2013-12-20 00:38:11 +08:00
|
|
|
/* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
|
|
|
|
/* vi:set ro: */
|
|
|
|
|
|
|
|
/* To regenerate this file, run:*/
|
|
|
|
/* make-target-delegates target.h > target-delegates.c */
|
2013-12-19 00:42:24 +08:00
|
|
|
static void
|
|
|
|
delegate_post_attach (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_post_attach (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_post_attach (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_post_attach (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_post_attach (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_post_attach (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_post_attach (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg1);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-14 04:33:08 +08:00
|
|
|
static void
|
|
|
|
delegate_detach (struct target_ops *self, const char *arg1, int arg2)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_detach (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_detach (struct target_ops *self, const char *arg1, int arg2)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_detach (struct target_ops *self, const char *arg1, int arg2)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_detach (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_detach (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_detach (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_const_char_p (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg2);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-21 01:30:13 +08:00
|
|
|
static void
|
2014-06-07 03:26:53 +08:00
|
|
|
delegate_disconnect (struct target_ops *self, const char *arg1, int arg2)
|
2013-12-21 01:30:13 +08:00
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_disconnect (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2014-06-07 03:26:53 +08:00
|
|
|
tdefault_disconnect (struct target_ops *self, const char *arg1, int arg2)
|
2013-12-21 01:30:13 +08:00
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_disconnect (struct target_ops *self, const char *arg1, int arg2)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_disconnect (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_disconnect (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_disconnect (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_const_char_p (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg2);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
add target method delegation
This patch replaces some code in the record targets with target method
delegation.
record-full.c stores pointers to many target methods when the record
target is pushed. Then it later delegates some calls via these. This
is wrong because it violates the target stack contract. In particular
it is ok to unpush a target at any stratum, but record-full does not
keep track of this, so it could potentially call into an unpushed
target.
This patch fixes the problem by using the newly-introduced generic
approach to target delegation for the methods in question.
2014-02-19 Tom Tromey <tromey@redhat.com>
* record-full.c (record_full_beneath_to_resume_ops)
(record_full_beneath_to_resume, record_full_beneath_to_wait_ops)
(record_full_beneath_to_wait)
(record_full_beneath_to_store_registers_ops)
(record_full_beneath_to_store_registers)
(record_full_beneath_to_xfer_partial_ops)
(record_full_beneath_to_xfer_partial)
(record_full_beneath_to_insert_breakpoint_ops)
(record_full_beneath_to_insert_breakpoint)
(record_full_beneath_to_remove_breakpoint_ops)
(record_full_beneath_to_remove_breakpoint)
(record_full_beneath_to_stopped_by_watchpoint)
(record_full_beneath_to_stopped_data_address)
(record_full_beneath_to_async, tmp_to_resume_ops, tmp_to_resume)
(tmp_to_wait_ops, tmp_to_wait, tmp_to_store_registers_ops)
(tmp_to_store_registers, tmp_to_xfer_partial_ops)
(tmp_to_xfer_partial, tmp_to_instmp_to_insert_breakpoint_ops)
(tmp_to_insert_breakpoint, tmp_to_remove_breakpoint_ops)
(tmp_to_remove_breakpoint, tmp_to_stopped_by_watchpoint)
(tmp_to_stopped_data_address, tmp_to_async): Remove.
(record_full_open_1, record_full_open): Update. Use RECORD_IS_USED.
(record_full_resume, record_full_wait_1)
(record_full_stopped_by_watchpoint, record_full_stopped_data_address)
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint)
(record_full_async, record_full_core_xfer_partial): Use target
delegation.
* target-delegates.c: Rebuild.
* target.c (current_xfer_partial): Remove.
(update_current_target): Do not INHERIT or de_fault
to_insert_breakpoint, to_remove_breakpoint,
to_stopped_data_address, to_stopped_by_watchpoint, to_can_async_p,
to_is_async_p, to_async. Do not set to_xfer_partial field.
(default_xfer_partial): Simplify.
(current_xfer_partial): Remove.
(target_wait, target_resume): Simplify.
(find_default_can_async_p, find_default_is_async_p): Update.
(init_dummy_target): Don't set to_can_async_p, to_is_async_p,
to_xfer_partial, to_stopped_by_watchpoint,
to_stopped_data_address.
(target_store_registers): Simplify.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
(target_remove_breakpoint, target_insert_breakpoint)
(debug_to_insert_breakpoint, debug_to_remove_breakpoint): Update.
* target.h (struct target_ops) <to_resume, to_wait,
to_store_registers, to_insert_breakpoint, to_remove_breakpoint,
to_stopped_by_watchpoint, to_stopped_data_address, to_can_async_p,
to_is_async_p, to_async, to_xfer_partial>: Add TARGET_DEFAULT
markup.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
* record-btrace.c (record_btrace_remove_breakpoint): Delegate
directly.
(record_btrace_insert_breakpoint): Delegate directly.
2013-07-13 03:00:34 +08:00
|
|
|
static void
|
|
|
|
delegate_resume (struct target_ops *self, ptid_t arg1, int arg2, enum gdb_signal arg3)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_resume (self, arg1, arg2, arg3);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_resume (struct target_ops *self, ptid_t arg1, int arg2, enum gdb_signal arg3)
|
|
|
|
{
|
|
|
|
noprocess ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_resume (struct target_ops *self, ptid_t arg1, int arg2, enum gdb_signal arg3)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_resume (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_resume (&debug_target, arg1, arg2, arg3);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_resume (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_ptid_t (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_step (arg2);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_enum_gdb_signal (arg3);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
add target method delegation
This patch replaces some code in the record targets with target method
delegation.
record-full.c stores pointers to many target methods when the record
target is pushed. Then it later delegates some calls via these. This
is wrong because it violates the target stack contract. In particular
it is ok to unpush a target at any stratum, but record-full does not
keep track of this, so it could potentially call into an unpushed
target.
This patch fixes the problem by using the newly-introduced generic
approach to target delegation for the methods in question.
2014-02-19 Tom Tromey <tromey@redhat.com>
* record-full.c (record_full_beneath_to_resume_ops)
(record_full_beneath_to_resume, record_full_beneath_to_wait_ops)
(record_full_beneath_to_wait)
(record_full_beneath_to_store_registers_ops)
(record_full_beneath_to_store_registers)
(record_full_beneath_to_xfer_partial_ops)
(record_full_beneath_to_xfer_partial)
(record_full_beneath_to_insert_breakpoint_ops)
(record_full_beneath_to_insert_breakpoint)
(record_full_beneath_to_remove_breakpoint_ops)
(record_full_beneath_to_remove_breakpoint)
(record_full_beneath_to_stopped_by_watchpoint)
(record_full_beneath_to_stopped_data_address)
(record_full_beneath_to_async, tmp_to_resume_ops, tmp_to_resume)
(tmp_to_wait_ops, tmp_to_wait, tmp_to_store_registers_ops)
(tmp_to_store_registers, tmp_to_xfer_partial_ops)
(tmp_to_xfer_partial, tmp_to_instmp_to_insert_breakpoint_ops)
(tmp_to_insert_breakpoint, tmp_to_remove_breakpoint_ops)
(tmp_to_remove_breakpoint, tmp_to_stopped_by_watchpoint)
(tmp_to_stopped_data_address, tmp_to_async): Remove.
(record_full_open_1, record_full_open): Update. Use RECORD_IS_USED.
(record_full_resume, record_full_wait_1)
(record_full_stopped_by_watchpoint, record_full_stopped_data_address)
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint)
(record_full_async, record_full_core_xfer_partial): Use target
delegation.
* target-delegates.c: Rebuild.
* target.c (current_xfer_partial): Remove.
(update_current_target): Do not INHERIT or de_fault
to_insert_breakpoint, to_remove_breakpoint,
to_stopped_data_address, to_stopped_by_watchpoint, to_can_async_p,
to_is_async_p, to_async. Do not set to_xfer_partial field.
(default_xfer_partial): Simplify.
(current_xfer_partial): Remove.
(target_wait, target_resume): Simplify.
(find_default_can_async_p, find_default_is_async_p): Update.
(init_dummy_target): Don't set to_can_async_p, to_is_async_p,
to_xfer_partial, to_stopped_by_watchpoint,
to_stopped_data_address.
(target_store_registers): Simplify.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
(target_remove_breakpoint, target_insert_breakpoint)
(debug_to_insert_breakpoint, debug_to_remove_breakpoint): Update.
* target.h (struct target_ops) <to_resume, to_wait,
to_store_registers, to_insert_breakpoint, to_remove_breakpoint,
to_stopped_by_watchpoint, to_stopped_data_address, to_can_async_p,
to_is_async_p, to_async, to_xfer_partial>: Add TARGET_DEFAULT
markup.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
* record-btrace.c (record_btrace_remove_breakpoint): Delegate
directly.
(record_btrace_insert_breakpoint): Delegate directly.
2013-07-13 03:00:34 +08:00
|
|
|
static ptid_t
|
|
|
|
delegate_wait (struct target_ops *self, ptid_t arg1, struct target_waitstatus *arg2, int arg3)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_wait (self, arg1, arg2, arg3);
|
|
|
|
}
|
|
|
|
|
|
|
|
static ptid_t
|
|
|
|
tdefault_wait (struct target_ops *self, ptid_t arg1, struct target_waitstatus *arg2, int arg3)
|
|
|
|
{
|
|
|
|
noprocess ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static ptid_t
|
|
|
|
debug_wait (struct target_ops *self, ptid_t arg1, struct target_waitstatus *arg2, int arg3)
|
|
|
|
{
|
|
|
|
ptid_t result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_wait (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_wait (&debug_target, arg1, arg2, arg3);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_wait (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_ptid_t (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_target_waitstatus_p (arg2);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_options (arg3);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_ptid_t (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:30:22 +08:00
|
|
|
static void
|
|
|
|
delegate_fetch_registers (struct target_ops *self, struct regcache *arg1, int arg2)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_fetch_registers (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_fetch_registers (struct target_ops *self, struct regcache *arg1, int arg2)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_fetch_registers (struct target_ops *self, struct regcache *arg1, int arg2)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_fetch_registers (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_fetch_registers (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_fetch_registers (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_regcache_p (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg2);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
add target method delegation
This patch replaces some code in the record targets with target method
delegation.
record-full.c stores pointers to many target methods when the record
target is pushed. Then it later delegates some calls via these. This
is wrong because it violates the target stack contract. In particular
it is ok to unpush a target at any stratum, but record-full does not
keep track of this, so it could potentially call into an unpushed
target.
This patch fixes the problem by using the newly-introduced generic
approach to target delegation for the methods in question.
2014-02-19 Tom Tromey <tromey@redhat.com>
* record-full.c (record_full_beneath_to_resume_ops)
(record_full_beneath_to_resume, record_full_beneath_to_wait_ops)
(record_full_beneath_to_wait)
(record_full_beneath_to_store_registers_ops)
(record_full_beneath_to_store_registers)
(record_full_beneath_to_xfer_partial_ops)
(record_full_beneath_to_xfer_partial)
(record_full_beneath_to_insert_breakpoint_ops)
(record_full_beneath_to_insert_breakpoint)
(record_full_beneath_to_remove_breakpoint_ops)
(record_full_beneath_to_remove_breakpoint)
(record_full_beneath_to_stopped_by_watchpoint)
(record_full_beneath_to_stopped_data_address)
(record_full_beneath_to_async, tmp_to_resume_ops, tmp_to_resume)
(tmp_to_wait_ops, tmp_to_wait, tmp_to_store_registers_ops)
(tmp_to_store_registers, tmp_to_xfer_partial_ops)
(tmp_to_xfer_partial, tmp_to_instmp_to_insert_breakpoint_ops)
(tmp_to_insert_breakpoint, tmp_to_remove_breakpoint_ops)
(tmp_to_remove_breakpoint, tmp_to_stopped_by_watchpoint)
(tmp_to_stopped_data_address, tmp_to_async): Remove.
(record_full_open_1, record_full_open): Update. Use RECORD_IS_USED.
(record_full_resume, record_full_wait_1)
(record_full_stopped_by_watchpoint, record_full_stopped_data_address)
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint)
(record_full_async, record_full_core_xfer_partial): Use target
delegation.
* target-delegates.c: Rebuild.
* target.c (current_xfer_partial): Remove.
(update_current_target): Do not INHERIT or de_fault
to_insert_breakpoint, to_remove_breakpoint,
to_stopped_data_address, to_stopped_by_watchpoint, to_can_async_p,
to_is_async_p, to_async. Do not set to_xfer_partial field.
(default_xfer_partial): Simplify.
(current_xfer_partial): Remove.
(target_wait, target_resume): Simplify.
(find_default_can_async_p, find_default_is_async_p): Update.
(init_dummy_target): Don't set to_can_async_p, to_is_async_p,
to_xfer_partial, to_stopped_by_watchpoint,
to_stopped_data_address.
(target_store_registers): Simplify.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
(target_remove_breakpoint, target_insert_breakpoint)
(debug_to_insert_breakpoint, debug_to_remove_breakpoint): Update.
* target.h (struct target_ops) <to_resume, to_wait,
to_store_registers, to_insert_breakpoint, to_remove_breakpoint,
to_stopped_by_watchpoint, to_stopped_data_address, to_can_async_p,
to_is_async_p, to_async, to_xfer_partial>: Add TARGET_DEFAULT
markup.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
* record-btrace.c (record_btrace_remove_breakpoint): Delegate
directly.
(record_btrace_insert_breakpoint): Delegate directly.
2013-07-13 03:00:34 +08:00
|
|
|
static void
|
|
|
|
delegate_store_registers (struct target_ops *self, struct regcache *arg1, int arg2)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_store_registers (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_store_registers (struct target_ops *self, struct regcache *arg1, int arg2)
|
|
|
|
{
|
|
|
|
noprocess ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_store_registers (struct target_ops *self, struct regcache *arg1, int arg2)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_store_registers (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_store_registers (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_store_registers (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_regcache_p (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg2);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 00:47:18 +08:00
|
|
|
static void
|
|
|
|
delegate_prepare_to_store (struct target_ops *self, struct regcache *arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_prepare_to_store (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_prepare_to_store (struct target_ops *self, struct regcache *arg1)
|
|
|
|
{
|
|
|
|
noprocess ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_prepare_to_store (struct target_ops *self, struct regcache *arg1)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_prepare_to_store (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_prepare_to_store (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_prepare_to_store (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_regcache_p (arg1);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 00:51:47 +08:00
|
|
|
static void
|
|
|
|
delegate_files_info (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_files_info (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_files_info (struct target_ops *self)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_files_info (struct target_ops *self)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_files_info (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_files_info (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_files_info (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
add target method delegation
This patch replaces some code in the record targets with target method
delegation.
record-full.c stores pointers to many target methods when the record
target is pushed. Then it later delegates some calls via these. This
is wrong because it violates the target stack contract. In particular
it is ok to unpush a target at any stratum, but record-full does not
keep track of this, so it could potentially call into an unpushed
target.
This patch fixes the problem by using the newly-introduced generic
approach to target delegation for the methods in question.
2014-02-19 Tom Tromey <tromey@redhat.com>
* record-full.c (record_full_beneath_to_resume_ops)
(record_full_beneath_to_resume, record_full_beneath_to_wait_ops)
(record_full_beneath_to_wait)
(record_full_beneath_to_store_registers_ops)
(record_full_beneath_to_store_registers)
(record_full_beneath_to_xfer_partial_ops)
(record_full_beneath_to_xfer_partial)
(record_full_beneath_to_insert_breakpoint_ops)
(record_full_beneath_to_insert_breakpoint)
(record_full_beneath_to_remove_breakpoint_ops)
(record_full_beneath_to_remove_breakpoint)
(record_full_beneath_to_stopped_by_watchpoint)
(record_full_beneath_to_stopped_data_address)
(record_full_beneath_to_async, tmp_to_resume_ops, tmp_to_resume)
(tmp_to_wait_ops, tmp_to_wait, tmp_to_store_registers_ops)
(tmp_to_store_registers, tmp_to_xfer_partial_ops)
(tmp_to_xfer_partial, tmp_to_instmp_to_insert_breakpoint_ops)
(tmp_to_insert_breakpoint, tmp_to_remove_breakpoint_ops)
(tmp_to_remove_breakpoint, tmp_to_stopped_by_watchpoint)
(tmp_to_stopped_data_address, tmp_to_async): Remove.
(record_full_open_1, record_full_open): Update. Use RECORD_IS_USED.
(record_full_resume, record_full_wait_1)
(record_full_stopped_by_watchpoint, record_full_stopped_data_address)
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint)
(record_full_async, record_full_core_xfer_partial): Use target
delegation.
* target-delegates.c: Rebuild.
* target.c (current_xfer_partial): Remove.
(update_current_target): Do not INHERIT or de_fault
to_insert_breakpoint, to_remove_breakpoint,
to_stopped_data_address, to_stopped_by_watchpoint, to_can_async_p,
to_is_async_p, to_async. Do not set to_xfer_partial field.
(default_xfer_partial): Simplify.
(current_xfer_partial): Remove.
(target_wait, target_resume): Simplify.
(find_default_can_async_p, find_default_is_async_p): Update.
(init_dummy_target): Don't set to_can_async_p, to_is_async_p,
to_xfer_partial, to_stopped_by_watchpoint,
to_stopped_data_address.
(target_store_registers): Simplify.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
(target_remove_breakpoint, target_insert_breakpoint)
(debug_to_insert_breakpoint, debug_to_remove_breakpoint): Update.
* target.h (struct target_ops) <to_resume, to_wait,
to_store_registers, to_insert_breakpoint, to_remove_breakpoint,
to_stopped_by_watchpoint, to_stopped_data_address, to_can_async_p,
to_is_async_p, to_async, to_xfer_partial>: Add TARGET_DEFAULT
markup.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
* record-btrace.c (record_btrace_remove_breakpoint): Delegate
directly.
(record_btrace_insert_breakpoint): Delegate directly.
2013-07-13 03:00:34 +08:00
|
|
|
static int
|
|
|
|
delegate_insert_breakpoint (struct target_ops *self, struct gdbarch *arg1, struct bp_target_info *arg2)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_insert_breakpoint (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_insert_breakpoint (struct target_ops *self, struct gdbarch *arg1, struct bp_target_info *arg2)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_insert_breakpoint (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_insert_breakpoint (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_insert_breakpoint (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_gdbarch_p (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_bp_target_info_p (arg2);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
add target method delegation
This patch replaces some code in the record targets with target method
delegation.
record-full.c stores pointers to many target methods when the record
target is pushed. Then it later delegates some calls via these. This
is wrong because it violates the target stack contract. In particular
it is ok to unpush a target at any stratum, but record-full does not
keep track of this, so it could potentially call into an unpushed
target.
This patch fixes the problem by using the newly-introduced generic
approach to target delegation for the methods in question.
2014-02-19 Tom Tromey <tromey@redhat.com>
* record-full.c (record_full_beneath_to_resume_ops)
(record_full_beneath_to_resume, record_full_beneath_to_wait_ops)
(record_full_beneath_to_wait)
(record_full_beneath_to_store_registers_ops)
(record_full_beneath_to_store_registers)
(record_full_beneath_to_xfer_partial_ops)
(record_full_beneath_to_xfer_partial)
(record_full_beneath_to_insert_breakpoint_ops)
(record_full_beneath_to_insert_breakpoint)
(record_full_beneath_to_remove_breakpoint_ops)
(record_full_beneath_to_remove_breakpoint)
(record_full_beneath_to_stopped_by_watchpoint)
(record_full_beneath_to_stopped_data_address)
(record_full_beneath_to_async, tmp_to_resume_ops, tmp_to_resume)
(tmp_to_wait_ops, tmp_to_wait, tmp_to_store_registers_ops)
(tmp_to_store_registers, tmp_to_xfer_partial_ops)
(tmp_to_xfer_partial, tmp_to_instmp_to_insert_breakpoint_ops)
(tmp_to_insert_breakpoint, tmp_to_remove_breakpoint_ops)
(tmp_to_remove_breakpoint, tmp_to_stopped_by_watchpoint)
(tmp_to_stopped_data_address, tmp_to_async): Remove.
(record_full_open_1, record_full_open): Update. Use RECORD_IS_USED.
(record_full_resume, record_full_wait_1)
(record_full_stopped_by_watchpoint, record_full_stopped_data_address)
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint)
(record_full_async, record_full_core_xfer_partial): Use target
delegation.
* target-delegates.c: Rebuild.
* target.c (current_xfer_partial): Remove.
(update_current_target): Do not INHERIT or de_fault
to_insert_breakpoint, to_remove_breakpoint,
to_stopped_data_address, to_stopped_by_watchpoint, to_can_async_p,
to_is_async_p, to_async. Do not set to_xfer_partial field.
(default_xfer_partial): Simplify.
(current_xfer_partial): Remove.
(target_wait, target_resume): Simplify.
(find_default_can_async_p, find_default_is_async_p): Update.
(init_dummy_target): Don't set to_can_async_p, to_is_async_p,
to_xfer_partial, to_stopped_by_watchpoint,
to_stopped_data_address.
(target_store_registers): Simplify.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
(target_remove_breakpoint, target_insert_breakpoint)
(debug_to_insert_breakpoint, debug_to_remove_breakpoint): Update.
* target.h (struct target_ops) <to_resume, to_wait,
to_store_registers, to_insert_breakpoint, to_remove_breakpoint,
to_stopped_by_watchpoint, to_stopped_data_address, to_can_async_p,
to_is_async_p, to_async, to_xfer_partial>: Add TARGET_DEFAULT
markup.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
* record-btrace.c (record_btrace_remove_breakpoint): Delegate
directly.
(record_btrace_insert_breakpoint): Delegate directly.
2013-07-13 03:00:34 +08:00
|
|
|
static int
|
|
|
|
delegate_remove_breakpoint (struct target_ops *self, struct gdbarch *arg1, struct bp_target_info *arg2)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_remove_breakpoint (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_remove_breakpoint (struct target_ops *self, struct gdbarch *arg1, struct bp_target_info *arg2)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_remove_breakpoint (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_remove_breakpoint (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_remove_breakpoint (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_gdbarch_p (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_bp_target_info_p (arg2);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
Teach GDB about targets that can tell whether a trap is a breakpoint event
The moribund locations heuristics are problematic. This patch teaches
GDB about targets that can reliably tell whether a trap was caused by
a software or hardware breakpoint, and thus don't need moribund
locations, thus bypassing all the problems that mechanism has.
The non-stop-fair-events.exp test is frequently failing currently.
E.g., see https://sourceware.org/ml/gdb-testers/2015-q1/msg03148.html.
The root cause is a fundamental problem with moribund locations. For
example, the stepped_breakpoint logic added by af48d08f breaks in this
case (which is what happens with that test):
- Step thread A, no breakpoint is set at PC.
- The kernel doesn't schedule thread A yet.
- Insert breakpoint at A's PC, for some reason (e.g., a step-resume
breakpoint for thread B).
- Kernel finally schedules thread A.
- thread A's stepped_breakpoint flag is not set, even though it now
stepped a breakpoint instruction.
- adjust_pc_after_break gets the PC wrong, because PC == PREV_PC, but
stepped_breakpoint is not set.
