfer_uregs): Likewise.
(ia64_hpux_xfer_solib_got): Likewise.
* inf-ptrace.c (inf_ptrace_xfer_partial): Likewise. Change
type of 'partial_len' to ULONGEST.
* inf-ttrace.c (inf_ttrace_xfer_partial): Likewise.
* linux-nat.c (linux_xfer_siginfo ): Likewise.
(linux_nat_xfer_partial): Likewise.
(linux_proc_xfer_partial, linux_xfer_partial): Likewise.
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Likewise.
* monitor.c (monitor_xfer_memory): Likewise.
(monitor_xfer_partial): Likewise.
* procfs.c (procfs_xfer_partial): Likewise.
* record-btrace.c (record_btrace_xfer_partial): Likewise.
* record-full.c (record_full_xfer_partial): Likewise.
(record_full_core_xfer_partial): Likewise.
* remote-sim.c (gdbsim_xfer_memory): Likewise.
(gdbsim_xfer_partial): Likewise.
* remote.c (remote_write_bytes_aux): Likewise. All callers
updated.
(remote_write_bytes, remote_read_bytes): Likewise. All
callers updated.
(remote_flash_erase): Likewise. All callers updated.
(remote_write_qxfer): Likewise. All callers updated.
(remote_read_qxfer): Likewise. All callers updated.
(remote_xfer_partial): Likewise.
* rs6000-nat.c (rs6000_xfer_partial): Likewise.
(rs6000_xfer_shared_libraries): Likewise.
* sol-thread.c (sol_thread_xfer_partial): Likewise.
(sol_thread_xfer_partial): Likewise.
* sparc-nat.c (sparc_xfer_wcookie): Likewise.
(sparc_xfer_partial): Likewise.
* spu-linux-nat.c (spu_proc_xfer_spu): Likewise. All callers
updated.
(spu_xfer_partial): Likewise.
* spu-multiarch.c (spu_xfer_partial): Likewise.
* tracepoint.c (tfile_xfer_partial): Likewise.
* windows-nat.c (windows_xfer_memory): Likewise.
(windows_xfer_shared_libraries): Likewise.
(windows_xfer_partial): Likewise.
* valprint.c: Replace 'target_xfer_error' with
'target_xfer_status' in comments.
2014-01-27 20:35:33 +08:00
|
|
|
return procfs_xfer_auxv (readbuf, writebuf, offset, len, xfered_len);
|
2010-01-15 05:15:00 +08:00
|
|
|
}
|
|
|
|
|
2020-04-08 10:01:10 +08:00
|
|
|
/* This function compared to other auxv_parse functions: it takes the size of
|
|
|
|
the auxv type field as a parameter. */
|
|
|
|
|
|
|
|
static int
|
|
|
|
generic_auxv_parse (struct gdbarch *gdbarch, gdb_byte **readptr,
|
|
|
|
gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp,
|
|
|
|
int sizeof_auxv_type)
|
2004-02-02 06:35:24 +08:00
|
|
|
{
|
2020-04-08 10:01:10 +08:00
|
|
|
struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
|
|
|
|
const int sizeof_auxv_val = TYPE_LENGTH (ptr_type);
|
|
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
2005-05-24 02:20:03 +08:00
|
|
|
gdb_byte *ptr = *readptr;
|
2004-02-02 06:35:24 +08:00
|
|
|
|
|
|
|
if (endptr == ptr)
|
|
|
|
return 0;
|
|
|
|
|
2020-04-08 10:01:10 +08:00
|
|
|
if (endptr - ptr < 2 * sizeof_auxv_val)
|
2004-02-02 06:35:24 +08:00
|
|
|
return -1;
|
|
|
|
|
2020-04-08 10:01:10 +08:00
|
|
|
*typep = extract_unsigned_integer (ptr, sizeof_auxv_type, byte_order);
|
|
|
|
/* Even if the auxv type takes less space than an auxv value, there is
|
|
|
|
padding after the type such that the value is aligned on a multiple of
|
|
|
|
its size (and this is why we advance by `sizeof_auxv_val` and not
|
|
|
|
`sizeof_auxv_type`). */
|
|
|
|
ptr += sizeof_auxv_val;
|
|
|
|
*valp = extract_unsigned_integer (ptr, sizeof_auxv_val, byte_order);
|
|
|
|
ptr += sizeof_auxv_val;
|
2004-02-02 06:35:24 +08:00
|
|
|
|
|
|
|
*readptr = ptr;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2020-04-08 10:01:10 +08:00
|
|
|
/* See auxv.h. */
|
|
|
|
|
|
|
|
int
|
|
|
|
default_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
|
|
|
|
gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
|
|
|
|
{
|
|
|
|
struct gdbarch *gdbarch = target_gdbarch ();
|
|
|
|
struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
|
|
|
|
const int sizeof_auxv_type = TYPE_LENGTH (ptr_type);
|
|
|
|
|
|
|
|
return generic_auxv_parse (gdbarch, readptr, endptr, typep, valp,
|
|
|
|
sizeof_auxv_type);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* See auxv.h. */
|
|
|
|
|
|
|
|
int
|
|
|
|
svr4_auxv_parse (struct gdbarch *gdbarch, gdb_byte **readptr,
|
|
|
|
gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
|
|
|
|
{
|
|
|
|
struct type *int_type = builtin_type (gdbarch)->builtin_int;
|
|
|
|
const int sizeof_auxv_type = TYPE_LENGTH (int_type);
|
|
|
|
|
|
|
|
return generic_auxv_parse (gdbarch, readptr, endptr, typep, valp,
|
|
|
|
sizeof_auxv_type);
|
|
|
|
}
|
|
|
|
|
2008-05-04 17:28:27 +08:00
|
|
|
/* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
|
|
|
|
Return 0 if *READPTR is already at the end of the buffer.
|
|
|
|
Return -1 if there is insufficient buffer for a whole entry.
|
|
|
|
Return 1 if an entry was read into *TYPEP and *VALP. */
|
|
|
|
int
|
Convert struct target_ops to C++
I.e., use C++ virtual methods and inheritance instead of tables of
function pointers.
Unfortunately, there's no way to do a smooth transition. ALL native
targets in the tree must be converted at the same time. I've tested
all I could with cross compilers and with help from GCC compile farm,
but naturally I haven't been able to test many of the ports. Still, I
made a best effort to port everything over, and while I expect some
build problems due to typos and such, which should be trivial to fix,
I don't expect any design problems.
* Implementation notes:
- The flattened current_target is gone. References to current_target
or current_target.beneath are replaced with references to
target_stack (the top of the stack) directly.
- To keep "set debug target" working, this adds a new debug_stratum
layer that sits on top of the stack, prints the debug, and delegates
to the target beneath.
In addition, this makes the shortname and longname properties of
target_ops be virtual methods instead of data fields, and makes the
debug target defer those to the target beneath. This is so that
debug code sprinkled around that does "if (debugtarget) ..." can
transparently print the name of the target beneath.
A patch later in the series actually splits out the
shortname/longname methods to a separate structure, but I preferred
to keep that chance separate as it is associated with changing a bit
the design of how targets are registered and open.
- Since you can't check whether a C++ virtual method is overridden,
the old method of checking whether a target_ops implements a method
by comparing the function pointer must be replaced with something
else.
Some cases are fixed by adding a parallel "can_do_foo" target_ops
methods. E.g.,:
+ for (t = target_stack; t != NULL; t = t->beneath)
{
- if (t->to_create_inferior != NULL)
+ if (t->can_create_inferior ())
break;
}
Others are fixed by changing void return type to bool or int return
type, and have the default implementation return false or -1, to
indicate lack of support.
- make-target-delegates was adjusted to generate C++ classes and
methods.
It needed tweaks to grok "virtual" in front of the target method
name, and for the fact that methods are no longer function pointers.
(In particular, the current code parsing the return type was simple
because it could simply parse up until the '(' in '(*to_foo)'.
It now generates a couple C++ classes that inherit target_ops:
dummy_target and debug_target.
Since we need to generate the class declarations as well, i.e., we
need to emit methods twice, we now generate the code in two passes.
- The core_target global is renamed to avoid conflict with the
"core_target" class.
- ctf/tfile targets
init_tracefile_ops is replaced by a base class that is inherited by
both ctf and tfile.
- bsd-uthread
The bsd_uthread_ops_hack hack is gone. It's not needed because
nothing was extending a target created by bsd_uthread_target.
- remote/extended-remote targets
This is a first pass, just enough to C++ify target_ops.
A later pass will convert more free functions to methods, and make
remote_state be truly per remote instance, allowing multiple
simultaneous instances of remote targets.
- inf-child/"native" is converted to an actual base class
(inf_child_target), that is inherited by all native targets.
- GNU/Linux
The old weird double-target linux_ops mechanism in linux-nat.c, is
gone, replaced by adding a few virtual methods to linux-nat.h's
target_ops, called low_XXX, that the concrete linux-nat
implementations override. Sort of like gdbserver's
linux_target_ops, but simpler, for requiring only one
target_ops-like hierarchy, which spares implementing the same method
twice when we need to forward the method to a low implementation.
The low target simply reimplements the target_ops method directly in
that case.
There are a few remaining linux-nat.c hooks that would be better
converted to low_ methods like above too. E.g.:
linux_nat_set_new_thread (t, x86_linux_new_thread);
linux_nat_set_new_fork (t, x86_linux_new_fork);
linux_nat_set_forget_process
That'll be done in a follow up patch.
- We can no longer use functions like x86_use_watchpoints to install
custom methods on an arbitrary base target.
The patch replaces instances of such a pattern with template mixins.
For example memory_breakpoint_target defined in target.h, or
x86_nat_target in x86-nat.h.
- linux_trad_target, MIPS and Alpha GNU/Linux
The code in the new linux-nat-trad.h/c files which was split off of
inf-ptrace.h/c recently, is converted to a C++ base class, and used
by the MIPS and Alpha GNU/Linux ports.
- BSD targets
The
$architecture x NetBSD/OpenBSD/FreeBSD
support matrix complicates things a bit. There's common BSD target
code, and there's common architecture-specific code shared between
the different BSDs. Currently, all that is stiched together to form
a final target, via the i386bsd_target, x86bsd_target,
fbsd_nat_add_target functions etc.
This introduces new fbsd_nat_target, obsd_nat_target and
nbsd_nat_target classes that serve as base/prototype target for the
corresponding BSD variant.
And introduces generic i386/AMD64 BSD targets, to be used as
template mixin to build a final target. Similarly, a generic SPARC
target is added, used by both BSD and Linux ports.
- bsd_kvm_add_target, BSD libkvm target
I considered making bsd_kvm_supply_pcb a virtual method, and then
have each port inherit bsd_kvm_target and override that method, but
that was resulting in lots of unjustified churn, so I left the
function pointer mechanism alone.
gdb/ChangeLog:
2018-05-02 Pedro Alves <palves@redhat.com>
John Baldwin <jhb@freebsd.org>
* target.h (enum strata) <debug_stratum>: New.
(struct target_ops) <all delegation methods>: Replace by C++
virtual methods, and drop "to_" prefix. All references updated
throughout.
<to_shortname, to_longname, to_doc, to_data,
to_have_steppable_watchpoint, to_have_continuable_watchpoint,
to_has_thread_control, to_attach_no_wait>: Delete, replaced by
virtual methods. All references updated throughout.
<can_attach, supports_terminal_ours, can_create_inferior,
get_thread_control_capabilities, attach_no_wait>: New
virtual methods.
<insert_breakpoint, remove_breakpoint>: Now
TARGET_DEFAULT_NORETURN methods.
<info_proc>: Now returns bool.
<to_magic>: Delete.
(OPS_MAGIC): Delete.
(current_target): Delete. All references replaced by references
to ...
(target_stack): ... this. New.
(target_shortname, target_longname): Adjust.
(target_can_run): Now a function declaration.
(default_child_has_all_memory, default_child_has_memory)
(default_child_has_stack, default_child_has_registers)
(default_child_has_execution): Remove target_ops parameter.
(complete_target_initialization): Delete.
(memory_breakpoint_target): New template class.
(test_target_ops): Refactor as a C++ class with virtual methods.
* make-target-delegates (NAME_PART): Tighten.
(POINTER_PART, CP_SYMBOL): New.
(SIMPLE_RETURN_PART): Reimplement.
(VEC_RETURN_PART): Expect less.
(RETURN_PART, VIRTUAL_PART): New.
(METHOD): Adjust to C++ virtual methods.
(scan_target_h): Remove reference to C99.
(dname): Output "target_ops::" prefix.
(write_function_header): Adjust to output a C++ class method.
(write_declaration): New.
(write_delegator): Adjust to output a C++ class method.
(tdname): Output "dummy_target::" prefix.
(write_tdefault, write_debugmethod): Adjust to output a C++ class
method.
(tdefault_names, debug_names): Delete.
(return_types, tdefaults, styles, argtypes_array): New.
(top level): All methods are delegators.
(print_class): New.
(top level): Print dummy_target and debug_target classes.
* target-delegates.c: Regenerate.
* target-debug.h (target_debug_print_enum_info_proc_what)
(target_debug_print_thread_control_capabilities)
(target_debug_print_thread_info_p): New.
* target.c (dummy_target): Delete.
(the_dummy_target, the_debug_target): New.
(target_stack): Now extern.
(set_targetdebug): Push/unpush debug target.
(default_child_has_all_memory, default_child_has_memory)
(default_child_has_stack, default_child_has_registers)
(default_child_has_execution): Remove target_ops parameter.
(complete_target_initialization): Delete.
(add_target_with_completer): No longer call
complete_target_initialization.
(target_supports_terminal_ours): Use regular delegation.
(update_current_target): Delete.
(push_target): No longer check magic number. Don't call
update_current_target.
(unpush_target): Don't call update_current_target.
(target_is_pushed): No longer check magic number.
(target_require_runnable): Skip for all stratums over
process_stratum.
(target_ops::info_proc): New.
(target_info_proc): Use find_target_at and
find_default_run_target.
(target_supports_disable_randomization): Use regular delegation.
(target_get_osdata): Use find_target_at.
(target_ops::open, target_ops::close, target_ops::can_attach)
(target_ops::attach, target_ops::can_create_inferior)
(target_ops::create_inferior, target_ops::can_run)
(target_can_run): New.
(default_fileio_target): Use regular delegation.
(target_ops::fileio_open, target_ops::fileio_pwrite)
(target_ops::fileio_pread, target_ops::fileio_fstat)
(target_ops::fileio_close, target_ops::fileio_unlink)
(target_ops::fileio_readlink): New.
(target_fileio_open_1, target_fileio_unlink)
(target_fileio_readlink): Always call the target method. Handle
FILEIO_ENOSYS.
(return_zero, return_zero_has_execution): Delete.
(init_dummy_target): Delete.
(dummy_target::dummy_target, dummy_target::shortname)
(dummy_target::longname, dummy_target::doc)
(debug_target::debug_target, debug_target::shortname)
(debug_target::longname, debug_target::doc): New.
(target_supports_delete_record): Use regular delegation.
(setup_target_debug): Delete.
(maintenance_print_target_stack): Skip debug_stratum.
(initialize_targets): Instantiate the_dummy_target and
the_debug_target.
* auxv.c (target_auxv_parse): Remove 'ops' parameter. Adjust to
use target_stack.
(target_auxv_search, fprint_target_auxv): Adjust.
(info_auxv_command): Adjust to use target_stack.
* auxv.h (target_auxv_parse): Remove 'ops' parameter.
* exceptions.c (print_flush): Handle a NULL target_stack.
* regcache.c (target_ops_no_register): Refactor as class with
virtual methods.
* exec.c (exec_target): New class.
(exec_ops): Now an exec_target.
(exec_open, exec_close_1, exec_get_section_table)
(exec_xfer_partial, exec_files_info, exec_has_memory)
(exec_make_note_section): Refactor as exec_target methods.
(exec_file_clear, ignore, exec_remove_breakpoint, init_exec_ops):
Delete.
(exec_target::find_memory_regions): New.
(_initialize_exec): Don't call init_exec_ops.
* gdbcore.h (exec_file_clear): Delete.
* corefile.c (core_target): Delete.
(core_file_command): Adjust.
* corelow.c (core_target): New class.
(the_core_target): New.
(core_close): Remove target_ops parameter.
(core_close_cleanup): Adjust.
(core_target::close): New.
(core_open, core_detach, get_core_registers, core_files_info)
(core_xfer_partial, core_thread_alive, core_read_description)
(core_pid_to_str, core_thread_name, core_has_memory)
(core_has_stack, core_has_registers, core_info_proc): Rework as
core_target methods.
(ignore, core_remove_breakpoint, init_core_ops): Delete.
(_initialize_corelow): Initialize the_core_target.
* gdbcore.h (core_target): Delete.
(the_core_target): New.
* ctf.c: (ctf_target): New class.
(ctf_ops): Now a ctf_target.
(ctf_open, ctf_close, ctf_files_info, ctf_fetch_registers)
(ctf_xfer_partial, ctf_get_trace_state_variable_value)
(ctf_trace_find, ctf_traceframe_info): Refactor as ctf_target
methods.
(init_ctf_ops): Delete.
(_initialize_ctf): Don't call it.
* tracefile-tfile.c (tfile_target): New class.
(tfile_ops): Now a tfile_target.
(tfile_open, tfile_close, tfile_files_info)
(tfile_get_tracepoint_status, tfile_trace_find)
(tfile_fetch_registers, tfile_xfer_partial)
(tfile_get_trace_state_variable_value, tfile_traceframe_info):
Refactor as tfile_target methods.
(tfile_xfer_partial_features): Remove target_ops parameter.
(init_tfile_ops): Delete.
(_initialize_tracefile_tfile): Don't call it.
* tracefile.c (tracefile_has_all_memory, tracefile_has_memory)
(tracefile_has_stack, tracefile_has_registers)
(tracefile_thread_alive, tracefile_get_trace_status): Refactor as
tracefile_target methods.
(init_tracefile_ops): Delete.
(tracefile_target::tracefile_target): New.
* tracefile.h: Include "target.h".
(tracefile_target): New class.
(init_tracefile_ops): Delete.
* spu-multiarch.c (spu_multiarch_target): New class.
(spu_ops): Now a spu_multiarch_target.
(spu_thread_architecture, spu_region_ok_for_hw_watchpoint)
(spu_fetch_registers, spu_store_registers, spu_xfer_partial)
(spu_search_memory, spu_mourn_inferior): Refactor as
spu_multiarch_target methods.
(init_spu_ops): Delete.
(_initialize_spu_multiarch): Remove references to init_spu_ops,
complete_target_initialization.
* ravenscar-thread.c (ravenscar_thread_target): New class.
(ravenscar_ops): Now a ravenscar_thread_target.
(ravenscar_resume, ravenscar_wait, ravenscar_update_thread_list)
(ravenscar_thread_alive, ravenscar_pid_to_str)
(ravenscar_fetch_registers, ravenscar_store_registers)
(ravenscar_prepare_to_store, ravenscar_stopped_by_sw_breakpoint)
(ravenscar_stopped_by_hw_breakpoint)
(ravenscar_stopped_by_watchpoint, ravenscar_stopped_data_address)
(ravenscar_mourn_inferior, ravenscar_core_of_thread)
(ravenscar_get_ada_task_ptid): Refactor as ravenscar_thread_target
methods.
(init_ravenscar_thread_ops): Delete.
(_initialize_ravenscar): Remove references to
init_ravenscar_thread_ops and complete_target_initialization.
* bsd-uthread.c (bsd_uthread_ops_hack): Delete.
(bsd_uthread_target): New class.
(bsd_uthread_ops): Now a bsd_uthread_target.
(bsd_uthread_activate): Adjust to refer to bsd_uthread_ops.
(bsd_uthread_close, bsd_uthread_mourn_inferior)
(bsd_uthread_fetch_registers, bsd_uthread_store_registers)
(bsd_uthread_wait, bsd_uthread_resume, bsd_uthread_thread_alive)
(bsd_uthread_update_thread_list, bsd_uthread_extra_thread_info)
(bsd_uthread_pid_to_str): Refactor as bsd_uthread_target methods.
(bsd_uthread_target): Delete function.
(_initialize_bsd_uthread): Remove reference to
complete_target_initialization.
* bfd-target.c (target_bfd_data): Delete. Fields folded into ...
(target_bfd): ... this new class.
(target_bfd_xfer_partial, target_bfd_get_section_table)
(target_bfd_close): Refactor as target_bfd methods.
(target_bfd::~target_bfd): New.
(target_bfd_reopen): Adjust.
(target_bfd::close): New.
* record-btrace.c (record_btrace_target): New class.
(record_btrace_ops): Now a record_btrace_target.
(record_btrace_open, record_btrace_stop_recording)
(record_btrace_disconnect, record_btrace_close)
(record_btrace_async, record_btrace_info)
(record_btrace_insn_history, record_btrace_insn_history_range)
(record_btrace_insn_history_from, record_btrace_call_history)
(record_btrace_call_history_range)
(record_btrace_call_history_from, record_btrace_record_method)
(record_btrace_is_replaying, record_btrace_will_replay)
(record_btrace_xfer_partial, record_btrace_insert_breakpoint)
(record_btrace_remove_breakpoint, record_btrace_fetch_registers)
(record_btrace_store_registers, record_btrace_prepare_to_store)
(record_btrace_to_get_unwinder)
(record_btrace_to_get_tailcall_unwinder, record_btrace_resume)
(record_btrace_commit_resume, record_btrace_wait)
(record_btrace_stop, record_btrace_can_execute_reverse)
(record_btrace_stopped_by_sw_breakpoint)
(record_btrace_supports_stopped_by_sw_breakpoint)
(record_btrace_stopped_by_hw_breakpoint)
(record_btrace_supports_stopped_by_hw_breakpoint)
(record_btrace_update_thread_list, record_btrace_thread_alive)
(record_btrace_goto_begin, record_btrace_goto_end)
(record_btrace_goto, record_btrace_stop_replaying_all)
(record_btrace_execution_direction)
(record_btrace_prepare_to_generate_core)
(record_btrace_done_generating_core): Refactor as
record_btrace_target methods.
(init_record_btrace_ops): Delete.
(_initialize_record_btrace): Remove reference to
init_record_btrace_ops.
* record-full.c (RECORD_FULL_IS_REPLAY): Adjust to always refer to
the execution_direction global.
(record_full_base_target, record_full_target)
(record_full_core_target): New classes.
(record_full_ops): Now a record_full_target.
(record_full_core_ops): Now a record_full_core_target.
(record_full_target::detach, record_full_target::disconnect)
(record_full_core_target::disconnect)
(record_full_target::mourn_inferior, record_full_target::kill):
New.
(record_full_open, record_full_close, record_full_async): Refactor
as methods of the record_full_base_target class.
(record_full_resume, record_full_commit_resume): Refactor
as methods of the record_full_target class.
(record_full_wait, record_full_stopped_by_watchpoint)
(record_full_stopped_data_address)
(record_full_stopped_by_sw_breakpoint)
(record_full_supports_stopped_by_sw_breakpoint)
(record_full_stopped_by_hw_breakpoint)
(record_full_supports_stopped_by_hw_breakpoint): Refactor as
methods of the record_full_base_target class.
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint):
Refactor as methods of the record_full_target class.
(record_full_can_execute_reverse, record_full_get_bookmark)
(record_full_goto_bookmark, record_full_execution_direction)
(record_full_record_method, record_full_info, record_full_delete)
(record_full_is_replaying, record_full_will_replay)
(record_full_goto_begin, record_full_goto_end, record_full_goto)
(record_full_stop_replaying): Refactor as methods of the
record_full_base_target class.
(record_full_core_resume, record_full_core_kill)
(record_full_core_fetch_registers)
(record_full_core_prepare_to_store)
(record_full_core_store_registers, record_full_core_xfer_partial)
(record_full_core_insert_breakpoint)
(record_full_core_remove_breakpoint)
(record_full_core_has_execution): Refactor
as methods of the record_full_core_target class.
(record_full_base_target::supports_delete_record): New.
(init_record_full_ops): Delete.
(init_record_full_core_ops): Delete.
(record_full_save): Refactor as method of the
record_full_base_target class.
(_initialize_record_full): Remove references to
init_record_full_ops and init_record_full_core_ops.
* remote.c (remote_target, extended_remote_target): New classes.
(remote_ops): Now a remote_target.
(extended_remote_ops): Now an extended_remote_target.
(remote_insert_fork_catchpoint, remote_remove_fork_catchpoint)
(remote_insert_vfork_catchpoint, remote_remove_vfork_catchpoint)
(remote_insert_exec_catchpoint, remote_remove_exec_catchpoint)
(remote_pass_signals, remote_set_syscall_catchpoint)
(remote_program_signals, )
(remote_thread_always_alive): Remove target_ops parameter.
(remote_thread_alive, remote_thread_name)
(remote_update_thread_list, remote_threads_extra_info)
(remote_static_tracepoint_marker_at)
(remote_static_tracepoint_markers_by_strid)
(remote_get_ada_task_ptid, remote_close, remote_start_remote)
(remote_open): Refactor as methods of remote_target.
(extended_remote_open, extended_remote_detach)
(extended_remote_attach, extended_remote_post_attach):
(extended_remote_supports_disable_randomization)
(extended_remote_create_inferior): : Refactor as method of
extended_remote_target.
(remote_set_permissions, remote_open_1, remote_detach)
(remote_follow_fork, remote_follow_exec, remote_disconnect)
(remote_resume, remote_commit_resume, remote_stop)
(remote_interrupt, remote_pass_ctrlc, remote_terminal_inferior)
(remote_terminal_ours, remote_wait, remote_fetch_registers)
(remote_prepare_to_store, remote_store_registers)
(remote_flash_erase, remote_flash_done, remote_files_info)
(remote_kill, remote_mourn, remote_insert_breakpoint)
(remote_remove_breakpoint, remote_insert_watchpoint)
(remote_watchpoint_addr_within_range)
(remote_remove_watchpoint, remote_region_ok_for_hw_watchpoint)
(remote_check_watch_resources, remote_stopped_by_sw_breakpoint)
(remote_supports_stopped_by_sw_breakpoint)
(remote_stopped_by_hw_breakpoint)
(remote_supports_stopped_by_hw_breakpoint)
(remote_stopped_by_watchpoint, remote_stopped_data_address)
(remote_insert_hw_breakpoint, remote_remove_hw_breakpoint)
(remote_verify_memory): Refactor as methods of remote_target.
(remote_write_qxfer, remote_read_qxfer): Remove target_ops
parameter.
(remote_xfer_partial, remote_get_memory_xfer_limit)
(remote_search_memory, remote_rcmd, remote_memory_map)
(remote_pid_to_str, remote_get_thread_local_address)
(remote_get_tib_address, remote_read_description): Refactor as
methods of remote_target.
(remote_target::fileio_open, remote_target::fileio_pwrite)
(remote_target::fileio_pread, remote_target::fileio_close): New.
(remote_hostio_readlink, remote_hostio_fstat)
(remote_filesystem_is_local, remote_can_execute_reverse)
(remote_supports_non_stop, remote_supports_disable_randomization)
(remote_supports_multi_process, remote_supports_cond_breakpoints)
(remote_supports_enable_disable_tracepoint)
(remote_supports_string_tracing)
(remote_can_run_breakpoint_commands, remote_trace_init)
(remote_download_tracepoint, remote_can_download_tracepoint)
(remote_download_trace_state_variable, remote_enable_tracepoint)
(remote_disable_tracepoint, remote_trace_set_readonly_regions)
(remote_trace_start, remote_get_trace_status)
(remote_get_tracepoint_status, remote_trace_stop)
(remote_trace_find, remote_get_trace_state_variable_value)
(remote_save_trace_data, remote_get_raw_trace_data)
(remote_set_disconnected_tracing, remote_core_of_thread)
(remote_set_circular_trace_buffer, remote_traceframe_info)
(remote_get_min_fast_tracepoint_insn_len)
(remote_set_trace_buffer_size, remote_set_trace_notes)
(remote_use_agent, remote_can_use_agent, remote_enable_btrace)
(remote_disable_btrace, remote_teardown_btrace)
(remote_read_btrace, remote_btrace_conf)
(remote_augmented_libraries_svr4_read, remote_load)
(remote_pid_to_exec_file, remote_can_do_single_step)
(remote_execution_direction, remote_thread_handle_to_thread_info):
Refactor as methods of remote_target.
(init_remote_ops, init_extended_remote_ops): Delete.
(remote_can_async_p, remote_is_async_p, remote_async)
(remote_thread_events, remote_upload_tracepoints)
(remote_upload_trace_state_variables): Refactor as methods of
remote_target.
(_initialize_remote): Remove references to init_remote_ops and
init_extended_remote_ops.
* remote-sim.c (gdbsim_target): New class.
(gdbsim_fetch_register, gdbsim_store_register, gdbsim_kill)
(gdbsim_load, gdbsim_create_inferior, gdbsim_open, gdbsim_close)
(gdbsim_detach, gdbsim_resume, gdbsim_interrupt)
(gdbsim_wait, gdbsim_prepare_to_store, gdbsim_xfer_partial)
(gdbsim_files_info, gdbsim_mourn_inferior, gdbsim_thread_alive)
(gdbsim_pid_to_str, gdbsim_has_all_memory, gdbsim_has_memory):
Refactor as methods of gdbsim_target.
(gdbsim_ops): Now a gdbsim_target.
(init_gdbsim_ops): Delete.
(gdbsim_cntrl_c): Adjust.
(_initialize_remote_sim): Remove reference to init_gdbsim_ops.
* amd64-linux-nat.c (amd64_linux_nat_target): New class.
(the_amd64_linux_nat_target): New.
(amd64_linux_fetch_inferior_registers)
(amd64_linux_store_inferior_registers): Refactor as methods of
amd64_linux_nat_target.
(_initialize_amd64_linux_nat): Adjust. Set linux_target.
* i386-linux-nat.c: Don't include "linux-nat.h".
(i386_linux_nat_target): New class.
(the_i386_linux_nat_target): New.
(i386_linux_fetch_inferior_registers)
(i386_linux_store_inferior_registers, i386_linux_resume): Refactor
as methods of i386_linux_nat_target.
(_initialize_i386_linux_nat): Adjust. Set linux_target.
* inf-child.c (inf_child_ops): Delete.
(inf_child_fetch_inferior_registers)
(inf_child_store_inferior_registers): Delete.
(inf_child_post_attach, inf_child_prepare_to_store): Refactor as
methods of inf_child_target.
(inf_child_target::supports_terminal_ours)
(inf_child_target::terminal_init)
(inf_child_target::terminal_inferior)
(inf_child_target::terminal_ours_for_output)
(inf_child_target::terminal_ours, inf_child_target::interrupt)
(inf_child_target::pass_ctrlc, inf_child_target::terminal_info):
New.
(inf_child_open, inf_child_disconnect, inf_child_close)
(inf_child_mourn_inferior, inf_child_maybe_unpush_target)
(inf_child_post_startup_inferior, inf_child_can_run)
(inf_child_pid_to_exec_file): Refactor as methods of
inf_child_target.