We needed the stepped_breakpoint logic to workaround moribund
locations, because otherwise adjust_pc_after_break could apply an
adjustment when it shouldn't just because there _used_ to be a
breakpoint at PC (a moribund breakpoint location). For example, on
x86, that's wrong if the thread really hasn't executed an int3, but
instead executed some other 1-byte long instruction. Getting the PC
adjustment wrong of course leads to the inferior executing the wrong
instruction.
Other problems with moribund locations are:
- if a true SIGTRAP happens to be raised when the program is
executing the PC that used to have a breakpoint, GDB will assume
that is a trap for a breakpoint that has recently been removed, and
thus we miss reporting the random signal to the user.
- to minimize that, we get rid of moribund location after a while.
That while is defined as just a certain number of events being
processed. That number of events sometimes passes by before a
delayed breakpoint is processed, and GDB confuses the trap for a
random signal, thus reporting the random trap. Once the user
resumes the thread, the program crashes because the PC was not
adjusted...
The fix for all this is to bite the bullet and get rid of heuristics
and instead rely on the target knowing accurately what caused the
SIGTRAP. The target/kernel/stub is in the best position to know what
that, because it can e.g. consult priviledged CPU flags GDB has no
access to, or by knowing which exception vector entry was called when
the instruction trapped, etc. Most debug APIs I've seen to date
report breakpoint hits as a distinct event in some fashion. For
example, on the Linux kernel, whether a breakpoint was executed is
exposed to userspace in the si_code field of the SIGTRAP's siginfo.
On Windows, the debug API reports a EXCEPTION_BREAKPOINT exception
code.
We needed to keep around deleted breakpoints in an on-the-side list
(the moribund locations) for two main reasons:
- Know that a SIGTRAP actually is a delayed event for a hit of a
breakpoint that was removed before the event was processed, and
thus should not be reported as a random signal.
- So we still do the decr_pc_after_break adjustment in that case, so
that the thread is resumed at the correct address.
In the new model, if GDB processes an event the target tells is a
breakpoint trap, and GDB doesn't find the corresponding breakpoint in
its breakpoint tables, it means that event is a delayed event for a
breakpoint that has since been removed, and thus the event should be
ignored.
For the decr_pc_after_after issue, it ends up being much simpler that
on targets that can reliably tell whether a breakpoint trapped, for
the breakpoint trap to present the PC already adjusted. Proper
multi-threading support already implies that targets needs to be doing
decr_pc_after_break adjustment themselves, otherwise for example, in
all-stop if two threads hit a breakpoint simultaneously, and the user
does "info threads", he'll see the non-event thread that hit the
breakpoint stopped at the wrong PC.
This way (target adjusts) also ends up eliminating the need for some
awkward re-incrementing of the PC in the record-full and Linux targets
that we do today, and the need for the target_decr_pc_after_break
hook.
If the target always adjusts, then there's a case where GDB needs to
re-increment the PC. Say, on x86, an "int3" instruction that was
explicitly written in the program traps. In this case, GDB should
report a random SIGTRAP signal to the user, with the PC pointing at
the instruction past the int3, just like if GDB was not debugging the
program. The user may well decide to pass the SIGTRAP to the program
because the program being debugged has a SIGTRAP handler that handles
its own breakpoints, and expects the PC to be unadjusted.
Tested on x86-64 Fedora 20.
gdb/ChangeLog:
2015-03-04 Pedro Alves <palves@redhat.com>
* breakpoint.c (need_moribund_for_location_type): New function.
(bpstat_stop_status): Don't skipping checking moribund locations
of breakpoint types which the target tell caused a stop.
(program_breakpoint_here_p): New function, factored out from ...
(bp_loc_is_permanent): ... this.
(update_global_location_list): Don't create a moribund location if
the target supports reporting stops of the type of the removed
breakpoint.
* breakpoint.h (program_breakpoint_here_p): New declaration.
* infrun.c (adjust_pc_after_break): Return early if the target has
already adjusted the PC. Add comments.
(handle_signal_stop): If nothing explains a signal, and the target
tells us the stop was caused by a software breakpoint, check if
there's a breakpoint instruction in the memory. If so, adjust the
PC before presenting the stop to the user. Otherwise, ignore the
trap. If nothing explains a signal, and the target tells us the
stop was caused by a hardware breakpoint, ignore the trap.
* target.h (struct target_ops) <to_stopped_by_sw_breakpoint,
to_supports_stopped_by_sw_breakpoint, to_stopped_by_hw_breakpoint,
to_supports_stopped_by_hw_breakpoint>: New fields.
(target_stopped_by_sw_breakpoint)
(target_supports_stopped_by_sw_breakpoint)
(target_stopped_by_hw_breakpoint)
(target_supports_stopped_by_hw_breakpoint): Define.
* target-delegates.c: Regenerate.
2015-03-05 04:41:15 +08:00
|
|
|
static int
|
|
|
|
delegate_stopped_by_sw_breakpoint (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_stopped_by_sw_breakpoint (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_stopped_by_sw_breakpoint (struct target_ops *self)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
debug_stopped_by_sw_breakpoint (struct target_ops *self)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_stopped_by_sw_breakpoint (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_stopped_by_sw_breakpoint (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_stopped_by_sw_breakpoint (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
delegate_supports_stopped_by_sw_breakpoint (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_supports_stopped_by_sw_breakpoint (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_supports_stopped_by_sw_breakpoint (struct target_ops *self)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
debug_supports_stopped_by_sw_breakpoint (struct target_ops *self)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_supports_stopped_by_sw_breakpoint (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_supports_stopped_by_sw_breakpoint (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_supports_stopped_by_sw_breakpoint (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
delegate_stopped_by_hw_breakpoint (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_stopped_by_hw_breakpoint (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_stopped_by_hw_breakpoint (struct target_ops *self)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
debug_stopped_by_hw_breakpoint (struct target_ops *self)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_stopped_by_hw_breakpoint (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_stopped_by_hw_breakpoint (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_stopped_by_hw_breakpoint (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
delegate_supports_stopped_by_hw_breakpoint (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_supports_stopped_by_hw_breakpoint (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_supports_stopped_by_hw_breakpoint (struct target_ops *self)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
debug_supports_stopped_by_hw_breakpoint (struct target_ops *self)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_supports_stopped_by_hw_breakpoint (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_supports_stopped_by_hw_breakpoint (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_supports_stopped_by_hw_breakpoint (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 00:58:16 +08:00
|
|
|
static int
|
|
|
|
delegate_can_use_hw_breakpoint (struct target_ops *self, int arg1, int arg2, int arg3)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_can_use_hw_breakpoint (self, arg1, arg2, arg3);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_can_use_hw_breakpoint (struct target_ops *self, int arg1, int arg2, int arg3)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_can_use_hw_breakpoint (struct target_ops *self, int arg1, int arg2, int arg3)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_can_use_hw_breakpoint (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_can_use_hw_breakpoint (&debug_target, arg1, arg2, arg3);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_can_use_hw_breakpoint (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg2);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg3);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:31:42 +08:00
|
|
|
static int
|
|
|
|
delegate_ranged_break_num_registers (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_ranged_break_num_registers (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_ranged_break_num_registers (struct target_ops *self)
|
|
|
|
{
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_ranged_break_num_registers (struct target_ops *self)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_ranged_break_num_registers (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_ranged_break_num_registers (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_ranged_break_num_registers (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 01:01:11 +08:00
|
|
|
static int
|
|
|
|
delegate_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *arg1, struct bp_target_info *arg2)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_insert_hw_breakpoint (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *arg1, struct bp_target_info *arg2)
|
|
|
|
{
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *arg1, struct bp_target_info *arg2)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_insert_hw_breakpoint (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_insert_hw_breakpoint (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_insert_hw_breakpoint (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_gdbarch_p (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_bp_target_info_p (arg2);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 01:05:18 +08:00
|
|
|
static int
|
|
|
|
delegate_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *arg1, struct bp_target_info *arg2)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_remove_hw_breakpoint (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *arg1, struct bp_target_info *arg2)
|
|
|
|
{
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *arg1, struct bp_target_info *arg2)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_remove_hw_breakpoint (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_remove_hw_breakpoint (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_remove_hw_breakpoint (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_gdbarch_p (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_bp_target_info_p (arg2);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 01:11:49 +08:00
|
|
|
static int
|
|
|
|
delegate_remove_watchpoint (struct target_ops *self, CORE_ADDR arg1, int arg2, int arg3, struct expression *arg4)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_remove_watchpoint (self, arg1, arg2, arg3, arg4);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_remove_watchpoint (struct target_ops *self, CORE_ADDR arg1, int arg2, int arg3, struct expression *arg4)
|
|
|
|
{
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_remove_watchpoint (struct target_ops *self, CORE_ADDR arg1, int arg2, int arg3, struct expression *arg4)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_remove_watchpoint (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_remove_watchpoint (&debug_target, arg1, arg2, arg3, arg4);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_remove_watchpoint (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_CORE_ADDR (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg2);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg3);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_expression_p (arg4);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 01:08:59 +08:00
|
|
|
static int
|
|
|
|
delegate_insert_watchpoint (struct target_ops *self, CORE_ADDR arg1, int arg2, int arg3, struct expression *arg4)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_insert_watchpoint (self, arg1, arg2, arg3, arg4);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_insert_watchpoint (struct target_ops *self, CORE_ADDR arg1, int arg2, int arg3, struct expression *arg4)
|
|
|
|
{
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_insert_watchpoint (struct target_ops *self, CORE_ADDR arg1, int arg2, int arg3, struct expression *arg4)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_insert_watchpoint (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_insert_watchpoint (&debug_target, arg1, arg2, arg3, arg4);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_insert_watchpoint (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_CORE_ADDR (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg2);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg3);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_expression_p (arg4);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:32:43 +08:00
|
|
|
static int
|
|
|
|
delegate_insert_mask_watchpoint (struct target_ops *self, CORE_ADDR arg1, CORE_ADDR arg2, int arg3)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_insert_mask_watchpoint (self, arg1, arg2, arg3);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_insert_mask_watchpoint (struct target_ops *self, CORE_ADDR arg1, CORE_ADDR arg2, int arg3)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_insert_mask_watchpoint (struct target_ops *self, CORE_ADDR arg1, CORE_ADDR arg2, int arg3)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_insert_mask_watchpoint (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_insert_mask_watchpoint (&debug_target, arg1, arg2, arg3);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_insert_mask_watchpoint (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_CORE_ADDR (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_CORE_ADDR (arg2);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg3);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:33:28 +08:00
|
|
|
static int
|
|
|
|
delegate_remove_mask_watchpoint (struct target_ops *self, CORE_ADDR arg1, CORE_ADDR arg2, int arg3)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_remove_mask_watchpoint (self, arg1, arg2, arg3);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_remove_mask_watchpoint (struct target_ops *self, CORE_ADDR arg1, CORE_ADDR arg2, int arg3)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_remove_mask_watchpoint (struct target_ops *self, CORE_ADDR arg1, CORE_ADDR arg2, int arg3)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_remove_mask_watchpoint (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_remove_mask_watchpoint (&debug_target, arg1, arg2, arg3);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_remove_mask_watchpoint (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_CORE_ADDR (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_CORE_ADDR (arg2);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg3);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
add target method delegation
This patch replaces some code in the record targets with target method
delegation.
record-full.c stores pointers to many target methods when the record
target is pushed. Then it later delegates some calls via these. This
is wrong because it violates the target stack contract. In particular
it is ok to unpush a target at any stratum, but record-full does not
keep track of this, so it could potentially call into an unpushed
target.
This patch fixes the problem by using the newly-introduced generic
approach to target delegation for the methods in question.
2014-02-19 Tom Tromey <tromey@redhat.com>
* record-full.c (record_full_beneath_to_resume_ops)
(record_full_beneath_to_resume, record_full_beneath_to_wait_ops)
(record_full_beneath_to_wait)
(record_full_beneath_to_store_registers_ops)
(record_full_beneath_to_store_registers)
(record_full_beneath_to_xfer_partial_ops)
(record_full_beneath_to_xfer_partial)
(record_full_beneath_to_insert_breakpoint_ops)
(record_full_beneath_to_insert_breakpoint)
(record_full_beneath_to_remove_breakpoint_ops)
(record_full_beneath_to_remove_breakpoint)
(record_full_beneath_to_stopped_by_watchpoint)
(record_full_beneath_to_stopped_data_address)
(record_full_beneath_to_async, tmp_to_resume_ops, tmp_to_resume)
(tmp_to_wait_ops, tmp_to_wait, tmp_to_store_registers_ops)
(tmp_to_store_registers, tmp_to_xfer_partial_ops)
(tmp_to_xfer_partial, tmp_to_instmp_to_insert_breakpoint_ops)
(tmp_to_insert_breakpoint, tmp_to_remove_breakpoint_ops)
(tmp_to_remove_breakpoint, tmp_to_stopped_by_watchpoint)
(tmp_to_stopped_data_address, tmp_to_async): Remove.
(record_full_open_1, record_full_open): Update. Use RECORD_IS_USED.
(record_full_resume, record_full_wait_1)
(record_full_stopped_by_watchpoint, record_full_stopped_data_address)
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint)
(record_full_async, record_full_core_xfer_partial): Use target
delegation.
* target-delegates.c: Rebuild.
* target.c (current_xfer_partial): Remove.
(update_current_target): Do not INHERIT or de_fault
to_insert_breakpoint, to_remove_breakpoint,
to_stopped_data_address, to_stopped_by_watchpoint, to_can_async_p,
to_is_async_p, to_async. Do not set to_xfer_partial field.
(default_xfer_partial): Simplify.
(current_xfer_partial): Remove.
(target_wait, target_resume): Simplify.
(find_default_can_async_p, find_default_is_async_p): Update.
(init_dummy_target): Don't set to_can_async_p, to_is_async_p,
to_xfer_partial, to_stopped_by_watchpoint,
to_stopped_data_address.
(target_store_registers): Simplify.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
(target_remove_breakpoint, target_insert_breakpoint)
(debug_to_insert_breakpoint, debug_to_remove_breakpoint): Update.
* target.h (struct target_ops) <to_resume, to_wait,
to_store_registers, to_insert_breakpoint, to_remove_breakpoint,
to_stopped_by_watchpoint, to_stopped_data_address, to_can_async_p,
to_is_async_p, to_async, to_xfer_partial>: Add TARGET_DEFAULT
markup.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
* record-btrace.c (record_btrace_remove_breakpoint): Delegate
directly.
(record_btrace_insert_breakpoint): Delegate directly.
2013-07-13 03:00:34 +08:00
|
|
|
static int
|
|
|
|
delegate_stopped_by_watchpoint (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_stopped_by_watchpoint (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_stopped_by_watchpoint (struct target_ops *self)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_stopped_by_watchpoint (struct target_ops *self)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_stopped_by_watchpoint (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_stopped_by_watchpoint (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_stopped_by_watchpoint (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
add target method delegation
This patch replaces some code in the record targets with target method
delegation.
record-full.c stores pointers to many target methods when the record
target is pushed. Then it later delegates some calls via these. This
is wrong because it violates the target stack contract. In particular
it is ok to unpush a target at any stratum, but record-full does not
keep track of this, so it could potentially call into an unpushed
target.
This patch fixes the problem by using the newly-introduced generic
approach to target delegation for the methods in question.
2014-02-19 Tom Tromey <tromey@redhat.com>
* record-full.c (record_full_beneath_to_resume_ops)
(record_full_beneath_to_resume, record_full_beneath_to_wait_ops)
(record_full_beneath_to_wait)
(record_full_beneath_to_store_registers_ops)
(record_full_beneath_to_store_registers)
(record_full_beneath_to_xfer_partial_ops)
(record_full_beneath_to_xfer_partial)
(record_full_beneath_to_insert_breakpoint_ops)
(record_full_beneath_to_insert_breakpoint)
(record_full_beneath_to_remove_breakpoint_ops)
(record_full_beneath_to_remove_breakpoint)
(record_full_beneath_to_stopped_by_watchpoint)
(record_full_beneath_to_stopped_data_address)
(record_full_beneath_to_async, tmp_to_resume_ops, tmp_to_resume)
(tmp_to_wait_ops, tmp_to_wait, tmp_to_store_registers_ops)
(tmp_to_store_registers, tmp_to_xfer_partial_ops)
(tmp_to_xfer_partial, tmp_to_instmp_to_insert_breakpoint_ops)
(tmp_to_insert_breakpoint, tmp_to_remove_breakpoint_ops)
(tmp_to_remove_breakpoint, tmp_to_stopped_by_watchpoint)
(tmp_to_stopped_data_address, tmp_to_async): Remove.
(record_full_open_1, record_full_open): Update. Use RECORD_IS_USED.
(record_full_resume, record_full_wait_1)
(record_full_stopped_by_watchpoint, record_full_stopped_data_address)
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint)
(record_full_async, record_full_core_xfer_partial): Use target
delegation.
* target-delegates.c: Rebuild.
* target.c (current_xfer_partial): Remove.
(update_current_target): Do not INHERIT or de_fault
to_insert_breakpoint, to_remove_breakpoint,
to_stopped_data_address, to_stopped_by_watchpoint, to_can_async_p,
to_is_async_p, to_async. Do not set to_xfer_partial field.
(default_xfer_partial): Simplify.
(current_xfer_partial): Remove.
(target_wait, target_resume): Simplify.
(find_default_can_async_p, find_default_is_async_p): Update.
(init_dummy_target): Don't set to_can_async_p, to_is_async_p,
to_xfer_partial, to_stopped_by_watchpoint,
to_stopped_data_address.
(target_store_registers): Simplify.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
(target_remove_breakpoint, target_insert_breakpoint)
(debug_to_insert_breakpoint, debug_to_remove_breakpoint): Update.
* target.h (struct target_ops) <to_resume, to_wait,
to_store_registers, to_insert_breakpoint, to_remove_breakpoint,
to_stopped_by_watchpoint, to_stopped_data_address, to_can_async_p,
to_is_async_p, to_async, to_xfer_partial>: Add TARGET_DEFAULT
markup.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
* record-btrace.c (record_btrace_remove_breakpoint): Delegate
directly.
(record_btrace_insert_breakpoint): Delegate directly.