(inf_child_follow_fork): Delete.
(inf_child_target::can_create_inferior)
(inf_child_target::can_attach): New.
(inf_child_target::has_all_memory, inf_child_target::has_memory)
(inf_child_target::has_stack, inf_child_target::has_registers)
(inf_child_target::has_execution): New.
(inf_child_fileio_open, inf_child_fileio_pwrite)
(inf_child_fileio_pread, inf_child_fileio_fstat)
(inf_child_fileio_close, inf_child_fileio_unlink)
(inf_child_fileio_readlink, inf_child_use_agent)
(inf_child_can_use_agent): Refactor as methods of
inf_child_target.
(return_zero, inf_child_target): Delete.
(inf_child_target::inf_child_target): New.
* inf-child.h: Include "target.h".
(inf_child_target): Delete function prototype.
(inf_child_target): New class.
(inf_child_open_target, inf_child_mourn_inferior)
(inf_child_maybe_unpush_target): Delete.
* inf-ptrace.c (inf_ptrace_target::~inf_ptrace_target): New.
(inf_ptrace_follow_fork, inf_ptrace_insert_fork_catchpoint)
(inf_ptrace_remove_fork_catchpoint, inf_ptrace_create_inferior)
(inf_ptrace_post_startup_inferior, inf_ptrace_mourn_inferior)
(inf_ptrace_attach, inf_ptrace_post_attach, inf_ptrace_detach)
(inf_ptrace_detach_success, inf_ptrace_kill, inf_ptrace_resume)
(inf_ptrace_wait, inf_ptrace_xfer_partial)
(inf_ptrace_thread_alive, inf_ptrace_files_info)
(inf_ptrace_pid_to_str, inf_ptrace_auxv_parse): Refactor as
methods of inf_ptrace_target.
(inf_ptrace_target): Delete function.
* inf-ptrace.h: Include "inf-child.h".
(inf_ptrace_target): Delete function declaration.
(inf_ptrace_target): New class.
(inf_ptrace_trad_target, inf_ptrace_detach_success): Delete.
* linux-nat.c (linux_target): New.
(linux_ops, linux_ops_saved, super_xfer_partial): Delete.
(linux_nat_target::~linux_nat_target): New.
(linux_child_post_attach, linux_child_post_startup_inferior)
(linux_child_follow_fork, linux_child_insert_fork_catchpoint)
(linux_child_remove_fork_catchpoint)
(linux_child_insert_vfork_catchpoint)
(linux_child_remove_vfork_catchpoint)
(linux_child_insert_exec_catchpoint)
(linux_child_remove_exec_catchpoint)
(linux_child_set_syscall_catchpoint, linux_nat_pass_signals)
(linux_nat_create_inferior, linux_nat_attach, linux_nat_detach)
(linux_nat_resume, linux_nat_stopped_by_watchpoint)
(linux_nat_stopped_data_address)
(linux_nat_stopped_by_sw_breakpoint)
(linux_nat_supports_stopped_by_sw_breakpoint)
(linux_nat_stopped_by_hw_breakpoint)
(linux_nat_supports_stopped_by_hw_breakpoint, linux_nat_wait)
(linux_nat_kill, linux_nat_mourn_inferior)
(linux_nat_xfer_partial, linux_nat_thread_alive)
(linux_nat_update_thread_list, linux_nat_pid_to_str)
(linux_nat_thread_name, linux_child_pid_to_exec_file)
(linux_child_static_tracepoint_markers_by_strid)
(linux_nat_is_async_p, linux_nat_can_async_p)
(linux_nat_supports_non_stop, linux_nat_always_non_stop_p)
(linux_nat_supports_multi_process)
(linux_nat_supports_disable_randomization, linux_nat_async)
(linux_nat_stop, linux_nat_close, linux_nat_thread_address_space)
(linux_nat_core_of_thread, linux_nat_filesystem_is_local)
(linux_nat_fileio_open, linux_nat_fileio_readlink)
(linux_nat_fileio_unlink, linux_nat_thread_events): Refactor as
methods of linux_nat_target.
(linux_nat_wait_1, linux_xfer_siginfo, linux_proc_xfer_partial)
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Remove target_ops
parameter.
(check_stopped_by_watchpoint): Adjust.
(linux_xfer_partial): Delete.
(linux_target_install_ops, linux_target, linux_nat_add_target):
Delete.
(linux_nat_target::linux_nat_target): New.
* linux-nat.h: Include "inf-ptrace.h".
(linux_nat_target): New.
(linux_target, linux_target_install_ops, linux_nat_add_target):
Delete function declarations.
(linux_target): Declare global.
* linux-thread-db.c (thread_db_target): New.
(thread_db_target::thread_db_target): New.
(thread_db_ops): Delete.
(the_thread_db_target): New.
(thread_db_detach, thread_db_wait, thread_db_mourn_inferior)
(thread_db_update_thread_list, thread_db_pid_to_str)
(thread_db_extra_thread_info)
(thread_db_thread_handle_to_thread_info)
(thread_db_get_thread_local_address, thread_db_get_ada_task_ptid)
(thread_db_resume): Refactor as methods of thread_db_target.
(init_thread_db_ops): Delete.
(_initialize_thread_db): Remove reference to init_thread_db_ops.
* x86-linux-nat.c: Don't include "linux-nat.h".
(super_post_startup_inferior): Delete.
(x86_linux_nat_target::~x86_linux_nat_target): New.
(x86_linux_child_post_startup_inferior)
(x86_linux_read_description, x86_linux_enable_btrace)
(x86_linux_disable_btrace, x86_linux_teardown_btrace)
(x86_linux_read_btrace, x86_linux_btrace_conf): Refactor as
methods of x86_linux_nat_target.
(x86_linux_create_target): Delete. Bits folded ...
(x86_linux_add_target): ... here. Now takes a linux_nat_target
pointer.
* x86-linux-nat.h: Include "linux-nat.h" and "x86-nat.h".
(x86_linux_nat_target): New class.
(x86_linux_create_target): Delete.
(x86_linux_add_target): Now takes a linux_nat_target pointer.
* x86-nat.c (x86_insert_watchpoint, x86_remove_watchpoint)
(x86_region_ok_for_watchpoint, x86_stopped_data_address)
(x86_stopped_by_watchpoint, x86_insert_hw_breakpoint)
(x86_remove_hw_breakpoint, x86_can_use_hw_breakpoint)
(x86_stopped_by_hw_breakpoint): Remove target_ops parameter and
make extern.
(x86_use_watchpoints): Delete.
* x86-nat.h: Include "breakpoint.h" and "target.h".
(x86_use_watchpoints): Delete.
(x86_can_use_hw_breakpoint, x86_region_ok_for_hw_watchpoint)
(x86_stopped_by_watchpoint, x86_stopped_data_address)
(x86_insert_watchpoint, x86_remove_watchpoint)
(x86_insert_hw_breakpoint, x86_remove_hw_breakpoint)
(x86_stopped_by_hw_breakpoint): New declarations.
(x86_nat_target): New template class.
* ppc-linux-nat.c (ppc_linux_nat_target): New class.
(the_ppc_linux_nat_target): New.
(ppc_linux_fetch_inferior_registers)
(ppc_linux_can_use_hw_breakpoint)
(ppc_linux_region_ok_for_hw_watchpoint)
(ppc_linux_ranged_break_num_registers)
(ppc_linux_insert_hw_breakpoint, ppc_linux_remove_hw_breakpoint)
(ppc_linux_insert_mask_watchpoint)
(ppc_linux_remove_mask_watchpoint)
(ppc_linux_can_accel_watchpoint_condition)
(ppc_linux_insert_watchpoint, ppc_linux_remove_watchpoint)
(ppc_linux_stopped_data_address, ppc_linux_stopped_by_watchpoint)
(ppc_linux_watchpoint_addr_within_range)
(ppc_linux_masked_watch_num_registers)
(ppc_linux_store_inferior_registers, ppc_linux_auxv_parse)
(ppc_linux_read_description): Refactor as methods of
ppc_linux_nat_target.
(_initialize_ppc_linux_nat): Adjust. Set linux_target.
* procfs.c (procfs_xfer_partial): Delete forward declaration.
(procfs_target): New class.
(the_procfs_target): New.
(procfs_target): Delete function.
(procfs_auxv_parse, procfs_attach, procfs_detach)
(procfs_fetch_registers, procfs_store_registers, procfs_wait)
(procfs_xfer_partial, procfs_resume, procfs_pass_signals)
(procfs_files_info, procfs_kill_inferior, procfs_mourn_inferior)
(procfs_create_inferior, procfs_update_thread_list)
(procfs_thread_alive, procfs_pid_to_str)
(procfs_can_use_hw_breakpoint, procfs_stopped_by_watchpoint)
(procfs_stopped_data_address, procfs_insert_watchpoint)
(procfs_remove_watchpoint, procfs_region_ok_for_hw_watchpoint)
(proc_find_memory_regions, procfs_info_proc)
(procfs_make_note_section): Refactor as methods of procfs_target.
(_initialize_procfs): Adjust.
* sol-thread.c (sol_thread_target): New class.
(sol_thread_ops): Now a sol_thread_target.
(sol_thread_detach, sol_thread_resume, sol_thread_wait)
(sol_thread_fetch_registers, sol_thread_store_registers)
(sol_thread_xfer_partial, sol_thread_mourn_inferior)
(sol_thread_alive, solaris_pid_to_str, sol_update_thread_list)
(sol_get_ada_task_ptid): Refactor as methods of sol_thread_target.
(init_sol_thread_ops): Delete.
(_initialize_sol_thread): Adjust. Remove references to
init_sol_thread_ops and complete_target_initialization.
* windows-nat.c (windows_nat_target): New class.
(windows_fetch_inferior_registers)
(windows_store_inferior_registers, windows_resume, windows_wait)
(windows_attach, windows_detach, windows_pid_to_exec_file)
(windows_files_info, windows_create_inferior)
(windows_mourn_inferior, windows_interrupt, windows_kill_inferior)
(windows_close, windows_pid_to_str, windows_xfer_partial)
(windows_get_tib_address, windows_get_ada_task_ptid)
(windows_thread_name, windows_thread_alive): Refactor as
windows_nat_target methods.
(do_initial_windows_stuff): Adjust.
(windows_target): Delete function.
(_initialize_windows_nat): Adjust.
* darwin-nat.c (darwin_resume, darwin_wait_to, darwin_interrupt)
(darwin_mourn_inferior, darwin_kill_inferior)
(darwin_create_inferior, darwin_attach, darwin_detach)
(darwin_pid_to_str, darwin_thread_alive, darwin_xfer_partial)
(darwin_pid_to_exec_file, darwin_get_ada_task_ptid)
(darwin_supports_multi_process): Refactor as darwin_nat_target
methods.
(darwin_resume_to, darwin_files_info): Delete.
(_initialize_darwin_inferior): Rename to ...
(_initialize_darwin_nat): ... this. Adjust to C++ification.
* darwin-nat.h: Include "inf-child.h".
(darwin_nat_target): New class.
(darwin_complete_target): Delete.
* i386-darwin-nat.c (i386_darwin_nat_target): New class.
(darwin_target): New.
(i386_darwin_fetch_inferior_registers)
(i386_darwin_store_inferior_registers): Refactor as methods of
darwin_nat_target.
(darwin_complete_target): Delete, with ...
(_initialize_i386_darwin_nat): ... bits factored out here.
* alpha-linux-nat.c (alpha_linux_nat_target): New class.
(the_alpha_linux_nat_target): New.
(alpha_linux_register_u_offset): Refactor as
alpha_linux_nat_target method.
(_initialize_alpha_linux_nat): Adjust.
* linux-nat-trad.c (inf_ptrace_register_u_offset): Delete.
(inf_ptrace_fetch_register, inf_ptrace_fetch_registers)
(inf_ptrace_store_register, inf_ptrace_store_registers): Refact as
methods of linux_nat_trad_target.
(linux_trad_target): Delete.
* linux-nat-trad.h (linux_trad_target): Delete function.
(linux_nat_trad_target): New class.
* mips-linux-nat.c (mips_linux_nat_target): New class.
(super_fetch_registers, super_store_registers, super_close):
Delete.
(the_mips_linux_nat_target): New.
(mips64_linux_regsets_fetch_registers)
(mips64_linux_regsets_store_registers)
(mips64_linux_fetch_registers, mips64_linux_store_registers)
(mips_linux_register_u_offset, mips_linux_read_description)
(mips_linux_can_use_hw_breakpoint)
(mips_linux_stopped_by_watchpoint)
(mips_linux_stopped_data_address)
(mips_linux_region_ok_for_hw_watchpoint)
(mips_linux_insert_watchpoint, mips_linux_remove_watchpoint)
(mips_linux_close): Refactor as methods of mips_linux_nat.
(_initialize_mips_linux_nat): Adjust to C++ification.
* aix-thread.c (aix_thread_target): New class.
(aix_thread_ops): Now an aix_thread_target.
(aix_thread_detach, aix_thread_resume, aix_thread_wait)
(aix_thread_fetch_registers, aix_thread_store_registers)
(aix_thread_xfer_partial, aix_thread_mourn_inferior)
(aix_thread_thread_alive, aix_thread_pid_to_str)
(aix_thread_extra_thread_info, aix_thread_get_ada_task_ptid):
Refactor as methods of aix_thread_target.
(init_aix_thread_ops): Delete.
(_initialize_aix_thread): Remove references to init_aix_thread_ops
and complete_target_initialization.
* rs6000-nat.c (rs6000_xfer_shared_libraries): Delete.
(rs6000_nat_target): New class.
(the_rs6000_nat_target): New.
(rs6000_fetch_inferior_registers, rs6000_store_inferior_registers)
(rs6000_xfer_partial, rs6000_wait, rs6000_create_inferior)
(rs6000_xfer_shared_libraries): Refactor as rs6000_nat_target methods.
(super_create_inferior): Delete.
(_initialize_rs6000_nat): Adjust to C++ification.
* arm-linux-nat.c (arm_linux_nat_target): New class.
(the_arm_linux_nat_target): New.
(arm_linux_fetch_inferior_registers)
(arm_linux_store_inferior_registers, arm_linux_read_description)
(arm_linux_can_use_hw_breakpoint, arm_linux_insert_hw_breakpoint)
(arm_linux_remove_hw_breakpoint)
(arm_linux_region_ok_for_hw_watchpoint)
(arm_linux_insert_watchpoint, arm_linux_remove_watchpoint)
(arm_linux_stopped_data_address, arm_linux_stopped_by_watchpoint)
(arm_linux_watchpoint_addr_within_range): Refactor as methods of
arm_linux_nat_target.
(_initialize_arm_linux_nat): Adjust to C++ification.
* aarch64-linux-nat.c (aarch64_linux_nat_target): New class.
(the_aarch64_linux_nat_target): New.
(aarch64_linux_fetch_inferior_registers)
(aarch64_linux_store_inferior_registers)
(aarch64_linux_child_post_startup_inferior)
(aarch64_linux_read_description)
(aarch64_linux_can_use_hw_breakpoint)
(aarch64_linux_insert_hw_breakpoint)
(aarch64_linux_remove_hw_breakpoint)
(aarch64_linux_insert_watchpoint, aarch64_linux_remove_watchpoint)
(aarch64_linux_region_ok_for_hw_watchpoint)
(aarch64_linux_stopped_data_address)
(aarch64_linux_stopped_by_watchpoint)
(aarch64_linux_watchpoint_addr_within_range)
(aarch64_linux_can_do_single_step): Refactor as methods of
aarch64_linux_nat_target.
(super_post_startup_inferior): Delete.
(_initialize_aarch64_linux_nat): Adjust to C++ification.
* hppa-linux-nat.c (hppa_linux_nat_target): New class.
(the_hppa_linux_nat_target): New.
(hppa_linux_fetch_inferior_registers)
(hppa_linux_store_inferior_registers): Refactor as methods of
hppa_linux_nat_target.
(_initialize_hppa_linux_nat): Adjust to C++ification.
* ia64-linux-nat.c (ia64_linux_nat_target): New class.
(the_ia64_linux_nat_target): New.
(ia64_linux_insert_watchpoint, ia64_linux_remove_watchpoint)
(ia64_linux_stopped_data_address)
(ia64_linux_stopped_by_watchpoint, ia64_linux_fetch_registers)
(ia64_linux_store_registers, ia64_linux_xfer_partial): Refactor as
ia64_linux_nat_target methods.
(super_xfer_partial): Delete.
(_initialize_ia64_linux_nat): Adjust to C++ification.
* m32r-linux-nat.c (m32r_linux_nat_target): New class.
(the_m32r_linux_nat_target): New.
(m32r_linux_fetch_inferior_registers)
(m32r_linux_store_inferior_registers): Refactor as
m32r_linux_nat_target methods.
(_initialize_m32r_linux_nat): Adjust to C++ification.
* m68k-linux-nat.c (m68k_linux_nat_target): New class.
(the_m68k_linux_nat_target): New.
(m68k_linux_fetch_inferior_registers)
(m68k_linux_store_inferior_registers): Refactor as
m68k_linux_nat_target methods.
(_initialize_m68k_linux_nat): Adjust to C++ification.
* s390-linux-nat.c (s390_linux_nat_target): New class.
(the_s390_linux_nat_target): New.
(s390_linux_fetch_inferior_registers)
(s390_linux_store_inferior_registers, s390_stopped_by_watchpoint)
(s390_insert_watchpoint, s390_remove_watchpoint)
(s390_can_use_hw_breakpoint, s390_insert_hw_breakpoint)
(s390_remove_hw_breakpoint, s390_region_ok_for_hw_watchpoint)
(s390_auxv_parse, s390_read_description): Refactor as methods of
s390_linux_nat_target.
(_initialize_s390_nat): Adjust to C++ification.
* sparc-linux-nat.c (sparc_linux_nat_target): New class.
(the_sparc_linux_nat_target): New.
(_initialize_sparc_linux_nat): Adjust to C++ification.
* sparc-nat.c (sparc_fetch_inferior_registers)
(sparc_store_inferior_registers): Remove target_ops parameter.
* sparc-nat.h (sparc_fetch_inferior_registers)
(sparc_store_inferior_registers): Remove target_ops parameter.
* sparc64-linux-nat.c (sparc64_linux_nat_target): New class.
(the_sparc64_linux_nat_target): New.
(_initialize_sparc64_linux_nat): Adjust to C++ification.
* spu-linux-nat.c (spu_linux_nat_target): New class.
(the_spu_linux_nat_target): New.
(spu_child_post_startup_inferior, spu_child_post_attach)
(spu_child_wait, spu_fetch_inferior_registers)
(spu_store_inferior_registers, spu_xfer_partial)
(spu_can_use_hw_breakpoint): Refactor as spu_linux_nat_target
methods.
(_initialize_spu_nat): Adjust to C++ification.
* tilegx-linux-nat.c (tilegx_linux_nat_target): New class.
(the_tilegx_linux_nat_target): New.
(fetch_inferior_registers, store_inferior_registers):
Refactor as methods.
(_initialize_tile_linux_nat): Adjust to C++ification.
* xtensa-linux-nat.c (xtensa_linux_nat_target): New class.
(the_xtensa_linux_nat_target): New.
(xtensa_linux_fetch_inferior_registers)
(xtensa_linux_store_inferior_registers): Refactor as
xtensa_linux_nat_target methods.
(_initialize_xtensa_linux_nat): Adjust to C++ification.
* fbsd-nat.c (USE_SIGTRAP_SIGINFO): Delete.
(fbsd_pid_to_exec_file, fbsd_find_memory_regions)
(fbsd_find_memory_regions, fbsd_info_proc, fbsd_xfer_partial)
(fbsd_thread_alive, fbsd_pid_to_str, fbsd_thread_name)
(fbsd_update_thread_list, fbsd_resume, fbsd_wait)
(fbsd_stopped_by_sw_breakpoint)
(fbsd_supports_stopped_by_sw_breakpoint, fbsd_follow_fork)
(fbsd_insert_fork_catchpoint, fbsd_remove_fork_catchpoint)
(fbsd_insert_vfork_catchpoint, fbsd_remove_vfork_catchpoint)
(fbsd_post_startup_inferior, fbsd_post_attach)
(fbsd_insert_exec_catchpoint, fbsd_remove_exec_catchpoint)
(fbsd_set_syscall_catchpoint)
(super_xfer_partial, super_resume, super_wait)
(fbsd_supports_stopped_by_hw_breakpoint): Delete.
(fbsd_handle_debug_trap): Remove target_ops parameter.
(fbsd_nat_add_target): Delete.
* fbsd-nat.h: Include "inf-ptrace.h".
(fbsd_nat_add_target): Delete.
(USE_SIGTRAP_SIGINFO): Define.
(fbsd_nat_target): New class.
* amd64-bsd-nat.c (amd64bsd_fetch_inferior_registers)
(amd64bsd_store_inferior_registers): Remove target_ops parameter.
(amd64bsd_target): Delete.
* amd64-bsd-nat.h: New file.
* amd64-fbsd-nat.c: Include "amd64-bsd-nat.h" instead of
"x86-bsd-nat.h".
(amd64_fbsd_nat_target): New class.
(the_amd64_fbsd_nat_target): New.
(amd64fbsd_read_description): Refactor as method of
amd64_fbsd_nat_target.
(amd64_fbsd_nat_target::supports_stopped_by_hw_breakpoint): New.
(_initialize_amd64fbsd_nat): Adjust to C++ification.
* amd64-nat.h (amd64bsd_target): Delete function declaration.
* i386-bsd-nat.c (i386bsd_fetch_inferior_registers)
(i386bsd_store_inferior_registers): Remove target_ops parameter.
(i386bsd_target): Delete.
* i386-bsd-nat.h (i386bsd_target): Delete function declaration.
(i386bsd_fetch_inferior_registers)
(i386bsd_store_inferior_registers): Declare.
(i386_bsd_nat_target): New class.
* i386-fbsd-nat.c (i386_fbsd_nat_target): New class.
(the_i386_fbsd_nat_target): New.
(i386fbsd_resume, i386fbsd_read_description): Refactor as
i386_fbsd_nat_target methods.
(i386_fbsd_nat_target::supports_stopped_by_hw_breakpoint): New.
(_initialize_i386fbsd_nat): Adjust to C++ification.
* x86-bsd-nat.c (super_mourn_inferior): Delete.
(x86bsd_mourn_inferior, x86bsd_target): Delete.
(_initialize_x86_bsd_nat): Adjust to C++ification.
* x86-bsd-nat.h: Include "x86-nat.h".
(x86bsd_target): Delete declaration.
(x86bsd_nat_target): New class.
* aarch64-fbsd-nat.c (aarch64_fbsd_nat_target): New class.
(the_aarch64_fbsd_nat_target): New.
(aarch64_fbsd_fetch_inferior_registers)
(aarch64_fbsd_store_inferior_registers): Refactor as methods of
aarch64_fbsd_nat_target.
(_initialize_aarch64_fbsd_nat): Adjust to C++ification.
* alpha-bsd-nat.c (alpha_bsd_nat_target): New class.
(the_alpha_bsd_nat_target): New.
(alphabsd_fetch_inferior_registers)
(alphabsd_store_inferior_registers): Refactor as
alpha_bsd_nat_target methods.
(_initialize_alphabsd_nat): Refactor as methods of
alpha_bsd_nat_target.
* amd64-nbsd-nat.c: Include "amd64-bsd-nat.h".
(the_amd64_nbsd_nat_target): New.
(_initialize_amd64nbsd_nat): Adjust to C++ification.
* amd64-obsd-nat.c: Include "amd64-bsd-nat.h".
(the_amd64_obsd_nat_target): New.
(_initialize_amd64obsd_nat): Adjust to C++ification.
* arm-fbsd-nat.c (arm_fbsd_nat_target): New.
(the_arm_fbsd_nat_target): New.
(arm_fbsd_fetch_inferior_registers)
(arm_fbsd_store_inferior_registers, arm_fbsd_read_description):
(_initialize_arm_fbsd_nat): Refactor as methods of
arm_fbsd_nat_target.
(_initialize_arm_fbsd_nat): Adjust to C++ification.
* arm-nbsd-nat.c (arm_netbsd_nat_target): New class.
(the_arm_netbsd_nat_target): New.
(armnbsd_fetch_registers, armnbsd_store_registers): Refactor as
arm_netbsd_nat_target.
(_initialize_arm_netbsd_nat): Adjust to C++ification.
* hppa-nbsd-nat.c (hppa_nbsd_nat_target): New class.
(the_hppa_nbsd_nat_target): New.
(hppanbsd_fetch_registers, hppanbsd_store_registers): Refactor as
hppa_nbsd_nat_target methods.
(_initialize_hppanbsd_nat): Adjust to C++ification.
* hppa-obsd-nat.c (hppa_obsd_nat_target): New class.
(the_hppa_obsd_nat_target): New.
(hppaobsd_fetch_registers, hppaobsd_store_registers): Refactor as
methods of hppa_obsd_nat_target.
(_initialize_hppaobsd_nat): Adjust to C++ification. Use
add_target.
* i386-nbsd-nat.c (the_i386_nbsd_nat_target): New.
(_initialize_i386nbsd_nat): Adjust to C++ification. Use
add_target.
* i386-obsd-nat.c (the_i386_obsd_nat_target): New.
(_initialize_i386obsd_nat): Use add_target.
* m68k-bsd-nat.c (m68k_bsd_nat_target): New class.
(the_m68k_bsd_nat_target): New.
(m68kbsd_fetch_inferior_registers)
(m68kbsd_store_inferior_registers): Refactor as methods of
m68k_bsd_nat_target.
(_initialize_m68kbsd_nat): Adjust to C++ification.
* mips-fbsd-nat.c (mips_fbsd_nat_target): New class.
(the_mips_fbsd_nat_target): New.
(mips_fbsd_fetch_inferior_registers)
(mips_fbsd_store_inferior_registers): Refactor as methods of
mips_fbsd_nat_target.
(_initialize_mips_fbsd_nat): Adjust to C++ification. Use
add_target.
* mips-nbsd-nat.c (mips_nbsd_nat_target): New class.
(the_mips_nbsd_nat_target): New.
(mipsnbsd_fetch_inferior_registers)
(mipsnbsd_store_inferior_registers): Refactor as methods of
mips_nbsd_nat_target.
(_initialize_mipsnbsd_nat): Adjust to C++ification.
* mips64-obsd-nat.c (mips64_obsd_nat_target): New class.
(the_mips64_obsd_nat_target): New.
(mips64obsd_fetch_inferior_registers)
(mips64obsd_store_inferior_registers): Refactor as methods of
mips64_obsd_nat_target.
(_initialize_mips64obsd_nat): Adjust to C++ification. Use
add_target.
* nbsd-nat.c (nbsd_pid_to_exec_file): Refactor as method of
nbsd_nat_target.
* nbsd-nat.h: Include "inf-ptrace.h".
(nbsd_nat_target): New class.
* obsd-nat.c (obsd_pid_to_str, obsd_update_thread_list)
(obsd_wait): Refactor as methods of obsd_nat_target.
(obsd_add_target): Delete.
* obsd-nat.h: Include "inf-ptrace.h".
(obsd_nat_target): New class.
* ppc-fbsd-nat.c (ppc_fbsd_nat_target): New class.
(the_ppc_fbsd_nat_target): New.
(ppcfbsd_fetch_inferior_registers)
(ppcfbsd_store_inferior_registers): Refactor as methods of
ppc_fbsd_nat_target.
(_initialize_ppcfbsd_nat): Adjust to C++ification. Use
add_target.
* ppc-nbsd-nat.c (ppc_nbsd_nat_target): New class.
(the_ppc_nbsd_nat_target): New.
(ppcnbsd_fetch_inferior_registers)
(ppcnbsd_store_inferior_registers): Refactor as methods of
ppc_nbsd_nat_target.
(_initialize_ppcnbsd_nat): Adjust to C++ification.
* ppc-obsd-nat.c (ppc_obsd_nat_target): New class.
(the_ppc_obsd_nat_target): New.
(ppcobsd_fetch_registers, ppcobsd_store_registers): Refactor as
methods of ppc_obsd_nat_target.
(_initialize_ppcobsd_nat): Adjust to C++ification. Use
add_target.
* sh-nbsd-nat.c (sh_nbsd_nat_target): New class.
(the_sh_nbsd_nat_target): New.
(shnbsd_fetch_inferior_registers)
(shnbsd_store_inferior_registers): Refactor as methods of
sh_nbsd_nat_target.
(_initialize_shnbsd_nat): Adjust to C++ification.
* sparc-nat.c (sparc_xfer_wcookie): Make extern.
(inf_ptrace_xfer_partial): Delete.
(sparc_xfer_partial, sparc_target): Delete.
* sparc-nat.h (sparc_fetch_inferior_registers)
(sparc_store_inferior_registers, sparc_xfer_wcookie): Declare.
(sparc_target): Delete function declaration.
(sparc_target): New template class.
* sparc-nbsd-nat.c (the_sparc_nbsd_nat_target): New.
(_initialize_sparcnbsd_nat): Adjust to C++ification.
* sparc64-fbsd-nat.c (the_sparc64_fbsd_nat_target): New.
(_initialize_sparc64fbsd_nat): Adjust to C++ification. Use
add_target.
* sparc64-nbsd-nat.c (the_sparc64_nbsd_nat_target): New.
(_initialize_sparc64nbsd_nat): Adjust to C++ification.
* sparc64-obsd-nat.c (the_sparc64_obsd_nat_target): New.
(_initialize_sparc64obsd_nat): Adjust to C++ification. Use
add_target.
* vax-bsd-nat.c (vax_bsd_nat_target): New class.
(the_vax_bsd_nat_target): New.
(vaxbsd_fetch_inferior_registers)
(vaxbsd_store_inferior_registers): Refactor as vax_bsd_nat_target
methods.
(_initialize_vaxbsd_nat): Adjust to C++ification.
* bsd-kvm.c (bsd_kvm_target): New class.
(bsd_kvm_ops): Now a bsd_kvm_target.
(bsd_kvm_open, bsd_kvm_close, bsd_kvm_xfer_partial)
(bsd_kvm_files_info, bsd_kvm_fetch_registers)
(bsd_kvm_thread_alive, bsd_kvm_pid_to_str): Refactor as methods of
bsd_kvm_target.
(bsd_kvm_return_one): Delete.
(bsd_kvm_add_target): Adjust to C++ification.
* nto-procfs.c (nto_procfs_target, nto_procfs_target_native)
(nto_procfs_target_procfs): New classes.
(procfs_open_1, procfs_thread_alive, procfs_update_thread_list)
(procfs_files_info, procfs_pid_to_exec_file, procfs_attach)
(procfs_post_attach, procfs_wait, procfs_fetch_registers)
(procfs_xfer_partial, procfs_detach, procfs_insert_breakpoint)
(procfs_remove_breakpoint, procfs_insert_hw_breakpoint)
(procfs_remove_hw_breakpoint, procfs_resume)
(procfs_mourn_inferior, procfs_create_inferior, procfs_interrupt)
(procfs_kill_inferior, procfs_store_registers)
(procfs_pass_signals, procfs_pid_to_str, procfs_can_run): Refactor
as methods of nto_procfs_target.
(nto_procfs_ops): Now an nto_procfs_target_procfs.
(nto_native_ops): Delete.
(procfs_open, procfs_native_open): Delete.
(nto_native_ops): Now an nto_procfs_target_native.
(init_procfs_targets): Adjust to C++ification.
(procfs_can_use_hw_breakpoint, procfs_remove_hw_watchpoint)
(procfs_insert_hw_watchpoint, procfs_stopped_by_watchpoint):
Refactor as methods of nto_procfs_target.
* go32-nat.c (go32_nat_target): New class.
(the_go32_nat_target): New.
(go32_attach, go32_resume, go32_wait, go32_fetch_registers)
(go32_store_registers, go32_xfer_partial, go32_files_info)
(go32_kill_inferior, go32_create_inferior, go32_mourn_inferior)
(go32_terminal_init, go32_terminal_info, go32_terminal_inferior)
(go32_terminal_ours, go32_pass_ctrlc, go32_thread_alive)
(go32_pid_to_str): Refactor as methods of go32_nat_target.
(go32_target): Delete.
(_initialize_go32_nat): Adjust to C++ification.
* gnu-nat.c (gnu_wait, gnu_resume, gnu_kill_inferior)
(gnu_mourn_inferior, gnu_create_inferior, gnu_attach, gnu_detach)
(gnu_stop, gnu_thread_alive, gnu_xfer_partial)
(gnu_find_memory_regions, gnu_pid_to_str): Refactor as methods of
gnu_nat_target.
(gnu_target): Delete.
* gnu-nat.h (gnu_target): Delete.
(gnu_nat_target): New class.
* i386-gnu-nat.c (gnu_base_target): New.
(i386_gnu_nat_target): New class.
(the_i386_gnu_nat_target): New.
(_initialize_i386gnu_nat): Adjust to C++ification.
gdb/testsuite/ChangeLog:
2018-05-02 Pedro Alves <palves@redhat.com>
* gdb.base/breakpoint-in-ro-region.exp: Adjust to to_resume and
to_log_command renames.
* gdb.base/sss-bp-on-user-bp-2.exp: Likewise.
2018-05-03 07:37:22 +08:00
|
|
|
target_auxv_parse (gdb_byte **readptr,
|
|
|
|
gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
|
2008-05-04 17:28:27 +08:00
|
|
|
{
|
2014-02-27 20:40:15 +08:00
|
|
|
struct gdbarch *gdbarch = target_gdbarch();
|
|
|
|
|
|
|
|
if (gdbarch_auxv_parse_p (gdbarch))
|
|
|
|
return gdbarch_auxv_parse (gdbarch, readptr, endptr, typep, valp);
|
|
|
|
|
target_stack -> current_top_target() throughout
The recent C++ification of target_ops replaced references to the old
"current_target" squashed target throughout with references to a
"target_stack" pointer. I had picked the "target_stack" name very
early in the multi-target work, and managed to stick with it, even
though it's a bit of a misnomer, since it isn't really a "target
stack" object, but a pointer into the current top target in the stack.
As I'm splitting more pieces off of the multi-target branch, I've come
to think that it's better to rename it now. A following patch will
introduce a new class to represent a target stack, and "target_stack"
would be _its_ ideal name. (In the branch, the class is called
a_target_stack to work around the clash.)
Thus this commit renames target_stack to current_top_target and
replaces all references throughout. Also, while at it,
current_top_target is made a function instead of a pointer, to make it
possible to change its internal implementation without leaking
implementation details out. In a couple patches, the implementation
of the function will change to refer to a target stack object, and
then further down the multi-target work, it'll change again to find
the right target stack for the current inferior.
gdb/ChangeLog:
2018-06-07 Pedro Alves <palves@redhat.com>
* target.h (target_stack): Delete.
(current_top_target): Declare function.
* target.c (target_stack): Delete.
(g_current_top_target): New.
(current_top_target): New function.
* auxv.c: Use current_top_target instead of target_stack
throughout.
* avr-tdep.c: Likewise.
* breakpoint.c: Likewise.
* corefile.c: Likewise.
* elfread.c: Likewise.
* eval.c: Likewise.
* exceptions.c: Likewise.
* frame.c: Likewise.
* gdbarch-selftests.c: Likewise.
* gnu-v3-abi.c: Likewise.
* ia64-tdep.c: Likewise.
* ia64-vms-tdep.c: Likewise.
* infcall.c: Likewise.
* infcmd.c: Likewise.
* infrun.c: Likewise.
* linespec.c: Likewise.
* linux-tdep.c: Likewise.
* minsyms.c: Likewise.
* ppc-linux-nat.c: Likewise.
* ppc-linux-tdep.c: Likewise.
* procfs.c: Likewise.
* regcache.c: Likewise.
* remote.c: Likewise.
* rs6000-tdep.c: Likewise.
* s390-linux-nat.c: Likewise.
* s390-tdep.c: Likewise.
* solib-aix.c: Likewise.
* solib-darwin.c: Likewise.
* solib-dsbt.c: Likewise.
* solib-spu.c: Likewise.
* solib-svr4.c: Likewise.
* solib-target.c: Likewise.
* sparc-tdep.c: Likewise.
* sparc64-tdep.c: Likewise.
* spu-tdep.c: Likewise.
* symfile.c: Likewise.
* symtab.c: Likewise.
* target-descriptions.c: Likewise.
* target-memory.c: Likewise.
* target.c: Likewise.
* target.h: Likewise.
* tracefile-tfile.c: Likewise.
* tracepoint.c: Likewise.
* valops.c: Likewise.
* valprint.c: Likewise.
* value.c: Likewise.
* windows-tdep.c: Likewise.
* mi/mi-main.c: Likewise.
2018-06-08 00:27:46 +08:00
|
|
|
return current_top_target ()->auxv_parse (readptr, endptr, typep, valp);
|
2008-05-04 17:28:27 +08:00
|
|
|
}
|
|
|
|
|
2011-11-15 21:17:05 +08:00
|
|
|
|
|
|
|
/* Auxiliary Vector information structure. This is used by GDB
|
|
|
|
for caching purposes for each inferior. This helps reduce the
|
|
|
|
overhead of transfering data from a remote target to the local host. */
|
|
|
|
struct auxv_info
|
|
|
|
{
|
Make target_read_alloc & al return vectors
This patch started by changing target_read_alloc_1 to return a
byte_vector, to avoid manual memory management (in target_read_alloc_1
and in the callers). To communicate failures to the callers, it
actually returns a gdb::optional<gdb::byte_vector>.
Adjusting target_read_stralloc was a bit more tricky, since it wants to
return a buffer of char, and not gdb_byte. Since you can't just cast a
gdb::byte_vector into a gdb::def_vector<char>, I made
target_read_alloc_1 templated, so both versions (that return vectors of
gdb_byte and char) are generated. Since target_read_stralloc now
returns a gdb::char_vector instead of a gdb::unique_xmalloc_ptr<char>, a
few callers need to be adjusted.
gdb/ChangeLog:
* common/byte-vector.h (char_vector): New type.
* target.h (target_read_alloc): Return
gdb::optional<byte_vector>.
(target_read_stralloc): Return gdb::optional<char_vector>.
(target_get_osdata): Return gdb::optional<char_vector>.
* target.c (target_read_alloc_1): Templatize. Replacement
manual memory management with vector.
(target_read_alloc): Change return type, adjust.
(target_read_stralloc): Change return type, adjust.
(target_get_osdata): Change return type, adjust.
* auxv.c (struct auxv_info) <length>: Remove.
<data>: Change type to gdb::optional<byte_vector>.
(auxv_inferior_data_cleanup): Free auxv_info with delete.
(get_auxv_inferior_data): Allocate auxv_info with new, adjust.
(target_auxv_search): Adjust.
(fprint_target_auxv): Adjust.
* avr-tdep.c (avr_io_reg_read_command): Adjust.
* linux-tdep.c (linux_spu_make_corefile_notes): Adjust.
(linux_make_corefile_notes): Adjust.
* osdata.c (get_osdata): Adjust.
* remote.c (remote_get_threads_with_qxfer): Adjust.
(remote_memory_map): Adjust.
(remote_traceframe_info): Adjust.
(btrace_read_config): Adjust.
(remote_read_btrace): Adjust.
(remote_pid_to_exec_file): Adjust.
* solib-aix.c (solib_aix_get_library_list): Adjust.
* solib-dsbt.c (decode_loadmap): Don't free buf.
(dsbt_get_initial_loadmaps): Adjust.
* solib-svr4.c (svr4_current_sos_via_xfer_libraries): Adjust.
* solib-target.c (solib_target_current_sos): Adjust.
* tracepoint.c (sdata_make_value): Adjust.
* xml-support.c (xinclude_start_include): Adjust.
(xml_fetch_content_from_file): Adjust.
* xml-support.h (xml_fetch_another): Change return type.
(xml_fetch_content_from_file): Change return type.
* xml-syscall.c (xml_init_syscalls_info): Adjust.
* xml-tdesc.c (file_read_description_xml): Adjust.
(fetch_available_features_from_target): Change return type.
(target_fetch_description_xml): Adjust.
(target_read_description_xml): Adjust.
2018-04-08 01:19:12 +08:00
|
|
|
gdb::optional<gdb::byte_vector> data;
|
2011-11-15 21:17:05 +08:00
|
|
|
};
|
|
|
|
|
2019-04-22 02:41:29 +08:00
|
|
|
/* Per-inferior data key for auxv. */
|
|
|
|
static const struct inferior_key<auxv_info> auxv_inferior_data;
|
2011-11-15 21:17:05 +08:00
|
|
|
|
|
|
|
/* Invalidate INF's auxv cache. */
|
|
|
|
|
|
|
|
static void
|
|
|
|
invalidate_auxv_cache_inf (struct inferior *inf)
|
|
|
|
{
|
2019-04-22 02:41:29 +08:00
|
|
|
auxv_inferior_data.clear (inf);
|
2011-11-15 21:17:05 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Invalidate current inferior's auxv cache. */
|
|
|
|
|
|
|
|
static void
|
|
|
|
invalidate_auxv_cache (void)
|
|
|
|
{
|
|
|
|
invalidate_auxv_cache_inf (current_inferior ());
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Fetch the auxv object from inferior INF. If auxv is cached already,
|
|
|
|
return a pointer to the cache. If not, fetch the auxv object from the
|
|
|
|
target and cache it. This function always returns a valid INFO pointer. */
|
|
|
|
|
|
|
|
static struct auxv_info *
|
|
|
|
get_auxv_inferior_data (struct target_ops *ops)
|
|
|
|
{
|
|
|
|
struct auxv_info *info;
|
|
|
|
struct inferior *inf = current_inferior ();
|
|
|
|
|
2019-04-22 02:41:29 +08:00
|
|
|
info = auxv_inferior_data.get (inf);
|
2011-11-15 21:17:05 +08:00
|
|
|
if (info == NULL)
|
|
|
|
{
|
2019-04-22 02:41:29 +08:00
|
|
|
info = auxv_inferior_data.emplace (inf);
|
Make target_read_alloc & al return vectors
This patch started by changing target_read_alloc_1 to return a
byte_vector, to avoid manual memory management (in target_read_alloc_1
and in the callers). To communicate failures to the callers, it
actually returns a gdb::optional<gdb::byte_vector>.
Adjusting target_read_stralloc was a bit more tricky, since it wants to
return a buffer of char, and not gdb_byte. Since you can't just cast a
gdb::byte_vector into a gdb::def_vector<char>, I made
target_read_alloc_1 templated, so both versions (that return vectors of
gdb_byte and char) are generated. Since target_read_stralloc now
returns a gdb::char_vector instead of a gdb::unique_xmalloc_ptr<char>, a
few callers need to be adjusted.
gdb/ChangeLog:
* common/byte-vector.h (char_vector): New type.
* target.h (target_read_alloc): Return
gdb::optional<byte_vector>.
(target_read_stralloc): Return gdb::optional<char_vector>.
(target_get_osdata): Return gdb::optional<char_vector>.
* target.c (target_read_alloc_1): Templatize. Replacement
manual memory management with vector.
(target_read_alloc): Change return type, adjust.
(target_read_stralloc): Change return type, adjust.
(target_get_osdata): Change return type, adjust.
* auxv.c (struct auxv_info) <length>: Remove.
<data>: Change type to gdb::optional<byte_vector>.
(auxv_inferior_data_cleanup): Free auxv_info with delete.
(get_auxv_inferior_data): Allocate auxv_info with new, adjust.
(target_auxv_search): Adjust.
(fprint_target_auxv): Adjust.
* avr-tdep.c (avr_io_reg_read_command): Adjust.
* linux-tdep.c (linux_spu_make_corefile_notes): Adjust.
(linux_make_corefile_notes): Adjust.
* osdata.c (get_osdata): Adjust.
* remote.c (remote_get_threads_with_qxfer): Adjust.
(remote_memory_map): Adjust.
(remote_traceframe_info): Adjust.
(btrace_read_config): Adjust.
(remote_read_btrace): Adjust.
(remote_pid_to_exec_file): Adjust.
* solib-aix.c (solib_aix_get_library_list): Adjust.
* solib-dsbt.c (decode_loadmap): Don't free buf.
(dsbt_get_initial_loadmaps): Adjust.
* solib-svr4.c (svr4_current_sos_via_xfer_libraries): Adjust.
* solib-target.c (solib_target_current_sos): Adjust.
* tracepoint.c (sdata_make_value): Adjust.
* xml-support.c (xinclude_start_include): Adjust.
(xml_fetch_content_from_file): Adjust.
* xml-support.h (xml_fetch_another): Change return type.
(xml_fetch_content_from_file): Change return type.
* xml-syscall.c (xml_init_syscalls_info): Adjust.
* xml-tdesc.c (file_read_description_xml): Adjust.
(fetch_available_features_from_target): Change return type.
(target_fetch_description_xml): Adjust.
(target_read_description_xml): Adjust.
2018-04-08 01:19:12 +08:00
|
|
|
info->data = target_read_alloc (ops, TARGET_OBJECT_AUXV, NULL);
|
2011-11-15 21:17:05 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return info;
|
|
|
|
}
|
|
|
|
|
2004-02-02 06:35:24 +08:00
|
|
|
/* Extract the auxiliary vector entry with a_type matching MATCH.
|
|
|
|
Return zero if no such entry was found, or -1 if there was
|
|
|
|
an error getting the information. On success, return 1 after
|
|
|
|
storing the entry's value field in *VALP. */
|
|
|
|
int
|
|
|
|
target_auxv_search (struct target_ops *ops, CORE_ADDR match, CORE_ADDR *valp)
|
|
|
|
{
|
|
|
|
CORE_ADDR type, val;
|
Make target_read_alloc & al return vectors
This patch started by changing target_read_alloc_1 to return a
byte_vector, to avoid manual memory management (in target_read_alloc_1
and in the callers). To communicate failures to the callers, it
actually returns a gdb::optional<gdb::byte_vector>.
Adjusting target_read_stralloc was a bit more tricky, since it wants to
return a buffer of char, and not gdb_byte. Since you can't just cast a
gdb::byte_vector into a gdb::def_vector<char>, I made
target_read_alloc_1 templated, so both versions (that return vectors of
gdb_byte and char) are generated. Since target_read_stralloc now
returns a gdb::char_vector instead of a gdb::unique_xmalloc_ptr<char>, a
few callers need to be adjusted.
gdb/ChangeLog:
* common/byte-vector.h (char_vector): New type.
* target.h (target_read_alloc): Return
gdb::optional<byte_vector>.
(target_read_stralloc): Return gdb::optional<char_vector>.
(target_get_osdata): Return gdb::optional<char_vector>.
* target.c (target_read_alloc_1): Templatize. Replacement
manual memory management with vector.
(target_read_alloc): Change return type, adjust.
(target_read_stralloc): Change return type, adjust.
(target_get_osdata): Change return type, adjust.
* auxv.c (struct auxv_info) <length>: Remove.
<data>: Change type to gdb::optional<byte_vector>.
(auxv_inferior_data_cleanup): Free auxv_info with delete.
(get_auxv_inferior_data): Allocate auxv_info with new, adjust.
(target_auxv_search): Adjust.
(fprint_target_auxv): Adjust.
* avr-tdep.c (avr_io_reg_read_command): Adjust.
* linux-tdep.c (linux_spu_make_corefile_notes): Adjust.
(linux_make_corefile_notes): Adjust.
* osdata.c (get_osdata): Adjust.
* remote.c (remote_get_threads_with_qxfer): Adjust.
(remote_memory_map): Adjust.
(remote_traceframe_info): Adjust.
(btrace_read_config): Adjust.
(remote_read_btrace): Adjust.
(remote_pid_to_exec_file): Adjust.
* solib-aix.c (solib_aix_get_library_list): Adjust.
* solib-dsbt.c (decode_loadmap): Don't free buf.
(dsbt_get_initial_loadmaps): Adjust.
* solib-svr4.c (svr4_current_sos_via_xfer_libraries): Adjust.
* solib-target.c (solib_target_current_sos): Adjust.
* tracepoint.c (sdata_make_value): Adjust.
* xml-support.c (xinclude_start_include): Adjust.
(xml_fetch_content_from_file): Adjust.
* xml-support.h (xml_fetch_another): Change return type.
(xml_fetch_content_from_file): Change return type.
* xml-syscall.c (xml_init_syscalls_info): Adjust.
* xml-tdesc.c (file_read_description_xml): Adjust.
(fetch_available_features_from_target): Change return type.
(target_fetch_description_xml): Adjust.
(target_read_description_xml): Adjust.
2018-04-08 01:19:12 +08:00
|
|
|
auxv_info *info = get_auxv_inferior_data (ops);
|
2011-11-15 21:17:05 +08:00
|
|
|
|
Make target_read_alloc & al return vectors
This patch started by changing target_read_alloc_1 to return a
byte_vector, to avoid manual memory management (in target_read_alloc_1
and in the callers). To communicate failures to the callers, it
actually returns a gdb::optional<gdb::byte_vector>.
Adjusting target_read_stralloc was a bit more tricky, since it wants to
return a buffer of char, and not gdb_byte. Since you can't just cast a
gdb::byte_vector into a gdb::def_vector<char>, I made
target_read_alloc_1 templated, so both versions (that return vectors of
gdb_byte and char) are generated. Since target_read_stralloc now
returns a gdb::char_vector instead of a gdb::unique_xmalloc_ptr<char>, a
few callers need to be adjusted.
gdb/ChangeLog:
* common/byte-vector.h (char_vector): New type.
* target.h (target_read_alloc): Return
gdb::optional<byte_vector>.
(target_read_stralloc): Return gdb::optional<char_vector>.
(target_get_osdata): Return gdb::optional<char_vector>.
* target.c (target_read_alloc_1): Templatize. Replacement
manual memory management with vector.
(target_read_alloc): Change return type, adjust.
(target_read_stralloc): Change return type, adjust.
(target_get_osdata): Change return type, adjust.
* auxv.c (struct auxv_info) <length>: Remove.
<data>: Change type to gdb::optional<byte_vector>.
(auxv_inferior_data_cleanup): Free auxv_info with delete.
(get_auxv_inferior_data): Allocate auxv_info with new, adjust.
(target_auxv_search): Adjust.
(fprint_target_auxv): Adjust.
* avr-tdep.c (avr_io_reg_read_command): Adjust.
* linux-tdep.c (linux_spu_make_corefile_notes): Adjust.
(linux_make_corefile_notes): Adjust.
* osdata.c (get_osdata): Adjust.
* remote.c (remote_get_threads_with_qxfer): Adjust.
(remote_memory_map): Adjust.
(remote_traceframe_info): Adjust.
(btrace_read_config): Adjust.
(remote_read_btrace): Adjust.
(remote_pid_to_exec_file): Adjust.
* solib-aix.c (solib_aix_get_library_list): Adjust.
* solib-dsbt.c (decode_loadmap): Don't free buf.
(dsbt_get_initial_loadmaps): Adjust.
* solib-svr4.c (svr4_current_sos_via_xfer_libraries): Adjust.
* solib-target.c (solib_target_current_sos): Adjust.
* tracepoint.c (sdata_make_value): Adjust.
* xml-support.c (xinclude_start_include): Adjust.
(xml_fetch_content_from_file): Adjust.
* xml-support.h (xml_fetch_another): Change return type.
(xml_fetch_content_from_file): Change return type.
* xml-syscall.c (xml_init_syscalls_info): Adjust.
* xml-tdesc.c (file_read_description_xml): Adjust.
(fetch_available_features_from_target): Change return type.
(target_fetch_description_xml): Adjust.
(target_read_description_xml): Adjust.
2018-04-08 01:19:12 +08:00
|
|
|
if (!info->data)
|
|
|
|
return -1;
|
2004-02-02 06:35:24 +08:00
|
|
|
|
Make target_read_alloc & al return vectors
This patch started by changing target_read_alloc_1 to return a
byte_vector, to avoid manual memory management (in target_read_alloc_1
and in the callers). To communicate failures to the callers, it
actually returns a gdb::optional<gdb::byte_vector>.
Adjusting target_read_stralloc was a bit more tricky, since it wants to
return a buffer of char, and not gdb_byte. Since you can't just cast a
gdb::byte_vector into a gdb::def_vector<char>, I made
target_read_alloc_1 templated, so both versions (that return vectors of
gdb_byte and char) are generated. Since target_read_stralloc now
returns a gdb::char_vector instead of a gdb::unique_xmalloc_ptr<char>, a
few callers need to be adjusted.
gdb/ChangeLog:
* common/byte-vector.h (char_vector): New type.
* target.h (target_read_alloc): Return
gdb::optional<byte_vector>.
(target_read_stralloc): Return gdb::optional<char_vector>.
(target_get_osdata): Return gdb::optional<char_vector>.
* target.c (target_read_alloc_1): Templatize. Replacement
manual memory management with vector.
(target_read_alloc): Change return type, adjust.
(target_read_stralloc): Change return type, adjust.
(target_get_osdata): Change return type, adjust.
* auxv.c (struct auxv_info) <length>: Remove.
<data>: Change type to gdb::optional<byte_vector>.
(auxv_inferior_data_cleanup): Free auxv_info with delete.
(get_auxv_inferior_data): Allocate auxv_info with new, adjust.
(target_auxv_search): Adjust.
(fprint_target_auxv): Adjust.
* avr-tdep.c (avr_io_reg_read_command): Adjust.
* linux-tdep.c (linux_spu_make_corefile_notes): Adjust.
(linux_make_corefile_notes): Adjust.
* osdata.c (get_osdata): Adjust.
* remote.c (remote_get_threads_with_qxfer): Adjust.
(remote_memory_map): Adjust.
(remote_traceframe_info): Adjust.
(btrace_read_config): Adjust.
(remote_read_btrace): Adjust.
(remote_pid_to_exec_file): Adjust.
* solib-aix.c (solib_aix_get_library_list): Adjust.
* solib-dsbt.c (decode_loadmap): Don't free buf.
(dsbt_get_initial_loadmaps): Adjust.
* solib-svr4.c (svr4_current_sos_via_xfer_libraries): Adjust.
* solib-target.c (solib_target_current_sos): Adjust.
* tracepoint.c (sdata_make_value): Adjust.
* xml-support.c (xinclude_start_include): Adjust.
(xml_fetch_content_from_file): Adjust.
* xml-support.h (xml_fetch_another): Change return type.
(xml_fetch_content_from_file): Change return type.
* xml-syscall.c (xml_init_syscalls_info): Adjust.
* xml-tdesc.c (file_read_description_xml): Adjust.
(fetch_available_features_from_target): Change return type.
(target_fetch_description_xml): Adjust.
(target_read_description_xml): Adjust.
2018-04-08 01:19:12 +08:00
|
|
|
gdb_byte *data = info->data->data ();
|
|
|
|
gdb_byte *ptr = data;
|
|
|
|
size_t len = info->data->size ();
|
2004-02-02 06:35:24 +08:00
|
|
|
|
|
|
|
while (1)
|
Convert struct target_ops to C++
I.e., use C++ virtual methods and inheritance instead of tables of
function pointers.
Unfortunately, there's no way to do a smooth transition. ALL native
targets in the tree must be converted at the same time. I've tested
all I could with cross compilers and with help from GCC compile farm,
but naturally I haven't been able to test many of the ports. Still, I
made a best effort to port everything over, and while I expect some
build problems due to typos and such, which should be trivial to fix,
I don't expect any design problems.
* Implementation notes:
- The flattened current_target is gone. References to current_target
or current_target.beneath are replaced with references to
target_stack (the top of the stack) directly.
- To keep "set debug target" working, this adds a new debug_stratum
layer that sits on top of the stack, prints the debug, and delegates
to the target beneath.
In addition, this makes the shortname and longname properties of
target_ops be virtual methods instead of data fields, and makes the
debug target defer those to the target beneath. This is so that
debug code sprinkled around that does "if (debugtarget) ..." can
transparently print the name of the target beneath.
A patch later in the series actually splits out the
shortname/longname methods to a separate structure, but I preferred
to keep that chance separate as it is associated with changing a bit
the design of how targets are registered and open.
- Since you can't check whether a C++ virtual method is overridden,
the old method of checking whether a target_ops implements a method
by comparing the function pointer must be replaced with something
else.
Some cases are fixed by adding a parallel "can_do_foo" target_ops
methods. E.g.,:
+ for (t = target_stack; t != NULL; t = t->beneath)
{
- if (t->to_create_inferior != NULL)
+ if (t->can_create_inferior ())
break;
}
Others are fixed by changing void return type to bool or int return
type, and have the default implementation return false or -1, to
indicate lack of support.
- make-target-delegates was adjusted to generate C++ classes and
methods.
It needed tweaks to grok "virtual" in front of the target method
name, and for the fact that methods are no longer function pointers.
(In particular, the current code parsing the return type was simple
because it could simply parse up until the '(' in '(*to_foo)'.
It now generates a couple C++ classes that inherit target_ops:
dummy_target and debug_target.
Since we need to generate the class declarations as well, i.e., we
need to emit methods twice, we now generate the code in two passes.
- The core_target global is renamed to avoid conflict with the
"core_target" class.
- ctf/tfile targets
init_tracefile_ops is replaced by a base class that is inherited by
both ctf and tfile.
- bsd-uthread
The bsd_uthread_ops_hack hack is gone. It's not needed because
nothing was extending a target created by bsd_uthread_target.
- remote/extended-remote targets
This is a first pass, just enough to C++ify target_ops.
A later pass will convert more free functions to methods, and make
remote_state be truly per remote instance, allowing multiple
simultaneous instances of remote targets.
- inf-child/"native" is converted to an actual base class
(inf_child_target), that is inherited by all native targets.
- GNU/Linux
The old weird double-target linux_ops mechanism in linux-nat.c, is
gone, replaced by adding a few virtual methods to linux-nat.h's
target_ops, called low_XXX, that the concrete linux-nat
implementations override. Sort of like gdbserver's
linux_target_ops, but simpler, for requiring only one
target_ops-like hierarchy, which spares implementing the same method
twice when we need to forward the method to a low implementation.
The low target simply reimplements the target_ops method directly in
that case.
There are a few remaining linux-nat.c hooks that would be better
converted to low_ methods like above too. E.g.:
linux_nat_set_new_thread (t, x86_linux_new_thread);
linux_nat_set_new_fork (t, x86_linux_new_fork);
linux_nat_set_forget_process
That'll be done in a follow up patch.
- We can no longer use functions like x86_use_watchpoints to install
custom methods on an arbitrary base target.
The patch replaces instances of such a pattern with template mixins.
For example memory_breakpoint_target defined in target.h, or
x86_nat_target in x86-nat.h.
- linux_trad_target, MIPS and Alpha GNU/Linux
The code in the new linux-nat-trad.h/c files which was split off of
inf-ptrace.h/c recently, is converted to a C++ base class, and used
by the MIPS and Alpha GNU/Linux ports.
- BSD targets
The
$architecture x NetBSD/OpenBSD/FreeBSD
support matrix complicates things a bit. There's common BSD target
code, and there's common architecture-specific code shared between
the different BSDs. Currently, all that is stiched together to form
a final target, via the i386bsd_target, x86bsd_target,
fbsd_nat_add_target functions etc.
This introduces new fbsd_nat_target, obsd_nat_target and
nbsd_nat_target classes that serve as base/prototype target for the
corresponding BSD variant.
And introduces generic i386/AMD64 BSD targets, to be used as
template mixin to build a final target. Similarly, a generic SPARC
target is added, used by both BSD and Linux ports.
- bsd_kvm_add_target, BSD libkvm target
I considered making bsd_kvm_supply_pcb a virtual method, and then
have each port inherit bsd_kvm_target and override that method, but
that was resulting in lots of unjustified churn, so I left the
function pointer mechanism alone.
gdb/ChangeLog:
2018-05-02 Pedro Alves <palves@redhat.com>
John Baldwin <jhb@freebsd.org>
* target.h (enum strata) <debug_stratum>: New.
(struct target_ops) <all delegation methods>: Replace by C++
virtual methods, and drop "to_" prefix. All references updated
throughout.
<to_shortname, to_longname, to_doc, to_data,
to_have_steppable_watchpoint, to_have_continuable_watchpoint,
to_has_thread_control, to_attach_no_wait>: Delete, replaced by
virtual methods. All references updated throughout.
<can_attach, supports_terminal_ours, can_create_inferior,
get_thread_control_capabilities, attach_no_wait>: New
virtual methods.
<insert_breakpoint, remove_breakpoint>: Now
TARGET_DEFAULT_NORETURN methods.
<info_proc>: Now returns bool.
<to_magic>: Delete.
(OPS_MAGIC): Delete.
(current_target): Delete. All references replaced by references
to ...
(target_stack): ... this. New.
(target_shortname, target_longname): Adjust.
(target_can_run): Now a function declaration.
(default_child_has_all_memory, default_child_has_memory)
(default_child_has_stack, default_child_has_registers)
(default_child_has_execution): Remove target_ops parameter.
(complete_target_initialization): Delete.
(memory_breakpoint_target): New template class.
(test_target_ops): Refactor as a C++ class with virtual methods.
* make-target-delegates (NAME_PART): Tighten.
(POINTER_PART, CP_SYMBOL): New.
(SIMPLE_RETURN_PART): Reimplement.
(VEC_RETURN_PART): Expect less.
(RETURN_PART, VIRTUAL_PART): New.
(METHOD): Adjust to C++ virtual methods.
(scan_target_h): Remove reference to C99.
(dname): Output "target_ops::" prefix.
(write_function_header): Adjust to output a C++ class method.
(write_declaration): New.
(write_delegator): Adjust to output a C++ class method.
(tdname): Output "dummy_target::" prefix.
(write_tdefault, write_debugmethod): Adjust to output a C++ class
method.
(tdefault_names, debug_names): Delete.
(return_types, tdefaults, styles, argtypes_array): New.
(top level): All methods are delegators.
(print_class): New.