2013-07-13 03:00:34 +08:00
|
|
|
static int
|
|
|
|
delegate_stopped_data_address (struct target_ops *self, CORE_ADDR *arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_stopped_data_address (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_stopped_data_address (struct target_ops *self, CORE_ADDR *arg1)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_stopped_data_address (struct target_ops *self, CORE_ADDR *arg1)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_stopped_data_address (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_stopped_data_address (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_stopped_data_address (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_CORE_ADDR_p (arg1);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 01:15:23 +08:00
|
|
|
static int
|
|
|
|
delegate_watchpoint_addr_within_range (struct target_ops *self, CORE_ADDR arg1, CORE_ADDR arg2, int arg3)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_watchpoint_addr_within_range (self, arg1, arg2, arg3);
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_watchpoint_addr_within_range (struct target_ops *self, CORE_ADDR arg1, CORE_ADDR arg2, int arg3)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_watchpoint_addr_within_range (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_watchpoint_addr_within_range (&debug_target, arg1, arg2, arg3);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_watchpoint_addr_within_range (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_CORE_ADDR (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_CORE_ADDR (arg2);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg3);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 01:18:05 +08:00
|
|
|
static int
|
|
|
|
delegate_region_ok_for_hw_watchpoint (struct target_ops *self, CORE_ADDR arg1, int arg2)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_region_ok_for_hw_watchpoint (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_region_ok_for_hw_watchpoint (struct target_ops *self, CORE_ADDR arg1, int arg2)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_region_ok_for_hw_watchpoint (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_region_ok_for_hw_watchpoint (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_region_ok_for_hw_watchpoint (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_CORE_ADDR (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg2);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 01:20:48 +08:00
|
|
|
static int
|
|
|
|
delegate_can_accel_watchpoint_condition (struct target_ops *self, CORE_ADDR arg1, int arg2, int arg3, struct expression *arg4)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_can_accel_watchpoint_condition (self, arg1, arg2, arg3, arg4);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_can_accel_watchpoint_condition (struct target_ops *self, CORE_ADDR arg1, int arg2, int arg3, struct expression *arg4)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_can_accel_watchpoint_condition (struct target_ops *self, CORE_ADDR arg1, int arg2, int arg3, struct expression *arg4)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_can_accel_watchpoint_condition (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_can_accel_watchpoint_condition (&debug_target, arg1, arg2, arg3, arg4);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_can_accel_watchpoint_condition (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_CORE_ADDR (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg2);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg3);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_expression_p (arg4);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:34:15 +08:00
|
|
|
static int
|
|
|
|
delegate_masked_watch_num_registers (struct target_ops *self, CORE_ADDR arg1, CORE_ADDR arg2)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_masked_watch_num_registers (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_masked_watch_num_registers (struct target_ops *self, CORE_ADDR arg1, CORE_ADDR arg2)
|
|
|
|
{
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_masked_watch_num_registers (struct target_ops *self, CORE_ADDR arg1, CORE_ADDR arg2)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_masked_watch_num_registers (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_masked_watch_num_registers (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_masked_watch_num_registers (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_CORE_ADDR (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_CORE_ADDR (arg2);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 01:24:07 +08:00
|
|
|
static void
|
|
|
|
delegate_terminal_init (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_terminal_init (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_terminal_init (struct target_ops *self)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_terminal_init (struct target_ops *self)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_terminal_init (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_terminal_init (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_terminal_init (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 01:29:01 +08:00
|
|
|
static void
|
|
|
|
delegate_terminal_inferior (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_terminal_inferior (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_terminal_inferior (struct target_ops *self)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_terminal_inferior (struct target_ops *self)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_terminal_inferior (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_terminal_inferior (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_terminal_inferior (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 01:29:46 +08:00
|
|
|
static void
|
|
|
|
delegate_terminal_ours_for_output (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_terminal_ours_for_output (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_terminal_ours_for_output (struct target_ops *self)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_terminal_ours_for_output (struct target_ops *self)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_terminal_ours_for_output (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_terminal_ours_for_output (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_terminal_ours_for_output (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 01:30:16 +08:00
|
|
|
static void
|
|
|
|
delegate_terminal_ours (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_terminal_ours (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_terminal_ours (struct target_ops *self)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_terminal_ours (struct target_ops *self)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_terminal_ours (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_terminal_ours (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_terminal_ours (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 01:31:10 +08:00
|
|
|
static void
|
|
|
|
delegate_terminal_info (struct target_ops *self, const char *arg1, int arg2)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_terminal_info (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_terminal_info (struct target_ops *self, const char *arg1, int arg2)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_terminal_info (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_terminal_info (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_terminal_info (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_const_char_p (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg2);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:35:15 +08:00
|
|
|
static void
|
|
|
|
delegate_kill (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_kill (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_kill (struct target_ops *self)
|
|
|
|
{
|
|
|
|
noprocess ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_kill (struct target_ops *self)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_kill (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_kill (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_kill (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 01:31:48 +08:00
|
|
|
static void
|
2013-03-28 04:14:26 +08:00
|
|
|
delegate_load (struct target_ops *self, const char *arg1, int arg2)
|
2013-12-19 01:31:48 +08:00
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_load (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2013-03-28 04:14:26 +08:00
|
|
|
tdefault_load (struct target_ops *self, const char *arg1, int arg2)
|
2013-12-19 01:31:48 +08:00
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_load (struct target_ops *self, const char *arg1, int arg2)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_load (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_load (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_load (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_const_char_p (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg2);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 01:32:56 +08:00
|
|
|
static void
|
|
|
|
delegate_post_startup_inferior (struct target_ops *self, ptid_t arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_post_startup_inferior (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_post_startup_inferior (struct target_ops *self, ptid_t arg1)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_post_startup_inferior (struct target_ops *self, ptid_t arg1)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_post_startup_inferior (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_post_startup_inferior (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_post_startup_inferior (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_ptid_t (arg1);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 01:33:43 +08:00
|
|
|
static int
|
|
|
|
delegate_insert_fork_catchpoint (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_insert_fork_catchpoint (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_insert_fork_catchpoint (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_insert_fork_catchpoint (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_insert_fork_catchpoint (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_insert_fork_catchpoint (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_insert_fork_catchpoint (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg1);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 01:34:15 +08:00
|
|
|
static int
|
|
|
|
delegate_remove_fork_catchpoint (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_remove_fork_catchpoint (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_remove_fork_catchpoint (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_remove_fork_catchpoint (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_remove_fork_catchpoint (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_remove_fork_catchpoint (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_remove_fork_catchpoint (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg1);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 01:44:22 +08:00
|
|
|
static int
|
|
|
|
delegate_insert_vfork_catchpoint (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_insert_vfork_catchpoint (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_insert_vfork_catchpoint (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_insert_vfork_catchpoint (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_insert_vfork_catchpoint (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_insert_vfork_catchpoint (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_insert_vfork_catchpoint (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg1);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 01:44:57 +08:00
|
|
|
static int
|
|
|
|
delegate_remove_vfork_catchpoint (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_remove_vfork_catchpoint (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_remove_vfork_catchpoint (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_remove_vfork_catchpoint (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_remove_vfork_catchpoint (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_remove_vfork_catchpoint (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_remove_vfork_catchpoint (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg1);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:38:04 +08:00
|
|
|
static int
|
|
|
|
delegate_follow_fork (struct target_ops *self, int arg1, int arg2)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_follow_fork (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_follow_fork (struct target_ops *self, int arg1, int arg2)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_follow_fork (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_follow_fork (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_follow_fork (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg2);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 01:45:38 +08:00
|
|
|
static int
|
|
|
|
delegate_insert_exec_catchpoint (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_insert_exec_catchpoint (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_insert_exec_catchpoint (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_insert_exec_catchpoint (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_insert_exec_catchpoint (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_insert_exec_catchpoint (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_insert_exec_catchpoint (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg1);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 01:46:02 +08:00
|
|
|
static int
|
|
|
|
delegate_remove_exec_catchpoint (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_remove_exec_catchpoint (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_remove_exec_catchpoint (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_remove_exec_catchpoint (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_remove_exec_catchpoint (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_remove_exec_catchpoint (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_remove_exec_catchpoint (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg1);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 01:46:38 +08:00
|
|
|
static int
|
|
|
|
delegate_set_syscall_catchpoint (struct target_ops *self, int arg1, int arg2, int arg3, int arg4, int *arg5)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_set_syscall_catchpoint (self, arg1, arg2, arg3, arg4, arg5);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_set_syscall_catchpoint (struct target_ops *self, int arg1, int arg2, int arg3, int arg4, int *arg5)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_set_syscall_catchpoint (struct target_ops *self, int arg1, int arg2, int arg3, int arg4, int *arg5)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_set_syscall_catchpoint (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_set_syscall_catchpoint (&debug_target, arg1, arg2, arg3, arg4, arg5);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_set_syscall_catchpoint (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg2);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg3);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg4);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int_p (arg5);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 01:47:22 +08:00
|
|
|
static int
|
|
|
|
delegate_has_exited (struct target_ops *self, int arg1, int arg2, int *arg3)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_has_exited (self, arg1, arg2, arg3);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_has_exited (struct target_ops *self, int arg1, int arg2, int *arg3)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_has_exited (struct target_ops *self, int arg1, int arg2, int *arg3)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_has_exited (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_has_exited (&debug_target, arg1, arg2, arg3);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_has_exited (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg2);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int_p (arg3);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:40:23 +08:00
|
|
|
static void
|
|
|
|
delegate_mourn_inferior (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_mourn_inferior (self);
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_mourn_inferior (struct target_ops *self)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_mourn_inferior (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_mourn_inferior (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_mourn_inferior (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-21 03:19:37 +08:00
|
|
|
static int
|
|
|
|
delegate_can_run (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_can_run (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_can_run (struct target_ops *self)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_can_run (struct target_ops *self)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_can_run (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_can_run (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_can_run (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:42:10 +08:00
|
|
|
static void
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
delegate_pass_signals (struct target_ops *self, int arg1, unsigned char * arg2)
|
2013-12-19 05:42:10 +08:00
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_pass_signals (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
tdefault_pass_signals (struct target_ops *self, int arg1, unsigned char * arg2)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
debug_pass_signals (struct target_ops *self, int arg1, unsigned char * arg2)
|
2013-12-19 05:42:10 +08:00
|
|
|
{
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_pass_signals (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_pass_signals (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_pass_signals (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_signals (arg2);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
2013-12-19 05:42:10 +08:00
|
|
|
}
|
|
|
|
|
2013-12-19 05:42:54 +08:00
|
|
|
static void
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
delegate_program_signals (struct target_ops *self, int arg1, unsigned char * arg2)
|
2013-12-19 05:42:54 +08:00
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_program_signals (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
tdefault_program_signals (struct target_ops *self, int arg1, unsigned char * arg2)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
debug_program_signals (struct target_ops *self, int arg1, unsigned char * arg2)
|
2013-12-19 05:42:54 +08:00
|
|
|
{
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_program_signals (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_program_signals (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_program_signals (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_signals (arg2);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
2013-12-19 05:42:54 +08:00
|
|
|
}
|
|
|
|
|
2013-12-19 22:21:56 +08:00
|
|
|
static int
|
|
|
|
delegate_thread_alive (struct target_ops *self, ptid_t arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_thread_alive (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_thread_alive (struct target_ops *self, ptid_t arg1)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_thread_alive (struct target_ops *self, ptid_t arg1)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_thread_alive (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_thread_alive (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_thread_alive (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_ptid_t (arg1);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:44:20 +08:00
|
|
|
static void
|
Push pruning old threads down to the target
When GDB wants to sync the thread list with the target's (e.g., due to
"info threads"), it calls update_thread_list:
update_thread_list (void)
{
prune_threads ();
target_find_new_threads ();
update_threads_executing ();
}
And then prune_threads does:
prune_threads (void)
{
struct thread_info *tp, *next;
for (tp = thread_list; tp; tp = next)
{
next = tp->next;
if (!thread_alive (tp))
delete_thread (tp->ptid);
}
}
Calling thread_live on each thread one by one is expensive.
E.g., on Linux, it ends up doing kill(SIG0) once for each thread. Not
a big deal, but still a bunch of syscalls...
With the remote target, it's cumbersome. That thread_alive call ends
up generating one T packet per thread:
Sending packet: $Tp2141.2150#82...Packet received: OK
Sending packet: $Tp2141.214f#b7...Packet received: OK
Sending packet: $Tp2141.2141#82...Packet received: OK
Sending packet: $qXfer:threads:read::0,fff#03...Packet received: l<threads>\n<thread id="p2141.2141" core="2"/>\n<thread id="p2141.214f" core="1"/>\n<thread id="p2141.2150" core="2"/>\n</threads>\n
That seems a bit silly when target_find_new_threads method
implementations will always fetch the whole current set of target
threads, and then add those that are not in GDB's thread list, to
GDB's thread list.
This patch thus pushes down the responsibility of pruning dead threads
to the target_find_new_threads method instead, so a target may
implement pruning dead threads however it wants.
Once we do that, target_find_new_threads becomes a misnomer, so the
patch renames it to target_update_thread_list.
The patch doesn't attempt to do any optimization to any target yet.
It simply exports prune_threads, and makes all implementations of
target_update_thread_list call that. It's meant to be a no-op.
gdb/
2014-10-15 Pedro Alves <palves@redhat.com>
* ada-tasks.c (print_ada_task_info, task_command_1): Adjust.
* bsd-uthread.c (bsd_uthread_find_new_threads): Rename to ...
(bsd_uthread_update_thread_list): ... this. Call prune_threads.
(bsd_uthread_target): Adjust.
* corelow.c (core_open): Adjust.
* dec-thread.c (dec_thread_find_new_threads): Update comment.
(dec_thread_update_thread_list): New function.
(init_dec_thread_ops): Adjust.
* gdbthread.h (prune_threads): New declaration.
* linux-thread-db.c (thread_db_find_new_threads): Rename to ...
(thread_db_update_thread_list): ... this. Call prune_threads.
(init_thread_db_ops): Adjust.
* nto-procfs.c (procfs_find_new_threads): Rename to ...
(procfs_update_thread_list): ... this. Call prune_threads.
(procfs_attach, procfs_create_inferior, init_procfs_targets):
Adjust.
* obsd-nat.c (obsd_find_new_threads): Rename to ...
(obsd_update_thread_list): ... this. Call prune_threads.
(obsd_add_target): Adjust.
* procfs.c (procfs_target): Adjust.
(procfs_notice_thread): Update comment.
(procfs_find_new_threads): Rename to ...
(procfs_update_thread_list): ... this. Call prune_threads.
* ravenscar-thread.c (ravenscar_update_inferior_ptid): Update
comment.
(ravenscar_wait): Adjust.
(ravenscar_find_new_threads): Rename to ...
(ravenscar_update_thread_list): ... this. Call prune_threads.
(init_ravenscar_thread_ops): Adjust.
* record-btrace.c (record_btrace_find_new_threads): Rename to ...
(record_btrace_update_thread_list): ... this. Adjust comment.
(init_record_btrace_ops): Adjust.
* remote.c (remote_threads_info): Rename to ...
(remote_update_thread_list): ... this. Call prune_threads.
(remote_start_remote, extended_remote_attach_1, init_remote_ops):
Adjust.
* sol-thread.c (check_for_thread_db): Adjust.
(sol_find_new_threads_callback): Rename to ...
(sol_update_thread_list_callback): ... this.
(sol_find_new_threads): Rename to ...
(sol_update_thread_list): ... this. Call prune_threads. Adjust.
(sol_get_ada_task_ptid, init_sol_thread_ops): Adjust.
* target-delegates.c: Regenerate.
* target.c (target_find_new_threads): Rename to ...
(target_update_thread_list): ... this.
* target.h (struct target_ops): Rename to_find_new_threads field
to to_update_thread_list.
(target_find_new_threads): Rename to ...
(target_update_thread_list): ... this.
* thread.c (prune_threads): Make extern.
(update_thread_list): Adjust.
2014-10-16 05:44:00 +08:00
|
|
|
delegate_update_thread_list (struct target_ops *self)
|
2013-12-19 05:44:20 +08:00
|
|
|
{
|
|
|
|
self = self->beneath;
|
Push pruning old threads down to the target
When GDB wants to sync the thread list with the target's (e.g., due to
"info threads"), it calls update_thread_list:
update_thread_list (void)
{
prune_threads ();
target_find_new_threads ();
update_threads_executing ();
}
And then prune_threads does:
prune_threads (void)
{
struct thread_info *tp, *next;
for (tp = thread_list; tp; tp = next)
{
next = tp->next;
if (!thread_alive (tp))
delete_thread (tp->ptid);
}
}
Calling thread_live on each thread one by one is expensive.
E.g., on Linux, it ends up doing kill(SIG0) once for each thread. Not
a big deal, but still a bunch of syscalls...
With the remote target, it's cumbersome. That thread_alive call ends
up generating one T packet per thread:
Sending packet: $Tp2141.2150#82...Packet received: OK
Sending packet: $Tp2141.214f#b7...Packet received: OK
Sending packet: $Tp2141.2141#82...Packet received: OK
Sending packet: $qXfer:threads:read::0,fff#03...Packet received: l<threads>\n<thread id="p2141.2141" core="2"/>\n<thread id="p2141.214f" core="1"/>\n<thread id="p2141.2150" core="2"/>\n</threads>\n
That seems a bit silly when target_find_new_threads method
implementations will always fetch the whole current set of target
threads, and then add those that are not in GDB's thread list, to
GDB's thread list.
This patch thus pushes down the responsibility of pruning dead threads
to the target_find_new_threads method instead, so a target may
implement pruning dead threads however it wants.
Once we do that, target_find_new_threads becomes a misnomer, so the
patch renames it to target_update_thread_list.
The patch doesn't attempt to do any optimization to any target yet.
It simply exports prune_threads, and makes all implementations of
target_update_thread_list call that. It's meant to be a no-op.
gdb/
2014-10-15 Pedro Alves <palves@redhat.com>
* ada-tasks.c (print_ada_task_info, task_command_1): Adjust.
* bsd-uthread.c (bsd_uthread_find_new_threads): Rename to ...
(bsd_uthread_update_thread_list): ... this. Call prune_threads.
(bsd_uthread_target): Adjust.
* corelow.c (core_open): Adjust.
* dec-thread.c (dec_thread_find_new_threads): Update comment.
(dec_thread_update_thread_list): New function.
(init_dec_thread_ops): Adjust.
* gdbthread.h (prune_threads): New declaration.
* linux-thread-db.c (thread_db_find_new_threads): Rename to ...
(thread_db_update_thread_list): ... this. Call prune_threads.
(init_thread_db_ops): Adjust.
* nto-procfs.c (procfs_find_new_threads): Rename to ...
(procfs_update_thread_list): ... this. Call prune_threads.
(procfs_attach, procfs_create_inferior, init_procfs_targets):
Adjust.
* obsd-nat.c (obsd_find_new_threads): Rename to ...
(obsd_update_thread_list): ... this. Call prune_threads.
(obsd_add_target): Adjust.
* procfs.c (procfs_target): Adjust.
(procfs_notice_thread): Update comment.
(procfs_find_new_threads): Rename to ...
(procfs_update_thread_list): ... this. Call prune_threads.
* ravenscar-thread.c (ravenscar_update_inferior_ptid): Update
comment.
(ravenscar_wait): Adjust.
(ravenscar_find_new_threads): Rename to ...
(ravenscar_update_thread_list): ... this. Call prune_threads.
(init_ravenscar_thread_ops): Adjust.
* record-btrace.c (record_btrace_find_new_threads): Rename to ...
(record_btrace_update_thread_list): ... this. Adjust comment.
(init_record_btrace_ops): Adjust.
* remote.c (remote_threads_info): Rename to ...
(remote_update_thread_list): ... this. Call prune_threads.
(remote_start_remote, extended_remote_attach_1, init_remote_ops):
Adjust.
* sol-thread.c (check_for_thread_db): Adjust.
(sol_find_new_threads_callback): Rename to ...
(sol_update_thread_list_callback): ... this.
(sol_find_new_threads): Rename to ...
(sol_update_thread_list): ... this. Call prune_threads. Adjust.
(sol_get_ada_task_ptid, init_sol_thread_ops): Adjust.
* target-delegates.c: Regenerate.
* target.c (target_find_new_threads): Rename to ...
(target_update_thread_list): ... this.
* target.h (struct target_ops): Rename to_find_new_threads field
to to_update_thread_list.
(target_find_new_threads): Rename to ...
(target_update_thread_list): ... this.
* thread.c (prune_threads): Make extern.
(update_thread_list): Adjust.
2014-10-16 05:44:00 +08:00
|
|
|
self->to_update_thread_list (self);
|
2013-12-19 05:44:20 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
Push pruning old threads down to the target
When GDB wants to sync the thread list with the target's (e.g., due to
"info threads"), it calls update_thread_list:
update_thread_list (void)
{
prune_threads ();
target_find_new_threads ();
update_threads_executing ();
}
And then prune_threads does:
prune_threads (void)
{
struct thread_info *tp, *next;
for (tp = thread_list; tp; tp = next)
{
next = tp->next;
if (!thread_alive (tp))
delete_thread (tp->ptid);
}
}
Calling thread_live on each thread one by one is expensive.
E.g., on Linux, it ends up doing kill(SIG0) once for each thread. Not
a big deal, but still a bunch of syscalls...
With the remote target, it's cumbersome. That thread_alive call ends
up generating one T packet per thread:
Sending packet: $Tp2141.2150#82...Packet received: OK
Sending packet: $Tp2141.214f#b7...Packet received: OK
Sending packet: $Tp2141.2141#82...Packet received: OK
Sending packet: $qXfer:threads:read::0,fff#03...Packet received: l<threads>\n<thread id="p2141.2141" core="2"/>\n<thread id="p2141.214f" core="1"/>\n<thread id="p2141.2150" core="2"/>\n</threads>\n
That seems a bit silly when target_find_new_threads method
implementations will always fetch the whole current set of target
threads, and then add those that are not in GDB's thread list, to
GDB's thread list.
This patch thus pushes down the responsibility of pruning dead threads
to the target_find_new_threads method instead, so a target may
implement pruning dead threads however it wants.
Once we do that, target_find_new_threads becomes a misnomer, so the
patch renames it to target_update_thread_list.
The patch doesn't attempt to do any optimization to any target yet.
It simply exports prune_threads, and makes all implementations of
target_update_thread_list call that. It's meant to be a no-op.
gdb/
2014-10-15 Pedro Alves <palves@redhat.com>
* ada-tasks.c (print_ada_task_info, task_command_1): Adjust.
* bsd-uthread.c (bsd_uthread_find_new_threads): Rename to ...
(bsd_uthread_update_thread_list): ... this. Call prune_threads.
(bsd_uthread_target): Adjust.
* corelow.c (core_open): Adjust.
* dec-thread.c (dec_thread_find_new_threads): Update comment.
(dec_thread_update_thread_list): New function.
(init_dec_thread_ops): Adjust.
* gdbthread.h (prune_threads): New declaration.
* linux-thread-db.c (thread_db_find_new_threads): Rename to ...
(thread_db_update_thread_list): ... this. Call prune_threads.
(init_thread_db_ops): Adjust.
* nto-procfs.c (procfs_find_new_threads): Rename to ...
(procfs_update_thread_list): ... this. Call prune_threads.
(procfs_attach, procfs_create_inferior, init_procfs_targets):
Adjust.
* obsd-nat.c (obsd_find_new_threads): Rename to ...
(obsd_update_thread_list): ... this. Call prune_threads.
(obsd_add_target): Adjust.
* procfs.c (procfs_target): Adjust.
(procfs_notice_thread): Update comment.
(procfs_find_new_threads): Rename to ...
(procfs_update_thread_list): ... this. Call prune_threads.
* ravenscar-thread.c (ravenscar_update_inferior_ptid): Update
comment.
(ravenscar_wait): Adjust.
(ravenscar_find_new_threads): Rename to ...
(ravenscar_update_thread_list): ... this. Call prune_threads.
(init_ravenscar_thread_ops): Adjust.
* record-btrace.c (record_btrace_find_new_threads): Rename to ...
(record_btrace_update_thread_list): ... this. Adjust comment.
(init_record_btrace_ops): Adjust.
* remote.c (remote_threads_info): Rename to ...
(remote_update_thread_list): ... this. Call prune_threads.
(remote_start_remote, extended_remote_attach_1, init_remote_ops):
Adjust.
* sol-thread.c (check_for_thread_db): Adjust.
(sol_find_new_threads_callback): Rename to ...
(sol_update_thread_list_callback): ... this.
(sol_find_new_threads): Rename to ...
(sol_update_thread_list): ... this. Call prune_threads. Adjust.
(sol_get_ada_task_ptid, init_sol_thread_ops): Adjust.
* target-delegates.c: Regenerate.
* target.c (target_find_new_threads): Rename to ...
(target_update_thread_list): ... this.
* target.h (struct target_ops): Rename to_find_new_threads field
to to_update_thread_list.
(target_find_new_threads): Rename to ...
(target_update_thread_list): ... this.
* thread.c (prune_threads): Make extern.
(update_thread_list): Adjust.
2014-10-16 05:44:00 +08:00
|
|
|
tdefault_update_thread_list (struct target_ops *self)
|
2013-12-19 05:44:20 +08:00
|
|
|
{
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
Push pruning old threads down to the target
When GDB wants to sync the thread list with the target's (e.g., due to
"info threads"), it calls update_thread_list:
update_thread_list (void)
{
prune_threads ();
target_find_new_threads ();
update_threads_executing ();
}
And then prune_threads does:
prune_threads (void)
{
struct thread_info *tp, *next;
for (tp = thread_list; tp; tp = next)
{
next = tp->next;
if (!thread_alive (tp))
delete_thread (tp->ptid);
}
}
Calling thread_live on each thread one by one is expensive.
E.g., on Linux, it ends up doing kill(SIG0) once for each thread. Not
a big deal, but still a bunch of syscalls...
With the remote target, it's cumbersome. That thread_alive call ends
up generating one T packet per thread:
Sending packet: $Tp2141.2150#82...Packet received: OK
Sending packet: $Tp2141.214f#b7...Packet received: OK
Sending packet: $Tp2141.2141#82...Packet received: OK
Sending packet: $qXfer:threads:read::0,fff#03...Packet received: l<threads>\n<thread id="p2141.2141" core="2"/>\n<thread id="p2141.214f" core="1"/>\n<thread id="p2141.2150" core="2"/>\n</threads>\n
That seems a bit silly when target_find_new_threads method
implementations will always fetch the whole current set of target
threads, and then add those that are not in GDB's thread list, to
GDB's thread list.
This patch thus pushes down the responsibility of pruning dead threads
to the target_find_new_threads method instead, so a target may
implement pruning dead threads however it wants.
Once we do that, target_find_new_threads becomes a misnomer, so the
patch renames it to target_update_thread_list.
The patch doesn't attempt to do any optimization to any target yet.
It simply exports prune_threads, and makes all implementations of
target_update_thread_list call that. It's meant to be a no-op.
gdb/
2014-10-15 Pedro Alves <palves@redhat.com>
* ada-tasks.c (print_ada_task_info, task_command_1): Adjust.
* bsd-uthread.c (bsd_uthread_find_new_threads): Rename to ...
(bsd_uthread_update_thread_list): ... this. Call prune_threads.
(bsd_uthread_target): Adjust.
* corelow.c (core_open): Adjust.
* dec-thread.c (dec_thread_find_new_threads): Update comment.
(dec_thread_update_thread_list): New function.
(init_dec_thread_ops): Adjust.
* gdbthread.h (prune_threads): New declaration.
* linux-thread-db.c (thread_db_find_new_threads): Rename to ...
(thread_db_update_thread_list): ... this. Call prune_threads.
(init_thread_db_ops): Adjust.
* nto-procfs.c (procfs_find_new_threads): Rename to ...
(procfs_update_thread_list): ... this. Call prune_threads.
(procfs_attach, procfs_create_inferior, init_procfs_targets):
Adjust.
* obsd-nat.c (obsd_find_new_threads): Rename to ...
(obsd_update_thread_list): ... this. Call prune_threads.