(top level): Print dummy_target and debug_target classes.
* target-delegates.c: Regenerate.
* target-debug.h (target_debug_print_enum_info_proc_what)
(target_debug_print_thread_control_capabilities)
(target_debug_print_thread_info_p): New.
* target.c (dummy_target): Delete.
(the_dummy_target, the_debug_target): New.
(target_stack): Now extern.
(set_targetdebug): Push/unpush debug target.
(default_child_has_all_memory, default_child_has_memory)
(default_child_has_stack, default_child_has_registers)
(default_child_has_execution): Remove target_ops parameter.
(complete_target_initialization): Delete.
(add_target_with_completer): No longer call
complete_target_initialization.
(target_supports_terminal_ours): Use regular delegation.
(update_current_target): Delete.
(push_target): No longer check magic number. Don't call
update_current_target.
(unpush_target): Don't call update_current_target.
(target_is_pushed): No longer check magic number.
(target_require_runnable): Skip for all stratums over
process_stratum.
(target_ops::info_proc): New.
(target_info_proc): Use find_target_at and
find_default_run_target.
(target_supports_disable_randomization): Use regular delegation.
(target_get_osdata): Use find_target_at.
(target_ops::open, target_ops::close, target_ops::can_attach)
(target_ops::attach, target_ops::can_create_inferior)
(target_ops::create_inferior, target_ops::can_run)
(target_can_run): New.
(default_fileio_target): Use regular delegation.
(target_ops::fileio_open, target_ops::fileio_pwrite)
(target_ops::fileio_pread, target_ops::fileio_fstat)
(target_ops::fileio_close, target_ops::fileio_unlink)
(target_ops::fileio_readlink): New.
(target_fileio_open_1, target_fileio_unlink)
(target_fileio_readlink): Always call the target method. Handle
FILEIO_ENOSYS.
(return_zero, return_zero_has_execution): Delete.
(init_dummy_target): Delete.
(dummy_target::dummy_target, dummy_target::shortname)
(dummy_target::longname, dummy_target::doc)
(debug_target::debug_target, debug_target::shortname)
(debug_target::longname, debug_target::doc): New.
(target_supports_delete_record): Use regular delegation.
(setup_target_debug): Delete.
(maintenance_print_target_stack): Skip debug_stratum.
(initialize_targets): Instantiate the_dummy_target and
the_debug_target.
* auxv.c (target_auxv_parse): Remove 'ops' parameter. Adjust to
use target_stack.
(target_auxv_search, fprint_target_auxv): Adjust.
(info_auxv_command): Adjust to use target_stack.
* auxv.h (target_auxv_parse): Remove 'ops' parameter.
* exceptions.c (print_flush): Handle a NULL target_stack.
* regcache.c (target_ops_no_register): Refactor as class with
virtual methods.
* exec.c (exec_target): New class.
(exec_ops): Now an exec_target.
(exec_open, exec_close_1, exec_get_section_table)
(exec_xfer_partial, exec_files_info, exec_has_memory)
(exec_make_note_section): Refactor as exec_target methods.
(exec_file_clear, ignore, exec_remove_breakpoint, init_exec_ops):
Delete.
(exec_target::find_memory_regions): New.
(_initialize_exec): Don't call init_exec_ops.
* gdbcore.h (exec_file_clear): Delete.
* corefile.c (core_target): Delete.
(core_file_command): Adjust.
* corelow.c (core_target): New class.
(the_core_target): New.
(core_close): Remove target_ops parameter.
(core_close_cleanup): Adjust.
(core_target::close): New.
(core_open, core_detach, get_core_registers, core_files_info)
(core_xfer_partial, core_thread_alive, core_read_description)
(core_pid_to_str, core_thread_name, core_has_memory)
(core_has_stack, core_has_registers, core_info_proc): Rework as
core_target methods.
(ignore, core_remove_breakpoint, init_core_ops): Delete.
(_initialize_corelow): Initialize the_core_target.
* gdbcore.h (core_target): Delete.
(the_core_target): New.
* ctf.c: (ctf_target): New class.
(ctf_ops): Now a ctf_target.
(ctf_open, ctf_close, ctf_files_info, ctf_fetch_registers)
(ctf_xfer_partial, ctf_get_trace_state_variable_value)
(ctf_trace_find, ctf_traceframe_info): Refactor as ctf_target
methods.
(init_ctf_ops): Delete.
(_initialize_ctf): Don't call it.
* tracefile-tfile.c (tfile_target): New class.
(tfile_ops): Now a tfile_target.
(tfile_open, tfile_close, tfile_files_info)
(tfile_get_tracepoint_status, tfile_trace_find)
(tfile_fetch_registers, tfile_xfer_partial)
(tfile_get_trace_state_variable_value, tfile_traceframe_info):
Refactor as tfile_target methods.
(tfile_xfer_partial_features): Remove target_ops parameter.
(init_tfile_ops): Delete.
(_initialize_tracefile_tfile): Don't call it.
* tracefile.c (tracefile_has_all_memory, tracefile_has_memory)
(tracefile_has_stack, tracefile_has_registers)
(tracefile_thread_alive, tracefile_get_trace_status): Refactor as
tracefile_target methods.
(init_tracefile_ops): Delete.
(tracefile_target::tracefile_target): New.
* tracefile.h: Include "target.h".
(tracefile_target): New class.
(init_tracefile_ops): Delete.
* spu-multiarch.c (spu_multiarch_target): New class.
(spu_ops): Now a spu_multiarch_target.
(spu_thread_architecture, spu_region_ok_for_hw_watchpoint)
(spu_fetch_registers, spu_store_registers, spu_xfer_partial)
(spu_search_memory, spu_mourn_inferior): Refactor as
spu_multiarch_target methods.
(init_spu_ops): Delete.
(_initialize_spu_multiarch): Remove references to init_spu_ops,
complete_target_initialization.
* ravenscar-thread.c (ravenscar_thread_target): New class.
(ravenscar_ops): Now a ravenscar_thread_target.
(ravenscar_resume, ravenscar_wait, ravenscar_update_thread_list)
(ravenscar_thread_alive, ravenscar_pid_to_str)
(ravenscar_fetch_registers, ravenscar_store_registers)
(ravenscar_prepare_to_store, ravenscar_stopped_by_sw_breakpoint)
(ravenscar_stopped_by_hw_breakpoint)
(ravenscar_stopped_by_watchpoint, ravenscar_stopped_data_address)
(ravenscar_mourn_inferior, ravenscar_core_of_thread)
(ravenscar_get_ada_task_ptid): Refactor as ravenscar_thread_target
methods.
(init_ravenscar_thread_ops): Delete.
(_initialize_ravenscar): Remove references to
init_ravenscar_thread_ops and complete_target_initialization.
* bsd-uthread.c (bsd_uthread_ops_hack): Delete.
(bsd_uthread_target): New class.
(bsd_uthread_ops): Now a bsd_uthread_target.
(bsd_uthread_activate): Adjust to refer to bsd_uthread_ops.
(bsd_uthread_close, bsd_uthread_mourn_inferior)
(bsd_uthread_fetch_registers, bsd_uthread_store_registers)
(bsd_uthread_wait, bsd_uthread_resume, bsd_uthread_thread_alive)
(bsd_uthread_update_thread_list, bsd_uthread_extra_thread_info)
(bsd_uthread_pid_to_str): Refactor as bsd_uthread_target methods.
(bsd_uthread_target): Delete function.
(_initialize_bsd_uthread): Remove reference to
complete_target_initialization.
* bfd-target.c (target_bfd_data): Delete. Fields folded into ...
(target_bfd): ... this new class.
(target_bfd_xfer_partial, target_bfd_get_section_table)
(target_bfd_close): Refactor as target_bfd methods.
(target_bfd::~target_bfd): New.
(target_bfd_reopen): Adjust.
(target_bfd::close): New.
* record-btrace.c (record_btrace_target): New class.
(record_btrace_ops): Now a record_btrace_target.
(record_btrace_open, record_btrace_stop_recording)
(record_btrace_disconnect, record_btrace_close)
(record_btrace_async, record_btrace_info)
(record_btrace_insn_history, record_btrace_insn_history_range)
(record_btrace_insn_history_from, record_btrace_call_history)
(record_btrace_call_history_range)
(record_btrace_call_history_from, record_btrace_record_method)
(record_btrace_is_replaying, record_btrace_will_replay)
(record_btrace_xfer_partial, record_btrace_insert_breakpoint)
(record_btrace_remove_breakpoint, record_btrace_fetch_registers)
(record_btrace_store_registers, record_btrace_prepare_to_store)
(record_btrace_to_get_unwinder)
(record_btrace_to_get_tailcall_unwinder, record_btrace_resume)
(record_btrace_commit_resume, record_btrace_wait)
(record_btrace_stop, record_btrace_can_execute_reverse)
(record_btrace_stopped_by_sw_breakpoint)
(record_btrace_supports_stopped_by_sw_breakpoint)
(record_btrace_stopped_by_hw_breakpoint)
(record_btrace_supports_stopped_by_hw_breakpoint)
(record_btrace_update_thread_list, record_btrace_thread_alive)
(record_btrace_goto_begin, record_btrace_goto_end)
(record_btrace_goto, record_btrace_stop_replaying_all)
(record_btrace_execution_direction)
(record_btrace_prepare_to_generate_core)
(record_btrace_done_generating_core): Refactor as
record_btrace_target methods.
(init_record_btrace_ops): Delete.
(_initialize_record_btrace): Remove reference to
init_record_btrace_ops.
* record-full.c (RECORD_FULL_IS_REPLAY): Adjust to always refer to
the execution_direction global.
(record_full_base_target, record_full_target)
(record_full_core_target): New classes.
(record_full_ops): Now a record_full_target.
(record_full_core_ops): Now a record_full_core_target.
(record_full_target::detach, record_full_target::disconnect)
(record_full_core_target::disconnect)
(record_full_target::mourn_inferior, record_full_target::kill):
New.
(record_full_open, record_full_close, record_full_async): Refactor
as methods of the record_full_base_target class.
(record_full_resume, record_full_commit_resume): Refactor
as methods of the record_full_target class.
(record_full_wait, record_full_stopped_by_watchpoint)
(record_full_stopped_data_address)
(record_full_stopped_by_sw_breakpoint)
(record_full_supports_stopped_by_sw_breakpoint)
(record_full_stopped_by_hw_breakpoint)
(record_full_supports_stopped_by_hw_breakpoint): Refactor as
methods of the record_full_base_target class.
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint):
Refactor as methods of the record_full_target class.
(record_full_can_execute_reverse, record_full_get_bookmark)
(record_full_goto_bookmark, record_full_execution_direction)
(record_full_record_method, record_full_info, record_full_delete)
(record_full_is_replaying, record_full_will_replay)
(record_full_goto_begin, record_full_goto_end, record_full_goto)
(record_full_stop_replaying): Refactor as methods of the
record_full_base_target class.
(record_full_core_resume, record_full_core_kill)
(record_full_core_fetch_registers)
(record_full_core_prepare_to_store)
(record_full_core_store_registers, record_full_core_xfer_partial)
(record_full_core_insert_breakpoint)
(record_full_core_remove_breakpoint)
(record_full_core_has_execution): Refactor
as methods of the record_full_core_target class.
(record_full_base_target::supports_delete_record): New.
(init_record_full_ops): Delete.
(init_record_full_core_ops): Delete.
(record_full_save): Refactor as method of the
record_full_base_target class.
(_initialize_record_full): Remove references to
init_record_full_ops and init_record_full_core_ops.
* remote.c (remote_target, extended_remote_target): New classes.
(remote_ops): Now a remote_target.
(extended_remote_ops): Now an extended_remote_target.
(remote_insert_fork_catchpoint, remote_remove_fork_catchpoint)
(remote_insert_vfork_catchpoint, remote_remove_vfork_catchpoint)
(remote_insert_exec_catchpoint, remote_remove_exec_catchpoint)
(remote_pass_signals, remote_set_syscall_catchpoint)
(remote_program_signals, )
(remote_thread_always_alive): Remove target_ops parameter.
(remote_thread_alive, remote_thread_name)
(remote_update_thread_list, remote_threads_extra_info)
(remote_static_tracepoint_marker_at)
(remote_static_tracepoint_markers_by_strid)
(remote_get_ada_task_ptid, remote_close, remote_start_remote)
(remote_open): Refactor as methods of remote_target.
(extended_remote_open, extended_remote_detach)
(extended_remote_attach, extended_remote_post_attach):
(extended_remote_supports_disable_randomization)
(extended_remote_create_inferior): : Refactor as method of
extended_remote_target.
(remote_set_permissions, remote_open_1, remote_detach)
(remote_follow_fork, remote_follow_exec, remote_disconnect)
(remote_resume, remote_commit_resume, remote_stop)
(remote_interrupt, remote_pass_ctrlc, remote_terminal_inferior)
(remote_terminal_ours, remote_wait, remote_fetch_registers)
(remote_prepare_to_store, remote_store_registers)
(remote_flash_erase, remote_flash_done, remote_files_info)
(remote_kill, remote_mourn, remote_insert_breakpoint)
(remote_remove_breakpoint, remote_insert_watchpoint)
(remote_watchpoint_addr_within_range)
(remote_remove_watchpoint, remote_region_ok_for_hw_watchpoint)
(remote_check_watch_resources, remote_stopped_by_sw_breakpoint)
(remote_supports_stopped_by_sw_breakpoint)
(remote_stopped_by_hw_breakpoint)
(remote_supports_stopped_by_hw_breakpoint)
(remote_stopped_by_watchpoint, remote_stopped_data_address)
(remote_insert_hw_breakpoint, remote_remove_hw_breakpoint)
(remote_verify_memory): Refactor as methods of remote_target.
(remote_write_qxfer, remote_read_qxfer): Remove target_ops
parameter.
(remote_xfer_partial, remote_get_memory_xfer_limit)
(remote_search_memory, remote_rcmd, remote_memory_map)
(remote_pid_to_str, remote_get_thread_local_address)
(remote_get_tib_address, remote_read_description): Refactor as
methods of remote_target.
(remote_target::fileio_open, remote_target::fileio_pwrite)
(remote_target::fileio_pread, remote_target::fileio_close): New.
(remote_hostio_readlink, remote_hostio_fstat)
(remote_filesystem_is_local, remote_can_execute_reverse)
(remote_supports_non_stop, remote_supports_disable_randomization)
(remote_supports_multi_process, remote_supports_cond_breakpoints)
(remote_supports_enable_disable_tracepoint)
(remote_supports_string_tracing)
(remote_can_run_breakpoint_commands, remote_trace_init)
(remote_download_tracepoint, remote_can_download_tracepoint)
(remote_download_trace_state_variable, remote_enable_tracepoint)
(remote_disable_tracepoint, remote_trace_set_readonly_regions)
(remote_trace_start, remote_get_trace_status)
(remote_get_tracepoint_status, remote_trace_stop)
(remote_trace_find, remote_get_trace_state_variable_value)
(remote_save_trace_data, remote_get_raw_trace_data)
(remote_set_disconnected_tracing, remote_core_of_thread)
(remote_set_circular_trace_buffer, remote_traceframe_info)
(remote_get_min_fast_tracepoint_insn_len)
(remote_set_trace_buffer_size, remote_set_trace_notes)
(remote_use_agent, remote_can_use_agent, remote_enable_btrace)
(remote_disable_btrace, remote_teardown_btrace)
(remote_read_btrace, remote_btrace_conf)
(remote_augmented_libraries_svr4_read, remote_load)
(remote_pid_to_exec_file, remote_can_do_single_step)
(remote_execution_direction, remote_thread_handle_to_thread_info):
Refactor as methods of remote_target.
(init_remote_ops, init_extended_remote_ops): Delete.
(remote_can_async_p, remote_is_async_p, remote_async)
(remote_thread_events, remote_upload_tracepoints)
(remote_upload_trace_state_variables): Refactor as methods of
remote_target.
(_initialize_remote): Remove references to init_remote_ops and
init_extended_remote_ops.
* remote-sim.c (gdbsim_target): New class.
(gdbsim_fetch_register, gdbsim_store_register, gdbsim_kill)
(gdbsim_load, gdbsim_create_inferior, gdbsim_open, gdbsim_close)
(gdbsim_detach, gdbsim_resume, gdbsim_interrupt)
(gdbsim_wait, gdbsim_prepare_to_store, gdbsim_xfer_partial)
(gdbsim_files_info, gdbsim_mourn_inferior, gdbsim_thread_alive)
(gdbsim_pid_to_str, gdbsim_has_all_memory, gdbsim_has_memory):
Refactor as methods of gdbsim_target.
(gdbsim_ops): Now a gdbsim_target.
(init_gdbsim_ops): Delete.
(gdbsim_cntrl_c): Adjust.
(_initialize_remote_sim): Remove reference to init_gdbsim_ops.
* amd64-linux-nat.c (amd64_linux_nat_target): New class.
(the_amd64_linux_nat_target): New.
(amd64_linux_fetch_inferior_registers)
(amd64_linux_store_inferior_registers): Refactor as methods of
amd64_linux_nat_target.
(_initialize_amd64_linux_nat): Adjust. Set linux_target.
* i386-linux-nat.c: Don't include "linux-nat.h".
(i386_linux_nat_target): New class.
(the_i386_linux_nat_target): New.
(i386_linux_fetch_inferior_registers)
(i386_linux_store_inferior_registers, i386_linux_resume): Refactor
as methods of i386_linux_nat_target.
(_initialize_i386_linux_nat): Adjust. Set linux_target.
* inf-child.c (inf_child_ops): Delete.
(inf_child_fetch_inferior_registers)
(inf_child_store_inferior_registers): Delete.
(inf_child_post_attach, inf_child_prepare_to_store): Refactor as
methods of inf_child_target.
(inf_child_target::supports_terminal_ours)
(inf_child_target::terminal_init)
(inf_child_target::terminal_inferior)
(inf_child_target::terminal_ours_for_output)
(inf_child_target::terminal_ours, inf_child_target::interrupt)
(inf_child_target::pass_ctrlc, inf_child_target::terminal_info):
New.
(inf_child_open, inf_child_disconnect, inf_child_close)
(inf_child_mourn_inferior, inf_child_maybe_unpush_target)
(inf_child_post_startup_inferior, inf_child_can_run)
(inf_child_pid_to_exec_file): Refactor as methods of
inf_child_target.
(inf_child_follow_fork): Delete.
(inf_child_target::can_create_inferior)
(inf_child_target::can_attach): New.
(inf_child_target::has_all_memory, inf_child_target::has_memory)
(inf_child_target::has_stack, inf_child_target::has_registers)
(inf_child_target::has_execution): New.
(inf_child_fileio_open, inf_child_fileio_pwrite)
(inf_child_fileio_pread, inf_child_fileio_fstat)
(inf_child_fileio_close, inf_child_fileio_unlink)
(inf_child_fileio_readlink, inf_child_use_agent)
(inf_child_can_use_agent): Refactor as methods of
inf_child_target.
(return_zero, inf_child_target): Delete.
(inf_child_target::inf_child_target): New.
* inf-child.h: Include "target.h".
(inf_child_target): Delete function prototype.
(inf_child_target): New class.
(inf_child_open_target, inf_child_mourn_inferior)
(inf_child_maybe_unpush_target): Delete.
* inf-ptrace.c (inf_ptrace_target::~inf_ptrace_target): New.
(inf_ptrace_follow_fork, inf_ptrace_insert_fork_catchpoint)
(inf_ptrace_remove_fork_catchpoint, inf_ptrace_create_inferior)
(inf_ptrace_post_startup_inferior, inf_ptrace_mourn_inferior)
(inf_ptrace_attach, inf_ptrace_post_attach, inf_ptrace_detach)
(inf_ptrace_detach_success, inf_ptrace_kill, inf_ptrace_resume)
(inf_ptrace_wait, inf_ptrace_xfer_partial)
(inf_ptrace_thread_alive, inf_ptrace_files_info)
(inf_ptrace_pid_to_str, inf_ptrace_auxv_parse): Refactor as
methods of inf_ptrace_target.
(inf_ptrace_target): Delete function.
* inf-ptrace.h: Include "inf-child.h".
(inf_ptrace_target): Delete function declaration.
(inf_ptrace_target): New class.
(inf_ptrace_trad_target, inf_ptrace_detach_success): Delete.
* linux-nat.c (linux_target): New.
(linux_ops, linux_ops_saved, super_xfer_partial): Delete.
(linux_nat_target::~linux_nat_target): New.
(linux_child_post_attach, linux_child_post_startup_inferior)
(linux_child_follow_fork, linux_child_insert_fork_catchpoint)
(linux_child_remove_fork_catchpoint)
(linux_child_insert_vfork_catchpoint)
(linux_child_remove_vfork_catchpoint)
(linux_child_insert_exec_catchpoint)
(linux_child_remove_exec_catchpoint)
(linux_child_set_syscall_catchpoint, linux_nat_pass_signals)
(linux_nat_create_inferior, linux_nat_attach, linux_nat_detach)
(linux_nat_resume, linux_nat_stopped_by_watchpoint)
(linux_nat_stopped_data_address)
(linux_nat_stopped_by_sw_breakpoint)
(linux_nat_supports_stopped_by_sw_breakpoint)
(linux_nat_stopped_by_hw_breakpoint)
(linux_nat_supports_stopped_by_hw_breakpoint, linux_nat_wait)
(linux_nat_kill, linux_nat_mourn_inferior)
(linux_nat_xfer_partial, linux_nat_thread_alive)
(linux_nat_update_thread_list, linux_nat_pid_to_str)
(linux_nat_thread_name, linux_child_pid_to_exec_file)
(linux_child_static_tracepoint_markers_by_strid)
(linux_nat_is_async_p, linux_nat_can_async_p)
(linux_nat_supports_non_stop, linux_nat_always_non_stop_p)
(linux_nat_supports_multi_process)
(linux_nat_supports_disable_randomization, linux_nat_async)
(linux_nat_stop, linux_nat_close, linux_nat_thread_address_space)
(linux_nat_core_of_thread, linux_nat_filesystem_is_local)
(linux_nat_fileio_open, linux_nat_fileio_readlink)
(linux_nat_fileio_unlink, linux_nat_thread_events): Refactor as
methods of linux_nat_target.
(linux_nat_wait_1, linux_xfer_siginfo, linux_proc_xfer_partial)
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Remove target_ops
parameter.
(check_stopped_by_watchpoint): Adjust.
(linux_xfer_partial): Delete.
(linux_target_install_ops, linux_target, linux_nat_add_target):
Delete.
(linux_nat_target::linux_nat_target): New.
* linux-nat.h: Include "inf-ptrace.h".
(linux_nat_target): New.
(linux_target, linux_target_install_ops, linux_nat_add_target):
Delete function declarations.
(linux_target): Declare global.
* linux-thread-db.c (thread_db_target): New.
(thread_db_target::thread_db_target): New.
(thread_db_ops): Delete.
(the_thread_db_target): New.
(thread_db_detach, thread_db_wait, thread_db_mourn_inferior)
(thread_db_update_thread_list, thread_db_pid_to_str)
(thread_db_extra_thread_info)
(thread_db_thread_handle_to_thread_info)
(thread_db_get_thread_local_address, thread_db_get_ada_task_ptid)
(thread_db_resume): Refactor as methods of thread_db_target.
(init_thread_db_ops): Delete.
(_initialize_thread_db): Remove reference to init_thread_db_ops.
* x86-linux-nat.c: Don't include "linux-nat.h".
(super_post_startup_inferior): Delete.
(x86_linux_nat_target::~x86_linux_nat_target): New.
(x86_linux_child_post_startup_inferior)
(x86_linux_read_description, x86_linux_enable_btrace)
(x86_linux_disable_btrace, x86_linux_teardown_btrace)
(x86_linux_read_btrace, x86_linux_btrace_conf): Refactor as
methods of x86_linux_nat_target.
(x86_linux_create_target): Delete. Bits folded ...
(x86_linux_add_target): ... here. Now takes a linux_nat_target
pointer.
* x86-linux-nat.h: Include "linux-nat.h" and "x86-nat.h".
(x86_linux_nat_target): New class.
(x86_linux_create_target): Delete.
(x86_linux_add_target): Now takes a linux_nat_target pointer.
* x86-nat.c (x86_insert_watchpoint, x86_remove_watchpoint)
(x86_region_ok_for_watchpoint, x86_stopped_data_address)
(x86_stopped_by_watchpoint, x86_insert_hw_breakpoint)
(x86_remove_hw_breakpoint, x86_can_use_hw_breakpoint)
(x86_stopped_by_hw_breakpoint): Remove target_ops parameter and
make extern.
(x86_use_watchpoints): Delete.
* x86-nat.h: Include "breakpoint.h" and "target.h".
(x86_use_watchpoints): Delete.
(x86_can_use_hw_breakpoint, x86_region_ok_for_hw_watchpoint)
(x86_stopped_by_watchpoint, x86_stopped_data_address)
(x86_insert_watchpoint, x86_remove_watchpoint)
(x86_insert_hw_breakpoint, x86_remove_hw_breakpoint)
(x86_stopped_by_hw_breakpoint): New declarations.
(x86_nat_target): New template class.
* ppc-linux-nat.c (ppc_linux_nat_target): New class.
(the_ppc_linux_nat_target): New.
(ppc_linux_fetch_inferior_registers)
(ppc_linux_can_use_hw_breakpoint)
(ppc_linux_region_ok_for_hw_watchpoint)
(ppc_linux_ranged_break_num_registers)
(ppc_linux_insert_hw_breakpoint, ppc_linux_remove_hw_breakpoint)
(ppc_linux_insert_mask_watchpoint)
(ppc_linux_remove_mask_watchpoint)
(ppc_linux_can_accel_watchpoint_condition)
(ppc_linux_insert_watchpoint, ppc_linux_remove_watchpoint)
(ppc_linux_stopped_data_address, ppc_linux_stopped_by_watchpoint)
(ppc_linux_watchpoint_addr_within_range)
(ppc_linux_masked_watch_num_registers)
(ppc_linux_store_inferior_registers, ppc_linux_auxv_parse)
(ppc_linux_read_description): Refactor as methods of
ppc_linux_nat_target.
(_initialize_ppc_linux_nat): Adjust. Set linux_target.
* procfs.c (procfs_xfer_partial): Delete forward declaration.
(procfs_target): New class.
(the_procfs_target): New.
(procfs_target): Delete function.
(procfs_auxv_parse, procfs_attach, procfs_detach)
(procfs_fetch_registers, procfs_store_registers, procfs_wait)
(procfs_xfer_partial, procfs_resume, procfs_pass_signals)
(procfs_files_info, procfs_kill_inferior, procfs_mourn_inferior)
(procfs_create_inferior, procfs_update_thread_list)
(procfs_thread_alive, procfs_pid_to_str)
(procfs_can_use_hw_breakpoint, procfs_stopped_by_watchpoint)
(procfs_stopped_data_address, procfs_insert_watchpoint)
(procfs_remove_watchpoint, procfs_region_ok_for_hw_watchpoint)
(proc_find_memory_regions, procfs_info_proc)
(procfs_make_note_section): Refactor as methods of procfs_target.
(_initialize_procfs): Adjust.
* sol-thread.c (sol_thread_target): New class.
(sol_thread_ops): Now a sol_thread_target.
(sol_thread_detach, sol_thread_resume, sol_thread_wait)
(sol_thread_fetch_registers, sol_thread_store_registers)
(sol_thread_xfer_partial, sol_thread_mourn_inferior)
(sol_thread_alive, solaris_pid_to_str, sol_update_thread_list)
(sol_get_ada_task_ptid): Refactor as methods of sol_thread_target.
(init_sol_thread_ops): Delete.
(_initialize_sol_thread): Adjust. Remove references to
init_sol_thread_ops and complete_target_initialization.
* windows-nat.c (windows_nat_target): New class.
(windows_fetch_inferior_registers)
(windows_store_inferior_registers, windows_resume, windows_wait)
(windows_attach, windows_detach, windows_pid_to_exec_file)
(windows_files_info, windows_create_inferior)
(windows_mourn_inferior, windows_interrupt, windows_kill_inferior)
(windows_close, windows_pid_to_str, windows_xfer_partial)
(windows_get_tib_address, windows_get_ada_task_ptid)
(windows_thread_name, windows_thread_alive): Refactor as
windows_nat_target methods.
(do_initial_windows_stuff): Adjust.
(windows_target): Delete function.
(_initialize_windows_nat): Adjust.
* darwin-nat.c (darwin_resume, darwin_wait_to, darwin_interrupt)
(darwin_mourn_inferior, darwin_kill_inferior)
(darwin_create_inferior, darwin_attach, darwin_detach)
(darwin_pid_to_str, darwin_thread_alive, darwin_xfer_partial)
(darwin_pid_to_exec_file, darwin_get_ada_task_ptid)
(darwin_supports_multi_process): Refactor as darwin_nat_target
methods.
(darwin_resume_to, darwin_files_info): Delete.
(_initialize_darwin_inferior): Rename to ...
(_initialize_darwin_nat): ... this. Adjust to C++ification.
* darwin-nat.h: Include "inf-child.h".
(darwin_nat_target): New class.
(darwin_complete_target): Delete.
* i386-darwin-nat.c (i386_darwin_nat_target): New class.
(darwin_target): New.
(i386_darwin_fetch_inferior_registers)
(i386_darwin_store_inferior_registers): Refactor as methods of
darwin_nat_target.
(darwin_complete_target): Delete, with ...
(_initialize_i386_darwin_nat): ... bits factored out here.
* alpha-linux-nat.c (alpha_linux_nat_target): New class.
(the_alpha_linux_nat_target): New.
(alpha_linux_register_u_offset): Refactor as
alpha_linux_nat_target method.
(_initialize_alpha_linux_nat): Adjust.
* linux-nat-trad.c (inf_ptrace_register_u_offset): Delete.
(inf_ptrace_fetch_register, inf_ptrace_fetch_registers)
(inf_ptrace_store_register, inf_ptrace_store_registers): Refact as
methods of linux_nat_trad_target.
(linux_trad_target): Delete.
* linux-nat-trad.h (linux_trad_target): Delete function.
(linux_nat_trad_target): New class.
* mips-linux-nat.c (mips_linux_nat_target): New class.
(super_fetch_registers, super_store_registers, super_close):
Delete.
(the_mips_linux_nat_target): New.
(mips64_linux_regsets_fetch_registers)
(mips64_linux_regsets_store_registers)
(mips64_linux_fetch_registers, mips64_linux_store_registers)
(mips_linux_register_u_offset, mips_linux_read_description)
(mips_linux_can_use_hw_breakpoint)
(mips_linux_stopped_by_watchpoint)
(mips_linux_stopped_data_address)
(mips_linux_region_ok_for_hw_watchpoint)
(mips_linux_insert_watchpoint, mips_linux_remove_watchpoint)
(mips_linux_close): Refactor as methods of mips_linux_nat.
(_initialize_mips_linux_nat): Adjust to C++ification.
* aix-thread.c (aix_thread_target): New class.
(aix_thread_ops): Now an aix_thread_target.
(aix_thread_detach, aix_thread_resume, aix_thread_wait)
(aix_thread_fetch_registers, aix_thread_store_registers)
(aix_thread_xfer_partial, aix_thread_mourn_inferior)
(aix_thread_thread_alive, aix_thread_pid_to_str)
(aix_thread_extra_thread_info, aix_thread_get_ada_task_ptid):
Refactor as methods of aix_thread_target.
(init_aix_thread_ops): Delete.
(_initialize_aix_thread): Remove references to init_aix_thread_ops
and complete_target_initialization.
* rs6000-nat.c (rs6000_xfer_shared_libraries): Delete.
(rs6000_nat_target): New class.
(the_rs6000_nat_target): New.
(rs6000_fetch_inferior_registers, rs6000_store_inferior_registers)
(rs6000_xfer_partial, rs6000_wait, rs6000_create_inferior)
(rs6000_xfer_shared_libraries): Refactor as rs6000_nat_target methods.
(super_create_inferior): Delete.
(_initialize_rs6000_nat): Adjust to C++ification.
* arm-linux-nat.c (arm_linux_nat_target): New class.
(the_arm_linux_nat_target): New.
(arm_linux_fetch_inferior_registers)
(arm_linux_store_inferior_registers, arm_linux_read_description)
(arm_linux_can_use_hw_breakpoint, arm_linux_insert_hw_breakpoint)
(arm_linux_remove_hw_breakpoint)
(arm_linux_region_ok_for_hw_watchpoint)
(arm_linux_insert_watchpoint, arm_linux_remove_watchpoint)
(arm_linux_stopped_data_address, arm_linux_stopped_by_watchpoint)
(arm_linux_watchpoint_addr_within_range): Refactor as methods of
arm_linux_nat_target.
(_initialize_arm_linux_nat): Adjust to C++ification.
* aarch64-linux-nat.c (aarch64_linux_nat_target): New class.
(the_aarch64_linux_nat_target): New.
(aarch64_linux_fetch_inferior_registers)
(aarch64_linux_store_inferior_registers)
(aarch64_linux_child_post_startup_inferior)
(aarch64_linux_read_description)
(aarch64_linux_can_use_hw_breakpoint)
(aarch64_linux_insert_hw_breakpoint)
(aarch64_linux_remove_hw_breakpoint)
(aarch64_linux_insert_watchpoint, aarch64_linux_remove_watchpoint)
(aarch64_linux_region_ok_for_hw_watchpoint)
(aarch64_linux_stopped_data_address)
(aarch64_linux_stopped_by_watchpoint)
(aarch64_linux_watchpoint_addr_within_range)
(aarch64_linux_can_do_single_step): Refactor as methods of
aarch64_linux_nat_target.
(super_post_startup_inferior): Delete.
(_initialize_aarch64_linux_nat): Adjust to C++ification.
* hppa-linux-nat.c (hppa_linux_nat_target): New class.
(the_hppa_linux_nat_target): New.
(hppa_linux_fetch_inferior_registers)
(hppa_linux_store_inferior_registers): Refactor as methods of
hppa_linux_nat_target.
(_initialize_hppa_linux_nat): Adjust to C++ification.
* ia64-linux-nat.c (ia64_linux_nat_target): New class.
(the_ia64_linux_nat_target): New.
(ia64_linux_insert_watchpoint, ia64_linux_remove_watchpoint)
(ia64_linux_stopped_data_address)
(ia64_linux_stopped_by_watchpoint, ia64_linux_fetch_registers)
(ia64_linux_store_registers, ia64_linux_xfer_partial): Refactor as
ia64_linux_nat_target methods.
(super_xfer_partial): Delete.
(_initialize_ia64_linux_nat): Adjust to C++ification.
* m32r-linux-nat.c (m32r_linux_nat_target): New class.
(the_m32r_linux_nat_target): New.
(m32r_linux_fetch_inferior_registers)
(m32r_linux_store_inferior_registers): Refactor as
m32r_linux_nat_target methods.
(_initialize_m32r_linux_nat): Adjust to C++ification.
* m68k-linux-nat.c (m68k_linux_nat_target): New class.
(the_m68k_linux_nat_target): New.
(m68k_linux_fetch_inferior_registers)
(m68k_linux_store_inferior_registers): Refactor as
m68k_linux_nat_target methods.
(_initialize_m68k_linux_nat): Adjust to C++ification.
* s390-linux-nat.c (s390_linux_nat_target): New class.
(the_s390_linux_nat_target): New.
(s390_linux_fetch_inferior_registers)
(s390_linux_store_inferior_registers, s390_stopped_by_watchpoint)
(s390_insert_watchpoint, s390_remove_watchpoint)
(s390_can_use_hw_breakpoint, s390_insert_hw_breakpoint)
(s390_remove_hw_breakpoint, s390_region_ok_for_hw_watchpoint)
(s390_auxv_parse, s390_read_description): Refactor as methods of
s390_linux_nat_target.
(_initialize_s390_nat): Adjust to C++ification.
* sparc-linux-nat.c (sparc_linux_nat_target): New class.
(the_sparc_linux_nat_target): New.
(_initialize_sparc_linux_nat): Adjust to C++ification.
* sparc-nat.c (sparc_fetch_inferior_registers)
(sparc_store_inferior_registers): Remove target_ops parameter.
* sparc-nat.h (sparc_fetch_inferior_registers)
(sparc_store_inferior_registers): Remove target_ops parameter.
* sparc64-linux-nat.c (sparc64_linux_nat_target): New class.
(the_sparc64_linux_nat_target): New.
(_initialize_sparc64_linux_nat): Adjust to C++ification.
* spu-linux-nat.c (spu_linux_nat_target): New class.
(the_spu_linux_nat_target): New.
(spu_child_post_startup_inferior, spu_child_post_attach)
(spu_child_wait, spu_fetch_inferior_registers)
(spu_store_inferior_registers, spu_xfer_partial)
(spu_can_use_hw_breakpoint): Refactor as spu_linux_nat_target
methods.
(_initialize_spu_nat): Adjust to C++ification.
* tilegx-linux-nat.c (tilegx_linux_nat_target): New class.
(the_tilegx_linux_nat_target): New.
(fetch_inferior_registers, store_inferior_registers):
Refactor as methods.
(_initialize_tile_linux_nat): Adjust to C++ification.
* xtensa-linux-nat.c (xtensa_linux_nat_target): New class.
(the_xtensa_linux_nat_target): New.
(xtensa_linux_fetch_inferior_registers)
(xtensa_linux_store_inferior_registers): Refactor as
xtensa_linux_nat_target methods.
(_initialize_xtensa_linux_nat): Adjust to C++ification.
* fbsd-nat.c (USE_SIGTRAP_SIGINFO): Delete.
(fbsd_pid_to_exec_file, fbsd_find_memory_regions)
(fbsd_find_memory_regions, fbsd_info_proc, fbsd_xfer_partial)
(fbsd_thread_alive, fbsd_pid_to_str, fbsd_thread_name)
(fbsd_update_thread_list, fbsd_resume, fbsd_wait)
(fbsd_stopped_by_sw_breakpoint)
(fbsd_supports_stopped_by_sw_breakpoint, fbsd_follow_fork)
(fbsd_insert_fork_catchpoint, fbsd_remove_fork_catchpoint)
(fbsd_insert_vfork_catchpoint, fbsd_remove_vfork_catchpoint)
(fbsd_post_startup_inferior, fbsd_post_attach)
(fbsd_insert_exec_catchpoint, fbsd_remove_exec_catchpoint)
(fbsd_set_syscall_catchpoint)
(super_xfer_partial, super_resume, super_wait)
(fbsd_supports_stopped_by_hw_breakpoint): Delete.
(fbsd_handle_debug_trap): Remove target_ops parameter.
(fbsd_nat_add_target): Delete.
* fbsd-nat.h: Include "inf-ptrace.h".
(fbsd_nat_add_target): Delete.
(USE_SIGTRAP_SIGINFO): Define.
(fbsd_nat_target): New class.
* amd64-bsd-nat.c (amd64bsd_fetch_inferior_registers)
(amd64bsd_store_inferior_registers): Remove target_ops parameter.
(amd64bsd_target): Delete.
* amd64-bsd-nat.h: New file.
* amd64-fbsd-nat.c: Include "amd64-bsd-nat.h" instead of
"x86-bsd-nat.h".
(amd64_fbsd_nat_target): New class.
(the_amd64_fbsd_nat_target): New.
(amd64fbsd_read_description): Refactor as method of
amd64_fbsd_nat_target.
(amd64_fbsd_nat_target::supports_stopped_by_hw_breakpoint): New.
(_initialize_amd64fbsd_nat): Adjust to C++ification.
* amd64-nat.h (amd64bsd_target): Delete function declaration.
* i386-bsd-nat.c (i386bsd_fetch_inferior_registers)
(i386bsd_store_inferior_registers): Remove target_ops parameter.
(i386bsd_target): Delete.
* i386-bsd-nat.h (i386bsd_target): Delete function declaration.
(i386bsd_fetch_inferior_registers)
(i386bsd_store_inferior_registers): Declare.
(i386_bsd_nat_target): New class.
* i386-fbsd-nat.c (i386_fbsd_nat_target): New class.
(the_i386_fbsd_nat_target): New.
(i386fbsd_resume, i386fbsd_read_description): Refactor as
i386_fbsd_nat_target methods.
(i386_fbsd_nat_target::supports_stopped_by_hw_breakpoint): New.
(_initialize_i386fbsd_nat): Adjust to C++ification.
* x86-bsd-nat.c (super_mourn_inferior): Delete.
(x86bsd_mourn_inferior, x86bsd_target): Delete.
(_initialize_x86_bsd_nat): Adjust to C++ification.
* x86-bsd-nat.h: Include "x86-nat.h".
(x86bsd_target): Delete declaration.
(x86bsd_nat_target): New class.
* aarch64-fbsd-nat.c (aarch64_fbsd_nat_target): New class.
(the_aarch64_fbsd_nat_target): New.
(aarch64_fbsd_fetch_inferior_registers)
(aarch64_fbsd_store_inferior_registers): Refactor as methods of
aarch64_fbsd_nat_target.
(_initialize_aarch64_fbsd_nat): Adjust to C++ification.
* alpha-bsd-nat.c (alpha_bsd_nat_target): New class.
(the_alpha_bsd_nat_target): New.
(alphabsd_fetch_inferior_registers)
(alphabsd_store_inferior_registers): Refactor as
alpha_bsd_nat_target methods.
(_initialize_alphabsd_nat): Refactor as methods of
alpha_bsd_nat_target.
* amd64-nbsd-nat.c: Include "amd64-bsd-nat.h".
(the_amd64_nbsd_nat_target): New.
(_initialize_amd64nbsd_nat): Adjust to C++ification.
* amd64-obsd-nat.c: Include "amd64-bsd-nat.h".
(the_amd64_obsd_nat_target): New.
(_initialize_amd64obsd_nat): Adjust to C++ification.
* arm-fbsd-nat.c (arm_fbsd_nat_target): New.
(the_arm_fbsd_nat_target): New.
(arm_fbsd_fetch_inferior_registers)
(arm_fbsd_store_inferior_registers, arm_fbsd_read_description):
(_initialize_arm_fbsd_nat): Refactor as methods of
arm_fbsd_nat_target.
(_initialize_arm_fbsd_nat): Adjust to C++ification.
* arm-nbsd-nat.c (arm_netbsd_nat_target): New class.
(the_arm_netbsd_nat_target): New.
(armnbsd_fetch_registers, armnbsd_store_registers): Refactor as
arm_netbsd_nat_target.
(_initialize_arm_netbsd_nat): Adjust to C++ification.
* hppa-nbsd-nat.c (hppa_nbsd_nat_target): New class.
(the_hppa_nbsd_nat_target): New.
(hppanbsd_fetch_registers, hppanbsd_store_registers): Refactor as
hppa_nbsd_nat_target methods.
(_initialize_hppanbsd_nat): Adjust to C++ification.
* hppa-obsd-nat.c (hppa_obsd_nat_target): New class.
(the_hppa_obsd_nat_target): New.
(hppaobsd_fetch_registers, hppaobsd_store_registers): Refactor as
methods of hppa_obsd_nat_target.
(_initialize_hppaobsd_nat): Adjust to C++ification. Use
add_target.
* i386-nbsd-nat.c (the_i386_nbsd_nat_target): New.
(_initialize_i386nbsd_nat): Adjust to C++ification. Use
add_target.
* i386-obsd-nat.c (the_i386_obsd_nat_target): New.
(_initialize_i386obsd_nat): Use add_target.
* m68k-bsd-nat.c (m68k_bsd_nat_target): New class.
(the_m68k_bsd_nat_target): New.
(m68kbsd_fetch_inferior_registers)
(m68kbsd_store_inferior_registers): Refactor as methods of
m68k_bsd_nat_target.
(_initialize_m68kbsd_nat): Adjust to C++ification.
* mips-fbsd-nat.c (mips_fbsd_nat_target): New class.
(the_mips_fbsd_nat_target): New.
(mips_fbsd_fetch_inferior_registers)
(mips_fbsd_store_inferior_registers): Refactor as methods of
mips_fbsd_nat_target.
(_initialize_mips_fbsd_nat): Adjust to C++ification. Use
add_target.
* mips-nbsd-nat.c (mips_nbsd_nat_target): New class.
(the_mips_nbsd_nat_target): New.
(mipsnbsd_fetch_inferior_registers)
(mipsnbsd_store_inferior_registers): Refactor as methods of
mips_nbsd_nat_target.
(_initialize_mipsnbsd_nat): Adjust to C++ification.
* mips64-obsd-nat.c (mips64_obsd_nat_target): New class.
(the_mips64_obsd_nat_target): New.
(mips64obsd_fetch_inferior_registers)
(mips64obsd_store_inferior_registers): Refactor as methods of
mips64_obsd_nat_target.
(_initialize_mips64obsd_nat): Adjust to C++ification. Use
add_target.
* nbsd-nat.c (nbsd_pid_to_exec_file): Refactor as method of
nbsd_nat_target.
* nbsd-nat.h: Include "inf-ptrace.h".
(nbsd_nat_target): New class.
* obsd-nat.c (obsd_pid_to_str, obsd_update_thread_list)
(obsd_wait): Refactor as methods of obsd_nat_target.
(obsd_add_target): Delete.
* obsd-nat.h: Include "inf-ptrace.h".
(obsd_nat_target): New class.
* ppc-fbsd-nat.c (ppc_fbsd_nat_target): New class.
(the_ppc_fbsd_nat_target): New.
(ppcfbsd_fetch_inferior_registers)
(ppcfbsd_store_inferior_registers): Refactor as methods of
ppc_fbsd_nat_target.
(_initialize_ppcfbsd_nat): Adjust to C++ification. Use
add_target.
* ppc-nbsd-nat.c (ppc_nbsd_nat_target): New class.
(the_ppc_nbsd_nat_target): New.
(ppcnbsd_fetch_inferior_registers)
(ppcnbsd_store_inferior_registers): Refactor as methods of
ppc_nbsd_nat_target.
(_initialize_ppcnbsd_nat): Adjust to C++ification.
* ppc-obsd-nat.c (ppc_obsd_nat_target): New class.
(the_ppc_obsd_nat_target): New.
(ppcobsd_fetch_registers, ppcobsd_store_registers): Refactor as
methods of ppc_obsd_nat_target.
(_initialize_ppcobsd_nat): Adjust to C++ification. Use
add_target.
* sh-nbsd-nat.c (sh_nbsd_nat_target): New class.
(the_sh_nbsd_nat_target): New.
(shnbsd_fetch_inferior_registers)
(shnbsd_store_inferior_registers): Refactor as methods of
sh_nbsd_nat_target.
(_initialize_shnbsd_nat): Adjust to C++ification.
* sparc-nat.c (sparc_xfer_wcookie): Make extern.
(inf_ptrace_xfer_partial): Delete.
(sparc_xfer_partial, sparc_target): Delete.
* sparc-nat.h (sparc_fetch_inferior_registers)
(sparc_store_inferior_registers, sparc_xfer_wcookie): Declare.
(sparc_target): Delete function declaration.
(sparc_target): New template class.
* sparc-nbsd-nat.c (the_sparc_nbsd_nat_target): New.
(_initialize_sparcnbsd_nat): Adjust to C++ification.
* sparc64-fbsd-nat.c (the_sparc64_fbsd_nat_target): New.
(_initialize_sparc64fbsd_nat): Adjust to C++ification. Use
add_target.
* sparc64-nbsd-nat.c (the_sparc64_nbsd_nat_target): New.
(_initialize_sparc64nbsd_nat): Adjust to C++ification.
* sparc64-obsd-nat.c (the_sparc64_obsd_nat_target): New.
(_initialize_sparc64obsd_nat): Adjust to C++ification. Use
add_target.
* vax-bsd-nat.c (vax_bsd_nat_target): New class.
(the_vax_bsd_nat_target): New.
(vaxbsd_fetch_inferior_registers)
(vaxbsd_store_inferior_registers): Refactor as vax_bsd_nat_target
methods.
(_initialize_vaxbsd_nat): Adjust to C++ification.
* bsd-kvm.c (bsd_kvm_target): New class.
(bsd_kvm_ops): Now a bsd_kvm_target.
(bsd_kvm_open, bsd_kvm_close, bsd_kvm_xfer_partial)
(bsd_kvm_files_info, bsd_kvm_fetch_registers)
(bsd_kvm_thread_alive, bsd_kvm_pid_to_str): Refactor as methods of
bsd_kvm_target.
(bsd_kvm_return_one): Delete.
(bsd_kvm_add_target): Adjust to C++ification.
* nto-procfs.c (nto_procfs_target, nto_procfs_target_native)
(nto_procfs_target_procfs): New classes.
(procfs_open_1, procfs_thread_alive, procfs_update_thread_list)
(procfs_files_info, procfs_pid_to_exec_file, procfs_attach)
(procfs_post_attach, procfs_wait, procfs_fetch_registers)
(procfs_xfer_partial, procfs_detach, procfs_insert_breakpoint)
(procfs_remove_breakpoint, procfs_insert_hw_breakpoint)
(procfs_remove_hw_breakpoint, procfs_resume)
(procfs_mourn_inferior, procfs_create_inferior, procfs_interrupt)
(procfs_kill_inferior, procfs_store_registers)
(procfs_pass_signals, procfs_pid_to_str, procfs_can_run): Refactor
as methods of nto_procfs_target.
(nto_procfs_ops): Now an nto_procfs_target_procfs.
(nto_native_ops): Delete.
(procfs_open, procfs_native_open): Delete.
(nto_native_ops): Now an nto_procfs_target_native.
(init_procfs_targets): Adjust to C++ification.
(procfs_can_use_hw_breakpoint, procfs_remove_hw_watchpoint)
(procfs_insert_hw_watchpoint, procfs_stopped_by_watchpoint):
Refactor as methods of nto_procfs_target.
* go32-nat.c (go32_nat_target): New class.
(the_go32_nat_target): New.
(go32_attach, go32_resume, go32_wait, go32_fetch_registers)
(go32_store_registers, go32_xfer_partial, go32_files_info)
(go32_kill_inferior, go32_create_inferior, go32_mourn_inferior)
(go32_terminal_init, go32_terminal_info, go32_terminal_inferior)
(go32_terminal_ours, go32_pass_ctrlc, go32_thread_alive)
(go32_pid_to_str): Refactor as methods of go32_nat_target.
(go32_target): Delete.
(_initialize_go32_nat): Adjust to C++ification.
* gnu-nat.c (gnu_wait, gnu_resume, gnu_kill_inferior)
(gnu_mourn_inferior, gnu_create_inferior, gnu_attach, gnu_detach)
(gnu_stop, gnu_thread_alive, gnu_xfer_partial)
(gnu_find_memory_regions, gnu_pid_to_str): Refactor as methods of
gnu_nat_target.
(gnu_target): Delete.
* gnu-nat.h (gnu_target): Delete.
(gnu_nat_target): New class.
* i386-gnu-nat.c (gnu_base_target): New.
(i386_gnu_nat_target): New class.
(the_i386_gnu_nat_target): New.
(_initialize_i386gnu_nat): Adjust to C++ification.
gdb/testsuite/ChangeLog:
2018-05-02 Pedro Alves <palves@redhat.com>
* gdb.base/breakpoint-in-ro-region.exp: Adjust to to_resume and
to_log_command renames.
* gdb.base/sss-bp-on-user-bp-2.exp: Likewise.
2018-05-03 07:37:22 +08:00
|
|
|
switch (target_auxv_parse (&ptr, data + len, &type, &val))
|
2004-02-02 06:35:24 +08:00
|
|
|
{
|
|
|
|
case 1: /* Here's an entry, check it. */
|
|
|
|
if (type == match)
|
|
|
|
{
|
|
|
|
*valp = val;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 0: /* End of the vector. */
|
|
|
|
return 0;
|
|
|
|
default: /* Bogosity. */
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*NOTREACHED*/
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2016-06-12 06:51:38 +08:00
|
|
|
/* Print the description of a single AUXV entry on the specified file. */
|
|
|
|
|
|
|
|
void
|
|
|
|
fprint_auxv_entry (struct ui_file *file, const char *name,
|
|
|
|
const char *description, enum auxv_format format,
|
|
|
|
CORE_ADDR type, CORE_ADDR val)
|
|
|
|
{
|
|
|
|
fprintf_filtered (file, ("%-4s %-20s %-30s "),
|
|
|
|
plongest (type), name, description);
|
|
|
|
switch (format)
|
|
|
|
{
|
|
|
|
case AUXV_FORMAT_DEC:
|
|
|
|
fprintf_filtered (file, ("%s\n"), plongest (val));
|
|
|
|
break;
|
|
|
|
case AUXV_FORMAT_HEX:
|
|
|
|
fprintf_filtered (file, ("%s\n"), paddress (target_gdbarch (), val));
|
|
|
|
break;
|
|
|
|
case AUXV_FORMAT_STR:
|
|
|
|
{
|
|
|
|
struct value_print_options opts;
|
|
|
|
|
|
|
|
get_user_print_options (&opts);
|
|
|
|
if (opts.addressprint)
|
|
|
|
fprintf_filtered (file, ("%s "), paddress (target_gdbarch (), val));
|
|
|
|
val_print_string (builtin_type (target_gdbarch ())->builtin_char,
|
|
|
|
NULL, val, -1, file, &opts);
|
|
|
|
fprintf_filtered (file, ("\n"));
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The default implementation of gdbarch_print_auxv_entry. */
|
|
|
|
|
|
|
|
void
|
|
|
|
default_print_auxv_entry (struct gdbarch *gdbarch, struct ui_file *file,
|
|
|
|
CORE_ADDR type, CORE_ADDR val)
|
|
|
|
{
|
|
|
|
const char *name = "???";
|
|
|
|
const char *description = "";
|
|
|
|
enum auxv_format format = AUXV_FORMAT_HEX;
|
|
|
|
|
|
|
|
switch (type)
|
|
|
|
{
|
|
|
|
#define TAG(tag, text, kind) \
|
|
|
|
case tag: name = #tag; description = text; format = kind; break
|
|
|
|
TAG (AT_NULL, _("End of vector"), AUXV_FORMAT_HEX);
|
|
|
|
TAG (AT_IGNORE, _("Entry should be ignored"), AUXV_FORMAT_HEX);
|
|
|
|
TAG (AT_EXECFD, _("File descriptor of program"), AUXV_FORMAT_DEC);
|
|
|
|
TAG (AT_PHDR, _("Program headers for program"), AUXV_FORMAT_HEX);
|
|
|
|
TAG (AT_PHENT, _("Size of program header entry"), AUXV_FORMAT_DEC);
|
|
|
|
TAG (AT_PHNUM, _("Number of program headers"), AUXV_FORMAT_DEC);
|
|
|
|
TAG (AT_PAGESZ, _("System page size"), AUXV_FORMAT_DEC);
|
|
|
|
TAG (AT_BASE, _("Base address of interpreter"), AUXV_FORMAT_HEX);
|
|
|
|
TAG (AT_FLAGS, _("Flags"), AUXV_FORMAT_HEX);
|
|
|
|
TAG (AT_ENTRY, _("Entry point of program"), AUXV_FORMAT_HEX);
|
|
|
|
TAG (AT_NOTELF, _("Program is not ELF"), AUXV_FORMAT_DEC);
|
|
|
|
TAG (AT_UID, _("Real user ID"), AUXV_FORMAT_DEC);
|
|
|
|
TAG (AT_EUID, _("Effective user ID"), AUXV_FORMAT_DEC);
|
|
|
|
TAG (AT_GID, _("Real group ID"), AUXV_FORMAT_DEC);
|
|
|
|
TAG (AT_EGID, _("Effective group ID"), AUXV_FORMAT_DEC);
|
|
|
|
TAG (AT_CLKTCK, _("Frequency of times()"), AUXV_FORMAT_DEC);
|
|
|
|
TAG (AT_PLATFORM, _("String identifying platform"), AUXV_FORMAT_STR);
|
|
|
|
TAG (AT_HWCAP, _("Machine-dependent CPU capability hints"),
|
|
|
|
AUXV_FORMAT_HEX);
|
|
|
|
TAG (AT_FPUCW, _("Used FPU control word"), AUXV_FORMAT_DEC);
|
|
|
|
TAG (AT_DCACHEBSIZE, _("Data cache block size"), AUXV_FORMAT_DEC);
|
|
|
|
TAG (AT_ICACHEBSIZE, _("Instruction cache block size"), AUXV_FORMAT_DEC);
|
|
|
|
TAG (AT_UCACHEBSIZE, _("Unified cache block size"), AUXV_FORMAT_DEC);
|
|
|
|
TAG (AT_IGNOREPPC, _("Entry should be ignored"), AUXV_FORMAT_DEC);
|
|
|
|
TAG (AT_BASE_PLATFORM, _("String identifying base platform"),
|
|
|
|
AUXV_FORMAT_STR);
|
|
|
|
TAG (AT_RANDOM, _("Address of 16 random bytes"), AUXV_FORMAT_HEX);
|
|
|
|
TAG (AT_HWCAP2, _("Extension of AT_HWCAP"), AUXV_FORMAT_HEX);
|
|
|
|
TAG (AT_EXECFN, _("File name of executable"), AUXV_FORMAT_STR);
|
|
|
|
TAG (AT_SECURE, _("Boolean, was exec setuid-like?"), AUXV_FORMAT_DEC);
|
|
|
|
TAG (AT_SYSINFO, _("Special system info/entry points"), AUXV_FORMAT_HEX);
|
|
|
|
TAG (AT_SYSINFO_EHDR, _("System-supplied DSO's ELF header"),
|
|
|
|
AUXV_FORMAT_HEX);
|
|
|
|
TAG (AT_L1I_CACHESHAPE, _("L1 Instruction cache information"),
|
|
|
|
AUXV_FORMAT_HEX);
|
2020-02-25 08:04:05 +08:00
|
|
|
TAG (AT_L1I_CACHESIZE, _("L1 Instruction cache size"), AUXV_FORMAT_HEX);
|
|
|
|
TAG (AT_L1I_CACHEGEOMETRY, _("L1 Instruction cache geometry"),
|
|
|
|
AUXV_FORMAT_HEX);
|
2016-06-12 06:51:38 +08:00
|
|
|
TAG (AT_L1D_CACHESHAPE, _("L1 Data cache information"), AUXV_FORMAT_HEX);
|
2020-02-25 08:04:05 +08:00
|
|
|
TAG (AT_L1D_CACHESIZE, _("L1 Data cache size"), AUXV_FORMAT_HEX);
|
|
|
|
TAG (AT_L1D_CACHEGEOMETRY, _("L1 Data cache geometry"),
|
|
|
|
AUXV_FORMAT_HEX);
|
2016-06-12 06:51:38 +08:00
|
|
|
TAG (AT_L2_CACHESHAPE, _("L2 cache information"), AUXV_FORMAT_HEX);
|
2020-02-25 08:04:05 +08:00
|
|
|
TAG (AT_L2_CACHESIZE, _("L2 cache size"), AUXV_FORMAT_HEX);
|
|
|
|
TAG (AT_L2_CACHEGEOMETRY, _("L2 cache geometry"), AUXV_FORMAT_HEX);
|
2016-06-12 06:51:38 +08:00
|
|
|
TAG (AT_L3_CACHESHAPE, _("L3 cache information"), AUXV_FORMAT_HEX);
|
2020-02-25 08:04:05 +08:00
|
|
|
TAG (AT_L3_CACHESIZE, _("L3 cache size"), AUXV_FORMAT_HEX);
|
|
|
|
TAG (AT_L3_CACHEGEOMETRY, _("L3 cache geometry"), AUXV_FORMAT_HEX);
|
|
|
|
TAG (AT_MINSIGSTKSZ, _("Minimum stack size for signal delivery"),
|
|
|
|
AUXV_FORMAT_HEX);
|
2016-06-12 06:51:38 +08:00
|
|
|
TAG (AT_SUN_UID, _("Effective user ID"), AUXV_FORMAT_DEC);
|
|
|
|
TAG (AT_SUN_RUID, _("Real user ID"), AUXV_FORMAT_DEC);
|
|
|
|
TAG (AT_SUN_GID, _("Effective group ID"), AUXV_FORMAT_DEC);
|
|
|
|
TAG (AT_SUN_RGID, _("Real group ID"), AUXV_FORMAT_DEC);
|
|
|
|
TAG (AT_SUN_LDELF, _("Dynamic linker's ELF header"), AUXV_FORMAT_HEX);
|
|
|
|
TAG (AT_SUN_LDSHDR, _("Dynamic linker's section headers"),
|
|
|
|
AUXV_FORMAT_HEX);
|
|
|
|
TAG (AT_SUN_LDNAME, _("String giving name of dynamic linker"),
|
|
|
|
AUXV_FORMAT_STR);
|
|
|
|
TAG (AT_SUN_LPAGESZ, _("Large pagesize"), AUXV_FORMAT_DEC);
|
|
|
|
TAG (AT_SUN_PLATFORM, _("Platform name string"), AUXV_FORMAT_STR);
|
Handle missing Solaris auxv entries
Currently, three tests FAIL on Solaris 11.4+ (amd64-pc-solaris2.11 and
sparcv9-sun-solaris2.11):
info auxv
[...]
2009 AT_SUN_HWCAP Machine-dependent CPU capability hints 0x3f5ff7
2023 ??? 0x0
0 AT_NULL End of vector 0x0
(gdb) WARNING: Unrecognized tag value: 2023 ??? 0x0
FAIL: gdb.base/auxv.exp: info auxv on live process
info auxv
4294969310 ??? 0x7fffbfffe410
9225589753816 ??? 0x7fffbfffe45c
[...]
WARNING: Unrecognized tag value: 4294969310 ??? 0x7fffbfffe410
WARNING: Unrecognized tag value: 9225589753816 ??? 0x7fffbfffe45c
WARNING: Unrecognized tag value: 140733193388037 ??? 0x6
[...]