(obsd_add_target): Adjust.
* procfs.c (procfs_target): Adjust.
(procfs_notice_thread): Update comment.
(procfs_find_new_threads): Rename to ...
(procfs_update_thread_list): ... this. Call prune_threads.
* ravenscar-thread.c (ravenscar_update_inferior_ptid): Update
comment.
(ravenscar_wait): Adjust.
(ravenscar_find_new_threads): Rename to ...
(ravenscar_update_thread_list): ... this. Call prune_threads.
(init_ravenscar_thread_ops): Adjust.
* record-btrace.c (record_btrace_find_new_threads): Rename to ...
(record_btrace_update_thread_list): ... this. Adjust comment.
(init_record_btrace_ops): Adjust.
* remote.c (remote_threads_info): Rename to ...
(remote_update_thread_list): ... this. Call prune_threads.
(remote_start_remote, extended_remote_attach_1, init_remote_ops):
Adjust.
* sol-thread.c (check_for_thread_db): Adjust.
(sol_find_new_threads_callback): Rename to ...
(sol_update_thread_list_callback): ... this.
(sol_find_new_threads): Rename to ...
(sol_update_thread_list): ... this. Call prune_threads. Adjust.
(sol_get_ada_task_ptid, init_sol_thread_ops): Adjust.
* target-delegates.c: Regenerate.
* target.c (target_find_new_threads): Rename to ...
(target_update_thread_list): ... this.
* target.h (struct target_ops): Rename to_find_new_threads field
to to_update_thread_list.
(target_find_new_threads): Rename to ...
(target_update_thread_list): ... this.
* thread.c (prune_threads): Make extern.
(update_thread_list): Adjust.
2014-10-16 05:44:00 +08:00
|
|
|
debug_update_thread_list (struct target_ops *self)
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
{
|
Push pruning old threads down to the target
When GDB wants to sync the thread list with the target's (e.g., due to
"info threads"), it calls update_thread_list:
update_thread_list (void)
{
prune_threads ();
target_find_new_threads ();
update_threads_executing ();
}
And then prune_threads does:
prune_threads (void)
{
struct thread_info *tp, *next;
for (tp = thread_list; tp; tp = next)
{
next = tp->next;
if (!thread_alive (tp))
delete_thread (tp->ptid);
}
}
Calling thread_live on each thread one by one is expensive.
E.g., on Linux, it ends up doing kill(SIG0) once for each thread. Not
a big deal, but still a bunch of syscalls...
With the remote target, it's cumbersome. That thread_alive call ends
up generating one T packet per thread:
Sending packet: $Tp2141.2150#82...Packet received: OK
Sending packet: $Tp2141.214f#b7...Packet received: OK
Sending packet: $Tp2141.2141#82...Packet received: OK
Sending packet: $qXfer:threads:read::0,fff#03...Packet received: l<threads>\n<thread id="p2141.2141" core="2"/>\n<thread id="p2141.214f" core="1"/>\n<thread id="p2141.2150" core="2"/>\n</threads>\n
That seems a bit silly when target_find_new_threads method
implementations will always fetch the whole current set of target
threads, and then add those that are not in GDB's thread list, to
GDB's thread list.
This patch thus pushes down the responsibility of pruning dead threads
to the target_find_new_threads method instead, so a target may
implement pruning dead threads however it wants.
Once we do that, target_find_new_threads becomes a misnomer, so the
patch renames it to target_update_thread_list.
The patch doesn't attempt to do any optimization to any target yet.
It simply exports prune_threads, and makes all implementations of
target_update_thread_list call that. It's meant to be a no-op.
gdb/
2014-10-15 Pedro Alves <palves@redhat.com>
* ada-tasks.c (print_ada_task_info, task_command_1): Adjust.
* bsd-uthread.c (bsd_uthread_find_new_threads): Rename to ...
(bsd_uthread_update_thread_list): ... this. Call prune_threads.
(bsd_uthread_target): Adjust.
* corelow.c (core_open): Adjust.
* dec-thread.c (dec_thread_find_new_threads): Update comment.
(dec_thread_update_thread_list): New function.
(init_dec_thread_ops): Adjust.
* gdbthread.h (prune_threads): New declaration.
* linux-thread-db.c (thread_db_find_new_threads): Rename to ...
(thread_db_update_thread_list): ... this. Call prune_threads.
(init_thread_db_ops): Adjust.
* nto-procfs.c (procfs_find_new_threads): Rename to ...
(procfs_update_thread_list): ... this. Call prune_threads.
(procfs_attach, procfs_create_inferior, init_procfs_targets):
Adjust.
* obsd-nat.c (obsd_find_new_threads): Rename to ...
(obsd_update_thread_list): ... this. Call prune_threads.
(obsd_add_target): Adjust.
* procfs.c (procfs_target): Adjust.
(procfs_notice_thread): Update comment.
(procfs_find_new_threads): Rename to ...
(procfs_update_thread_list): ... this. Call prune_threads.
* ravenscar-thread.c (ravenscar_update_inferior_ptid): Update
comment.
(ravenscar_wait): Adjust.
(ravenscar_find_new_threads): Rename to ...
(ravenscar_update_thread_list): ... this. Call prune_threads.
(init_ravenscar_thread_ops): Adjust.
* record-btrace.c (record_btrace_find_new_threads): Rename to ...
(record_btrace_update_thread_list): ... this. Adjust comment.
(init_record_btrace_ops): Adjust.
* remote.c (remote_threads_info): Rename to ...
(remote_update_thread_list): ... this. Call prune_threads.
(remote_start_remote, extended_remote_attach_1, init_remote_ops):
Adjust.
* sol-thread.c (check_for_thread_db): Adjust.
(sol_find_new_threads_callback): Rename to ...
(sol_update_thread_list_callback): ... this.
(sol_find_new_threads): Rename to ...
(sol_update_thread_list): ... this. Call prune_threads. Adjust.
(sol_get_ada_task_ptid, init_sol_thread_ops): Adjust.
* target-delegates.c: Regenerate.
* target.c (target_find_new_threads): Rename to ...
(target_update_thread_list): ... this.
* target.h (struct target_ops): Rename to_find_new_threads field
to to_update_thread_list.
(target_find_new_threads): Rename to ...
(target_update_thread_list): ... this.
* thread.c (prune_threads): Make extern.
(update_thread_list): Adjust.
2014-10-16 05:44:00 +08:00
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_update_thread_list (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_update_thread_list (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_update_thread_list (", debug_target.to_shortname);
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:46:03 +08:00
|
|
|
static char *
|
|
|
|
delegate_pid_to_str (struct target_ops *self, ptid_t arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_pid_to_str (self, arg1);
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static char *
|
|
|
|
debug_pid_to_str (struct target_ops *self, ptid_t arg1)
|
|
|
|
{
|
|
|
|
char * result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_pid_to_str (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_pid_to_str (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_pid_to_str (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_ptid_t (arg1);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_char_p (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 01:48:36 +08:00
|
|
|
static char *
|
|
|
|
delegate_extra_thread_info (struct target_ops *self, struct thread_info *arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_extra_thread_info (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static char *
|
|
|
|
tdefault_extra_thread_info (struct target_ops *self, struct thread_info *arg1)
|
|
|
|
{
|
pass NULL to TARGET_DEFAULT_RETURN when appropriate
This changes instances of TARGET_DEFAULT_RETURN(0) to
TARGET_DEFAULT_RETURN(NULL) when appropriate. The use of "0" was a
relic from an earlier implementation of make-target-delegates; and I
didn't want to go back through the long patch series, fixing up
conflicts, just to change this small detail.
2014-02-19 Tom Tromey <tromey@redhat.com>
* target-delegates.c: Rebuild.
* target.h (struct target_ops) <to_extra_thread_info,
to_thread_name, to_pid_to_exec_file, to_get_section_table,
to_memory_map, to_read_description, to_traceframe_info>: Use NULL,
not 0, in TARGET_DEFAULT_RETURN.
2014-01-16 00:30:05 +08:00
|
|
|
return NULL;
|
2013-12-19 01:48:36 +08:00
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static char *
|
|
|
|
debug_extra_thread_info (struct target_ops *self, struct thread_info *arg1)
|
|
|
|
{
|
|
|
|
char * result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_extra_thread_info (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_extra_thread_info (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_extra_thread_info (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_thread_info_p (arg1);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_char_p (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 01:49:35 +08:00
|
|
|
static char *
|
|
|
|
delegate_thread_name (struct target_ops *self, struct thread_info *arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_thread_name (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static char *
|
|
|
|
tdefault_thread_name (struct target_ops *self, struct thread_info *arg1)
|
|
|
|
{
|
pass NULL to TARGET_DEFAULT_RETURN when appropriate
This changes instances of TARGET_DEFAULT_RETURN(0) to
TARGET_DEFAULT_RETURN(NULL) when appropriate. The use of "0" was a
relic from an earlier implementation of make-target-delegates; and I
didn't want to go back through the long patch series, fixing up
conflicts, just to change this small detail.
2014-02-19 Tom Tromey <tromey@redhat.com>
* target-delegates.c: Rebuild.
* target.h (struct target_ops) <to_extra_thread_info,
to_thread_name, to_pid_to_exec_file, to_get_section_table,
to_memory_map, to_read_description, to_traceframe_info>: Use NULL,
not 0, in TARGET_DEFAULT_RETURN.
2014-01-16 00:30:05 +08:00
|
|
|
return NULL;
|
2013-12-19 01:49:35 +08:00
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static char *
|
|
|
|
debug_thread_name (struct target_ops *self, struct thread_info *arg1)
|
|
|
|
{
|
|
|
|
char * result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_thread_name (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_thread_name (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_thread_name (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_thread_info_p (arg1);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_char_p (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:28:07 +08:00
|
|
|
static void
|
|
|
|
delegate_stop (struct target_ops *self, ptid_t arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_stop (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_stop (struct target_ops *self, ptid_t arg1)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_stop (struct target_ops *self, ptid_t arg1)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_stop (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_stop (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_stop (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_ptid_t (arg1);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 00:35:21 +08:00
|
|
|
static void
|
2014-06-07 03:19:53 +08:00
|
|
|
delegate_rcmd (struct target_ops *self, const char *arg1, struct ui_file *arg2)
|
2013-12-19 00:35:21 +08:00
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_rcmd (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_rcmd (struct target_ops *self, const char *arg1, struct ui_file *arg2)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_rcmd (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_rcmd (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_rcmd (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_const_char_p (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_ui_file_p (arg2);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 01:51:10 +08:00
|
|
|
static char *
|
|
|
|
delegate_pid_to_exec_file (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_pid_to_exec_file (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static char *
|
|
|
|
tdefault_pid_to_exec_file (struct target_ops *self, int arg1)
|
|
|
|
{
|
pass NULL to TARGET_DEFAULT_RETURN when appropriate
This changes instances of TARGET_DEFAULT_RETURN(0) to
TARGET_DEFAULT_RETURN(NULL) when appropriate. The use of "0" was a
relic from an earlier implementation of make-target-delegates; and I
didn't want to go back through the long patch series, fixing up
conflicts, just to change this small detail.
2014-02-19 Tom Tromey <tromey@redhat.com>
* target-delegates.c: Rebuild.
* target.h (struct target_ops) <to_extra_thread_info,
to_thread_name, to_pid_to_exec_file, to_get_section_table,
to_memory_map, to_read_description, to_traceframe_info>: Use NULL,
not 0, in TARGET_DEFAULT_RETURN.
2014-01-16 00:30:05 +08:00
|
|
|
return NULL;
|
2013-12-19 01:51:10 +08:00
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static char *
|
|
|
|
debug_pid_to_exec_file (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
char * result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_pid_to_exec_file (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_pid_to_exec_file (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_pid_to_exec_file (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg1);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_char_p (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 01:52:58 +08:00
|
|
|
static void
|
|
|
|
delegate_log_command (struct target_ops *self, const char *arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_log_command (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_log_command (struct target_ops *self, const char *arg1)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_log_command (struct target_ops *self, const char *arg1)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_log_command (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_log_command (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_log_command (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_const_char_p (arg1);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:47:06 +08:00
|
|
|
static struct target_section_table *
|
|
|
|
delegate_get_section_table (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_get_section_table (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct target_section_table *
|
|
|
|
tdefault_get_section_table (struct target_ops *self)
|
|
|
|
{
|
pass NULL to TARGET_DEFAULT_RETURN when appropriate
This changes instances of TARGET_DEFAULT_RETURN(0) to
TARGET_DEFAULT_RETURN(NULL) when appropriate. The use of "0" was a
relic from an earlier implementation of make-target-delegates; and I
didn't want to go back through the long patch series, fixing up
conflicts, just to change this small detail.
2014-02-19 Tom Tromey <tromey@redhat.com>
* target-delegates.c: Rebuild.
* target.h (struct target_ops) <to_extra_thread_info,
to_thread_name, to_pid_to_exec_file, to_get_section_table,
to_memory_map, to_read_description, to_traceframe_info>: Use NULL,
not 0, in TARGET_DEFAULT_RETURN.
2014-01-16 00:30:05 +08:00
|
|
|
return NULL;
|
2013-12-19 05:47:06 +08:00
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static struct target_section_table *
|
|
|
|
debug_get_section_table (struct target_ops *self)
|
|
|
|
{
|
|
|
|
struct target_section_table * result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_get_section_table (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_get_section_table (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_get_section_table (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_target_section_table_p (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
add target method delegation
This patch replaces some code in the record targets with target method
delegation.
record-full.c stores pointers to many target methods when the record
target is pushed. Then it later delegates some calls via these. This
is wrong because it violates the target stack contract. In particular
it is ok to unpush a target at any stratum, but record-full does not
keep track of this, so it could potentially call into an unpushed
target.
This patch fixes the problem by using the newly-introduced generic
approach to target delegation for the methods in question.
2014-02-19 Tom Tromey <tromey@redhat.com>
* record-full.c (record_full_beneath_to_resume_ops)
(record_full_beneath_to_resume, record_full_beneath_to_wait_ops)
(record_full_beneath_to_wait)
(record_full_beneath_to_store_registers_ops)
(record_full_beneath_to_store_registers)
(record_full_beneath_to_xfer_partial_ops)
(record_full_beneath_to_xfer_partial)
(record_full_beneath_to_insert_breakpoint_ops)
(record_full_beneath_to_insert_breakpoint)
(record_full_beneath_to_remove_breakpoint_ops)
(record_full_beneath_to_remove_breakpoint)
(record_full_beneath_to_stopped_by_watchpoint)
(record_full_beneath_to_stopped_data_address)
(record_full_beneath_to_async, tmp_to_resume_ops, tmp_to_resume)
(tmp_to_wait_ops, tmp_to_wait, tmp_to_store_registers_ops)
(tmp_to_store_registers, tmp_to_xfer_partial_ops)
(tmp_to_xfer_partial, tmp_to_instmp_to_insert_breakpoint_ops)
(tmp_to_insert_breakpoint, tmp_to_remove_breakpoint_ops)
(tmp_to_remove_breakpoint, tmp_to_stopped_by_watchpoint)
(tmp_to_stopped_data_address, tmp_to_async): Remove.
(record_full_open_1, record_full_open): Update. Use RECORD_IS_USED.
(record_full_resume, record_full_wait_1)
(record_full_stopped_by_watchpoint, record_full_stopped_data_address)
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint)
(record_full_async, record_full_core_xfer_partial): Use target
delegation.
* target-delegates.c: Rebuild.
* target.c (current_xfer_partial): Remove.
(update_current_target): Do not INHERIT or de_fault
to_insert_breakpoint, to_remove_breakpoint,
to_stopped_data_address, to_stopped_by_watchpoint, to_can_async_p,
to_is_async_p, to_async. Do not set to_xfer_partial field.
(default_xfer_partial): Simplify.
(current_xfer_partial): Remove.
(target_wait, target_resume): Simplify.
(find_default_can_async_p, find_default_is_async_p): Update.
(init_dummy_target): Don't set to_can_async_p, to_is_async_p,
to_xfer_partial, to_stopped_by_watchpoint,
to_stopped_data_address.
(target_store_registers): Simplify.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
(target_remove_breakpoint, target_insert_breakpoint)
(debug_to_insert_breakpoint, debug_to_remove_breakpoint): Update.
* target.h (struct target_ops) <to_resume, to_wait,
to_store_registers, to_insert_breakpoint, to_remove_breakpoint,
to_stopped_by_watchpoint, to_stopped_data_address, to_can_async_p,
to_is_async_p, to_async, to_xfer_partial>: Add TARGET_DEFAULT
markup.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
* record-btrace.c (record_btrace_remove_breakpoint): Delegate
directly.
(record_btrace_insert_breakpoint): Delegate directly.
2013-07-13 03:00:34 +08:00
|
|
|
static int
|
|
|
|
delegate_can_async_p (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_can_async_p (self);
|
|
|
|
}
|
|
|
|
|
fix regressions with target-async
A patch in the target cleanup series caused a regression when using
record with target-async. Version 4 of the patch is here:
https://sourceware.org/ml/gdb-patches/2014-03/msg00159.html
The immediate problem is that record supplies to_can_async_p and
to_is_async_p methods, but does not supply a to_async method. So,
when target-async is set, record claims to support async -- but if the
underlying target does not support async, then the to_async method
call will end up in that method's default implementation, namely
tcomplain.
This worked previously because the record target used to provide a
to_async method; one that (erroneously, only at push time) checked the
other members of the target stack, and then simply dropped to_async
calls in the "does not implement async" case.
My first thought was to simply drop tcomplain as the default for
to_async. This works, but Pedro pointed out that the only reason
record has to supply to_can_async_p and to_is_async_p is that these
default to using the find_default_run_target machinery -- and these
defaults are only needed by "run" and "attach".
So, a nicer solution presents itself: change run and attach to
explicitly call into the default run target when needed; and change
to_is_async_p and to_can_async_p to default to "return 0". This makes
the target stack simpler to use and lets us remove the method
implementations from record. This is also in harmony with other plans
for the target stack; namely trying to reduce the impact of
find_default_run_target. This approach makes it clear that
find_default_is_async_p is not needed -- it is asking whether a target
that may not even be pushed is actually async, which seems like a
nonsensical question.
While an improvement, this approach proved to introduce the same bug
when using the core target. Looking a bit deeper, the issue is that
code in "attach" and "run" may need to use either the current target
stack or the default run target -- but different calls into the target
API in those functions could wind up querying different targets.
This new patch makes the target to use more explicit in "run" and
"attach". Then these commands explicitly make the needed calls
against that target. This ensures that a single target is used for
all relevant operations. This lets us remove a couple find_default_*
functions from various targets, including the dummy target. I think
this is a decent understandability improvement.
One issue I see with this patch is that the new calls in "run" and
"attach" are not very much like the rest of the target API. I think
fundamentally this is due to bad factoring in the target API, which
may need to be fixed for multi-target. Tackling that seemed ambitious
for a regression fix.
While working on this I noticed that there don't seem to be any test
cases that involve both target-async and record, so this patch changes
break-precsave.exp to add some. It also changes corefile.exp to add
some target-async tests; these pass with current trunk and with this
patch applied, but fail with the v1 patch.
This patch differs from v4 in that it moves initialization of
to_can_async_p and to_supports_non_stop into inf-child, adds some
assertions to complete_target_initialization, and adds some comments
to target.h.
Built and regtested on x86-64 Fedora 20.
2014-03-12 Tom Tromey <tromey@redhat.com>
* inf-child.c (return_zero): New function.
(inf_child_target): Set to_can_async_p, to_supports_non_stop.
* aix-thread.c (aix_thread_inferior_created): New function.
(aix_thread_attach): Remove.
(init_aix_thread_ops): Don't set to_attach.
(_initialize_aix_thread): Register inferior_created observer.
* corelow.c (init_core_ops): Don't set to_attach or
to_create_inferior.
* exec.c (init_exec_ops): Don't set to_attach or
to_create_inferior.
* infcmd.c (run_command_1): Use find_run_target. Make direct
target calls.
(attach_command): Use find_attach_target. Make direct target
calls.
* record-btrace.c (init_record_btrace_ops): Don't set
to_create_inferior.
* record-full.c (record_full_can_async_p, record_full_is_async_p):
Remove.
(init_record_full_ops, init_record_full_core_ops): Update. Don't
set to_create_inferior.
* target.c (complete_target_initialization): Add assertion.
(target_create_inferior): Remove.
(find_default_attach, find_default_create_inferior): Remove.
(find_attach_target, find_run_target): New functions.
(find_default_is_async_p, find_default_can_async_p)
(target_supports_non_stop, target_attach): Remove.
(init_dummy_target): Don't set to_create_inferior or
to_supports_non_stop.
* target.h (struct target_ops) <to_attach>: Add comment. Remove
TARGET_DEFAULT_FUNC.
<to_create_inferior>: Add comment.
<to_can_async_p, to_is_async_p, to_supports_non_stop>: Use
TARGET_DEFAULT_RETURN.
<to_can_async_p, to_supports_non_stop, to_can_run>: Add comments.
(find_attach_target, find_run_target): Declare.
(target_create_inferior): Remove.
(target_has_execution_1): Update comment.
(target_supports_non_stop): Remove.
* target-delegates.c: Rebuild.
2014-03-12 Tom Tromey <tromey@redhat.com>
* gdb.base/corefile.exp (corefile_test_run, corefile_test_attach):
New procs. Add target-async tests.
* gdb.reverse/break-precsave.exp (precsave_tests): New proc.
Add target-async tests.
2014-03-01 00:47:34 +08:00
|
|
|
static int
|
|
|
|
tdefault_can_async_p (struct target_ops *self)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_can_async_p (struct target_ops *self)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_can_async_p (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_can_async_p (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_can_async_p (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
add target method delegation
This patch replaces some code in the record targets with target method
delegation.
record-full.c stores pointers to many target methods when the record
target is pushed. Then it later delegates some calls via these. This
is wrong because it violates the target stack contract. In particular
it is ok to unpush a target at any stratum, but record-full does not
keep track of this, so it could potentially call into an unpushed
target.
This patch fixes the problem by using the newly-introduced generic
approach to target delegation for the methods in question.
2014-02-19 Tom Tromey <tromey@redhat.com>
* record-full.c (record_full_beneath_to_resume_ops)
(record_full_beneath_to_resume, record_full_beneath_to_wait_ops)
(record_full_beneath_to_wait)
(record_full_beneath_to_store_registers_ops)
(record_full_beneath_to_store_registers)
(record_full_beneath_to_xfer_partial_ops)
(record_full_beneath_to_xfer_partial)
(record_full_beneath_to_insert_breakpoint_ops)
(record_full_beneath_to_insert_breakpoint)
(record_full_beneath_to_remove_breakpoint_ops)
(record_full_beneath_to_remove_breakpoint)
(record_full_beneath_to_stopped_by_watchpoint)
(record_full_beneath_to_stopped_data_address)
(record_full_beneath_to_async, tmp_to_resume_ops, tmp_to_resume)
(tmp_to_wait_ops, tmp_to_wait, tmp_to_store_registers_ops)
(tmp_to_store_registers, tmp_to_xfer_partial_ops)
(tmp_to_xfer_partial, tmp_to_instmp_to_insert_breakpoint_ops)
(tmp_to_insert_breakpoint, tmp_to_remove_breakpoint_ops)
(tmp_to_remove_breakpoint, tmp_to_stopped_by_watchpoint)
(tmp_to_stopped_data_address, tmp_to_async): Remove.