2009 AT_SUN_HWCAP Machine-dependent CPU capability hints 0x3f5ff7
2023 ??? 0x0
0 AT_NULL End of vector 0x0
(gdb) WARNING: Unrecognized tag value: 2023 ??? 0x0
UNRESOLVED: gdb.base/auxv.exp: info auxv on native core dump
info auxv
[...]
2009 AT_SUN_HWCAP Machine-dependent CPU capability hints 0x3f5ff7
2023 ??? 0x0
0 AT_NULL End of vector 0x0
(gdb) WARNING: Unrecognized tag value: 2023 ??? 0x0
FAIL: gdb.base/auxv.exp: info auxv on gcore-created dump
The following patch fixes this by introducing the missing AT_SUN_*
values from Solaris 11.4+ <sys/auxv.h>. This lets the live and
gcore-created dump tests PASS.
I don't know yet what's the reason for those weird 'Unrecognized tag
value' warnings with native core dumps is; elfdump -n certainly doesn't
show them. However, native core dumps still need quite some work
(mostly in bfd) in this and other areas.
Tested on amd64-pc-solaris2.11.
gdb:
* auxv.c (default_print_auxv_entry): Reflect AT_SUN_CAP_HW1
renaming.
Handle AT_SUN_EMULATOR, AT_SUN_BRANDNAME, AT_SUN_BRAND_AUX1,
AT_SUN_BRAND_AUX2, AT_SUN_BRAND_AUX3, AT_SUN_CAP_HW2.
include:
* elf/common.h (AT_SUN_HWCAP): Rename to ...
(AT_SUN_CAP_HW1): ... this. Retain old name for backward
compatibility.
(AT_SUN_EMULATOR, AT_SUN_BRANDNAME, AT_SUN_BRAND_AUX1)
(AT_SUN_BRAND_AUX2, AT_SUN_BRAND_AUX3, AT_SUN_CAP_HW2): Define.
2018-09-20 16:23:46 +08:00
|
|
|
TAG (AT_SUN_CAP_HW1, _("Machine-dependent CPU capability hints"),
|
2016-06-12 06:51:38 +08:00
|
|
|
AUXV_FORMAT_HEX);
|
|
|
|
TAG (AT_SUN_IFLUSH, _("Should flush icache?"), AUXV_FORMAT_DEC);
|
|
|
|
TAG (AT_SUN_CPU, _("CPU name string"), AUXV_FORMAT_STR);
|
|
|
|
TAG (AT_SUN_EMUL_ENTRY, _("COFF entry point address"), AUXV_FORMAT_HEX);
|
|
|
|
TAG (AT_SUN_EMUL_EXECFD, _("COFF executable file descriptor"),
|
|
|
|
AUXV_FORMAT_DEC);
|
|
|
|
TAG (AT_SUN_EXECNAME,
|
|
|
|
_("Canonicalized file name given to execve"), AUXV_FORMAT_STR);
|
|
|
|
TAG (AT_SUN_MMU, _("String for name of MMU module"), AUXV_FORMAT_STR);
|
|
|
|
TAG (AT_SUN_LDDATA, _("Dynamic linker's data segment address"),
|
|
|
|
AUXV_FORMAT_HEX);
|
|
|
|
TAG (AT_SUN_AUXFLAGS,
|
|
|
|
_("AF_SUN_ flags passed from the kernel"), AUXV_FORMAT_HEX);
|
Handle missing Solaris auxv entries
Currently, three tests FAIL on Solaris 11.4+ (amd64-pc-solaris2.11 and
sparcv9-sun-solaris2.11):
info auxv
[...]
2009 AT_SUN_HWCAP Machine-dependent CPU capability hints 0x3f5ff7
2023 ??? 0x0
0 AT_NULL End of vector 0x0
(gdb) WARNING: Unrecognized tag value: 2023 ??? 0x0
FAIL: gdb.base/auxv.exp: info auxv on live process
info auxv
4294969310 ??? 0x7fffbfffe410
9225589753816 ??? 0x7fffbfffe45c
[...]
WARNING: Unrecognized tag value: 4294969310 ??? 0x7fffbfffe410
WARNING: Unrecognized tag value: 9225589753816 ??? 0x7fffbfffe45c
WARNING: Unrecognized tag value: 140733193388037 ??? 0x6
[...]
2009 AT_SUN_HWCAP Machine-dependent CPU capability hints 0x3f5ff7
2023 ??? 0x0
0 AT_NULL End of vector 0x0
(gdb) WARNING: Unrecognized tag value: 2023 ??? 0x0
UNRESOLVED: gdb.base/auxv.exp: info auxv on native core dump
info auxv
[...]
2009 AT_SUN_HWCAP Machine-dependent CPU capability hints 0x3f5ff7
2023 ??? 0x0
0 AT_NULL End of vector 0x0
(gdb) WARNING: Unrecognized tag value: 2023 ??? 0x0
FAIL: gdb.base/auxv.exp: info auxv on gcore-created dump
The following patch fixes this by introducing the missing AT_SUN_*
values from Solaris 11.4+ <sys/auxv.h>. This lets the live and
gcore-created dump tests PASS.
I don't know yet what's the reason for those weird 'Unrecognized tag
value' warnings with native core dumps is; elfdump -n certainly doesn't
show them. However, native core dumps still need quite some work
(mostly in bfd) in this and other areas.
Tested on amd64-pc-solaris2.11.
gdb:
* auxv.c (default_print_auxv_entry): Reflect AT_SUN_CAP_HW1
renaming.
Handle AT_SUN_EMULATOR, AT_SUN_BRANDNAME, AT_SUN_BRAND_AUX1,
AT_SUN_BRAND_AUX2, AT_SUN_BRAND_AUX3, AT_SUN_CAP_HW2.
include:
* elf/common.h (AT_SUN_HWCAP): Rename to ...
(AT_SUN_CAP_HW1): ... this. Retain old name for backward
compatibility.
(AT_SUN_EMULATOR, AT_SUN_BRANDNAME, AT_SUN_BRAND_AUX1)
(AT_SUN_BRAND_AUX2, AT_SUN_BRAND_AUX3, AT_SUN_CAP_HW2): Define.
2018-09-20 16:23:46 +08:00
|
|
|
TAG (AT_SUN_EMULATOR, _("Name of emulation binary for runtime linker"),
|
|
|
|
AUXV_FORMAT_STR);
|
|
|
|
TAG (AT_SUN_BRANDNAME, _("Name of brand library"), AUXV_FORMAT_STR);
|
|
|
|
TAG (AT_SUN_BRAND_AUX1, _("Aux vector for brand modules 1"),
|
|
|
|
AUXV_FORMAT_HEX);
|
|
|
|
TAG (AT_SUN_BRAND_AUX2, _("Aux vector for brand modules 2"),
|
|
|
|
AUXV_FORMAT_HEX);
|
|
|
|
TAG (AT_SUN_BRAND_AUX3, _("Aux vector for brand modules 3"),
|
|
|
|
AUXV_FORMAT_HEX);
|
|
|
|
TAG (AT_SUN_CAP_HW2, _("Machine-dependent CPU capability hints 2"),
|
|
|
|
AUXV_FORMAT_HEX);
|
2016-06-12 06:51:38 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
fprint_auxv_entry (file, name, description, format, type, val);
|
|
|
|
}
|
|
|
|
|
2011-01-01 03:16:37 +08:00
|
|
|
/* Print the contents of the target's AUXV on the specified file. */
|
2016-06-12 06:51:38 +08:00
|
|
|
|
2004-02-02 06:35:24 +08:00
|
|
|
int
|
|
|
|
fprint_target_auxv (struct ui_file *file, struct target_ops *ops)
|
|
|
|
{
|
2016-06-12 06:51:38 +08:00
|
|
|
struct gdbarch *gdbarch = target_gdbarch ();
|
2004-02-02 06:35:24 +08:00
|
|
|
CORE_ADDR type, val;
|
|
|
|
int ents = 0;
|
Make target_read_alloc & al return vectors
This patch started by changing target_read_alloc_1 to return a
byte_vector, to avoid manual memory management (in target_read_alloc_1
and in the callers). To communicate failures to the callers, it
actually returns a gdb::optional<gdb::byte_vector>.
Adjusting target_read_stralloc was a bit more tricky, since it wants to
return a buffer of char, and not gdb_byte. Since you can't just cast a
gdb::byte_vector into a gdb::def_vector<char>, I made
target_read_alloc_1 templated, so both versions (that return vectors of
gdb_byte and char) are generated. Since target_read_stralloc now
returns a gdb::char_vector instead of a gdb::unique_xmalloc_ptr<char>, a
few callers need to be adjusted.
gdb/ChangeLog:
* common/byte-vector.h (char_vector): New type.
* target.h (target_read_alloc): Return
gdb::optional<byte_vector>.
(target_read_stralloc): Return gdb::optional<char_vector>.
(target_get_osdata): Return gdb::optional<char_vector>.
* target.c (target_read_alloc_1): Templatize. Replacement
manual memory management with vector.
(target_read_alloc): Change return type, adjust.
(target_read_stralloc): Change return type, adjust.
(target_get_osdata): Change return type, adjust.
* auxv.c (struct auxv_info) <length>: Remove.
<data>: Change type to gdb::optional<byte_vector>.
(auxv_inferior_data_cleanup): Free auxv_info with delete.
(get_auxv_inferior_data): Allocate auxv_info with new, adjust.
(target_auxv_search): Adjust.
(fprint_target_auxv): Adjust.
* avr-tdep.c (avr_io_reg_read_command): Adjust.
* linux-tdep.c (linux_spu_make_corefile_notes): Adjust.
(linux_make_corefile_notes): Adjust.
* osdata.c (get_osdata): Adjust.
* remote.c (remote_get_threads_with_qxfer): Adjust.
(remote_memory_map): Adjust.
(remote_traceframe_info): Adjust.
(btrace_read_config): Adjust.
(remote_read_btrace): Adjust.
(remote_pid_to_exec_file): Adjust.
* solib-aix.c (solib_aix_get_library_list): Adjust.
* solib-dsbt.c (decode_loadmap): Don't free buf.
(dsbt_get_initial_loadmaps): Adjust.
* solib-svr4.c (svr4_current_sos_via_xfer_libraries): Adjust.
* solib-target.c (solib_target_current_sos): Adjust.
* tracepoint.c (sdata_make_value): Adjust.
* xml-support.c (xinclude_start_include): Adjust.
(xml_fetch_content_from_file): Adjust.
* xml-support.h (xml_fetch_another): Change return type.
(xml_fetch_content_from_file): Change return type.
* xml-syscall.c (xml_init_syscalls_info): Adjust.
* xml-tdesc.c (file_read_description_xml): Adjust.
(fetch_available_features_from_target): Change return type.
(target_fetch_description_xml): Adjust.
(target_read_description_xml): Adjust.
2018-04-08 01:19:12 +08:00
|
|
|
auxv_info *info = get_auxv_inferior_data (ops);
|
2004-02-02 06:35:24 +08:00
|
|
|
|
Make target_read_alloc & al return vectors
This patch started by changing target_read_alloc_1 to return a
byte_vector, to avoid manual memory management (in target_read_alloc_1
and in the callers). To communicate failures to the callers, it
actually returns a gdb::optional<gdb::byte_vector>.
Adjusting target_read_stralloc was a bit more tricky, since it wants to
return a buffer of char, and not gdb_byte. Since you can't just cast a
gdb::byte_vector into a gdb::def_vector<char>, I made
target_read_alloc_1 templated, so both versions (that return vectors of
gdb_byte and char) are generated. Since target_read_stralloc now
returns a gdb::char_vector instead of a gdb::unique_xmalloc_ptr<char>, a
few callers need to be adjusted.
gdb/ChangeLog:
* common/byte-vector.h (char_vector): New type.
* target.h (target_read_alloc): Return
gdb::optional<byte_vector>.
(target_read_stralloc): Return gdb::optional<char_vector>.
(target_get_osdata): Return gdb::optional<char_vector>.
* target.c (target_read_alloc_1): Templatize. Replacement
manual memory management with vector.
(target_read_alloc): Change return type, adjust.
(target_read_stralloc): Change return type, adjust.
(target_get_osdata): Change return type, adjust.
* auxv.c (struct auxv_info) <length>: Remove.
<data>: Change type to gdb::optional<byte_vector>.
(auxv_inferior_data_cleanup): Free auxv_info with delete.
(get_auxv_inferior_data): Allocate auxv_info with new, adjust.
(target_auxv_search): Adjust.
(fprint_target_auxv): Adjust.
* avr-tdep.c (avr_io_reg_read_command): Adjust.
* linux-tdep.c (linux_spu_make_corefile_notes): Adjust.
(linux_make_corefile_notes): Adjust.
* osdata.c (get_osdata): Adjust.
* remote.c (remote_get_threads_with_qxfer): Adjust.
(remote_memory_map): Adjust.
(remote_traceframe_info): Adjust.
(btrace_read_config): Adjust.
(remote_read_btrace): Adjust.
(remote_pid_to_exec_file): Adjust.
* solib-aix.c (solib_aix_get_library_list): Adjust.
* solib-dsbt.c (decode_loadmap): Don't free buf.
(dsbt_get_initial_loadmaps): Adjust.
* solib-svr4.c (svr4_current_sos_via_xfer_libraries): Adjust.
* solib-target.c (solib_target_current_sos): Adjust.
* tracepoint.c (sdata_make_value): Adjust.
* xml-support.c (xinclude_start_include): Adjust.
(xml_fetch_content_from_file): Adjust.
* xml-support.h (xml_fetch_another): Change return type.
(xml_fetch_content_from_file): Change return type.
* xml-syscall.c (xml_init_syscalls_info): Adjust.
* xml-tdesc.c (file_read_description_xml): Adjust.
(fetch_available_features_from_target): Change return type.
(target_fetch_description_xml): Adjust.
(target_read_description_xml): Adjust.
2018-04-08 01:19:12 +08:00
|
|
|
if (!info->data)
|
|
|
|
return -1;
|
2004-02-02 06:35:24 +08:00
|
|
|
|
Make target_read_alloc & al return vectors
This patch started by changing target_read_alloc_1 to return a
byte_vector, to avoid manual memory management (in target_read_alloc_1
and in the callers). To communicate failures to the callers, it
actually returns a gdb::optional<gdb::byte_vector>.
Adjusting target_read_stralloc was a bit more tricky, since it wants to
return a buffer of char, and not gdb_byte. Since you can't just cast a
gdb::byte_vector into a gdb::def_vector<char>, I made
target_read_alloc_1 templated, so both versions (that return vectors of
gdb_byte and char) are generated. Since target_read_stralloc now
returns a gdb::char_vector instead of a gdb::unique_xmalloc_ptr<char>, a
few callers need to be adjusted.
gdb/ChangeLog:
* common/byte-vector.h (char_vector): New type.
* target.h (target_read_alloc): Return
gdb::optional<byte_vector>.
(target_read_stralloc): Return gdb::optional<char_vector>.
(target_get_osdata): Return gdb::optional<char_vector>.
* target.c (target_read_alloc_1): Templatize. Replacement
manual memory management with vector.
(target_read_alloc): Change return type, adjust.
(target_read_stralloc): Change return type, adjust.
(target_get_osdata): Change return type, adjust.
* auxv.c (struct auxv_info) <length>: Remove.
<data>: Change type to gdb::optional<byte_vector>.
(auxv_inferior_data_cleanup): Free auxv_info with delete.
(get_auxv_inferior_data): Allocate auxv_info with new, adjust.
(target_auxv_search): Adjust.
(fprint_target_auxv): Adjust.
* avr-tdep.c (avr_io_reg_read_command): Adjust.
* linux-tdep.c (linux_spu_make_corefile_notes): Adjust.
(linux_make_corefile_notes): Adjust.
* osdata.c (get_osdata): Adjust.
* remote.c (remote_get_threads_with_qxfer): Adjust.
(remote_memory_map): Adjust.
(remote_traceframe_info): Adjust.
(btrace_read_config): Adjust.
(remote_read_btrace): Adjust.
(remote_pid_to_exec_file): Adjust.
* solib-aix.c (solib_aix_get_library_list): Adjust.
* solib-dsbt.c (decode_loadmap): Don't free buf.
(dsbt_get_initial_loadmaps): Adjust.
* solib-svr4.c (svr4_current_sos_via_xfer_libraries): Adjust.
* solib-target.c (solib_target_current_sos): Adjust.
* tracepoint.c (sdata_make_value): Adjust.
* xml-support.c (xinclude_start_include): Adjust.
(xml_fetch_content_from_file): Adjust.
* xml-support.h (xml_fetch_another): Change return type.
(xml_fetch_content_from_file): Change return type.
* xml-syscall.c (xml_init_syscalls_info): Adjust.
* xml-tdesc.c (file_read_description_xml): Adjust.
(fetch_available_features_from_target): Change return type.
(target_fetch_description_xml): Adjust.
(target_read_description_xml): Adjust.
2018-04-08 01:19:12 +08:00
|
|
|
gdb_byte *data = info->data->data ();
|
|
|
|
gdb_byte *ptr = data;
|
|
|
|
size_t len = info->data->size ();
|
2011-11-15 21:17:05 +08:00
|
|
|
|
Convert struct target_ops to C++
I.e., use C++ virtual methods and inheritance instead of tables of
function pointers.
Unfortunately, there's no way to do a smooth transition. ALL native
targets in the tree must be converted at the same time. I've tested
all I could with cross compilers and with help from GCC compile farm,
but naturally I haven't been able to test many of the ports. Still, I
made a best effort to port everything over, and while I expect some
build problems due to typos and such, which should be trivial to fix,
I don't expect any design problems.
* Implementation notes:
- The flattened current_target is gone. References to current_target
or current_target.beneath are replaced with references to
target_stack (the top of the stack) directly.
- To keep "set debug target" working, this adds a new debug_stratum
layer that sits on top of the stack, prints the debug, and delegates
to the target beneath.
In addition, this makes the shortname and longname properties of
target_ops be virtual methods instead of data fields, and makes the
debug target defer those to the target beneath. This is so that
debug code sprinkled around that does "if (debugtarget) ..." can
transparently print the name of the target beneath.
A patch later in the series actually splits out the
shortname/longname methods to a separate structure, but I preferred
to keep that chance separate as it is associated with changing a bit
the design of how targets are registered and open.
- Since you can't check whether a C++ virtual method is overridden,
the old method of checking whether a target_ops implements a method
by comparing the function pointer must be replaced with something
else.
Some cases are fixed by adding a parallel "can_do_foo" target_ops
methods. E.g.,:
+ for (t = target_stack; t != NULL; t = t->beneath)
{
- if (t->to_create_inferior != NULL)
+ if (t->can_create_inferior ())
break;
}
Others are fixed by changing void return type to bool or int return
type, and have the default implementation return false or -1, to
indicate lack of support.
- make-target-delegates was adjusted to generate C++ classes and
methods.
It needed tweaks to grok "virtual" in front of the target method
name, and for the fact that methods are no longer function pointers.
(In particular, the current code parsing the return type was simple
because it could simply parse up until the '(' in '(*to_foo)'.
It now generates a couple C++ classes that inherit target_ops:
dummy_target and debug_target.
Since we need to generate the class declarations as well, i.e., we
need to emit methods twice, we now generate the code in two passes.
- The core_target global is renamed to avoid conflict with the
"core_target" class.
- ctf/tfile targets
init_tracefile_ops is replaced by a base class that is inherited by
both ctf and tfile.
- bsd-uthread
The bsd_uthread_ops_hack hack is gone. It's not needed because
nothing was extending a target created by bsd_uthread_target.
- remote/extended-remote targets
This is a first pass, just enough to C++ify target_ops.
A later pass will convert more free functions to methods, and make
remote_state be truly per remote instance, allowing multiple
simultaneous instances of remote targets.
- inf-child/"native" is converted to an actual base class
(inf_child_target), that is inherited by all native targets.
- GNU/Linux
The old weird double-target linux_ops mechanism in linux-nat.c, is
gone, replaced by adding a few virtual methods to linux-nat.h's
target_ops, called low_XXX, that the concrete linux-nat
implementations override. Sort of like gdbserver's
linux_target_ops, but simpler, for requiring only one
target_ops-like hierarchy, which spares implementing the same method
twice when we need to forward the method to a low implementation.
The low target simply reimplements the target_ops method directly in
that case.
There are a few remaining linux-nat.c hooks that would be better
converted to low_ methods like above too. E.g.:
linux_nat_set_new_thread (t, x86_linux_new_thread);
linux_nat_set_new_fork (t, x86_linux_new_fork);
linux_nat_set_forget_process
That'll be done in a follow up patch.
- We can no longer use functions like x86_use_watchpoints to install
custom methods on an arbitrary base target.
The patch replaces instances of such a pattern with template mixins.
For example memory_breakpoint_target defined in target.h, or
x86_nat_target in x86-nat.h.
- linux_trad_target, MIPS and Alpha GNU/Linux
The code in the new linux-nat-trad.h/c files which was split off of
inf-ptrace.h/c recently, is converted to a C++ base class, and used
by the MIPS and Alpha GNU/Linux ports.
- BSD targets
The
$architecture x NetBSD/OpenBSD/FreeBSD
support matrix complicates things a bit. There's common BSD target
code, and there's common architecture-specific code shared between
the different BSDs. Currently, all that is stiched together to form
a final target, via the i386bsd_target, x86bsd_target,
fbsd_nat_add_target functions etc.
This introduces new fbsd_nat_target, obsd_nat_target and
nbsd_nat_target classes that serve as base/prototype target for the
corresponding BSD variant.
And introduces generic i386/AMD64 BSD targets, to be used as
template mixin to build a final target. Similarly, a generic SPARC
target is added, used by both BSD and Linux ports.
- bsd_kvm_add_target, BSD libkvm target
I considered making bsd_kvm_supply_pcb a virtual method, and then
have each port inherit bsd_kvm_target and override that method, but
that was resulting in lots of unjustified churn, so I left the
function pointer mechanism alone.
gdb/ChangeLog:
2018-05-02 Pedro Alves <palves@redhat.com>
John Baldwin <jhb@freebsd.org>
* target.h (enum strata) <debug_stratum>: New.
(struct target_ops) <all delegation methods>: Replace by C++
virtual methods, and drop "to_" prefix. All references updated
throughout.
<to_shortname, to_longname, to_doc, to_data,
to_have_steppable_watchpoint, to_have_continuable_watchpoint,
to_has_thread_control, to_attach_no_wait>: Delete, replaced by
virtual methods. All references updated throughout.
<can_attach, supports_terminal_ours, can_create_inferior,
get_thread_control_capabilities, attach_no_wait>: New
virtual methods.
<insert_breakpoint, remove_breakpoint>: Now
TARGET_DEFAULT_NORETURN methods.
<info_proc>: Now returns bool.
<to_magic>: Delete.
(OPS_MAGIC): Delete.
(current_target): Delete. All references replaced by references
to ...
(target_stack): ... this. New.
(target_shortname, target_longname): Adjust.
(target_can_run): Now a function declaration.
(default_child_has_all_memory, default_child_has_memory)
(default_child_has_stack, default_child_has_registers)
(default_child_has_execution): Remove target_ops parameter.
(complete_target_initialization): Delete.
(memory_breakpoint_target): New template class.
(test_target_ops): Refactor as a C++ class with virtual methods.
* make-target-delegates (NAME_PART): Tighten.
(POINTER_PART, CP_SYMBOL): New.
(SIMPLE_RETURN_PART): Reimplement.
(VEC_RETURN_PART): Expect less.
(RETURN_PART, VIRTUAL_PART): New.
(METHOD): Adjust to C++ virtual methods.
(scan_target_h): Remove reference to C99.
(dname): Output "target_ops::" prefix.
(write_function_header): Adjust to output a C++ class method.
(write_declaration): New.
(write_delegator): Adjust to output a C++ class method.
(tdname): Output "dummy_target::" prefix.
(write_tdefault, write_debugmethod): Adjust to output a C++ class
method.
(tdefault_names, debug_names): Delete.
(return_types, tdefaults, styles, argtypes_array): New.
(top level): All methods are delegators.
(print_class): New.
(top level): Print dummy_target and debug_target classes.
* target-delegates.c: Regenerate.
* target-debug.h (target_debug_print_enum_info_proc_what)
(target_debug_print_thread_control_capabilities)
(target_debug_print_thread_info_p): New.
* target.c (dummy_target): Delete.
(the_dummy_target, the_debug_target): New.
(target_stack): Now extern.
(set_targetdebug): Push/unpush debug target.
(default_child_has_all_memory, default_child_has_memory)
(default_child_has_stack, default_child_has_registers)
(default_child_has_execution): Remove target_ops parameter.
(complete_target_initialization): Delete.
(add_target_with_completer): No longer call
complete_target_initialization.
(target_supports_terminal_ours): Use regular delegation.
(update_current_target): Delete.
(push_target): No longer check magic number. Don't call
update_current_target.
(unpush_target): Don't call update_current_target.
(target_is_pushed): No longer check magic number.
(target_require_runnable): Skip for all stratums over
process_stratum.
(target_ops::info_proc): New.
(target_info_proc): Use find_target_at and
find_default_run_target.
(target_supports_disable_randomization): Use regular delegation.
(target_get_osdata): Use find_target_at.
(target_ops::open, target_ops::close, target_ops::can_attach)
(target_ops::attach, target_ops::can_create_inferior)
(target_ops::create_inferior, target_ops::can_run)
(target_can_run): New.
(default_fileio_target): Use regular delegation.
(target_ops::fileio_open, target_ops::fileio_pwrite)
(target_ops::fileio_pread, target_ops::fileio_fstat)
(target_ops::fileio_close, target_ops::fileio_unlink)
(target_ops::fileio_readlink): New.
(target_fileio_open_1, target_fileio_unlink)
(target_fileio_readlink): Always call the target method. Handle
FILEIO_ENOSYS.
(return_zero, return_zero_has_execution): Delete.
(init_dummy_target): Delete.
(dummy_target::dummy_target, dummy_target::shortname)
(dummy_target::longname, dummy_target::doc)
(debug_target::debug_target, debug_target::shortname)
(debug_target::longname, debug_target::doc): New.
(target_supports_delete_record): Use regular delegation.
(setup_target_debug): Delete.
(maintenance_print_target_stack): Skip debug_stratum.
(initialize_targets): Instantiate the_dummy_target and
the_debug_target.
* auxv.c (target_auxv_parse): Remove 'ops' parameter. Adjust to
use target_stack.
(target_auxv_search, fprint_target_auxv): Adjust.
(info_auxv_command): Adjust to use target_stack.
* auxv.h (target_auxv_parse): Remove 'ops' parameter.
* exceptions.c (print_flush): Handle a NULL target_stack.
* regcache.c (target_ops_no_register): Refactor as class with
virtual methods.
* exec.c (exec_target): New class.
(exec_ops): Now an exec_target.
(exec_open, exec_close_1, exec_get_section_table)
(exec_xfer_partial, exec_files_info, exec_has_memory)
(exec_make_note_section): Refactor as exec_target methods.
(exec_file_clear, ignore, exec_remove_breakpoint, init_exec_ops):
Delete.
(exec_target::find_memory_regions): New.
(_initialize_exec): Don't call init_exec_ops.
* gdbcore.h (exec_file_clear): Delete.
* corefile.c (core_target): Delete.
(core_file_command): Adjust.
* corelow.c (core_target): New class.
(the_core_target): New.
(core_close): Remove target_ops parameter.
(core_close_cleanup): Adjust.
(core_target::close): New.
(core_open, core_detach, get_core_registers, core_files_info)
(core_xfer_partial, core_thread_alive, core_read_description)
(core_pid_to_str, core_thread_name, core_has_memory)
(core_has_stack, core_has_registers, core_info_proc): Rework as
core_target methods.
(ignore, core_remove_breakpoint, init_core_ops): Delete.
(_initialize_corelow): Initialize the_core_target.
* gdbcore.h (core_target): Delete.
(the_core_target): New.
* ctf.c: (ctf_target): New class.
(ctf_ops): Now a ctf_target.
(ctf_open, ctf_close, ctf_files_info, ctf_fetch_registers)
(ctf_xfer_partial, ctf_get_trace_state_variable_value)
(ctf_trace_find, ctf_traceframe_info): Refactor as ctf_target
methods.
(init_ctf_ops): Delete.
(_initialize_ctf): Don't call it.
* tracefile-tfile.c (tfile_target): New class.
(tfile_ops): Now a tfile_target.
(tfile_open, tfile_close, tfile_files_info)
(tfile_get_tracepoint_status, tfile_trace_find)
(tfile_fetch_registers, tfile_xfer_partial)
(tfile_get_trace_state_variable_value, tfile_traceframe_info):
Refactor as tfile_target methods.
(tfile_xfer_partial_features): Remove target_ops parameter.
(init_tfile_ops): Delete.
(_initialize_tracefile_tfile): Don't call it.
* tracefile.c (tracefile_has_all_memory, tracefile_has_memory)
(tracefile_has_stack, tracefile_has_registers)
(tracefile_thread_alive, tracefile_get_trace_status): Refactor as
tracefile_target methods.
(init_tracefile_ops): Delete.
(tracefile_target::tracefile_target): New.
* tracefile.h: Include "target.h".
(tracefile_target): New class.
(init_tracefile_ops): Delete.
* spu-multiarch.c (spu_multiarch_target): New class.
(spu_ops): Now a spu_multiarch_target.
(spu_thread_architecture, spu_region_ok_for_hw_watchpoint)
(spu_fetch_registers, spu_store_registers, spu_xfer_partial)
(spu_search_memory, spu_mourn_inferior): Refactor as
spu_multiarch_target methods.
(init_spu_ops): Delete.
(_initialize_spu_multiarch): Remove references to init_spu_ops,
complete_target_initialization.
* ravenscar-thread.c (ravenscar_thread_target): New class.
(ravenscar_ops): Now a ravenscar_thread_target.
(ravenscar_resume, ravenscar_wait, ravenscar_update_thread_list)
(ravenscar_thread_alive, ravenscar_pid_to_str)
(ravenscar_fetch_registers, ravenscar_store_registers)
(ravenscar_prepare_to_store, ravenscar_stopped_by_sw_breakpoint)
(ravenscar_stopped_by_hw_breakpoint)
(ravenscar_stopped_by_watchpoint, ravenscar_stopped_data_address)
(ravenscar_mourn_inferior, ravenscar_core_of_thread)
(ravenscar_get_ada_task_ptid): Refactor as ravenscar_thread_target
methods.
(init_ravenscar_thread_ops): Delete.
(_initialize_ravenscar): Remove references to
init_ravenscar_thread_ops and complete_target_initialization.
* bsd-uthread.c (bsd_uthread_ops_hack): Delete.
(bsd_uthread_target): New class.
(bsd_uthread_ops): Now a bsd_uthread_target.
(bsd_uthread_activate): Adjust to refer to bsd_uthread_ops.