(record_full_open_1, record_full_open): Update. Use RECORD_IS_USED.
(record_full_resume, record_full_wait_1)
(record_full_stopped_by_watchpoint, record_full_stopped_data_address)
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint)
(record_full_async, record_full_core_xfer_partial): Use target
delegation.
* target-delegates.c: Rebuild.
* target.c (current_xfer_partial): Remove.
(update_current_target): Do not INHERIT or de_fault
to_insert_breakpoint, to_remove_breakpoint,
to_stopped_data_address, to_stopped_by_watchpoint, to_can_async_p,
to_is_async_p, to_async. Do not set to_xfer_partial field.
(default_xfer_partial): Simplify.
(current_xfer_partial): Remove.
(target_wait, target_resume): Simplify.
(find_default_can_async_p, find_default_is_async_p): Update.
(init_dummy_target): Don't set to_can_async_p, to_is_async_p,
to_xfer_partial, to_stopped_by_watchpoint,
to_stopped_data_address.
(target_store_registers): Simplify.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
(target_remove_breakpoint, target_insert_breakpoint)
(debug_to_insert_breakpoint, debug_to_remove_breakpoint): Update.
* target.h (struct target_ops) <to_resume, to_wait,
to_store_registers, to_insert_breakpoint, to_remove_breakpoint,
to_stopped_by_watchpoint, to_stopped_data_address, to_can_async_p,
to_is_async_p, to_async, to_xfer_partial>: Add TARGET_DEFAULT
markup.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
* record-btrace.c (record_btrace_remove_breakpoint): Delegate
directly.
(record_btrace_insert_breakpoint): Delegate directly.
2013-07-13 03:00:34 +08:00
|
|
|
static int
|
|
|
|
delegate_is_async_p (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_is_async_p (self);
|
|
|
|
}
|
|
|
|
|
fix regressions with target-async
A patch in the target cleanup series caused a regression when using
record with target-async. Version 4 of the patch is here:
https://sourceware.org/ml/gdb-patches/2014-03/msg00159.html
The immediate problem is that record supplies to_can_async_p and
to_is_async_p methods, but does not supply a to_async method. So,
when target-async is set, record claims to support async -- but if the
underlying target does not support async, then the to_async method
call will end up in that method's default implementation, namely
tcomplain.
This worked previously because the record target used to provide a
to_async method; one that (erroneously, only at push time) checked the
other members of the target stack, and then simply dropped to_async
calls in the "does not implement async" case.
My first thought was to simply drop tcomplain as the default for
to_async. This works, but Pedro pointed out that the only reason
record has to supply to_can_async_p and to_is_async_p is that these
default to using the find_default_run_target machinery -- and these
defaults are only needed by "run" and "attach".
So, a nicer solution presents itself: change run and attach to
explicitly call into the default run target when needed; and change
to_is_async_p and to_can_async_p to default to "return 0". This makes
the target stack simpler to use and lets us remove the method
implementations from record. This is also in harmony with other plans
for the target stack; namely trying to reduce the impact of
find_default_run_target. This approach makes it clear that
find_default_is_async_p is not needed -- it is asking whether a target
that may not even be pushed is actually async, which seems like a
nonsensical question.
While an improvement, this approach proved to introduce the same bug
when using the core target. Looking a bit deeper, the issue is that
code in "attach" and "run" may need to use either the current target
stack or the default run target -- but different calls into the target
API in those functions could wind up querying different targets.
This new patch makes the target to use more explicit in "run" and
"attach". Then these commands explicitly make the needed calls
against that target. This ensures that a single target is used for
all relevant operations. This lets us remove a couple find_default_*
functions from various targets, including the dummy target. I think
this is a decent understandability improvement.
One issue I see with this patch is that the new calls in "run" and
"attach" are not very much like the rest of the target API. I think
fundamentally this is due to bad factoring in the target API, which
may need to be fixed for multi-target. Tackling that seemed ambitious
for a regression fix.
While working on this I noticed that there don't seem to be any test
cases that involve both target-async and record, so this patch changes
break-precsave.exp to add some. It also changes corefile.exp to add
some target-async tests; these pass with current trunk and with this
patch applied, but fail with the v1 patch.
This patch differs from v4 in that it moves initialization of
to_can_async_p and to_supports_non_stop into inf-child, adds some
assertions to complete_target_initialization, and adds some comments
to target.h.
Built and regtested on x86-64 Fedora 20.
2014-03-12 Tom Tromey <tromey@redhat.com>
* inf-child.c (return_zero): New function.
(inf_child_target): Set to_can_async_p, to_supports_non_stop.
* aix-thread.c (aix_thread_inferior_created): New function.
(aix_thread_attach): Remove.
(init_aix_thread_ops): Don't set to_attach.
(_initialize_aix_thread): Register inferior_created observer.
* corelow.c (init_core_ops): Don't set to_attach or
to_create_inferior.
* exec.c (init_exec_ops): Don't set to_attach or
to_create_inferior.
* infcmd.c (run_command_1): Use find_run_target. Make direct
target calls.
(attach_command): Use find_attach_target. Make direct target
calls.
* record-btrace.c (init_record_btrace_ops): Don't set
to_create_inferior.
* record-full.c (record_full_can_async_p, record_full_is_async_p):
Remove.
(init_record_full_ops, init_record_full_core_ops): Update. Don't
set to_create_inferior.
* target.c (complete_target_initialization): Add assertion.
(target_create_inferior): Remove.
(find_default_attach, find_default_create_inferior): Remove.
(find_attach_target, find_run_target): New functions.
(find_default_is_async_p, find_default_can_async_p)
(target_supports_non_stop, target_attach): Remove.
(init_dummy_target): Don't set to_create_inferior or
to_supports_non_stop.
* target.h (struct target_ops) <to_attach>: Add comment. Remove
TARGET_DEFAULT_FUNC.
<to_create_inferior>: Add comment.
<to_can_async_p, to_is_async_p, to_supports_non_stop>: Use
TARGET_DEFAULT_RETURN.
<to_can_async_p, to_supports_non_stop, to_can_run>: Add comments.
(find_attach_target, find_run_target): Declare.
(target_create_inferior): Remove.
(target_has_execution_1): Update comment.
(target_supports_non_stop): Remove.
* target-delegates.c: Rebuild.
2014-03-12 Tom Tromey <tromey@redhat.com>
* gdb.base/corefile.exp (corefile_test_run, corefile_test_attach):
New procs. Add target-async tests.
* gdb.reverse/break-precsave.exp (precsave_tests): New proc.
Add target-async tests.
2014-03-01 00:47:34 +08:00
|
|
|
static int
|
|
|
|
tdefault_is_async_p (struct target_ops *self)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_is_async_p (struct target_ops *self)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_is_async_p (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_is_async_p (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_is_async_p (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
add target method delegation
This patch replaces some code in the record targets with target method
delegation.
record-full.c stores pointers to many target methods when the record
target is pushed. Then it later delegates some calls via these. This
is wrong because it violates the target stack contract. In particular
it is ok to unpush a target at any stratum, but record-full does not
keep track of this, so it could potentially call into an unpushed
target.
This patch fixes the problem by using the newly-introduced generic
approach to target delegation for the methods in question.
2014-02-19 Tom Tromey <tromey@redhat.com>
* record-full.c (record_full_beneath_to_resume_ops)
(record_full_beneath_to_resume, record_full_beneath_to_wait_ops)
(record_full_beneath_to_wait)
(record_full_beneath_to_store_registers_ops)
(record_full_beneath_to_store_registers)
(record_full_beneath_to_xfer_partial_ops)
(record_full_beneath_to_xfer_partial)
(record_full_beneath_to_insert_breakpoint_ops)
(record_full_beneath_to_insert_breakpoint)
(record_full_beneath_to_remove_breakpoint_ops)
(record_full_beneath_to_remove_breakpoint)
(record_full_beneath_to_stopped_by_watchpoint)
(record_full_beneath_to_stopped_data_address)
(record_full_beneath_to_async, tmp_to_resume_ops, tmp_to_resume)
(tmp_to_wait_ops, tmp_to_wait, tmp_to_store_registers_ops)
(tmp_to_store_registers, tmp_to_xfer_partial_ops)
(tmp_to_xfer_partial, tmp_to_instmp_to_insert_breakpoint_ops)
(tmp_to_insert_breakpoint, tmp_to_remove_breakpoint_ops)
(tmp_to_remove_breakpoint, tmp_to_stopped_by_watchpoint)
(tmp_to_stopped_data_address, tmp_to_async): Remove.
(record_full_open_1, record_full_open): Update. Use RECORD_IS_USED.
(record_full_resume, record_full_wait_1)
(record_full_stopped_by_watchpoint, record_full_stopped_data_address)
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint)
(record_full_async, record_full_core_xfer_partial): Use target
delegation.
* target-delegates.c: Rebuild.
* target.c (current_xfer_partial): Remove.
(update_current_target): Do not INHERIT or de_fault
to_insert_breakpoint, to_remove_breakpoint,
to_stopped_data_address, to_stopped_by_watchpoint, to_can_async_p,
to_is_async_p, to_async. Do not set to_xfer_partial field.
(default_xfer_partial): Simplify.
(current_xfer_partial): Remove.
(target_wait, target_resume): Simplify.
(find_default_can_async_p, find_default_is_async_p): Update.
(init_dummy_target): Don't set to_can_async_p, to_is_async_p,
to_xfer_partial, to_stopped_by_watchpoint,
to_stopped_data_address.
(target_store_registers): Simplify.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
(target_remove_breakpoint, target_insert_breakpoint)
(debug_to_insert_breakpoint, debug_to_remove_breakpoint): Update.
* target.h (struct target_ops) <to_resume, to_wait,
to_store_registers, to_insert_breakpoint, to_remove_breakpoint,
to_stopped_by_watchpoint, to_stopped_data_address, to_can_async_p,
to_is_async_p, to_async, to_xfer_partial>: Add TARGET_DEFAULT
markup.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
* record-btrace.c (record_btrace_remove_breakpoint): Delegate
directly.
(record_btrace_insert_breakpoint): Delegate directly.
2013-07-13 03:00:34 +08:00
|
|
|
static void
|
Simplify target_async hook interface
All callers of target_async pass it the same callback
(inferior_event_handler). Since both common code and target backends
need to be able to put the target in and out of target async mode at
any given time, there's really no way that a different callback could
be passed. This commit simplifies things, and removes the indirection
altogether. Bonus: with this, gdb's target_async method ends up with
the same signature as gdbserver's.
Tested on x86_64 Fedora 20, native and gdbserver.
gdb/ChangeLog:
2015-03-25 Pedro Alves <palves@redhat.com>
* target.h <to_async>: Replace 'callback' and 'context' parameters
with boolean 'enable' parameter.
(target_async): Replace CALLBACK and CONTEXT parameters with
boolean ENABLE parameter.
* inf-loop.c (inferior_event_handler): Adjust.
* linux-nat.c (linux_nat_attach, linux_nat_resume)
(linux_nat_resume): Adjust.
(async_client_callback, async_client_context): Delete.
(handle_target_event): Call inferior_event_handler directly.
(linux_nat_async): Replace 'callback' and 'context' parameters
with boolean 'enable' parameter. Adjust. Remove references to
async_client_callback and async_client_context.
(linux_nat_close): Adjust.
* record-btrace.c (record_btrace_async): Replace 'callback' and
'context' parameters with boolean 'enable' parameter. Adjust.
(record_btrace_resume): Adjust.
* record-full.c (record_full_async): Replace 'callback' and
'context' parameters with boolean 'enable' parameter. Adjust.
(record_full_resume, record_full_core_resume): Adjust.
* remote.c (struct remote_state) <async_client_callback,
async_client_context>: Delete fields.
(remote_start_remote, extended_remote_attach_1, remote_resume)
(extended_remote_create_inferior): Adjust.
(remote_async_serial_handler): Call inferior_event_handler
directly.
(remote_async): Replace 'callback' and 'context' parameters with
boolean 'enable' parameter. Adjust.
* top.c (gdb_readline_wrapper_cleanup, gdb_readline_wrapper):
Adjust.
* target-delegates.c: Regenerate.
2015-03-25 19:28:31 +08:00
|
|
|
delegate_async (struct target_ops *self, int arg1)
|
add target method delegation
This patch replaces some code in the record targets with target method
delegation.
record-full.c stores pointers to many target methods when the record
target is pushed. Then it later delegates some calls via these. This
is wrong because it violates the target stack contract. In particular
it is ok to unpush a target at any stratum, but record-full does not
keep track of this, so it could potentially call into an unpushed
target.
This patch fixes the problem by using the newly-introduced generic
approach to target delegation for the methods in question.
2014-02-19 Tom Tromey <tromey@redhat.com>
* record-full.c (record_full_beneath_to_resume_ops)
(record_full_beneath_to_resume, record_full_beneath_to_wait_ops)
(record_full_beneath_to_wait)
(record_full_beneath_to_store_registers_ops)
(record_full_beneath_to_store_registers)
(record_full_beneath_to_xfer_partial_ops)
(record_full_beneath_to_xfer_partial)
(record_full_beneath_to_insert_breakpoint_ops)
(record_full_beneath_to_insert_breakpoint)
(record_full_beneath_to_remove_breakpoint_ops)
(record_full_beneath_to_remove_breakpoint)
(record_full_beneath_to_stopped_by_watchpoint)
(record_full_beneath_to_stopped_data_address)
(record_full_beneath_to_async, tmp_to_resume_ops, tmp_to_resume)
(tmp_to_wait_ops, tmp_to_wait, tmp_to_store_registers_ops)
(tmp_to_store_registers, tmp_to_xfer_partial_ops)
(tmp_to_xfer_partial, tmp_to_instmp_to_insert_breakpoint_ops)
(tmp_to_insert_breakpoint, tmp_to_remove_breakpoint_ops)
(tmp_to_remove_breakpoint, tmp_to_stopped_by_watchpoint)
(tmp_to_stopped_data_address, tmp_to_async): Remove.
(record_full_open_1, record_full_open): Update. Use RECORD_IS_USED.
(record_full_resume, record_full_wait_1)
(record_full_stopped_by_watchpoint, record_full_stopped_data_address)
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint)
(record_full_async, record_full_core_xfer_partial): Use target
delegation.
* target-delegates.c: Rebuild.
* target.c (current_xfer_partial): Remove.
(update_current_target): Do not INHERIT or de_fault
to_insert_breakpoint, to_remove_breakpoint,
to_stopped_data_address, to_stopped_by_watchpoint, to_can_async_p,
to_is_async_p, to_async. Do not set to_xfer_partial field.
(default_xfer_partial): Simplify.
(current_xfer_partial): Remove.
(target_wait, target_resume): Simplify.
(find_default_can_async_p, find_default_is_async_p): Update.
(init_dummy_target): Don't set to_can_async_p, to_is_async_p,
to_xfer_partial, to_stopped_by_watchpoint,
to_stopped_data_address.
(target_store_registers): Simplify.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
(target_remove_breakpoint, target_insert_breakpoint)
(debug_to_insert_breakpoint, debug_to_remove_breakpoint): Update.
* target.h (struct target_ops) <to_resume, to_wait,
to_store_registers, to_insert_breakpoint, to_remove_breakpoint,
to_stopped_by_watchpoint, to_stopped_data_address, to_can_async_p,
to_is_async_p, to_async, to_xfer_partial>: Add TARGET_DEFAULT
markup.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
* record-btrace.c (record_btrace_remove_breakpoint): Delegate
directly.
(record_btrace_insert_breakpoint): Delegate directly.
2013-07-13 03:00:34 +08:00
|
|
|
{
|
|
|
|
self = self->beneath;
|
Simplify target_async hook interface
All callers of target_async pass it the same callback
(inferior_event_handler). Since both common code and target backends
need to be able to put the target in and out of target async mode at
any given time, there's really no way that a different callback could
be passed. This commit simplifies things, and removes the indirection
altogether. Bonus: with this, gdb's target_async method ends up with
the same signature as gdbserver's.
Tested on x86_64 Fedora 20, native and gdbserver.
gdb/ChangeLog:
2015-03-25 Pedro Alves <palves@redhat.com>
* target.h <to_async>: Replace 'callback' and 'context' parameters
with boolean 'enable' parameter.
(target_async): Replace CALLBACK and CONTEXT parameters with
boolean ENABLE parameter.
* inf-loop.c (inferior_event_handler): Adjust.
* linux-nat.c (linux_nat_attach, linux_nat_resume)
(linux_nat_resume): Adjust.
(async_client_callback, async_client_context): Delete.
(handle_target_event): Call inferior_event_handler directly.
(linux_nat_async): Replace 'callback' and 'context' parameters
with boolean 'enable' parameter. Adjust. Remove references to
async_client_callback and async_client_context.
(linux_nat_close): Adjust.
* record-btrace.c (record_btrace_async): Replace 'callback' and
'context' parameters with boolean 'enable' parameter. Adjust.
(record_btrace_resume): Adjust.
* record-full.c (record_full_async): Replace 'callback' and
'context' parameters with boolean 'enable' parameter. Adjust.
(record_full_resume, record_full_core_resume): Adjust.
* remote.c (struct remote_state) <async_client_callback,
async_client_context>: Delete fields.
(remote_start_remote, extended_remote_attach_1, remote_resume)
(extended_remote_create_inferior): Adjust.
(remote_async_serial_handler): Call inferior_event_handler
directly.
(remote_async): Replace 'callback' and 'context' parameters with
boolean 'enable' parameter. Adjust.
* top.c (gdb_readline_wrapper_cleanup, gdb_readline_wrapper):
Adjust.
* target-delegates.c: Regenerate.
2015-03-25 19:28:31 +08:00
|
|
|
self->to_async (self, arg1);
|
add target method delegation
This patch replaces some code in the record targets with target method
delegation.
record-full.c stores pointers to many target methods when the record
target is pushed. Then it later delegates some calls via these. This
is wrong because it violates the target stack contract. In particular
it is ok to unpush a target at any stratum, but record-full does not
keep track of this, so it could potentially call into an unpushed
target.
This patch fixes the problem by using the newly-introduced generic
approach to target delegation for the methods in question.
2014-02-19 Tom Tromey <tromey@redhat.com>
* record-full.c (record_full_beneath_to_resume_ops)
(record_full_beneath_to_resume, record_full_beneath_to_wait_ops)
(record_full_beneath_to_wait)
(record_full_beneath_to_store_registers_ops)
(record_full_beneath_to_store_registers)
(record_full_beneath_to_xfer_partial_ops)
(record_full_beneath_to_xfer_partial)
(record_full_beneath_to_insert_breakpoint_ops)
(record_full_beneath_to_insert_breakpoint)
(record_full_beneath_to_remove_breakpoint_ops)
(record_full_beneath_to_remove_breakpoint)
(record_full_beneath_to_stopped_by_watchpoint)
(record_full_beneath_to_stopped_data_address)
(record_full_beneath_to_async, tmp_to_resume_ops, tmp_to_resume)
(tmp_to_wait_ops, tmp_to_wait, tmp_to_store_registers_ops)
(tmp_to_store_registers, tmp_to_xfer_partial_ops)
(tmp_to_xfer_partial, tmp_to_instmp_to_insert_breakpoint_ops)
(tmp_to_insert_breakpoint, tmp_to_remove_breakpoint_ops)
(tmp_to_remove_breakpoint, tmp_to_stopped_by_watchpoint)
(tmp_to_stopped_data_address, tmp_to_async): Remove.
(record_full_open_1, record_full_open): Update. Use RECORD_IS_USED.
(record_full_resume, record_full_wait_1)
(record_full_stopped_by_watchpoint, record_full_stopped_data_address)
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint)
(record_full_async, record_full_core_xfer_partial): Use target
delegation.
* target-delegates.c: Rebuild.
* target.c (current_xfer_partial): Remove.
(update_current_target): Do not INHERIT or de_fault
to_insert_breakpoint, to_remove_breakpoint,
to_stopped_data_address, to_stopped_by_watchpoint, to_can_async_p,
to_is_async_p, to_async. Do not set to_xfer_partial field.
(default_xfer_partial): Simplify.
(current_xfer_partial): Remove.
(target_wait, target_resume): Simplify.
(find_default_can_async_p, find_default_is_async_p): Update.
(init_dummy_target): Don't set to_can_async_p, to_is_async_p,
to_xfer_partial, to_stopped_by_watchpoint,
to_stopped_data_address.
(target_store_registers): Simplify.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
(target_remove_breakpoint, target_insert_breakpoint)
(debug_to_insert_breakpoint, debug_to_remove_breakpoint): Update.
* target.h (struct target_ops) <to_resume, to_wait,
to_store_registers, to_insert_breakpoint, to_remove_breakpoint,
to_stopped_by_watchpoint, to_stopped_data_address, to_can_async_p,
to_is_async_p, to_async, to_xfer_partial>: Add TARGET_DEFAULT
markup.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
* record-btrace.c (record_btrace_remove_breakpoint): Delegate
directly.
(record_btrace_insert_breakpoint): Delegate directly.
2013-07-13 03:00:34 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
Simplify target_async hook interface
All callers of target_async pass it the same callback
(inferior_event_handler). Since both common code and target backends
need to be able to put the target in and out of target async mode at
any given time, there's really no way that a different callback could
be passed. This commit simplifies things, and removes the indirection
altogether. Bonus: with this, gdb's target_async method ends up with
the same signature as gdbserver's.
Tested on x86_64 Fedora 20, native and gdbserver.
gdb/ChangeLog:
2015-03-25 Pedro Alves <palves@redhat.com>
* target.h <to_async>: Replace 'callback' and 'context' parameters
with boolean 'enable' parameter.
(target_async): Replace CALLBACK and CONTEXT parameters with
boolean ENABLE parameter.
* inf-loop.c (inferior_event_handler): Adjust.
* linux-nat.c (linux_nat_attach, linux_nat_resume)
(linux_nat_resume): Adjust.
(async_client_callback, async_client_context): Delete.
(handle_target_event): Call inferior_event_handler directly.
(linux_nat_async): Replace 'callback' and 'context' parameters
with boolean 'enable' parameter. Adjust. Remove references to
async_client_callback and async_client_context.
(linux_nat_close): Adjust.
* record-btrace.c (record_btrace_async): Replace 'callback' and
'context' parameters with boolean 'enable' parameter. Adjust.
(record_btrace_resume): Adjust.
* record-full.c (record_full_async): Replace 'callback' and
'context' parameters with boolean 'enable' parameter. Adjust.
(record_full_resume, record_full_core_resume): Adjust.
* remote.c (struct remote_state) <async_client_callback,
async_client_context>: Delete fields.
(remote_start_remote, extended_remote_attach_1, remote_resume)
(extended_remote_create_inferior): Adjust.
(remote_async_serial_handler): Call inferior_event_handler
directly.
(remote_async): Replace 'callback' and 'context' parameters with
boolean 'enable' parameter. Adjust.
* top.c (gdb_readline_wrapper_cleanup, gdb_readline_wrapper):
Adjust.
* target-delegates.c: Regenerate.
2015-03-25 19:28:31 +08:00
|
|
|
tdefault_async (struct target_ops *self, int arg1)
|
add target method delegation
This patch replaces some code in the record targets with target method
delegation.
record-full.c stores pointers to many target methods when the record
target is pushed. Then it later delegates some calls via these. This
is wrong because it violates the target stack contract. In particular
it is ok to unpush a target at any stratum, but record-full does not
keep track of this, so it could potentially call into an unpushed
target.
This patch fixes the problem by using the newly-introduced generic
approach to target delegation for the methods in question.
2014-02-19 Tom Tromey <tromey@redhat.com>
* record-full.c (record_full_beneath_to_resume_ops)
(record_full_beneath_to_resume, record_full_beneath_to_wait_ops)
(record_full_beneath_to_wait)
(record_full_beneath_to_store_registers_ops)
(record_full_beneath_to_store_registers)
(record_full_beneath_to_xfer_partial_ops)
(record_full_beneath_to_xfer_partial)
(record_full_beneath_to_insert_breakpoint_ops)
(record_full_beneath_to_insert_breakpoint)
(record_full_beneath_to_remove_breakpoint_ops)
(record_full_beneath_to_remove_breakpoint)
(record_full_beneath_to_stopped_by_watchpoint)
(record_full_beneath_to_stopped_data_address)
(record_full_beneath_to_async, tmp_to_resume_ops, tmp_to_resume)
(tmp_to_wait_ops, tmp_to_wait, tmp_to_store_registers_ops)
(tmp_to_store_registers, tmp_to_xfer_partial_ops)
(tmp_to_xfer_partial, tmp_to_instmp_to_insert_breakpoint_ops)
(tmp_to_insert_breakpoint, tmp_to_remove_breakpoint_ops)
(tmp_to_remove_breakpoint, tmp_to_stopped_by_watchpoint)
(tmp_to_stopped_data_address, tmp_to_async): Remove.
(record_full_open_1, record_full_open): Update. Use RECORD_IS_USED.
(record_full_resume, record_full_wait_1)
(record_full_stopped_by_watchpoint, record_full_stopped_data_address)
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint)
(record_full_async, record_full_core_xfer_partial): Use target
delegation.
* target-delegates.c: Rebuild.
* target.c (current_xfer_partial): Remove.
(update_current_target): Do not INHERIT or de_fault
to_insert_breakpoint, to_remove_breakpoint,
to_stopped_data_address, to_stopped_by_watchpoint, to_can_async_p,
to_is_async_p, to_async. Do not set to_xfer_partial field.
(default_xfer_partial): Simplify.
(current_xfer_partial): Remove.
(target_wait, target_resume): Simplify.
(find_default_can_async_p, find_default_is_async_p): Update.
(init_dummy_target): Don't set to_can_async_p, to_is_async_p,
to_xfer_partial, to_stopped_by_watchpoint,
to_stopped_data_address.
(target_store_registers): Simplify.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
(target_remove_breakpoint, target_insert_breakpoint)
(debug_to_insert_breakpoint, debug_to_remove_breakpoint): Update.
* target.h (struct target_ops) <to_resume, to_wait,
to_store_registers, to_insert_breakpoint, to_remove_breakpoint,
to_stopped_by_watchpoint, to_stopped_data_address, to_can_async_p,
to_is_async_p, to_async, to_xfer_partial>: Add TARGET_DEFAULT
markup.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
* record-btrace.c (record_btrace_remove_breakpoint): Delegate
directly.
(record_btrace_insert_breakpoint): Delegate directly.
2013-07-13 03:00:34 +08:00
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
Simplify target_async hook interface
All callers of target_async pass it the same callback
(inferior_event_handler). Since both common code and target backends
need to be able to put the target in and out of target async mode at
any given time, there's really no way that a different callback could
be passed. This commit simplifies things, and removes the indirection
altogether. Bonus: with this, gdb's target_async method ends up with
the same signature as gdbserver's.
Tested on x86_64 Fedora 20, native and gdbserver.
gdb/ChangeLog:
2015-03-25 Pedro Alves <palves@redhat.com>
* target.h <to_async>: Replace 'callback' and 'context' parameters
with boolean 'enable' parameter.
(target_async): Replace CALLBACK and CONTEXT parameters with
boolean ENABLE parameter.
* inf-loop.c (inferior_event_handler): Adjust.
* linux-nat.c (linux_nat_attach, linux_nat_resume)
(linux_nat_resume): Adjust.
(async_client_callback, async_client_context): Delete.
(handle_target_event): Call inferior_event_handler directly.
(linux_nat_async): Replace 'callback' and 'context' parameters
with boolean 'enable' parameter. Adjust. Remove references to
async_client_callback and async_client_context.
(linux_nat_close): Adjust.
* record-btrace.c (record_btrace_async): Replace 'callback' and
'context' parameters with boolean 'enable' parameter. Adjust.
(record_btrace_resume): Adjust.
* record-full.c (record_full_async): Replace 'callback' and
'context' parameters with boolean 'enable' parameter. Adjust.
(record_full_resume, record_full_core_resume): Adjust.
* remote.c (struct remote_state) <async_client_callback,
async_client_context>: Delete fields.
(remote_start_remote, extended_remote_attach_1, remote_resume)
(extended_remote_create_inferior): Adjust.
(remote_async_serial_handler): Call inferior_event_handler
directly.
(remote_async): Replace 'callback' and 'context' parameters with
boolean 'enable' parameter. Adjust.
* top.c (gdb_readline_wrapper_cleanup, gdb_readline_wrapper):
Adjust.
* target-delegates.c: Regenerate.
2015-03-25 19:28:31 +08:00
|
|
|
debug_async (struct target_ops *self, int arg1)
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_async (...)\n", debug_target.to_shortname);
|
Simplify target_async hook interface
All callers of target_async pass it the same callback
(inferior_event_handler). Since both common code and target backends
need to be able to put the target in and out of target async mode at
any given time, there's really no way that a different callback could
be passed. This commit simplifies things, and removes the indirection
altogether. Bonus: with this, gdb's target_async method ends up with
the same signature as gdbserver's.
Tested on x86_64 Fedora 20, native and gdbserver.
gdb/ChangeLog:
2015-03-25 Pedro Alves <palves@redhat.com>
* target.h <to_async>: Replace 'callback' and 'context' parameters
with boolean 'enable' parameter.
(target_async): Replace CALLBACK and CONTEXT parameters with
boolean ENABLE parameter.
* inf-loop.c (inferior_event_handler): Adjust.
* linux-nat.c (linux_nat_attach, linux_nat_resume)
(linux_nat_resume): Adjust.
(async_client_callback, async_client_context): Delete.
(handle_target_event): Call inferior_event_handler directly.
(linux_nat_async): Replace 'callback' and 'context' parameters
with boolean 'enable' parameter. Adjust. Remove references to
async_client_callback and async_client_context.
(linux_nat_close): Adjust.
* record-btrace.c (record_btrace_async): Replace 'callback' and
'context' parameters with boolean 'enable' parameter. Adjust.
(record_btrace_resume): Adjust.
* record-full.c (record_full_async): Replace 'callback' and
'context' parameters with boolean 'enable' parameter. Adjust.
(record_full_resume, record_full_core_resume): Adjust.
* remote.c (struct remote_state) <async_client_callback,
async_client_context>: Delete fields.
(remote_start_remote, extended_remote_attach_1, remote_resume)
(extended_remote_create_inferior): Adjust.
(remote_async_serial_handler): Call inferior_event_handler
directly.
(remote_async): Replace 'callback' and 'context' parameters with
boolean 'enable' parameter. Adjust.
* top.c (gdb_readline_wrapper_cleanup, gdb_readline_wrapper):
Adjust.
* target-delegates.c: Regenerate.
2015-03-25 19:28:31 +08:00
|
|
|
debug_target.to_async (&debug_target, arg1);
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_async (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
Simplify target_async hook interface
All callers of target_async pass it the same callback
(inferior_event_handler). Since both common code and target backends
need to be able to put the target in and out of target async mode at
any given time, there's really no way that a different callback could
be passed. This commit simplifies things, and removes the indirection
altogether. Bonus: with this, gdb's target_async method ends up with
the same signature as gdbserver's.
Tested on x86_64 Fedora 20, native and gdbserver.
gdb/ChangeLog:
2015-03-25 Pedro Alves <palves@redhat.com>
* target.h <to_async>: Replace 'callback' and 'context' parameters
with boolean 'enable' parameter.
(target_async): Replace CALLBACK and CONTEXT parameters with
boolean ENABLE parameter.
* inf-loop.c (inferior_event_handler): Adjust.
* linux-nat.c (linux_nat_attach, linux_nat_resume)
(linux_nat_resume): Adjust.
(async_client_callback, async_client_context): Delete.
(handle_target_event): Call inferior_event_handler directly.
(linux_nat_async): Replace 'callback' and 'context' parameters
with boolean 'enable' parameter. Adjust. Remove references to
async_client_callback and async_client_context.
(linux_nat_close): Adjust.
* record-btrace.c (record_btrace_async): Replace 'callback' and
'context' parameters with boolean 'enable' parameter. Adjust.
(record_btrace_resume): Adjust.
* record-full.c (record_full_async): Replace 'callback' and
'context' parameters with boolean 'enable' parameter. Adjust.
(record_full_resume, record_full_core_resume): Adjust.
* remote.c (struct remote_state) <async_client_callback,
async_client_context>: Delete fields.
(remote_start_remote, extended_remote_attach_1, remote_resume)
(extended_remote_create_inferior): Adjust.
(remote_async_serial_handler): Call inferior_event_handler
directly.
(remote_async): Replace 'callback' and 'context' parameters with
boolean 'enable' parameter. Adjust.
* top.c (gdb_readline_wrapper_cleanup, gdb_readline_wrapper):
Adjust.
* target-delegates.c: Regenerate.
2015-03-25 19:28:31 +08:00
|
|
|
target_debug_print_int (arg1);
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
fix regressions with target-async
A patch in the target cleanup series caused a regression when using
record with target-async. Version 4 of the patch is here:
https://sourceware.org/ml/gdb-patches/2014-03/msg00159.html
The immediate problem is that record supplies to_can_async_p and
to_is_async_p methods, but does not supply a to_async method. So,
when target-async is set, record claims to support async -- but if the
underlying target does not support async, then the to_async method
call will end up in that method's default implementation, namely
tcomplain.
This worked previously because the record target used to provide a
to_async method; one that (erroneously, only at push time) checked the
other members of the target stack, and then simply dropped to_async
calls in the "does not implement async" case.
My first thought was to simply drop tcomplain as the default for
to_async. This works, but Pedro pointed out that the only reason
record has to supply to_can_async_p and to_is_async_p is that these
default to using the find_default_run_target machinery -- and these
defaults are only needed by "run" and "attach".
So, a nicer solution presents itself: change run and attach to
explicitly call into the default run target when needed; and change
to_is_async_p and to_can_async_p to default to "return 0". This makes
the target stack simpler to use and lets us remove the method
implementations from record. This is also in harmony with other plans
for the target stack; namely trying to reduce the impact of
find_default_run_target. This approach makes it clear that
find_default_is_async_p is not needed -- it is asking whether a target
that may not even be pushed is actually async, which seems like a
nonsensical question.
While an improvement, this approach proved to introduce the same bug
when using the core target. Looking a bit deeper, the issue is that
code in "attach" and "run" may need to use either the current target
stack or the default run target -- but different calls into the target
API in those functions could wind up querying different targets.
This new patch makes the target to use more explicit in "run" and
"attach". Then these commands explicitly make the needed calls
against that target. This ensures that a single target is used for
all relevant operations. This lets us remove a couple find_default_*
functions from various targets, including the dummy target. I think
this is a decent understandability improvement.
One issue I see with this patch is that the new calls in "run" and
"attach" are not very much like the rest of the target API. I think
fundamentally this is due to bad factoring in the target API, which
may need to be fixed for multi-target. Tackling that seemed ambitious
for a regression fix.
While working on this I noticed that there don't seem to be any test
cases that involve both target-async and record, so this patch changes
break-precsave.exp to add some. It also changes corefile.exp to add
some target-async tests; these pass with current trunk and with this
patch applied, but fail with the v1 patch.
This patch differs from v4 in that it moves initialization of
to_can_async_p and to_supports_non_stop into inf-child, adds some
assertions to complete_target_initialization, and adds some comments
to target.h.
Built and regtested on x86-64 Fedora 20.
2014-03-12 Tom Tromey <tromey@redhat.com>
* inf-child.c (return_zero): New function.
(inf_child_target): Set to_can_async_p, to_supports_non_stop.
* aix-thread.c (aix_thread_inferior_created): New function.
(aix_thread_attach): Remove.
(init_aix_thread_ops): Don't set to_attach.
(_initialize_aix_thread): Register inferior_created observer.
* corelow.c (init_core_ops): Don't set to_attach or
to_create_inferior.
* exec.c (init_exec_ops): Don't set to_attach or
to_create_inferior.
* infcmd.c (run_command_1): Use find_run_target. Make direct
target calls.
(attach_command): Use find_attach_target. Make direct target
calls.
* record-btrace.c (init_record_btrace_ops): Don't set
to_create_inferior.
* record-full.c (record_full_can_async_p, record_full_is_async_p):
Remove.
(init_record_full_ops, init_record_full_core_ops): Update. Don't
set to_create_inferior.
* target.c (complete_target_initialization): Add assertion.
(target_create_inferior): Remove.
(find_default_attach, find_default_create_inferior): Remove.
(find_attach_target, find_run_target): New functions.
(find_default_is_async_p, find_default_can_async_p)
(target_supports_non_stop, target_attach): Remove.
(init_dummy_target): Don't set to_create_inferior or
to_supports_non_stop.
* target.h (struct target_ops) <to_attach>: Add comment. Remove
TARGET_DEFAULT_FUNC.
<to_create_inferior>: Add comment.
<to_can_async_p, to_is_async_p, to_supports_non_stop>: Use
TARGET_DEFAULT_RETURN.
<to_can_async_p, to_supports_non_stop, to_can_run>: Add comments.
(find_attach_target, find_run_target): Declare.
(target_create_inferior): Remove.
(target_has_execution_1): Update comment.
(target_supports_non_stop): Remove.
* target-delegates.c: Rebuild.
2014-03-12 Tom Tromey <tromey@redhat.com>
* gdb.base/corefile.exp (corefile_test_run, corefile_test_attach):
New procs. Add target-async tests.
* gdb.reverse/break-precsave.exp (precsave_tests): New proc.
Add target-async tests.
2014-03-01 00:47:34 +08:00
|
|
|
static int
|
|
|
|
delegate_supports_non_stop (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_supports_non_stop (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_supports_non_stop (struct target_ops *self)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_supports_non_stop (struct target_ops *self)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_supports_non_stop (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_supports_non_stop (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_supports_non_stop (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 01:55:34 +08:00
|
|
|
static int
|
|
|
|
delegate_find_memory_regions (struct target_ops *self, find_memory_region_ftype arg1, void *arg2)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_find_memory_regions (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_find_memory_regions (struct target_ops *self, find_memory_region_ftype arg1, void *arg2)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_find_memory_regions (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_find_memory_regions (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_find_memory_regions (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_find_memory_region_ftype (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_void_p (arg2);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2014-07-16 02:08:54 +08:00
|
|
|
static char *
|
2013-12-19 01:57:18 +08:00
|
|
|
delegate_make_corefile_notes (struct target_ops *self, bfd *arg1, int *arg2)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_make_corefile_notes (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static char *
|
|
|
|
debug_make_corefile_notes (struct target_ops *self, bfd *arg1, int *arg2)
|
|
|
|
{
|
|
|
|
char * result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_make_corefile_notes (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_make_corefile_notes (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_make_corefile_notes (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_bfd_p (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int_p (arg2);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_char_p (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2014-07-16 02:08:54 +08:00
|
|
|
static gdb_byte *
|
2013-04-15 22:59:03 +08:00
|
|
|
delegate_get_bookmark (struct target_ops *self, const char *arg1, int arg2)
|
2013-12-19 02:10:32 +08:00
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_get_bookmark (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
2014-07-16 02:08:54 +08:00
|
|
|
static gdb_byte *
|
2013-04-15 22:59:03 +08:00
|
|
|
tdefault_get_bookmark (struct target_ops *self, const char *arg1, int arg2)
|
2013-12-19 02:10:32 +08:00
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static gdb_byte *
|
|
|
|
debug_get_bookmark (struct target_ops *self, const char *arg1, int arg2)
|
|
|
|
{
|
|
|
|
gdb_byte * result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_get_bookmark (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_get_bookmark (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_get_bookmark (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_const_char_p (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg2);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_gdb_byte_p (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 02:11:25 +08:00
|
|
|
static void
|
2013-04-15 22:59:03 +08:00
|
|
|
delegate_goto_bookmark (struct target_ops *self, const gdb_byte *arg1, int arg2)
|
2013-12-19 02:11:25 +08:00
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_goto_bookmark (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2013-04-15 22:59:03 +08:00
|
|
|
tdefault_goto_bookmark (struct target_ops *self, const gdb_byte *arg1, int arg2)
|
2013-12-19 02:11:25 +08:00
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_goto_bookmark (struct target_ops *self, const gdb_byte *arg1, int arg2)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_goto_bookmark (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_goto_bookmark (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_goto_bookmark (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_const_gdb_byte_p (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg2);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2014-06-26 00:16:55 +08:00
|
|
|
static CORE_ADDR
|
|
|
|
delegate_get_thread_local_address (struct target_ops *self, ptid_t arg1, CORE_ADDR arg2, CORE_ADDR arg3)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_get_thread_local_address (self, arg1, arg2, arg3);
|
|
|
|
}
|
|
|
|
|
|
|
|
static CORE_ADDR
|
|
|
|
tdefault_get_thread_local_address (struct target_ops *self, ptid_t arg1, CORE_ADDR arg2, CORE_ADDR arg3)
|
|
|
|
{
|
|
|
|
generic_tls_error ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static CORE_ADDR
|
|
|
|
debug_get_thread_local_address (struct target_ops *self, ptid_t arg1, CORE_ADDR arg2, CORE_ADDR arg3)
|
|
|
|
{
|
|
|
|
CORE_ADDR result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_get_thread_local_address (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_get_thread_local_address (&debug_target, arg1, arg2, arg3);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_get_thread_local_address (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_ptid_t (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_CORE_ADDR (arg2);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_CORE_ADDR (arg3);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_CORE_ADDR (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2014-07-16 02:08:54 +08:00
|
|
|
static enum target_xfer_status
|
|
|
|
delegate_xfer_partial (struct target_ops *self, enum target_object arg1, const char *arg2, gdb_byte *arg3, const gdb_byte *arg4, ULONGEST arg5, ULONGEST arg6, ULONGEST *arg7)
|
add target method delegation
This patch replaces some code in the record targets with target method
delegation.
record-full.c stores pointers to many target methods when the record
target is pushed. Then it later delegates some calls via these. This
is wrong because it violates the target stack contract. In particular
it is ok to unpush a target at any stratum, but record-full does not
keep track of this, so it could potentially call into an unpushed
target.
This patch fixes the problem by using the newly-introduced generic
approach to target delegation for the methods in question.
2014-02-19 Tom Tromey <tromey@redhat.com>
* record-full.c (record_full_beneath_to_resume_ops)
(record_full_beneath_to_resume, record_full_beneath_to_wait_ops)
(record_full_beneath_to_wait)
(record_full_beneath_to_store_registers_ops)
(record_full_beneath_to_store_registers)
(record_full_beneath_to_xfer_partial_ops)
(record_full_beneath_to_xfer_partial)
(record_full_beneath_to_insert_breakpoint_ops)
(record_full_beneath_to_insert_breakpoint)
(record_full_beneath_to_remove_breakpoint_ops)
(record_full_beneath_to_remove_breakpoint)
(record_full_beneath_to_stopped_by_watchpoint)
(record_full_beneath_to_stopped_data_address)
(record_full_beneath_to_async, tmp_to_resume_ops, tmp_to_resume)
(tmp_to_wait_ops, tmp_to_wait, tmp_to_store_registers_ops)
(tmp_to_store_registers, tmp_to_xfer_partial_ops)
(tmp_to_xfer_partial, tmp_to_instmp_to_insert_breakpoint_ops)
(tmp_to_insert_breakpoint, tmp_to_remove_breakpoint_ops)
(tmp_to_remove_breakpoint, tmp_to_stopped_by_watchpoint)
(tmp_to_stopped_data_address, tmp_to_async): Remove.
(record_full_open_1, record_full_open): Update. Use RECORD_IS_USED.
(record_full_resume, record_full_wait_1)
(record_full_stopped_by_watchpoint, record_full_stopped_data_address)
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint)
(record_full_async, record_full_core_xfer_partial): Use target
delegation.
* target-delegates.c: Rebuild.
* target.c (current_xfer_partial): Remove.
(update_current_target): Do not INHERIT or de_fault
to_insert_breakpoint, to_remove_breakpoint,
to_stopped_data_address, to_stopped_by_watchpoint, to_can_async_p,
to_is_async_p, to_async. Do not set to_xfer_partial field.
(default_xfer_partial): Simplify.
(current_xfer_partial): Remove.
(target_wait, target_resume): Simplify.
(find_default_can_async_p, find_default_is_async_p): Update.
(init_dummy_target): Don't set to_can_async_p, to_is_async_p,
to_xfer_partial, to_stopped_by_watchpoint,
to_stopped_data_address.
(target_store_registers): Simplify.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
(target_remove_breakpoint, target_insert_breakpoint)
(debug_to_insert_breakpoint, debug_to_remove_breakpoint): Update.
* target.h (struct target_ops) <to_resume, to_wait,
to_store_registers, to_insert_breakpoint, to_remove_breakpoint,
to_stopped_by_watchpoint, to_stopped_data_address, to_can_async_p,
to_is_async_p, to_async, to_xfer_partial>: Add TARGET_DEFAULT
markup.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
* record-btrace.c (record_btrace_remove_breakpoint): Delegate
directly.
(record_btrace_insert_breakpoint): Delegate directly.
2013-07-13 03:00:34 +08:00
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_xfer_partial (self, arg1, arg2, arg3, arg4, arg5, arg6, arg7);
|
|
|
|
}
|
|
|
|
|
2014-07-16 02:08:54 +08:00
|
|
|
static enum target_xfer_status
|
|
|
|
tdefault_xfer_partial (struct target_ops *self, enum target_object arg1, const char *arg2, gdb_byte *arg3, const gdb_byte *arg4, ULONGEST arg5, ULONGEST arg6, ULONGEST *arg7)
|
add target method delegation
This patch replaces some code in the record targets with target method
delegation.
record-full.c stores pointers to many target methods when the record
target is pushed. Then it later delegates some calls via these. This
is wrong because it violates the target stack contract. In particular
it is ok to unpush a target at any stratum, but record-full does not
keep track of this, so it could potentially call into an unpushed
target.
This patch fixes the problem by using the newly-introduced generic
approach to target delegation for the methods in question.