(bsd_uthread_close, bsd_uthread_mourn_inferior)
(bsd_uthread_fetch_registers, bsd_uthread_store_registers)
(bsd_uthread_wait, bsd_uthread_resume, bsd_uthread_thread_alive)
(bsd_uthread_update_thread_list, bsd_uthread_extra_thread_info)
(bsd_uthread_pid_to_str): Refactor as bsd_uthread_target methods.
(bsd_uthread_target): Delete function.
(_initialize_bsd_uthread): Remove reference to
complete_target_initialization.
* bfd-target.c (target_bfd_data): Delete. Fields folded into ...
(target_bfd): ... this new class.
(target_bfd_xfer_partial, target_bfd_get_section_table)
(target_bfd_close): Refactor as target_bfd methods.
(target_bfd::~target_bfd): New.
(target_bfd_reopen): Adjust.
(target_bfd::close): New.
* record-btrace.c (record_btrace_target): New class.
(record_btrace_ops): Now a record_btrace_target.
(record_btrace_open, record_btrace_stop_recording)
(record_btrace_disconnect, record_btrace_close)
(record_btrace_async, record_btrace_info)
(record_btrace_insn_history, record_btrace_insn_history_range)
(record_btrace_insn_history_from, record_btrace_call_history)
(record_btrace_call_history_range)
(record_btrace_call_history_from, record_btrace_record_method)
(record_btrace_is_replaying, record_btrace_will_replay)
(record_btrace_xfer_partial, record_btrace_insert_breakpoint)
(record_btrace_remove_breakpoint, record_btrace_fetch_registers)
(record_btrace_store_registers, record_btrace_prepare_to_store)
(record_btrace_to_get_unwinder)
(record_btrace_to_get_tailcall_unwinder, record_btrace_resume)
(record_btrace_commit_resume, record_btrace_wait)
(record_btrace_stop, record_btrace_can_execute_reverse)
(record_btrace_stopped_by_sw_breakpoint)
(record_btrace_supports_stopped_by_sw_breakpoint)
(record_btrace_stopped_by_hw_breakpoint)
(record_btrace_supports_stopped_by_hw_breakpoint)
(record_btrace_update_thread_list, record_btrace_thread_alive)
(record_btrace_goto_begin, record_btrace_goto_end)
(record_btrace_goto, record_btrace_stop_replaying_all)
(record_btrace_execution_direction)
(record_btrace_prepare_to_generate_core)
(record_btrace_done_generating_core): Refactor as
record_btrace_target methods.
(init_record_btrace_ops): Delete.
(_initialize_record_btrace): Remove reference to
init_record_btrace_ops.
* record-full.c (RECORD_FULL_IS_REPLAY): Adjust to always refer to
the execution_direction global.
(record_full_base_target, record_full_target)
(record_full_core_target): New classes.
(record_full_ops): Now a record_full_target.
(record_full_core_ops): Now a record_full_core_target.
(record_full_target::detach, record_full_target::disconnect)
(record_full_core_target::disconnect)
(record_full_target::mourn_inferior, record_full_target::kill):
New.
(record_full_open, record_full_close, record_full_async): Refactor
as methods of the record_full_base_target class.
(record_full_resume, record_full_commit_resume): Refactor
as methods of the record_full_target class.
(record_full_wait, record_full_stopped_by_watchpoint)
(record_full_stopped_data_address)
(record_full_stopped_by_sw_breakpoint)
(record_full_supports_stopped_by_sw_breakpoint)
(record_full_stopped_by_hw_breakpoint)
(record_full_supports_stopped_by_hw_breakpoint): Refactor as
methods of the record_full_base_target class.
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint):
Refactor as methods of the record_full_target class.
(record_full_can_execute_reverse, record_full_get_bookmark)
(record_full_goto_bookmark, record_full_execution_direction)
(record_full_record_method, record_full_info, record_full_delete)
(record_full_is_replaying, record_full_will_replay)
(record_full_goto_begin, record_full_goto_end, record_full_goto)
(record_full_stop_replaying): Refactor as methods of the
record_full_base_target class.
(record_full_core_resume, record_full_core_kill)
(record_full_core_fetch_registers)
(record_full_core_prepare_to_store)
(record_full_core_store_registers, record_full_core_xfer_partial)
(record_full_core_insert_breakpoint)
(record_full_core_remove_breakpoint)
(record_full_core_has_execution): Refactor
as methods of the record_full_core_target class.
(record_full_base_target::supports_delete_record): New.
(init_record_full_ops): Delete.
(init_record_full_core_ops): Delete.
(record_full_save): Refactor as method of the
record_full_base_target class.
(_initialize_record_full): Remove references to
init_record_full_ops and init_record_full_core_ops.
* remote.c (remote_target, extended_remote_target): New classes.
(remote_ops): Now a remote_target.
(extended_remote_ops): Now an extended_remote_target.
(remote_insert_fork_catchpoint, remote_remove_fork_catchpoint)
(remote_insert_vfork_catchpoint, remote_remove_vfork_catchpoint)
(remote_insert_exec_catchpoint, remote_remove_exec_catchpoint)
(remote_pass_signals, remote_set_syscall_catchpoint)
(remote_program_signals, )
(remote_thread_always_alive): Remove target_ops parameter.
(remote_thread_alive, remote_thread_name)
(remote_update_thread_list, remote_threads_extra_info)
(remote_static_tracepoint_marker_at)
(remote_static_tracepoint_markers_by_strid)
(remote_get_ada_task_ptid, remote_close, remote_start_remote)
(remote_open): Refactor as methods of remote_target.
(extended_remote_open, extended_remote_detach)
(extended_remote_attach, extended_remote_post_attach):
(extended_remote_supports_disable_randomization)
(extended_remote_create_inferior): : Refactor as method of
extended_remote_target.
(remote_set_permissions, remote_open_1, remote_detach)
(remote_follow_fork, remote_follow_exec, remote_disconnect)
(remote_resume, remote_commit_resume, remote_stop)
(remote_interrupt, remote_pass_ctrlc, remote_terminal_inferior)
(remote_terminal_ours, remote_wait, remote_fetch_registers)
(remote_prepare_to_store, remote_store_registers)
(remote_flash_erase, remote_flash_done, remote_files_info)
(remote_kill, remote_mourn, remote_insert_breakpoint)
(remote_remove_breakpoint, remote_insert_watchpoint)
(remote_watchpoint_addr_within_range)
(remote_remove_watchpoint, remote_region_ok_for_hw_watchpoint)
(remote_check_watch_resources, remote_stopped_by_sw_breakpoint)
(remote_supports_stopped_by_sw_breakpoint)
(remote_stopped_by_hw_breakpoint)
(remote_supports_stopped_by_hw_breakpoint)
(remote_stopped_by_watchpoint, remote_stopped_data_address)
(remote_insert_hw_breakpoint, remote_remove_hw_breakpoint)
(remote_verify_memory): Refactor as methods of remote_target.
(remote_write_qxfer, remote_read_qxfer): Remove target_ops
parameter.
(remote_xfer_partial, remote_get_memory_xfer_limit)
(remote_search_memory, remote_rcmd, remote_memory_map)
(remote_pid_to_str, remote_get_thread_local_address)
(remote_get_tib_address, remote_read_description): Refactor as
methods of remote_target.
(remote_target::fileio_open, remote_target::fileio_pwrite)
(remote_target::fileio_pread, remote_target::fileio_close): New.
(remote_hostio_readlink, remote_hostio_fstat)
(remote_filesystem_is_local, remote_can_execute_reverse)
(remote_supports_non_stop, remote_supports_disable_randomization)
(remote_supports_multi_process, remote_supports_cond_breakpoints)
(remote_supports_enable_disable_tracepoint)
(remote_supports_string_tracing)
(remote_can_run_breakpoint_commands, remote_trace_init)
(remote_download_tracepoint, remote_can_download_tracepoint)
(remote_download_trace_state_variable, remote_enable_tracepoint)
(remote_disable_tracepoint, remote_trace_set_readonly_regions)
(remote_trace_start, remote_get_trace_status)
(remote_get_tracepoint_status, remote_trace_stop)
(remote_trace_find, remote_get_trace_state_variable_value)
(remote_save_trace_data, remote_get_raw_trace_data)
(remote_set_disconnected_tracing, remote_core_of_thread)
(remote_set_circular_trace_buffer, remote_traceframe_info)
(remote_get_min_fast_tracepoint_insn_len)
(remote_set_trace_buffer_size, remote_set_trace_notes)
(remote_use_agent, remote_can_use_agent, remote_enable_btrace)
(remote_disable_btrace, remote_teardown_btrace)
(remote_read_btrace, remote_btrace_conf)
(remote_augmented_libraries_svr4_read, remote_load)
(remote_pid_to_exec_file, remote_can_do_single_step)
(remote_execution_direction, remote_thread_handle_to_thread_info):
Refactor as methods of remote_target.
(init_remote_ops, init_extended_remote_ops): Delete.
(remote_can_async_p, remote_is_async_p, remote_async)
(remote_thread_events, remote_upload_tracepoints)
(remote_upload_trace_state_variables): Refactor as methods of
remote_target.
(_initialize_remote): Remove references to init_remote_ops and
init_extended_remote_ops.
* remote-sim.c (gdbsim_target): New class.
(gdbsim_fetch_register, gdbsim_store_register, gdbsim_kill)
(gdbsim_load, gdbsim_create_inferior, gdbsim_open, gdbsim_close)
(gdbsim_detach, gdbsim_resume, gdbsim_interrupt)
(gdbsim_wait, gdbsim_prepare_to_store, gdbsim_xfer_partial)
(gdbsim_files_info, gdbsim_mourn_inferior, gdbsim_thread_alive)
(gdbsim_pid_to_str, gdbsim_has_all_memory, gdbsim_has_memory):
Refactor as methods of gdbsim_target.
(gdbsim_ops): Now a gdbsim_target.
(init_gdbsim_ops): Delete.
(gdbsim_cntrl_c): Adjust.
(_initialize_remote_sim): Remove reference to init_gdbsim_ops.
* amd64-linux-nat.c (amd64_linux_nat_target): New class.
(the_amd64_linux_nat_target): New.
(amd64_linux_fetch_inferior_registers)
(amd64_linux_store_inferior_registers): Refactor as methods of
amd64_linux_nat_target.
(_initialize_amd64_linux_nat): Adjust. Set linux_target.
* i386-linux-nat.c: Don't include "linux-nat.h".
(i386_linux_nat_target): New class.
(the_i386_linux_nat_target): New.
(i386_linux_fetch_inferior_registers)
(i386_linux_store_inferior_registers, i386_linux_resume): Refactor
as methods of i386_linux_nat_target.
(_initialize_i386_linux_nat): Adjust. Set linux_target.
* inf-child.c (inf_child_ops): Delete.
(inf_child_fetch_inferior_registers)
(inf_child_store_inferior_registers): Delete.
(inf_child_post_attach, inf_child_prepare_to_store): Refactor as
methods of inf_child_target.
(inf_child_target::supports_terminal_ours)
(inf_child_target::terminal_init)
(inf_child_target::terminal_inferior)
(inf_child_target::terminal_ours_for_output)
(inf_child_target::terminal_ours, inf_child_target::interrupt)
(inf_child_target::pass_ctrlc, inf_child_target::terminal_info):
New.
(inf_child_open, inf_child_disconnect, inf_child_close)
(inf_child_mourn_inferior, inf_child_maybe_unpush_target)
(inf_child_post_startup_inferior, inf_child_can_run)
(inf_child_pid_to_exec_file): Refactor as methods of
inf_child_target.
(inf_child_follow_fork): Delete.
(inf_child_target::can_create_inferior)
(inf_child_target::can_attach): New.
(inf_child_target::has_all_memory, inf_child_target::has_memory)
(inf_child_target::has_stack, inf_child_target::has_registers)
(inf_child_target::has_execution): New.
(inf_child_fileio_open, inf_child_fileio_pwrite)
(inf_child_fileio_pread, inf_child_fileio_fstat)
(inf_child_fileio_close, inf_child_fileio_unlink)
(inf_child_fileio_readlink, inf_child_use_agent)
(inf_child_can_use_agent): Refactor as methods of
inf_child_target.
(return_zero, inf_child_target): Delete.
(inf_child_target::inf_child_target): New.
* inf-child.h: Include "target.h".
(inf_child_target): Delete function prototype.
(inf_child_target): New class.
(inf_child_open_target, inf_child_mourn_inferior)
(inf_child_maybe_unpush_target): Delete.
* inf-ptrace.c (inf_ptrace_target::~inf_ptrace_target): New.
(inf_ptrace_follow_fork, inf_ptrace_insert_fork_catchpoint)
(inf_ptrace_remove_fork_catchpoint, inf_ptrace_create_inferior)
(inf_ptrace_post_startup_inferior, inf_ptrace_mourn_inferior)
(inf_ptrace_attach, inf_ptrace_post_attach, inf_ptrace_detach)
(inf_ptrace_detach_success, inf_ptrace_kill, inf_ptrace_resume)
(inf_ptrace_wait, inf_ptrace_xfer_partial)
(inf_ptrace_thread_alive, inf_ptrace_files_info)
(inf_ptrace_pid_to_str, inf_ptrace_auxv_parse): Refactor as
methods of inf_ptrace_target.
(inf_ptrace_target): Delete function.
* inf-ptrace.h: Include "inf-child.h".
(inf_ptrace_target): Delete function declaration.
(inf_ptrace_target): New class.
(inf_ptrace_trad_target, inf_ptrace_detach_success): Delete.
* linux-nat.c (linux_target): New.
(linux_ops, linux_ops_saved, super_xfer_partial): Delete.
(linux_nat_target::~linux_nat_target): New.
(linux_child_post_attach, linux_child_post_startup_inferior)
(linux_child_follow_fork, linux_child_insert_fork_catchpoint)
(linux_child_remove_fork_catchpoint)
(linux_child_insert_vfork_catchpoint)
(linux_child_remove_vfork_catchpoint)
(linux_child_insert_exec_catchpoint)
(linux_child_remove_exec_catchpoint)
(linux_child_set_syscall_catchpoint, linux_nat_pass_signals)
(linux_nat_create_inferior, linux_nat_attach, linux_nat_detach)
(linux_nat_resume, linux_nat_stopped_by_watchpoint)
(linux_nat_stopped_data_address)
(linux_nat_stopped_by_sw_breakpoint)
(linux_nat_supports_stopped_by_sw_breakpoint)
(linux_nat_stopped_by_hw_breakpoint)
(linux_nat_supports_stopped_by_hw_breakpoint, linux_nat_wait)
(linux_nat_kill, linux_nat_mourn_inferior)
(linux_nat_xfer_partial, linux_nat_thread_alive)
(linux_nat_update_thread_list, linux_nat_pid_to_str)
(linux_nat_thread_name, linux_child_pid_to_exec_file)
(linux_child_static_tracepoint_markers_by_strid)
(linux_nat_is_async_p, linux_nat_can_async_p)
(linux_nat_supports_non_stop, linux_nat_always_non_stop_p)
(linux_nat_supports_multi_process)
(linux_nat_supports_disable_randomization, linux_nat_async)
(linux_nat_stop, linux_nat_close, linux_nat_thread_address_space)
(linux_nat_core_of_thread, linux_nat_filesystem_is_local)
(linux_nat_fileio_open, linux_nat_fileio_readlink)
(linux_nat_fileio_unlink, linux_nat_thread_events): Refactor as
methods of linux_nat_target.
(linux_nat_wait_1, linux_xfer_siginfo, linux_proc_xfer_partial)
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Remove target_ops
parameter.
(check_stopped_by_watchpoint): Adjust.
(linux_xfer_partial): Delete.
(linux_target_install_ops, linux_target, linux_nat_add_target):
Delete.
(linux_nat_target::linux_nat_target): New.
* linux-nat.h: Include "inf-ptrace.h".
(linux_nat_target): New.
(linux_target, linux_target_install_ops, linux_nat_add_target):
Delete function declarations.
(linux_target): Declare global.
* linux-thread-db.c (thread_db_target): New.
(thread_db_target::thread_db_target): New.
(thread_db_ops): Delete.
(the_thread_db_target): New.
(thread_db_detach, thread_db_wait, thread_db_mourn_inferior)
(thread_db_update_thread_list, thread_db_pid_to_str)
(thread_db_extra_thread_info)
(thread_db_thread_handle_to_thread_info)
(thread_db_get_thread_local_address, thread_db_get_ada_task_ptid)
(thread_db_resume): Refactor as methods of thread_db_target.
(init_thread_db_ops): Delete.
(_initialize_thread_db): Remove reference to init_thread_db_ops.
* x86-linux-nat.c: Don't include "linux-nat.h".
(super_post_startup_inferior): Delete.
(x86_linux_nat_target::~x86_linux_nat_target): New.
(x86_linux_child_post_startup_inferior)
(x86_linux_read_description, x86_linux_enable_btrace)
(x86_linux_disable_btrace, x86_linux_teardown_btrace)
(x86_linux_read_btrace, x86_linux_btrace_conf): Refactor as
methods of x86_linux_nat_target.
(x86_linux_create_target): Delete. Bits folded ...
(x86_linux_add_target): ... here. Now takes a linux_nat_target
pointer.
* x86-linux-nat.h: Include "linux-nat.h" and "x86-nat.h".
(x86_linux_nat_target): New class.
(x86_linux_create_target): Delete.
(x86_linux_add_target): Now takes a linux_nat_target pointer.
* x86-nat.c (x86_insert_watchpoint, x86_remove_watchpoint)
(x86_region_ok_for_watchpoint, x86_stopped_data_address)
(x86_stopped_by_watchpoint, x86_insert_hw_breakpoint)
(x86_remove_hw_breakpoint, x86_can_use_hw_breakpoint)
(x86_stopped_by_hw_breakpoint): Remove target_ops parameter and
make extern.
(x86_use_watchpoints): Delete.
* x86-nat.h: Include "breakpoint.h" and "target.h".
(x86_use_watchpoints): Delete.
(x86_can_use_hw_breakpoint, x86_region_ok_for_hw_watchpoint)
(x86_stopped_by_watchpoint, x86_stopped_data_address)
(x86_insert_watchpoint, x86_remove_watchpoint)
(x86_insert_hw_breakpoint, x86_remove_hw_breakpoint)
(x86_stopped_by_hw_breakpoint): New declarations.
(x86_nat_target): New template class.
* ppc-linux-nat.c (ppc_linux_nat_target): New class.
(the_ppc_linux_nat_target): New.
(ppc_linux_fetch_inferior_registers)
(ppc_linux_can_use_hw_breakpoint)
(ppc_linux_region_ok_for_hw_watchpoint)
(ppc_linux_ranged_break_num_registers)
(ppc_linux_insert_hw_breakpoint, ppc_linux_remove_hw_breakpoint)
(ppc_linux_insert_mask_watchpoint)
(ppc_linux_remove_mask_watchpoint)
(ppc_linux_can_accel_watchpoint_condition)
(ppc_linux_insert_watchpoint, ppc_linux_remove_watchpoint)
(ppc_linux_stopped_data_address, ppc_linux_stopped_by_watchpoint)
(ppc_linux_watchpoint_addr_within_range)
(ppc_linux_masked_watch_num_registers)
(ppc_linux_store_inferior_registers, ppc_linux_auxv_parse)
(ppc_linux_read_description): Refactor as methods of
ppc_linux_nat_target.
(_initialize_ppc_linux_nat): Adjust. Set linux_target.
* procfs.c (procfs_xfer_partial): Delete forward declaration.
(procfs_target): New class.
(the_procfs_target): New.
(procfs_target): Delete function.
(procfs_auxv_parse, procfs_attach, procfs_detach)
(procfs_fetch_registers, procfs_store_registers, procfs_wait)
(procfs_xfer_partial, procfs_resume, procfs_pass_signals)
(procfs_files_info, procfs_kill_inferior, procfs_mourn_inferior)
(procfs_create_inferior, procfs_update_thread_list)
(procfs_thread_alive, procfs_pid_to_str)
(procfs_can_use_hw_breakpoint, procfs_stopped_by_watchpoint)
(procfs_stopped_data_address, procfs_insert_watchpoint)
(procfs_remove_watchpoint, procfs_region_ok_for_hw_watchpoint)
(proc_find_memory_regions, procfs_info_proc)
(procfs_make_note_section): Refactor as methods of procfs_target.
(_initialize_procfs): Adjust.
* sol-thread.c (sol_thread_target): New class.
(sol_thread_ops): Now a sol_thread_target.
(sol_thread_detach, sol_thread_resume, sol_thread_wait)
(sol_thread_fetch_registers, sol_thread_store_registers)
(sol_thread_xfer_partial, sol_thread_mourn_inferior)
(sol_thread_alive, solaris_pid_to_str, sol_update_thread_list)
(sol_get_ada_task_ptid): Refactor as methods of sol_thread_target.
(init_sol_thread_ops): Delete.
(_initialize_sol_thread): Adjust. Remove references to
init_sol_thread_ops and complete_target_initialization.
* windows-nat.c (windows_nat_target): New class.
(windows_fetch_inferior_registers)
(windows_store_inferior_registers, windows_resume, windows_wait)
(windows_attach, windows_detach, windows_pid_to_exec_file)
(windows_files_info, windows_create_inferior)
(windows_mourn_inferior, windows_interrupt, windows_kill_inferior)
(windows_close, windows_pid_to_str, windows_xfer_partial)
(windows_get_tib_address, windows_get_ada_task_ptid)
(windows_thread_name, windows_thread_alive): Refactor as
windows_nat_target methods.
(do_initial_windows_stuff): Adjust.
(windows_target): Delete function.
(_initialize_windows_nat): Adjust.
* darwin-nat.c (darwin_resume, darwin_wait_to, darwin_interrupt)
(darwin_mourn_inferior, darwin_kill_inferior)
(darwin_create_inferior, darwin_attach, darwin_detach)
(darwin_pid_to_str, darwin_thread_alive, darwin_xfer_partial)
(darwin_pid_to_exec_file, darwin_get_ada_task_ptid)
(darwin_supports_multi_process): Refactor as darwin_nat_target
methods.
(darwin_resume_to, darwin_files_info): Delete.
(_initialize_darwin_inferior): Rename to ...
(_initialize_darwin_nat): ... this. Adjust to C++ification.
* darwin-nat.h: Include "inf-child.h".
(darwin_nat_target): New class.
(darwin_complete_target): Delete.
* i386-darwin-nat.c (i386_darwin_nat_target): New class.
(darwin_target): New.
(i386_darwin_fetch_inferior_registers)
(i386_darwin_store_inferior_registers): Refactor as methods of
darwin_nat_target.
(darwin_complete_target): Delete, with ...
(_initialize_i386_darwin_nat): ... bits factored out here.
* alpha-linux-nat.c (alpha_linux_nat_target): New class.
(the_alpha_linux_nat_target): New.
(alpha_linux_register_u_offset): Refactor as
alpha_linux_nat_target method.
(_initialize_alpha_linux_nat): Adjust.
* linux-nat-trad.c (inf_ptrace_register_u_offset): Delete.
(inf_ptrace_fetch_register, inf_ptrace_fetch_registers)
(inf_ptrace_store_register, inf_ptrace_store_registers): Refact as
methods of linux_nat_trad_target.
(linux_trad_target): Delete.
* linux-nat-trad.h (linux_trad_target): Delete function.
(linux_nat_trad_target): New class.
* mips-linux-nat.c (mips_linux_nat_target): New class.
(super_fetch_registers, super_store_registers, super_close):
Delete.
(the_mips_linux_nat_target): New.
(mips64_linux_regsets_fetch_registers)
(mips64_linux_regsets_store_registers)
(mips64_linux_fetch_registers, mips64_linux_store_registers)
(mips_linux_register_u_offset, mips_linux_read_description)
(mips_linux_can_use_hw_breakpoint)
(mips_linux_stopped_by_watchpoint)
(mips_linux_stopped_data_address)
(mips_linux_region_ok_for_hw_watchpoint)
(mips_linux_insert_watchpoint, mips_linux_remove_watchpoint)
(mips_linux_close): Refactor as methods of mips_linux_nat.
(_initialize_mips_linux_nat): Adjust to C++ification.
* aix-thread.c (aix_thread_target): New class.
(aix_thread_ops): Now an aix_thread_target.
(aix_thread_detach, aix_thread_resume, aix_thread_wait)
(aix_thread_fetch_registers, aix_thread_store_registers)
(aix_thread_xfer_partial, aix_thread_mourn_inferior)
(aix_thread_thread_alive, aix_thread_pid_to_str)
(aix_thread_extra_thread_info, aix_thread_get_ada_task_ptid):
Refactor as methods of aix_thread_target.
(init_aix_thread_ops): Delete.
(_initialize_aix_thread): Remove references to init_aix_thread_ops
and complete_target_initialization.
* rs6000-nat.c (rs6000_xfer_shared_libraries): Delete.
(rs6000_nat_target): New class.
(the_rs6000_nat_target): New.
(rs6000_fetch_inferior_registers, rs6000_store_inferior_registers)
(rs6000_xfer_partial, rs6000_wait, rs6000_create_inferior)
(rs6000_xfer_shared_libraries): Refactor as rs6000_nat_target methods.
(super_create_inferior): Delete.
(_initialize_rs6000_nat): Adjust to C++ification.
* arm-linux-nat.c (arm_linux_nat_target): New class.
(the_arm_linux_nat_target): New.
(arm_linux_fetch_inferior_registers)
(arm_linux_store_inferior_registers, arm_linux_read_description)
(arm_linux_can_use_hw_breakpoint, arm_linux_insert_hw_breakpoint)
(arm_linux_remove_hw_breakpoint)
(arm_linux_region_ok_for_hw_watchpoint)
(arm_linux_insert_watchpoint, arm_linux_remove_watchpoint)
(arm_linux_stopped_data_address, arm_linux_stopped_by_watchpoint)
(arm_linux_watchpoint_addr_within_range): Refactor as methods of
arm_linux_nat_target.
(_initialize_arm_linux_nat): Adjust to C++ification.
* aarch64-linux-nat.c (aarch64_linux_nat_target): New class.
(the_aarch64_linux_nat_target): New.
(aarch64_linux_fetch_inferior_registers)
(aarch64_linux_store_inferior_registers)
(aarch64_linux_child_post_startup_inferior)
(aarch64_linux_read_description)
(aarch64_linux_can_use_hw_breakpoint)
(aarch64_linux_insert_hw_breakpoint)
(aarch64_linux_remove_hw_breakpoint)
(aarch64_linux_insert_watchpoint, aarch64_linux_remove_watchpoint)
(aarch64_linux_region_ok_for_hw_watchpoint)
(aarch64_linux_stopped_data_address)
(aarch64_linux_stopped_by_watchpoint)
(aarch64_linux_watchpoint_addr_within_range)
(aarch64_linux_can_do_single_step): Refactor as methods of
aarch64_linux_nat_target.
(super_post_startup_inferior): Delete.
(_initialize_aarch64_linux_nat): Adjust to C++ification.
* hppa-linux-nat.c (hppa_linux_nat_target): New class.
(the_hppa_linux_nat_target): New.
(hppa_linux_fetch_inferior_registers)
(hppa_linux_store_inferior_registers): Refactor as methods of
hppa_linux_nat_target.
(_initialize_hppa_linux_nat): Adjust to C++ification.
* ia64-linux-nat.c (ia64_linux_nat_target): New class.
(the_ia64_linux_nat_target): New.
(ia64_linux_insert_watchpoint, ia64_linux_remove_watchpoint)
(ia64_linux_stopped_data_address)
(ia64_linux_stopped_by_watchpoint, ia64_linux_fetch_registers)
(ia64_linux_store_registers, ia64_linux_xfer_partial): Refactor as
ia64_linux_nat_target methods.
(super_xfer_partial): Delete.
(_initialize_ia64_linux_nat): Adjust to C++ification.
* m32r-linux-nat.c (m32r_linux_nat_target): New class.
(the_m32r_linux_nat_target): New.
(m32r_linux_fetch_inferior_registers)
(m32r_linux_store_inferior_registers): Refactor as
m32r_linux_nat_target methods.
(_initialize_m32r_linux_nat): Adjust to C++ification.
* m68k-linux-nat.c (m68k_linux_nat_target): New class.
(the_m68k_linux_nat_target): New.
(m68k_linux_fetch_inferior_registers)
(m68k_linux_store_inferior_registers): Refactor as
m68k_linux_nat_target methods.
(_initialize_m68k_linux_nat): Adjust to C++ification.
* s390-linux-nat.c (s390_linux_nat_target): New class.
(the_s390_linux_nat_target): New.
(s390_linux_fetch_inferior_registers)
(s390_linux_store_inferior_registers, s390_stopped_by_watchpoint)
(s390_insert_watchpoint, s390_remove_watchpoint)
(s390_can_use_hw_breakpoint, s390_insert_hw_breakpoint)
(s390_remove_hw_breakpoint, s390_region_ok_for_hw_watchpoint)
(s390_auxv_parse, s390_read_description): Refactor as methods of
s390_linux_nat_target.
(_initialize_s390_nat): Adjust to C++ification.
* sparc-linux-nat.c (sparc_linux_nat_target): New class.
(the_sparc_linux_nat_target): New.
(_initialize_sparc_linux_nat): Adjust to C++ification.
* sparc-nat.c (sparc_fetch_inferior_registers)
(sparc_store_inferior_registers): Remove target_ops parameter.
* sparc-nat.h (sparc_fetch_inferior_registers)
(sparc_store_inferior_registers): Remove target_ops parameter.
* sparc64-linux-nat.c (sparc64_linux_nat_target): New class.
(the_sparc64_linux_nat_target): New.
(_initialize_sparc64_linux_nat): Adjust to C++ification.
* spu-linux-nat.c (spu_linux_nat_target): New class.
(the_spu_linux_nat_target): New.
(spu_child_post_startup_inferior, spu_child_post_attach)
(spu_child_wait, spu_fetch_inferior_registers)
(spu_store_inferior_registers, spu_xfer_partial)
(spu_can_use_hw_breakpoint): Refactor as spu_linux_nat_target
methods.
(_initialize_spu_nat): Adjust to C++ification.
* tilegx-linux-nat.c (tilegx_linux_nat_target): New class.
(the_tilegx_linux_nat_target): New.
(fetch_inferior_registers, store_inferior_registers):
Refactor as methods.
(_initialize_tile_linux_nat): Adjust to C++ification.
* xtensa-linux-nat.c (xtensa_linux_nat_target): New class.
(the_xtensa_linux_nat_target): New.
(xtensa_linux_fetch_inferior_registers)
(xtensa_linux_store_inferior_registers): Refactor as
xtensa_linux_nat_target methods.
(_initialize_xtensa_linux_nat): Adjust to C++ification.
* fbsd-nat.c (USE_SIGTRAP_SIGINFO): Delete.