2014-02-19 Tom Tromey <tromey@redhat.com>
* record-full.c (record_full_beneath_to_resume_ops)
(record_full_beneath_to_resume, record_full_beneath_to_wait_ops)
(record_full_beneath_to_wait)
(record_full_beneath_to_store_registers_ops)
(record_full_beneath_to_store_registers)
(record_full_beneath_to_xfer_partial_ops)
(record_full_beneath_to_xfer_partial)
(record_full_beneath_to_insert_breakpoint_ops)
(record_full_beneath_to_insert_breakpoint)
(record_full_beneath_to_remove_breakpoint_ops)
(record_full_beneath_to_remove_breakpoint)
(record_full_beneath_to_stopped_by_watchpoint)
(record_full_beneath_to_stopped_data_address)
(record_full_beneath_to_async, tmp_to_resume_ops, tmp_to_resume)
(tmp_to_wait_ops, tmp_to_wait, tmp_to_store_registers_ops)
(tmp_to_store_registers, tmp_to_xfer_partial_ops)
(tmp_to_xfer_partial, tmp_to_instmp_to_insert_breakpoint_ops)
(tmp_to_insert_breakpoint, tmp_to_remove_breakpoint_ops)
(tmp_to_remove_breakpoint, tmp_to_stopped_by_watchpoint)
(tmp_to_stopped_data_address, tmp_to_async): Remove.
(record_full_open_1, record_full_open): Update. Use RECORD_IS_USED.
(record_full_resume, record_full_wait_1)
(record_full_stopped_by_watchpoint, record_full_stopped_data_address)
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint)
(record_full_async, record_full_core_xfer_partial): Use target
delegation.
* target-delegates.c: Rebuild.
* target.c (current_xfer_partial): Remove.
(update_current_target): Do not INHERIT or de_fault
to_insert_breakpoint, to_remove_breakpoint,
to_stopped_data_address, to_stopped_by_watchpoint, to_can_async_p,
to_is_async_p, to_async. Do not set to_xfer_partial field.
(default_xfer_partial): Simplify.
(current_xfer_partial): Remove.
(target_wait, target_resume): Simplify.
(find_default_can_async_p, find_default_is_async_p): Update.
(init_dummy_target): Don't set to_can_async_p, to_is_async_p,
to_xfer_partial, to_stopped_by_watchpoint,
to_stopped_data_address.
(target_store_registers): Simplify.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
(target_remove_breakpoint, target_insert_breakpoint)
(debug_to_insert_breakpoint, debug_to_remove_breakpoint): Update.
* target.h (struct target_ops) <to_resume, to_wait,
to_store_registers, to_insert_breakpoint, to_remove_breakpoint,
to_stopped_by_watchpoint, to_stopped_data_address, to_can_async_p,
to_is_async_p, to_async, to_xfer_partial>: Add TARGET_DEFAULT
markup.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
* record-btrace.c (record_btrace_remove_breakpoint): Delegate
directly.
(record_btrace_insert_breakpoint): Delegate directly.
2013-07-13 03:00:34 +08:00
|
|
|
{
|
|
|
|
return TARGET_XFER_E_IO;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static enum target_xfer_status
|
|
|
|
debug_xfer_partial (struct target_ops *self, enum target_object arg1, const char *arg2, gdb_byte *arg3, const gdb_byte *arg4, ULONGEST arg5, ULONGEST arg6, ULONGEST *arg7)
|
|
|
|
{
|
|
|
|
enum target_xfer_status result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_xfer_partial (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_xfer_partial (&debug_target, arg1, arg2, arg3, arg4, arg5, arg6, arg7);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_xfer_partial (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_enum_target_object (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_const_char_p (arg2);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_gdb_byte_p (arg3);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_const_gdb_byte_p (arg4);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_ULONGEST (arg5);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_ULONGEST (arg6);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_ULONGEST_p (arg7);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_enum_target_xfer_status (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 22:47:11 +08:00
|
|
|
static VEC(mem_region_s) *
|
|
|
|
delegate_memory_map (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_memory_map (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static VEC(mem_region_s) *
|
|
|
|
tdefault_memory_map (struct target_ops *self)
|
|
|
|
{
|
pass NULL to TARGET_DEFAULT_RETURN when appropriate
This changes instances of TARGET_DEFAULT_RETURN(0) to
TARGET_DEFAULT_RETURN(NULL) when appropriate. The use of "0" was a
relic from an earlier implementation of make-target-delegates; and I
didn't want to go back through the long patch series, fixing up
conflicts, just to change this small detail.
2014-02-19 Tom Tromey <tromey@redhat.com>
* target-delegates.c: Rebuild.
* target.h (struct target_ops) <to_extra_thread_info,
to_thread_name, to_pid_to_exec_file, to_get_section_table,
to_memory_map, to_read_description, to_traceframe_info>: Use NULL,
not 0, in TARGET_DEFAULT_RETURN.
2014-01-16 00:30:05 +08:00
|
|
|
return NULL;
|
2013-12-19 22:47:11 +08:00
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static VEC(mem_region_s) *
|
|
|
|
debug_memory_map (struct target_ops *self)
|
|
|
|
{
|
|
|
|
VEC(mem_region_s) * result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_memory_map (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_memory_map (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_memory_map (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_VEC_mem_region_s__p (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:50:56 +08:00
|
|
|
static void
|
|
|
|
delegate_flash_erase (struct target_ops *self, ULONGEST arg1, LONGEST arg2)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_flash_erase (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_flash_erase (struct target_ops *self, ULONGEST arg1, LONGEST arg2)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_flash_erase (struct target_ops *self, ULONGEST arg1, LONGEST arg2)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_flash_erase (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_flash_erase (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_flash_erase (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_ULONGEST (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_LONGEST (arg2);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:52:02 +08:00
|
|
|
static void
|
|
|
|
delegate_flash_done (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_flash_done (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_flash_done (struct target_ops *self)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_flash_done (struct target_ops *self)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_flash_done (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_flash_done (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_flash_done (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2014-01-14 00:30:30 +08:00
|
|
|
static const struct target_desc *
|
|
|
|
delegate_read_description (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_read_description (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct target_desc *
|
|
|
|
tdefault_read_description (struct target_ops *self)
|
|
|
|
{
|
pass NULL to TARGET_DEFAULT_RETURN when appropriate
This changes instances of TARGET_DEFAULT_RETURN(0) to
TARGET_DEFAULT_RETURN(NULL) when appropriate. The use of "0" was a
relic from an earlier implementation of make-target-delegates; and I
didn't want to go back through the long patch series, fixing up
conflicts, just to change this small detail.
2014-02-19 Tom Tromey <tromey@redhat.com>
* target-delegates.c: Rebuild.
* target.h (struct target_ops) <to_extra_thread_info,
to_thread_name, to_pid_to_exec_file, to_get_section_table,
to_memory_map, to_read_description, to_traceframe_info>: Use NULL,
not 0, in TARGET_DEFAULT_RETURN.
2014-01-16 00:30:05 +08:00
|
|
|
return NULL;
|
2014-01-14 00:30:30 +08:00
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static const struct target_desc *
|
|
|
|
debug_read_description (struct target_ops *self)
|
|
|
|
{
|
|
|
|
const struct target_desc * result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_read_description (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_read_description (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_read_description (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_const_struct_target_desc_p (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 04:53:09 +08:00
|
|
|
static ptid_t
|
|
|
|
delegate_get_ada_task_ptid (struct target_ops *self, long arg1, long arg2)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_get_ada_task_ptid (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static ptid_t
|
|
|
|
debug_get_ada_task_ptid (struct target_ops *self, long arg1, long arg2)
|
|
|
|
{
|
|
|
|
ptid_t result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_get_ada_task_ptid (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_get_ada_task_ptid (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_get_ada_task_ptid (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_long (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_long (arg2);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_ptid_t (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 22:56:20 +08:00
|
|
|
static int
|
|
|
|
delegate_auxv_parse (struct target_ops *self, gdb_byte **arg1, gdb_byte *arg2, CORE_ADDR *arg3, CORE_ADDR *arg4)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_auxv_parse (self, arg1, arg2, arg3, arg4);
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_auxv_parse (struct target_ops *self, gdb_byte **arg1, gdb_byte *arg2, CORE_ADDR *arg3, CORE_ADDR *arg4)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_auxv_parse (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_auxv_parse (&debug_target, arg1, arg2, arg3, arg4);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_auxv_parse (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_gdb_byte_pp (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_gdb_byte_p (arg2);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_CORE_ADDR_p (arg3);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_CORE_ADDR_p (arg4);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 23:12:26 +08:00
|
|
|
static int
|
|
|
|
delegate_search_memory (struct target_ops *self, CORE_ADDR arg1, ULONGEST arg2, const gdb_byte *arg3, ULONGEST arg4, CORE_ADDR *arg5)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_search_memory (self, arg1, arg2, arg3, arg4, arg5);
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_search_memory (struct target_ops *self, CORE_ADDR arg1, ULONGEST arg2, const gdb_byte *arg3, ULONGEST arg4, CORE_ADDR *arg5)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_search_memory (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_search_memory (&debug_target, arg1, arg2, arg3, arg4, arg5);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_search_memory (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_CORE_ADDR (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_ULONGEST (arg2);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_const_gdb_byte_p (arg3);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_ULONGEST (arg4);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_CORE_ADDR_p (arg5);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 02:12:28 +08:00
|
|
|
static int
|
|
|
|
delegate_can_execute_reverse (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_can_execute_reverse (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_can_execute_reverse (struct target_ops *self)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_can_execute_reverse (struct target_ops *self)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_can_execute_reverse (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_can_execute_reverse (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_can_execute_reverse (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2014-07-16 02:08:54 +08:00
|
|
|
static enum exec_direction_kind
|
2013-12-19 02:15:21 +08:00
|
|
|
delegate_execution_direction (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_execution_direction (self);
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static enum exec_direction_kind
|
|
|
|
debug_execution_direction (struct target_ops *self)
|
|
|
|
{
|
|
|
|
enum exec_direction_kind result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_execution_direction (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_execution_direction (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_execution_direction (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_enum_exec_direction_kind (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 04:54:06 +08:00
|
|
|
static int
|
|
|
|
delegate_supports_multi_process (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_supports_multi_process (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_supports_multi_process (struct target_ops *self)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_supports_multi_process (struct target_ops *self)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_supports_multi_process (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_supports_multi_process (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_supports_multi_process (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 04:54:59 +08:00
|
|
|
static int
|
|
|
|
delegate_supports_enable_disable_tracepoint (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_supports_enable_disable_tracepoint (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_supports_enable_disable_tracepoint (struct target_ops *self)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_supports_enable_disable_tracepoint (struct target_ops *self)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_supports_enable_disable_tracepoint (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_supports_enable_disable_tracepoint (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_supports_enable_disable_tracepoint (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 04:56:04 +08:00
|
|
|
static int
|
|
|
|
delegate_supports_string_tracing (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_supports_string_tracing (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_supports_string_tracing (struct target_ops *self)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_supports_string_tracing (struct target_ops *self)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_supports_string_tracing (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_supports_string_tracing (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_supports_string_tracing (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:20:06 +08:00
|
|
|
static int
|
|
|
|
delegate_supports_evaluation_of_breakpoint_conditions (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_supports_evaluation_of_breakpoint_conditions (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_supports_evaluation_of_breakpoint_conditions (struct target_ops *self)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_supports_evaluation_of_breakpoint_conditions (struct target_ops *self)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_supports_evaluation_of_breakpoint_conditions (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_supports_evaluation_of_breakpoint_conditions (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_supports_evaluation_of_breakpoint_conditions (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:20:36 +08:00
|
|
|
static int
|
|
|
|
delegate_can_run_breakpoint_commands (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_can_run_breakpoint_commands (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_can_run_breakpoint_commands (struct target_ops *self)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_can_run_breakpoint_commands (struct target_ops *self)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_can_run_breakpoint_commands (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_can_run_breakpoint_commands (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_can_run_breakpoint_commands (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 02:16:31 +08:00
|
|
|
static struct gdbarch *
|
|
|
|
delegate_thread_architecture (struct target_ops *self, ptid_t arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_thread_architecture (self, arg1);
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static struct gdbarch *
|
|
|
|
debug_thread_architecture (struct target_ops *self, ptid_t arg1)
|
|
|
|
{
|
|
|
|
struct gdbarch * result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_thread_architecture (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_thread_architecture (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_thread_architecture (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_ptid_t (arg1);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_gdbarch_p (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2014-02-22 01:33:42 +08:00
|
|
|
static struct address_space *
|
|
|
|
delegate_thread_address_space (struct target_ops *self, ptid_t arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_thread_address_space (self, arg1);
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static struct address_space *
|
|
|
|
debug_thread_address_space (struct target_ops *self, ptid_t arg1)
|
|
|
|
{
|
|
|
|
struct address_space * result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_thread_address_space (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_thread_address_space (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_thread_address_space (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_ptid_t (arg1);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_address_space_p (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2015-04-02 20:38:28 +08:00
|
|
|
static int
|
|
|
|
delegate_filesystem_is_local (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_filesystem_is_local (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_filesystem_is_local (struct target_ops *self)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
debug_filesystem_is_local (struct target_ops *self)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_filesystem_is_local (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_filesystem_is_local (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_filesystem_is_local (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 04:57:05 +08:00
|
|
|
static void
|
|
|
|
delegate_trace_init (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_trace_init (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_trace_init (struct target_ops *self)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_trace_init (struct target_ops *self)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_trace_init (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_trace_init (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_trace_init (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 04:57:41 +08:00
|
|
|
static void
|
|
|
|
delegate_download_tracepoint (struct target_ops *self, struct bp_location *arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_download_tracepoint (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_download_tracepoint (struct target_ops *self, struct bp_location *arg1)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_download_tracepoint (struct target_ops *self, struct bp_location *arg1)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_download_tracepoint (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_download_tracepoint (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_download_tracepoint (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_bp_location_p (arg1);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:00:23 +08:00
|
|
|
static int
|
|
|
|
delegate_can_download_tracepoint (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_can_download_tracepoint (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_can_download_tracepoint (struct target_ops *self)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_can_download_tracepoint (struct target_ops *self)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_can_download_tracepoint (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_can_download_tracepoint (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_can_download_tracepoint (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:01:07 +08:00
|
|
|
static void
|
|
|
|
delegate_download_trace_state_variable (struct target_ops *self, struct trace_state_variable *arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_download_trace_state_variable (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_download_trace_state_variable (struct target_ops *self, struct trace_state_variable *arg1)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_download_trace_state_variable (struct target_ops *self, struct trace_state_variable *arg1)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_download_trace_state_variable (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_download_trace_state_variable (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_download_trace_state_variable (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_trace_state_variable_p (arg1);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:01:51 +08:00
|
|
|
static void
|
|
|
|
delegate_enable_tracepoint (struct target_ops *self, struct bp_location *arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_enable_tracepoint (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_enable_tracepoint (struct target_ops *self, struct bp_location *arg1)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_enable_tracepoint (struct target_ops *self, struct bp_location *arg1)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_enable_tracepoint (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_enable_tracepoint (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_enable_tracepoint (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_bp_location_p (arg1);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:02:30 +08:00
|
|
|
static void
|
|
|
|
delegate_disable_tracepoint (struct target_ops *self, struct bp_location *arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_disable_tracepoint (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_disable_tracepoint (struct target_ops *self, struct bp_location *arg1)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_disable_tracepoint (struct target_ops *self, struct bp_location *arg1)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_disable_tracepoint (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_disable_tracepoint (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_disable_tracepoint (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_bp_location_p (arg1);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:03:28 +08:00
|
|
|
static void
|
|
|
|
delegate_trace_set_readonly_regions (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_trace_set_readonly_regions (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_trace_set_readonly_regions (struct target_ops *self)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_trace_set_readonly_regions (struct target_ops *self)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_trace_set_readonly_regions (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_trace_set_readonly_regions (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_trace_set_readonly_regions (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:04:27 +08:00
|
|
|
static void
|
|
|
|
delegate_trace_start (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_trace_start (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_trace_start (struct target_ops *self)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_trace_start (struct target_ops *self)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_trace_start (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_trace_start (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_trace_start (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:06:18 +08:00
|
|
|
static int
|
|
|
|
delegate_get_trace_status (struct target_ops *self, struct trace_status *arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_get_trace_status (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_get_trace_status (struct target_ops *self, struct trace_status *arg1)
|
|
|
|
{
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_get_trace_status (struct target_ops *self, struct trace_status *arg1)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_get_trace_status (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_get_trace_status (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_get_trace_status (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_trace_status_p (arg1);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:06:52 +08:00
|
|
|
static void
|
|
|
|
delegate_get_tracepoint_status (struct target_ops *self, struct breakpoint *arg1, struct uploaded_tp *arg2)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_get_tracepoint_status (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_get_tracepoint_status (struct target_ops *self, struct breakpoint *arg1, struct uploaded_tp *arg2)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_get_tracepoint_status (struct target_ops *self, struct breakpoint *arg1, struct uploaded_tp *arg2)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_get_tracepoint_status (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_get_tracepoint_status (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_get_tracepoint_status (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_breakpoint_p (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_uploaded_tp_p (arg2);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:07:28 +08:00
|
|
|
static void
|
|
|
|
delegate_trace_stop (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_trace_stop (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_trace_stop (struct target_ops *self)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_trace_stop (struct target_ops *self)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_trace_stop (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_trace_stop (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_trace_stop (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:08:14 +08:00
|
|
|
static int
|
2014-07-16 02:08:54 +08:00
|
|
|
delegate_trace_find (struct target_ops *self, enum trace_find_type arg1, int arg2, CORE_ADDR arg3, CORE_ADDR arg4, int *arg5)
|
2013-12-19 05:08:14 +08:00
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_trace_find (self, arg1, arg2, arg3, arg4, arg5);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2014-07-16 02:08:54 +08:00
|
|
|
tdefault_trace_find (struct target_ops *self, enum trace_find_type arg1, int arg2, CORE_ADDR arg3, CORE_ADDR arg4, int *arg5)
|
2013-12-19 05:08:14 +08:00
|
|
|
{
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_trace_find (struct target_ops *self, enum trace_find_type arg1, int arg2, CORE_ADDR arg3, CORE_ADDR arg4, int *arg5)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_trace_find (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_trace_find (&debug_target, arg1, arg2, arg3, arg4, arg5);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_trace_find (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_enum_trace_find_type (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg2);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_CORE_ADDR (arg3);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_CORE_ADDR (arg4);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int_p (arg5);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:09:04 +08:00
|
|
|
static int
|
|
|
|
delegate_get_trace_state_variable_value (struct target_ops *self, int arg1, LONGEST *arg2)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_get_trace_state_variable_value (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_get_trace_state_variable_value (struct target_ops *self, int arg1, LONGEST *arg2)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_get_trace_state_variable_value (struct target_ops *self, int arg1, LONGEST *arg2)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_get_trace_state_variable_value (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_get_trace_state_variable_value (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_get_trace_state_variable_value (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_LONGEST_p (arg2);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:09:37 +08:00
|
|
|
static int
|
|
|
|
delegate_save_trace_data (struct target_ops *self, const char *arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_save_trace_data (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_save_trace_data (struct target_ops *self, const char *arg1)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_save_trace_data (struct target_ops *self, const char *arg1)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_save_trace_data (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_save_trace_data (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_save_trace_data (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_const_char_p (arg1);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:10:14 +08:00
|
|
|
static int
|
|
|
|
delegate_upload_tracepoints (struct target_ops *self, struct uploaded_tp **arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_upload_tracepoints (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_upload_tracepoints (struct target_ops *self, struct uploaded_tp **arg1)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_upload_tracepoints (struct target_ops *self, struct uploaded_tp **arg1)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_upload_tracepoints (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_upload_tracepoints (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_upload_tracepoints (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_uploaded_tp_pp (arg1);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:10:40 +08:00
|
|
|
static int
|
|
|
|
delegate_upload_trace_state_variables (struct target_ops *self, struct uploaded_tsv **arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_upload_trace_state_variables (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_upload_trace_state_variables (struct target_ops *self, struct uploaded_tsv **arg1)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_upload_trace_state_variables (struct target_ops *self, struct uploaded_tsv **arg1)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_upload_trace_state_variables (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_upload_trace_state_variables (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_upload_trace_state_variables (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_uploaded_tsv_pp (arg1);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:11:12 +08:00
|
|
|
static LONGEST
|
|
|
|
delegate_get_raw_trace_data (struct target_ops *self, gdb_byte *arg1, ULONGEST arg2, LONGEST arg3)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_get_raw_trace_data (self, arg1, arg2, arg3);
|
|
|
|
}
|
|
|
|
|
|
|
|
static LONGEST
|
|
|
|
tdefault_get_raw_trace_data (struct target_ops *self, gdb_byte *arg1, ULONGEST arg2, LONGEST arg3)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static LONGEST
|
|
|
|
debug_get_raw_trace_data (struct target_ops *self, gdb_byte *arg1, ULONGEST arg2, LONGEST arg3)
|
|
|
|
{
|
|
|
|
LONGEST result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_get_raw_trace_data (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_get_raw_trace_data (&debug_target, arg1, arg2, arg3);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_get_raw_trace_data (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_gdb_byte_p (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_ULONGEST (arg2);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_LONGEST (arg3);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_LONGEST (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:11:53 +08:00
|
|
|
static int
|
|
|
|
delegate_get_min_fast_tracepoint_insn_len (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_get_min_fast_tracepoint_insn_len (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_get_min_fast_tracepoint_insn_len (struct target_ops *self)
|
|
|
|
{
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_get_min_fast_tracepoint_insn_len (struct target_ops *self)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_get_min_fast_tracepoint_insn_len (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_get_min_fast_tracepoint_insn_len (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_get_min_fast_tracepoint_insn_len (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:12:29 +08:00
|
|
|
static void
|
|
|
|
delegate_set_disconnected_tracing (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_set_disconnected_tracing (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_set_disconnected_tracing (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_set_disconnected_tracing (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_set_disconnected_tracing (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_set_disconnected_tracing (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_set_disconnected_tracing (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg1);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:13:09 +08:00
|
|
|
static void
|
|
|
|
delegate_set_circular_trace_buffer (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_set_circular_trace_buffer (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_set_circular_trace_buffer (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_set_circular_trace_buffer (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_set_circular_trace_buffer (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_set_circular_trace_buffer (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_set_circular_trace_buffer (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg1);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:14:58 +08:00
|
|
|
static void
|
|
|
|