(fbsd_pid_to_exec_file, fbsd_find_memory_regions)
(fbsd_find_memory_regions, fbsd_info_proc, fbsd_xfer_partial)
(fbsd_thread_alive, fbsd_pid_to_str, fbsd_thread_name)
(fbsd_update_thread_list, fbsd_resume, fbsd_wait)
(fbsd_stopped_by_sw_breakpoint)
(fbsd_supports_stopped_by_sw_breakpoint, fbsd_follow_fork)
(fbsd_insert_fork_catchpoint, fbsd_remove_fork_catchpoint)
(fbsd_insert_vfork_catchpoint, fbsd_remove_vfork_catchpoint)
(fbsd_post_startup_inferior, fbsd_post_attach)
(fbsd_insert_exec_catchpoint, fbsd_remove_exec_catchpoint)
(fbsd_set_syscall_catchpoint)
(super_xfer_partial, super_resume, super_wait)
(fbsd_supports_stopped_by_hw_breakpoint): Delete.
(fbsd_handle_debug_trap): Remove target_ops parameter.
(fbsd_nat_add_target): Delete.
* fbsd-nat.h: Include "inf-ptrace.h".
(fbsd_nat_add_target): Delete.
(USE_SIGTRAP_SIGINFO): Define.
(fbsd_nat_target): New class.
* amd64-bsd-nat.c (amd64bsd_fetch_inferior_registers)
(amd64bsd_store_inferior_registers): Remove target_ops parameter.
(amd64bsd_target): Delete.
* amd64-bsd-nat.h: New file.
* amd64-fbsd-nat.c: Include "amd64-bsd-nat.h" instead of
"x86-bsd-nat.h".
(amd64_fbsd_nat_target): New class.
(the_amd64_fbsd_nat_target): New.
(amd64fbsd_read_description): Refactor as method of
amd64_fbsd_nat_target.
(amd64_fbsd_nat_target::supports_stopped_by_hw_breakpoint): New.
(_initialize_amd64fbsd_nat): Adjust to C++ification.
* amd64-nat.h (amd64bsd_target): Delete function declaration.
* i386-bsd-nat.c (i386bsd_fetch_inferior_registers)
(i386bsd_store_inferior_registers): Remove target_ops parameter.
(i386bsd_target): Delete.
* i386-bsd-nat.h (i386bsd_target): Delete function declaration.
(i386bsd_fetch_inferior_registers)
(i386bsd_store_inferior_registers): Declare.
(i386_bsd_nat_target): New class.
* i386-fbsd-nat.c (i386_fbsd_nat_target): New class.
(the_i386_fbsd_nat_target): New.
(i386fbsd_resume, i386fbsd_read_description): Refactor as
i386_fbsd_nat_target methods.
(i386_fbsd_nat_target::supports_stopped_by_hw_breakpoint): New.
(_initialize_i386fbsd_nat): Adjust to C++ification.
* x86-bsd-nat.c (super_mourn_inferior): Delete.
(x86bsd_mourn_inferior, x86bsd_target): Delete.
(_initialize_x86_bsd_nat): Adjust to C++ification.
* x86-bsd-nat.h: Include "x86-nat.h".
(x86bsd_target): Delete declaration.
(x86bsd_nat_target): New class.
* aarch64-fbsd-nat.c (aarch64_fbsd_nat_target): New class.
(the_aarch64_fbsd_nat_target): New.
(aarch64_fbsd_fetch_inferior_registers)
(aarch64_fbsd_store_inferior_registers): Refactor as methods of
aarch64_fbsd_nat_target.
(_initialize_aarch64_fbsd_nat): Adjust to C++ification.
* alpha-bsd-nat.c (alpha_bsd_nat_target): New class.
(the_alpha_bsd_nat_target): New.
(alphabsd_fetch_inferior_registers)
(alphabsd_store_inferior_registers): Refactor as
alpha_bsd_nat_target methods.
(_initialize_alphabsd_nat): Refactor as methods of
alpha_bsd_nat_target.
* amd64-nbsd-nat.c: Include "amd64-bsd-nat.h".
(the_amd64_nbsd_nat_target): New.
(_initialize_amd64nbsd_nat): Adjust to C++ification.
* amd64-obsd-nat.c: Include "amd64-bsd-nat.h".
(the_amd64_obsd_nat_target): New.
(_initialize_amd64obsd_nat): Adjust to C++ification.
* arm-fbsd-nat.c (arm_fbsd_nat_target): New.
(the_arm_fbsd_nat_target): New.
(arm_fbsd_fetch_inferior_registers)
(arm_fbsd_store_inferior_registers, arm_fbsd_read_description):
(_initialize_arm_fbsd_nat): Refactor as methods of
arm_fbsd_nat_target.
(_initialize_arm_fbsd_nat): Adjust to C++ification.
* arm-nbsd-nat.c (arm_netbsd_nat_target): New class.
(the_arm_netbsd_nat_target): New.
(armnbsd_fetch_registers, armnbsd_store_registers): Refactor as
arm_netbsd_nat_target.
(_initialize_arm_netbsd_nat): Adjust to C++ification.
* hppa-nbsd-nat.c (hppa_nbsd_nat_target): New class.
(the_hppa_nbsd_nat_target): New.
(hppanbsd_fetch_registers, hppanbsd_store_registers): Refactor as
hppa_nbsd_nat_target methods.
(_initialize_hppanbsd_nat): Adjust to C++ification.
* hppa-obsd-nat.c (hppa_obsd_nat_target): New class.
(the_hppa_obsd_nat_target): New.
(hppaobsd_fetch_registers, hppaobsd_store_registers): Refactor as
methods of hppa_obsd_nat_target.
(_initialize_hppaobsd_nat): Adjust to C++ification. Use
add_target.
* i386-nbsd-nat.c (the_i386_nbsd_nat_target): New.
(_initialize_i386nbsd_nat): Adjust to C++ification. Use
add_target.
* i386-obsd-nat.c (the_i386_obsd_nat_target): New.
(_initialize_i386obsd_nat): Use add_target.
* m68k-bsd-nat.c (m68k_bsd_nat_target): New class.
(the_m68k_bsd_nat_target): New.
(m68kbsd_fetch_inferior_registers)
(m68kbsd_store_inferior_registers): Refactor as methods of
m68k_bsd_nat_target.
(_initialize_m68kbsd_nat): Adjust to C++ification.
* mips-fbsd-nat.c (mips_fbsd_nat_target): New class.
(the_mips_fbsd_nat_target): New.
(mips_fbsd_fetch_inferior_registers)
(mips_fbsd_store_inferior_registers): Refactor as methods of
mips_fbsd_nat_target.
(_initialize_mips_fbsd_nat): Adjust to C++ification. Use
add_target.
* mips-nbsd-nat.c (mips_nbsd_nat_target): New class.
(the_mips_nbsd_nat_target): New.
(mipsnbsd_fetch_inferior_registers)
(mipsnbsd_store_inferior_registers): Refactor as methods of
mips_nbsd_nat_target.
(_initialize_mipsnbsd_nat): Adjust to C++ification.
* mips64-obsd-nat.c (mips64_obsd_nat_target): New class.
(the_mips64_obsd_nat_target): New.
(mips64obsd_fetch_inferior_registers)
(mips64obsd_store_inferior_registers): Refactor as methods of
mips64_obsd_nat_target.
(_initialize_mips64obsd_nat): Adjust to C++ification. Use
add_target.
* nbsd-nat.c (nbsd_pid_to_exec_file): Refactor as method of
nbsd_nat_target.
* nbsd-nat.h: Include "inf-ptrace.h".
(nbsd_nat_target): New class.
* obsd-nat.c (obsd_pid_to_str, obsd_update_thread_list)
(obsd_wait): Refactor as methods of obsd_nat_target.
(obsd_add_target): Delete.
* obsd-nat.h: Include "inf-ptrace.h".
(obsd_nat_target): New class.
* ppc-fbsd-nat.c (ppc_fbsd_nat_target): New class.
(the_ppc_fbsd_nat_target): New.
(ppcfbsd_fetch_inferior_registers)
(ppcfbsd_store_inferior_registers): Refactor as methods of
ppc_fbsd_nat_target.
(_initialize_ppcfbsd_nat): Adjust to C++ification. Use
add_target.
* ppc-nbsd-nat.c (ppc_nbsd_nat_target): New class.
(the_ppc_nbsd_nat_target): New.
(ppcnbsd_fetch_inferior_registers)
(ppcnbsd_store_inferior_registers): Refactor as methods of
ppc_nbsd_nat_target.
(_initialize_ppcnbsd_nat): Adjust to C++ification.
* ppc-obsd-nat.c (ppc_obsd_nat_target): New class.
(the_ppc_obsd_nat_target): New.
(ppcobsd_fetch_registers, ppcobsd_store_registers): Refactor as
methods of ppc_obsd_nat_target.
(_initialize_ppcobsd_nat): Adjust to C++ification. Use
add_target.
* sh-nbsd-nat.c (sh_nbsd_nat_target): New class.
(the_sh_nbsd_nat_target): New.
(shnbsd_fetch_inferior_registers)
(shnbsd_store_inferior_registers): Refactor as methods of
sh_nbsd_nat_target.
(_initialize_shnbsd_nat): Adjust to C++ification.
* sparc-nat.c (sparc_xfer_wcookie): Make extern.
(inf_ptrace_xfer_partial): Delete.
(sparc_xfer_partial, sparc_target): Delete.
* sparc-nat.h (sparc_fetch_inferior_registers)
(sparc_store_inferior_registers, sparc_xfer_wcookie): Declare.
(sparc_target): Delete function declaration.
(sparc_target): New template class.
* sparc-nbsd-nat.c (the_sparc_nbsd_nat_target): New.
(_initialize_sparcnbsd_nat): Adjust to C++ification.
* sparc64-fbsd-nat.c (the_sparc64_fbsd_nat_target): New.
(_initialize_sparc64fbsd_nat): Adjust to C++ification. Use
add_target.
* sparc64-nbsd-nat.c (the_sparc64_nbsd_nat_target): New.
(_initialize_sparc64nbsd_nat): Adjust to C++ification.
* sparc64-obsd-nat.c (the_sparc64_obsd_nat_target): New.
(_initialize_sparc64obsd_nat): Adjust to C++ification. Use
add_target.
* vax-bsd-nat.c (vax_bsd_nat_target): New class.
(the_vax_bsd_nat_target): New.
(vaxbsd_fetch_inferior_registers)
(vaxbsd_store_inferior_registers): Refactor as vax_bsd_nat_target
methods.
(_initialize_vaxbsd_nat): Adjust to C++ification.
* bsd-kvm.c (bsd_kvm_target): New class.
(bsd_kvm_ops): Now a bsd_kvm_target.
(bsd_kvm_open, bsd_kvm_close, bsd_kvm_xfer_partial)
(bsd_kvm_files_info, bsd_kvm_fetch_registers)
(bsd_kvm_thread_alive, bsd_kvm_pid_to_str): Refactor as methods of
bsd_kvm_target.
(bsd_kvm_return_one): Delete.
(bsd_kvm_add_target): Adjust to C++ification.
* nto-procfs.c (nto_procfs_target, nto_procfs_target_native)
(nto_procfs_target_procfs): New classes.
(procfs_open_1, procfs_thread_alive, procfs_update_thread_list)
(procfs_files_info, procfs_pid_to_exec_file, procfs_attach)
(procfs_post_attach, procfs_wait, procfs_fetch_registers)
(procfs_xfer_partial, procfs_detach, procfs_insert_breakpoint)
(procfs_remove_breakpoint, procfs_insert_hw_breakpoint)
(procfs_remove_hw_breakpoint, procfs_resume)
(procfs_mourn_inferior, procfs_create_inferior, procfs_interrupt)
(procfs_kill_inferior, procfs_store_registers)
(procfs_pass_signals, procfs_pid_to_str, procfs_can_run): Refactor
as methods of nto_procfs_target.
(nto_procfs_ops): Now an nto_procfs_target_procfs.
(nto_native_ops): Delete.
(procfs_open, procfs_native_open): Delete.
(nto_native_ops): Now an nto_procfs_target_native.
(init_procfs_targets): Adjust to C++ification.
(procfs_can_use_hw_breakpoint, procfs_remove_hw_watchpoint)
(procfs_insert_hw_watchpoint, procfs_stopped_by_watchpoint):
Refactor as methods of nto_procfs_target.
* go32-nat.c (go32_nat_target): New class.
(the_go32_nat_target): New.
(go32_attach, go32_resume, go32_wait, go32_fetch_registers)
(go32_store_registers, go32_xfer_partial, go32_files_info)
(go32_kill_inferior, go32_create_inferior, go32_mourn_inferior)
(go32_terminal_init, go32_terminal_info, go32_terminal_inferior)
(go32_terminal_ours, go32_pass_ctrlc, go32_thread_alive)
(go32_pid_to_str): Refactor as methods of go32_nat_target.
(go32_target): Delete.
(_initialize_go32_nat): Adjust to C++ification.
* gnu-nat.c (gnu_wait, gnu_resume, gnu_kill_inferior)
(gnu_mourn_inferior, gnu_create_inferior, gnu_attach, gnu_detach)
(gnu_stop, gnu_thread_alive, gnu_xfer_partial)
(gnu_find_memory_regions, gnu_pid_to_str): Refactor as methods of
gnu_nat_target.
(gnu_target): Delete.
* gnu-nat.h (gnu_target): Delete.
(gnu_nat_target): New class.
* i386-gnu-nat.c (gnu_base_target): New.
(i386_gnu_nat_target): New class.
(the_i386_gnu_nat_target): New.
(_initialize_i386gnu_nat): Adjust to C++ification.
gdb/testsuite/ChangeLog:
2018-05-02 Pedro Alves <palves@redhat.com>
* gdb.base/breakpoint-in-ro-region.exp: Adjust to to_resume and
to_log_command renames.
* gdb.base/sss-bp-on-user-bp-2.exp: Likewise.
2018-05-03 07:37:22 +08:00
|
|
|
while (target_auxv_parse (&ptr, data + len, &type, &val) > 0)
|
2004-02-02 06:35:24 +08:00
|
|
|
{
|
2016-06-12 06:51:38 +08:00
|
|
|
gdbarch_print_auxv_entry (gdbarch, file, type, val);
|
2004-02-02 06:35:24 +08:00
|
|
|
++ents;
|
2008-07-18 04:56:11 +08:00
|
|
|
if (type == AT_NULL)
|
|
|
|
break;
|
2004-02-02 06:35:24 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return ents;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
Constify add_info
This patch constifies add_info and updates all the info commands. The
bulk of this patch was written using a script; and then I did a manual
pass to fix up the remaining compilation errors.
I could not compile every changed file; in particular nto-procfs.c,
gnu-nat.c, and darwin-nat-info.c; but I at least tried to check the
correctness by inspection.
gdb/ChangeLog
2017-11-07 Tom Tromey <tom@tromey.com>
* frame.h (info_locals_command, info_args_command): Constify.
* auto-load.h (auto_load_info_scripts): Constify.
* inferior.h (registers_info): Constify.
* copying.c: Rebuild.
* copying.awk: Constify generated commands.
* auto-load.c (auto_load_info_scripts)
(info_auto_load_gdb_scripts): Constify.
* cli/cli-decode.c (struct cmd_list_element): Take a
cmd_const_cfunc_ftype.
* command.h (add_info): Take a cmd_const_cfunc_ftype.
* tui/tui-win.c (tui_all_windows_info): Constify.
* python/py-auto-load.c (info_auto_load_python_scripts):
Constify.
* cli/cli-cmds.c (show_command): Remove non-const overload.
* tracepoint.c (info_tvariables_command, info_scope_command):
Constify.
(info_static_tracepoint_markers_command): Constify.
* thread.c (info_threads_command): Constify.
(print_thread_info_1): Constify.
* target.c (info_target_command): Constify.
* symtab.c (info_sources_command, info_functions_command)
(info_types_command): Constify.
(info_variables_command): Remove non-const overload.
* symfile.c (info_ext_lang_command): Constify.
* stack.c (info_frame_command, info_locals_command)
(info_args_command): Constify.
(backtrace_command): Remove non-const overload.
* source.c (info_source_command, info_line_command): Constify.
* solib.c (info_sharedlibrary_command): Constify.
* skip.c (info_skip_command): Constify.
* ser-go32.c (info_serial_command): Constify.
* reverse.c (info_bookmarks_command): Constify.
* printcmd.c (info_symbol_command, info_address_command)
(info_display_command): Constify.
* osdata.c (info_osdata_command): Constify.
* objc-lang.c (info_selectors_command, info_classes_command):
Constify.
* nto-procfs.c (procfs_pidlist, procfs_meminfo): Constify.
* memattr.c (info_mem_command): Constify.
* macrocmd.c (info_macro_command, info_macros_command): Constify.
* linux-fork.c (info_checkpoints_command): Constify.
* infrun.c (info_signals_command): Constify.
* inflow.c (info_terminal_command): Constify.
* inferior.c (info_inferiors_command): Constify.
(print_inferior): Constify.
* infcmd.c (info_program_command, info_all_registers_command)
(info_registers_command, info_vector_command)
(info_float_command): Constify.
(registers_info): Constify.
* gnu-nat.c (info_send_rights_cmd, info_recv_rights_cmd)
(info_port_sets_cmd, info_dead_names_cmd, info_port_rights_cmd):
Constify.
* f-valprint.c (info_common_command): Constify.
* dcache.c (info_dcache_command): Constify.
(dcache_info_1): Constify.
* darwin-nat-info.c (info_mach_tasks_command)
(info_mach_task_command, info_mach_ports_command)
(info_mach_port_command, info_mach_threads_command)
(info_mach_thread_command, info_mach_regions_command)
(info_mach_regions_recurse_command, info_mach_region_command)
(info_mach_exceptions_command): Constify.
(get_task_from_args): Constify.
* cp-support.c (info_vtbl_command): Constify.
* breakpoint.c (info_watchpoints_command)
(info_tracepoints_command): Constify.
(info_breakpoints_command): Remove non-const overload.
* avr-tdep.c (avr_io_reg_read_command): Constify.
* auxv.c (info_auxv_command): Constify.
* ada-tasks.c (info_tasks_command): Constify.
(info_task): Constify.
* ada-lang.c (info_exceptions_command): Constify.
2017-10-14 12:07:26 +08:00
|
|
|
info_auxv_command (const char *cmd, int from_tty)
|
2004-02-02 06:35:24 +08:00
|
|
|
{
|
|
|
|
if (! target_has_stack)
|
2005-01-05 Baurjan Ismagulov <ibr@ata.cs.hun.edu.tr>
Committed by Andrew Cagney.
* ada-valprint.c, aix-thread.c, alpha-nat.c: I18n markup.
* alphabsd-nat.c, alphanbsd-tdep.c, amd64-linux-nat.c: I18n markup.
* amd64-tdep.c, amd64bsd-nat.c, amd64fbsd-nat.c: I18n markup.
* arch-utils.c, arm-linux-nat.c, arm-tdep.c: I18n markup.
* armnbsd-nat.c, armnbsd-tdep.c, auxv.c, avr-tdep.c: I18n markup.
* aix-thread.c (_initialize_aix_thread): Get rid of the
deprecated_add_show_from_set call.
* alpha-tdep.c (_initialize_alpha_tdep): Ditto.
* arm-tdep.c (_initialize_arm_tdep): Ditto.
* command.h (add_setshow_enum_cmd): Add arguments for returning
new list elements.
* cli/cli-decode.c (add_setshow_enum_cmd): Ditto.
* mips-tdep.c (_initialize_mips_tdep): Modify calls to
add_setshow_enum_cmd.
2005-01-05 23:43:50 +08:00
|
|
|
error (_("The program has no auxiliary information now."));
|
2004-02-02 06:35:24 +08:00
|
|
|
else
|
|
|
|
{
|
target_stack -> current_top_target() throughout
The recent C++ification of target_ops replaced references to the old
"current_target" squashed target throughout with references to a
"target_stack" pointer. I had picked the "target_stack" name very
early in the multi-target work, and managed to stick with it, even
though it's a bit of a misnomer, since it isn't really a "target
stack" object, but a pointer into the current top target in the stack.
As I'm splitting more pieces off of the multi-target branch, I've come
to think that it's better to rename it now. A following patch will
introduce a new class to represent a target stack, and "target_stack"
would be _its_ ideal name. (In the branch, the class is called
a_target_stack to work around the clash.)
Thus this commit renames target_stack to current_top_target and
replaces all references throughout. Also, while at it,
current_top_target is made a function instead of a pointer, to make it
possible to change its internal implementation without leaking
implementation details out. In a couple patches, the implementation
of the function will change to refer to a target stack object, and
then further down the multi-target work, it'll change again to find
the right target stack for the current inferior.
gdb/ChangeLog:
2018-06-07 Pedro Alves <palves@redhat.com>
* target.h (target_stack): Delete.
(current_top_target): Declare function.
* target.c (target_stack): Delete.
(g_current_top_target): New.
(current_top_target): New function.
* auxv.c: Use current_top_target instead of target_stack
throughout.
* avr-tdep.c: Likewise.
* breakpoint.c: Likewise.
* corefile.c: Likewise.
* elfread.c: Likewise.
* eval.c: Likewise.
* exceptions.c: Likewise.
* frame.c: Likewise.
* gdbarch-selftests.c: Likewise.
* gnu-v3-abi.c: Likewise.
* ia64-tdep.c: Likewise.
* ia64-vms-tdep.c: Likewise.
* infcall.c: Likewise.
* infcmd.c: Likewise.
* infrun.c: Likewise.
* linespec.c: Likewise.
* linux-tdep.c: Likewise.
* minsyms.c: Likewise.
* ppc-linux-nat.c: Likewise.
* ppc-linux-tdep.c: Likewise.
* procfs.c: Likewise.
* regcache.c: Likewise.
* remote.c: Likewise.
* rs6000-tdep.c: Likewise.
* s390-linux-nat.c: Likewise.
* s390-tdep.c: Likewise.
* solib-aix.c: Likewise.
* solib-darwin.c: Likewise.
* solib-dsbt.c: Likewise.
* solib-spu.c: Likewise.
* solib-svr4.c: Likewise.
* solib-target.c: Likewise.
* sparc-tdep.c: Likewise.
* sparc64-tdep.c: Likewise.
* spu-tdep.c: Likewise.
* symfile.c: Likewise.
* symtab.c: Likewise.
* target-descriptions.c: Likewise.
* target-memory.c: Likewise.
* target.c: Likewise.
* target.h: Likewise.
* tracefile-tfile.c: Likewise.
* tracepoint.c: Likewise.
* valops.c: Likewise.
* valprint.c: Likewise.
* value.c: Likewise.
* windows-tdep.c: Likewise.
* mi/mi-main.c: Likewise.
2018-06-08 00:27:46 +08:00
|
|
|
int ents = fprint_target_auxv (gdb_stdout, current_top_target ());
|
2010-05-19 03:23:37 +08:00
|
|
|
|
2004-02-02 06:35:24 +08:00
|
|
|
if (ents < 0)
|
2005-01-05 Baurjan Ismagulov <ibr@ata.cs.hun.edu.tr>
Committed by Andrew Cagney.
* ada-valprint.c, aix-thread.c, alpha-nat.c: I18n markup.
* alphabsd-nat.c, alphanbsd-tdep.c, amd64-linux-nat.c: I18n markup.
* amd64-tdep.c, amd64bsd-nat.c, amd64fbsd-nat.c: I18n markup.
* arch-utils.c, arm-linux-nat.c, arm-tdep.c: I18n markup.
* armnbsd-nat.c, armnbsd-tdep.c, auxv.c, avr-tdep.c: I18n markup.
* aix-thread.c (_initialize_aix_thread): Get rid of the
deprecated_add_show_from_set call.
* alpha-tdep.c (_initialize_alpha_tdep): Ditto.
* arm-tdep.c (_initialize_arm_tdep): Ditto.
* command.h (add_setshow_enum_cmd): Add arguments for returning
new list elements.
* cli/cli-decode.c (add_setshow_enum_cmd): Ditto.
* mips-tdep.c (_initialize_mips_tdep): Modify calls to
add_setshow_enum_cmd.
2005-01-05 23:43:50 +08:00
|
|
|
error (_("No auxiliary vector found, or failed reading it."));
|
2004-02-02 06:35:24 +08:00
|
|
|
else if (ents == 0)
|
2005-01-05 Baurjan Ismagulov <ibr@ata.cs.hun.edu.tr>
Committed by Andrew Cagney.
* ada-valprint.c, aix-thread.c, alpha-nat.c: I18n markup.
* alphabsd-nat.c, alphanbsd-tdep.c, amd64-linux-nat.c: I18n markup.
* amd64-tdep.c, amd64bsd-nat.c, amd64fbsd-nat.c: I18n markup.
* arch-utils.c, arm-linux-nat.c, arm-tdep.c: I18n markup.
* armnbsd-nat.c, armnbsd-tdep.c, auxv.c, avr-tdep.c: I18n markup.
* aix-thread.c (_initialize_aix_thread): Get rid of the
deprecated_add_show_from_set call.
* alpha-tdep.c (_initialize_alpha_tdep): Ditto.
* arm-tdep.c (_initialize_arm_tdep): Ditto.
* command.h (add_setshow_enum_cmd): Add arguments for returning
new list elements.
* cli/cli-decode.c (add_setshow_enum_cmd): Ditto.
* mips-tdep.c (_initialize_mips_tdep): Modify calls to
add_setshow_enum_cmd.
2005-01-05 23:43:50 +08:00
|
|
|
error (_("Auxiliary vector is empty."));
|
2004-02-02 06:35:24 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-01-14 03:01:38 +08:00
|
|
|
void _initialize_auxv ();
|
2004-02-02 06:35:24 +08:00
|
|
|
void
|
2020-01-14 03:01:38 +08:00
|
|
|
_initialize_auxv ()
|
2004-02-02 06:35:24 +08:00
|
|
|
{
|
|
|
|
add_info ("auxv", info_auxv_command,
|
2005-01-05 Baurjan Ismagulov <ibr@ata.cs.hun.edu.tr>
Committed by Andrew Cagney.
* ada-valprint.c, aix-thread.c, alpha-nat.c: I18n markup.
* alphabsd-nat.c, alphanbsd-tdep.c, amd64-linux-nat.c: I18n markup.
* amd64-tdep.c, amd64bsd-nat.c, amd64fbsd-nat.c: I18n markup.
* arch-utils.c, arm-linux-nat.c, arm-tdep.c: I18n markup.
* armnbsd-nat.c, armnbsd-tdep.c, auxv.c, avr-tdep.c: I18n markup.
* aix-thread.c (_initialize_aix_thread): Get rid of the
deprecated_add_show_from_set call.
* alpha-tdep.c (_initialize_alpha_tdep): Ditto.
* arm-tdep.c (_initialize_arm_tdep): Ditto.
* command.h (add_setshow_enum_cmd): Add arguments for returning
new list elements.
* cli/cli-decode.c (add_setshow_enum_cmd): Ditto.
* mips-tdep.c (_initialize_mips_tdep): Modify calls to
add_setshow_enum_cmd.
2005-01-05 23:43:50 +08:00
|
|
|
_("Display the inferior's auxiliary vector.\n\
|
|
|
|
This is information provided by the operating system at program startup."));
|
2011-11-15 21:17:05 +08:00
|
|
|
|
|
|
|
/* Observers used to invalidate the auxv cache when needed. */
|
Convert observers to C++
This converts observers from using a special source-generating script
to be plain C++. This version of the patch takes advantage of C++11
by using std::function and variadic templates; incorporates Pedro's
patches; and renames the header file to "observable.h" (this change
eliminates the need for a clean rebuild).
Note that Pedro's patches used a template lambda in tui-hooks.c, but
this failed to compile on some buildbot instances (presumably due to
differing C++ versions); I replaced this with an ordinary template
function.
Regression tested on the buildbot.
gdb/ChangeLog
2018-03-19 Pedro Alves <palves@redhat.com>
Tom Tromey <tom@tromey.com>
* unittests/observable-selftests.c: New file.
* common/observable.h: New file.
* observable.h: New file.
* ada-lang.c, ada-tasks.c, agent.c, aix-thread.c, annotate.c,
arm-tdep.c, auto-load.c, auxv.c, break-catch-syscall.c,
breakpoint.c, bsd-uthread.c, cli/cli-interp.c, cli/cli-setshow.c,
corefile.c, dummy-frame.c, event-loop.c, event-top.c, exec.c,
extension.c, frame.c, gdbarch.c, guile/scm-breakpoint.c,
infcall.c, infcmd.c, inferior.c, inflow.c, infrun.c, jit.c,
linux-tdep.c, linux-thread-db.c, m68klinux-tdep.c,
mi/mi-cmd-break.c, mi/mi-interp.c, mi/mi-main.c, objfiles.c,
ppc-linux-nat.c, ppc-linux-tdep.c, printcmd.c, procfs.c,
python/py-breakpoint.c, python/py-finishbreakpoint.c,
python/py-inferior.c, python/py-unwind.c, ravenscar-thread.c,
record-btrace.c, record-full.c, record.c, regcache.c, remote.c,
riscv-tdep.c, sol-thread.c, solib-aix.c, solib-spu.c, solib.c,
spu-multiarch.c, spu-tdep.c, stack.c, symfile-mem.c, symfile.c,
symtab.c, thread.c, top.c, tracepoint.c, tui/tui-hooks.c,
tui/tui-interp.c, valops.c: Update all users.
* tui/tui-hooks.c (tui_bp_created_observer)
(tui_bp_deleted_observer, tui_bp_modified_observer)
(tui_inferior_exit_observer, tui_before_prompt_observer)
(tui_normal_stop_observer, tui_register_changed_observer):
Remove.
(tui_observers_token): New global.
(attach_or_detach, tui_attach_detach_observers): New functions.
(tui_install_hooks, tui_remove_hooks): Use
tui_attach_detach_observers.
* record-btrace.c (record_btrace_thread_observer): Remove.
(record_btrace_thread_observer_token): New global.
* observer.sh: Remove.
* observer.c: Rename to observable.c.
* observable.c (namespace gdb_observers): Define new objects.
(observer_debug): Move into gdb_observers namespace.
(struct observer, struct observer_list, xalloc_observer_list_node)
(xfree_observer_list_node, generic_observer_attach)
(generic_observer_detach, generic_observer_notify): Remove.
(_initialize_observer): Update.
Don't include observer.inc.
* Makefile.in (generated_files): Remove observer.h, observer.inc.
(clean mostlyclean): Likewise.
(observer.h, observer.inc): Remove targets.
(SUBDIR_UNITTESTS_SRCS): Add observable-selftests.c.
(COMMON_SFILES): Use observable.c, not observer.c.
* .gitignore: Remove observer.h.
gdb/doc/ChangeLog
2018-03-19 Tom Tromey <tom@tromey.com>
* observer.texi: Remove.
gdb/testsuite/ChangeLog
2018-03-19 Tom Tromey <tom@tromey.com>
* gdb.gdb/observer.exp: Remove.
2016-10-03 00:50:20 +08:00
|
|
|
gdb::observers::inferior_exit.attach (invalidate_auxv_cache_inf);
|
|
|
|
gdb::observers::inferior_appeared.attach (invalidate_auxv_cache_inf);
|
|
|
|
gdb::observers::executable_changed.attach (invalidate_auxv_cache);
|
2004-02-02 06:35:24 +08:00
|
|
|
}
|