delegate_set_trace_buffer_size (struct target_ops *self, LONGEST arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_set_trace_buffer_size (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_set_trace_buffer_size (struct target_ops *self, LONGEST arg1)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_set_trace_buffer_size (struct target_ops *self, LONGEST arg1)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_set_trace_buffer_size (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_set_trace_buffer_size (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_set_trace_buffer_size (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_LONGEST (arg1);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:15:23 +08:00
|
|
|
static int
|
|
|
|
delegate_set_trace_notes (struct target_ops *self, const char *arg1, const char *arg2, const char *arg3)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_set_trace_notes (self, arg1, arg2, arg3);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_set_trace_notes (struct target_ops *self, const char *arg1, const char *arg2, const char *arg3)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_set_trace_notes (struct target_ops *self, const char *arg1, const char *arg2, const char *arg3)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_set_trace_notes (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_set_trace_notes (&debug_target, arg1, arg2, arg3);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_set_trace_notes (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_const_char_p (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_const_char_p (arg2);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_const_char_p (arg3);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:55:06 +08:00
|
|
|
static int
|
|
|
|
delegate_core_of_thread (struct target_ops *self, ptid_t arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_core_of_thread (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_core_of_thread (struct target_ops *self, ptid_t arg1)
|
|
|
|
{
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_core_of_thread (struct target_ops *self, ptid_t arg1)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_core_of_thread (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_core_of_thread (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_core_of_thread (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_ptid_t (arg1);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:55:44 +08:00
|
|
|
static int
|
|
|
|
delegate_verify_memory (struct target_ops *self, const gdb_byte *arg1, CORE_ADDR arg2, ULONGEST arg3)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_verify_memory (self, arg1, arg2, arg3);
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_verify_memory (struct target_ops *self, const gdb_byte *arg1, CORE_ADDR arg2, ULONGEST arg3)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_verify_memory (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_verify_memory (&debug_target, arg1, arg2, arg3);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_verify_memory (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_const_gdb_byte_p (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_CORE_ADDR (arg2);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_ULONGEST (arg3);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:15:55 +08:00
|
|
|
static int
|
|
|
|
delegate_get_tib_address (struct target_ops *self, ptid_t arg1, CORE_ADDR *arg2)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_get_tib_address (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_get_tib_address (struct target_ops *self, ptid_t arg1, CORE_ADDR *arg2)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_get_tib_address (struct target_ops *self, ptid_t arg1, CORE_ADDR *arg2)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_get_tib_address (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_get_tib_address (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_get_tib_address (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_ptid_t (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_CORE_ADDR_p (arg2);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:16:24 +08:00
|
|
|
static void
|
|
|
|
delegate_set_permissions (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_set_permissions (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_set_permissions (struct target_ops *self)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_set_permissions (struct target_ops *self)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_set_permissions (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_set_permissions (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_set_permissions (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:16:51 +08:00
|
|
|
static int
|
|
|
|
delegate_static_tracepoint_marker_at (struct target_ops *self, CORE_ADDR arg1, struct static_tracepoint_marker *arg2)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_static_tracepoint_marker_at (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_static_tracepoint_marker_at (struct target_ops *self, CORE_ADDR arg1, struct static_tracepoint_marker *arg2)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_static_tracepoint_marker_at (struct target_ops *self, CORE_ADDR arg1, struct static_tracepoint_marker *arg2)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_static_tracepoint_marker_at (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_static_tracepoint_marker_at (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_static_tracepoint_marker_at (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_CORE_ADDR (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_static_tracepoint_marker_p (arg2);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:17:35 +08:00
|
|
|
static VEC(static_tracepoint_marker_p) *
|
|
|
|
delegate_static_tracepoint_markers_by_strid (struct target_ops *self, const char *arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_static_tracepoint_markers_by_strid (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static VEC(static_tracepoint_marker_p) *
|
|
|
|
tdefault_static_tracepoint_markers_by_strid (struct target_ops *self, const char *arg1)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static VEC(static_tracepoint_marker_p) *
|
|
|
|
debug_static_tracepoint_markers_by_strid (struct target_ops *self, const char *arg1)
|
|
|
|
{
|
|
|
|
VEC(static_tracepoint_marker_p) * result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_static_tracepoint_markers_by_strid (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_static_tracepoint_markers_by_strid (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_static_tracepoint_markers_by_strid (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_const_char_p (arg1);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_VEC_static_tracepoint_marker_p__p (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:18:10 +08:00
|
|
|
static struct traceframe_info *
|
|
|
|
delegate_traceframe_info (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_traceframe_info (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct traceframe_info *
|
|
|
|
tdefault_traceframe_info (struct target_ops *self)
|
|
|
|
{
|
2014-03-04 17:39:10 +08:00
|
|
|
tcomplain ();
|
2013-12-19 05:18:10 +08:00
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static struct traceframe_info *
|
|
|
|
debug_traceframe_info (struct target_ops *self)
|
|
|
|
{
|
|
|
|
struct traceframe_info * result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_traceframe_info (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_traceframe_info (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_traceframe_info (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_traceframe_info_p (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:18:35 +08:00
|
|
|
static int
|
|
|
|
delegate_use_agent (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_use_agent (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_use_agent (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_use_agent (struct target_ops *self, int arg1)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_use_agent (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_use_agent (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_use_agent (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg1);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:19:04 +08:00
|
|
|
static int
|
|
|
|
delegate_can_use_agent (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_can_use_agent (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_can_use_agent (struct target_ops *self)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_can_use_agent (struct target_ops *self)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_can_use_agent (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_can_use_agent (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_can_use_agent (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-14 04:26:04 +08:00
|
|
|
static int
|
2014-01-17 20:29:19 +08:00
|
|
|
delegate_supports_btrace (struct target_ops *self, enum btrace_format arg1)
|
2013-12-14 04:26:04 +08:00
|
|
|
{
|
|
|
|
self = self->beneath;
|
2014-01-17 20:29:19 +08:00
|
|
|
return self->to_supports_btrace (self, arg1);
|
2013-12-14 04:26:04 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
2014-01-17 20:29:19 +08:00
|
|
|
tdefault_supports_btrace (struct target_ops *self, enum btrace_format arg1)
|
2013-12-14 04:26:04 +08:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
2014-01-17 20:29:19 +08:00
|
|
|
debug_supports_btrace (struct target_ops *self, enum btrace_format arg1)
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_supports_btrace (...)\n", debug_target.to_shortname);
|
2014-01-17 20:29:19 +08:00
|
|
|
result = debug_target.to_supports_btrace (&debug_target, arg1);
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_supports_btrace (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
2014-01-17 20:29:19 +08:00
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_enum_btrace_format (arg1);
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 23:19:41 +08:00
|
|
|
static struct btrace_target_info *
|
2013-11-28 22:44:13 +08:00
|
|
|
delegate_enable_btrace (struct target_ops *self, ptid_t arg1, const struct btrace_config *arg2)
|
2013-12-19 23:19:41 +08:00
|
|
|
{
|
|
|
|
self = self->beneath;
|
2013-11-28 22:44:13 +08:00
|
|
|
return self->to_enable_btrace (self, arg1, arg2);
|
2013-12-19 23:19:41 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static struct btrace_target_info *
|
2013-11-28 22:44:13 +08:00
|
|
|
tdefault_enable_btrace (struct target_ops *self, ptid_t arg1, const struct btrace_config *arg2)
|
2013-12-19 23:19:41 +08:00
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static struct btrace_target_info *
|
2013-11-28 22:44:13 +08:00
|
|
|
debug_enable_btrace (struct target_ops *self, ptid_t arg1, const struct btrace_config *arg2)
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
{
|
|
|
|
struct btrace_target_info * result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_enable_btrace (...)\n", debug_target.to_shortname);
|
2013-11-28 22:44:13 +08:00
|
|
|
result = debug_target.to_enable_btrace (&debug_target, arg1, arg2);
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_enable_btrace (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_ptid_t (arg1);
|
2013-11-28 22:44:13 +08:00
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_const_struct_btrace_config_p (arg2);
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_btrace_target_info_p (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 23:17:16 +08:00
|
|
|
static void
|
|
|
|
delegate_disable_btrace (struct target_ops *self, struct btrace_target_info *arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_disable_btrace (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_disable_btrace (struct target_ops *self, struct btrace_target_info *arg1)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_disable_btrace (struct target_ops *self, struct btrace_target_info *arg1)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_disable_btrace (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_disable_btrace (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_disable_btrace (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_btrace_target_info_p (arg1);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 23:18:04 +08:00
|
|
|
static void
|
|
|
|
delegate_teardown_btrace (struct target_ops *self, struct btrace_target_info *arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_teardown_btrace (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_teardown_btrace (struct target_ops *self, struct btrace_target_info *arg1)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_teardown_btrace (struct target_ops *self, struct btrace_target_info *arg1)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_teardown_btrace (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_teardown_btrace (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_teardown_btrace (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_btrace_target_info_p (arg1);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2014-07-16 02:08:54 +08:00
|
|
|
static enum btrace_error
|
2013-11-13 22:31:07 +08:00
|
|
|
delegate_read_btrace (struct target_ops *self, struct btrace_data *arg1, struct btrace_target_info *arg2, enum btrace_read_type arg3)
|
2013-12-19 23:19:02 +08:00
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_read_btrace (self, arg1, arg2, arg3);
|
|
|
|
}
|
|
|
|
|
2014-07-16 02:08:54 +08:00
|
|
|
static enum btrace_error
|
2013-11-13 22:31:07 +08:00
|
|
|
tdefault_read_btrace (struct target_ops *self, struct btrace_data *arg1, struct btrace_target_info *arg2, enum btrace_read_type arg3)
|
2013-12-19 23:19:02 +08:00
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static enum btrace_error
|
2013-11-13 22:31:07 +08:00
|
|
|
debug_read_btrace (struct target_ops *self, struct btrace_data *arg1, struct btrace_target_info *arg2, enum btrace_read_type arg3)
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
{
|
|
|
|
enum btrace_error result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_read_btrace (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_read_btrace (&debug_target, arg1, arg2, arg3);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_read_btrace (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
2013-11-13 22:31:07 +08:00
|
|
|
target_debug_print_struct_btrace_data_p (arg1);
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_struct_btrace_target_info_p (arg2);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_enum_btrace_read_type (arg3);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_enum_btrace_error (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-11-28 22:44:13 +08:00
|
|
|
static const struct btrace_config *
|
|
|
|
delegate_btrace_conf (struct target_ops *self, const struct btrace_target_info *arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_btrace_conf (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct btrace_config *
|
|
|
|
tdefault_btrace_conf (struct target_ops *self, const struct btrace_target_info *arg1)
|
|
|
|
{
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct btrace_config *
|
|
|
|
debug_btrace_conf (struct target_ops *self, const struct btrace_target_info *arg1)
|
|
|
|
{
|
|
|
|
const struct btrace_config * result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_btrace_conf (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_btrace_conf (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_btrace_conf (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_const_struct_btrace_target_info_p (arg1);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_const_struct_btrace_config_p (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 23:21:20 +08:00
|
|
|
static void
|
|
|
|
delegate_stop_recording (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_stop_recording (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_stop_recording (struct target_ops *self)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_stop_recording (struct target_ops *self)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_stop_recording (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_stop_recording (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_stop_recording (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2014-07-16 22:05:03 +08:00
|
|
|
static void
|
|
|
|
delegate_info_record (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_info_record (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_info_record (struct target_ops *self)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_info_record (struct target_ops *self)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_info_record (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_info_record (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_info_record (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 11:26:34 +08:00
|
|
|
static void
|
|
|
|
delegate_save_record (struct target_ops *self, const char *arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_save_record (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_save_record (struct target_ops *self, const char *arg1)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_save_record (struct target_ops *self, const char *arg1)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_save_record (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_save_record (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_save_record (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_const_char_p (arg1);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 11:25:47 +08:00
|
|
|
static void
|
|
|
|
delegate_delete_record (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_delete_record (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_delete_record (struct target_ops *self)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_delete_record (struct target_ops *self)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_delete_record (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_delete_record (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_delete_record (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 11:25:01 +08:00
|
|
|
static int
|
|
|
|
delegate_record_is_replaying (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_record_is_replaying (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_record_is_replaying (struct target_ops *self)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_record_is_replaying (struct target_ops *self)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_record_is_replaying (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_record_is_replaying (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_record_is_replaying (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2013-12-19 11:24:04 +08:00
|
|
|
static void
|
|
|
|
delegate_goto_record_begin (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_goto_record_begin (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_goto_record_begin (struct target_ops *self)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_goto_record_begin (struct target_ops *self)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_goto_record_begin (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_goto_record_begin (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_goto_record_begin (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 11:23:23 +08:00
|
|
|
static void
|
|
|
|
delegate_goto_record_end (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_goto_record_end (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_goto_record_end (struct target_ops *self)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_goto_record_end (struct target_ops *self)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_goto_record_end (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_goto_record_end (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_goto_record_end (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 11:22:36 +08:00
|
|
|
static void
|
|
|
|
delegate_goto_record (struct target_ops *self, ULONGEST arg1)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_goto_record (self, arg1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_goto_record (struct target_ops *self, ULONGEST arg1)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_goto_record (struct target_ops *self, ULONGEST arg1)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_goto_record (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_goto_record (&debug_target, arg1);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_goto_record (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_ULONGEST (arg1);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 11:18:49 +08:00
|
|
|
static void
|
|
|
|
delegate_insn_history (struct target_ops *self, int arg1, int arg2)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_insn_history (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_insn_history (struct target_ops *self, int arg1, int arg2)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_insn_history (struct target_ops *self, int arg1, int arg2)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_insn_history (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_insn_history (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_insn_history (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg2);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 11:16:56 +08:00
|
|
|
static void
|
|
|
|
delegate_insn_history_from (struct target_ops *self, ULONGEST arg1, int arg2, int arg3)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_insn_history_from (self, arg1, arg2, arg3);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_insn_history_from (struct target_ops *self, ULONGEST arg1, int arg2, int arg3)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_insn_history_from (struct target_ops *self, ULONGEST arg1, int arg2, int arg3)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_insn_history_from (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_insn_history_from (&debug_target, arg1, arg2, arg3);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_insn_history_from (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_ULONGEST (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg2);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg3);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 11:15:44 +08:00
|
|
|
static void
|
|
|
|
delegate_insn_history_range (struct target_ops *self, ULONGEST arg1, ULONGEST arg2, int arg3)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_insn_history_range (self, arg1, arg2, arg3);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_insn_history_range (struct target_ops *self, ULONGEST arg1, ULONGEST arg2, int arg3)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_insn_history_range (struct target_ops *self, ULONGEST arg1, ULONGEST arg2, int arg3)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_insn_history_range (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_insn_history_range (&debug_target, arg1, arg2, arg3);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_insn_history_range (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_ULONGEST (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_ULONGEST (arg2);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg3);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 11:13:40 +08:00
|
|
|
static void
|
|
|
|
delegate_call_history (struct target_ops *self, int arg1, int arg2)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_call_history (self, arg1, arg2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_call_history (struct target_ops *self, int arg1, int arg2)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_call_history (struct target_ops *self, int arg1, int arg2)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_call_history (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_call_history (&debug_target, arg1, arg2);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_call_history (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg2);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 11:11:49 +08:00
|
|
|
static void
|
|
|
|
delegate_call_history_from (struct target_ops *self, ULONGEST arg1, int arg2, int arg3)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_call_history_from (self, arg1, arg2, arg3);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_call_history_from (struct target_ops *self, ULONGEST arg1, int arg2, int arg3)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_call_history_from (struct target_ops *self, ULONGEST arg1, int arg2, int arg3)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_call_history_from (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_call_history_from (&debug_target, arg1, arg2, arg3);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_call_history_from (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_ULONGEST (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg2);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg3);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 11:10:20 +08:00
|
|
|
static void
|
|
|
|
delegate_call_history_range (struct target_ops *self, ULONGEST arg1, ULONGEST arg2, int arg3)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_call_history_range (self, arg1, arg2, arg3);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_call_history_range (struct target_ops *self, ULONGEST arg1, ULONGEST arg2, int arg3)
|
|
|
|
{
|
|
|
|
tcomplain ();
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_call_history_range (struct target_ops *self, ULONGEST arg1, ULONGEST arg2, int arg3)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_call_history_range (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_call_history_range (&debug_target, arg1, arg2, arg3);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_call_history_range (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_ULONGEST (arg1);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_ULONGEST (arg2);
|
|
|
|
fputs_unfiltered (", ", gdb_stdlog);
|
|
|
|
target_debug_print_int (arg3);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-19 05:19:33 +08:00
|
|
|
static int
|
|
|
|
delegate_augmented_libraries_svr4_read (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_augmented_libraries_svr4_read (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
tdefault_augmented_libraries_svr4_read (struct target_ops *self)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static int
|
|
|
|
debug_augmented_libraries_svr4_read (struct target_ops *self)
|
|
|
|
{
|
|
|
|
int result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_augmented_libraries_svr4_read (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_augmented_libraries_svr4_read (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_augmented_libraries_svr4_read (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_int (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2014-01-17 04:00:07 +08:00
|
|
|
static const struct frame_unwind *
|
|
|
|
delegate_get_unwinder (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_get_unwinder (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct frame_unwind *
|
|
|
|
tdefault_get_unwinder (struct target_ops *self)
|
|
|
|
{
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static const struct frame_unwind *
|
|
|
|
debug_get_unwinder (struct target_ops *self)
|
|
|
|
{
|
|
|
|
const struct frame_unwind * result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_get_unwinder (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_get_unwinder (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_get_unwinder (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_const_struct_frame_unwind_p (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2014-01-17 04:00:07 +08:00
|
|
|
static const struct frame_unwind *
|
|
|
|
delegate_get_tailcall_unwinder (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
return self->to_get_tailcall_unwinder (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct frame_unwind *
|
|
|
|
tdefault_get_tailcall_unwinder (struct target_ops *self)
|
|
|
|
{
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static const struct frame_unwind *
|
|
|
|
debug_get_tailcall_unwinder (struct target_ops *self)
|
|
|
|
{
|
|
|
|
const struct frame_unwind * result;
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_get_tailcall_unwinder (...)\n", debug_target.to_shortname);
|
|
|
|
result = debug_target.to_get_tailcall_unwinder (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_get_tailcall_unwinder (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (") = ", gdb_stdlog);
|
|
|
|
target_debug_print_const_struct_frame_unwind_p (result);
|
|
|
|
fputs_unfiltered ("\n", gdb_stdlog);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2014-05-20 21:22:53 +08:00
|
|
|
static void
|
|
|
|
delegate_prepare_to_generate_core (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_prepare_to_generate_core (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_prepare_to_generate_core (struct target_ops *self)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_prepare_to_generate_core (struct target_ops *self)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_prepare_to_generate_core (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_prepare_to_generate_core (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_prepare_to_generate_core (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2014-05-20 21:22:53 +08:00
|
|
|
static void
|
|
|
|
delegate_done_generating_core (struct target_ops *self)
|
|
|
|
{
|
|
|
|
self = self->beneath;
|
|
|
|
self->to_done_generating_core (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tdefault_done_generating_core (struct target_ops *self)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
static void
|
|
|
|
debug_done_generating_core (struct target_ops *self)
|
|
|
|
{
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "-> %s->to_done_generating_core (...)\n", debug_target.to_shortname);
|
|
|
|
debug_target.to_done_generating_core (&debug_target);
|
|
|
|
fprintf_unfiltered (gdb_stdlog, "<- %s->to_done_generating_core (", debug_target.to_shortname);
|
|
|
|
target_debug_print_struct_target_ops_p (&debug_target);
|
|
|
|
fputs_unfiltered (")\n", gdb_stdlog);
|
|
|
|
}
|
|
|
|
|
2013-12-20 00:38:11 +08:00
|
|
|
static void
|
|
|
|
install_delegators (struct target_ops *ops)
|
|
|
|
{
|
2013-12-19 00:42:24 +08:00
|
|
|
if (ops->to_post_attach == NULL)
|
|
|
|
ops->to_post_attach = delegate_post_attach;
|
2013-12-14 04:33:08 +08:00
|
|
|
if (ops->to_detach == NULL)
|
|
|
|
ops->to_detach = delegate_detach;
|
2013-12-21 01:30:13 +08:00
|
|
|
if (ops->to_disconnect == NULL)
|
|
|
|
ops->to_disconnect = delegate_disconnect;
|
add target method delegation
This patch replaces some code in the record targets with target method
delegation.
record-full.c stores pointers to many target methods when the record
target is pushed. Then it later delegates some calls via these. This
is wrong because it violates the target stack contract. In particular
it is ok to unpush a target at any stratum, but record-full does not
keep track of this, so it could potentially call into an unpushed
target.
This patch fixes the problem by using the newly-introduced generic
approach to target delegation for the methods in question.
2014-02-19 Tom Tromey <tromey@redhat.com>
* record-full.c (record_full_beneath_to_resume_ops)
(record_full_beneath_to_resume, record_full_beneath_to_wait_ops)
(record_full_beneath_to_wait)
(record_full_beneath_to_store_registers_ops)
(record_full_beneath_to_store_registers)
(record_full_beneath_to_xfer_partial_ops)
(record_full_beneath_to_xfer_partial)
(record_full_beneath_to_insert_breakpoint_ops)
(record_full_beneath_to_insert_breakpoint)
(record_full_beneath_to_remove_breakpoint_ops)
(record_full_beneath_to_remove_breakpoint)
(record_full_beneath_to_stopped_by_watchpoint)
(record_full_beneath_to_stopped_data_address)
(record_full_beneath_to_async, tmp_to_resume_ops, tmp_to_resume)
(tmp_to_wait_ops, tmp_to_wait, tmp_to_store_registers_ops)
(tmp_to_store_registers, tmp_to_xfer_partial_ops)
(tmp_to_xfer_partial, tmp_to_instmp_to_insert_breakpoint_ops)
(tmp_to_insert_breakpoint, tmp_to_remove_breakpoint_ops)
(tmp_to_remove_breakpoint, tmp_to_stopped_by_watchpoint)
(tmp_to_stopped_data_address, tmp_to_async): Remove.
(record_full_open_1, record_full_open): Update. Use RECORD_IS_USED.
(record_full_resume, record_full_wait_1)
(record_full_stopped_by_watchpoint, record_full_stopped_data_address)
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint)
(record_full_async, record_full_core_xfer_partial): Use target
delegation.
* target-delegates.c: Rebuild.
* target.c (current_xfer_partial): Remove.
(update_current_target): Do not INHERIT or de_fault
to_insert_breakpoint, to_remove_breakpoint,
to_stopped_data_address, to_stopped_by_watchpoint, to_can_async_p,
to_is_async_p, to_async. Do not set to_xfer_partial field.
(default_xfer_partial): Simplify.
(current_xfer_partial): Remove.
(target_wait, target_resume): Simplify.
(find_default_can_async_p, find_default_is_async_p): Update.
(init_dummy_target): Don't set to_can_async_p, to_is_async_p,
to_xfer_partial, to_stopped_by_watchpoint,
to_stopped_data_address.
(target_store_registers): Simplify.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
(target_remove_breakpoint, target_insert_breakpoint)
(debug_to_insert_breakpoint, debug_to_remove_breakpoint): Update.
* target.h (struct target_ops) <to_resume, to_wait,
to_store_registers, to_insert_breakpoint, to_remove_breakpoint,
to_stopped_by_watchpoint, to_stopped_data_address, to_can_async_p,
to_is_async_p, to_async, to_xfer_partial>: Add TARGET_DEFAULT
markup.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
* record-btrace.c (record_btrace_remove_breakpoint): Delegate
directly.
(record_btrace_insert_breakpoint): Delegate directly.
2013-07-13 03:00:34 +08:00
|
|
|
if (ops->to_resume == NULL)
|
|
|
|
ops->to_resume = delegate_resume;
|
|
|
|
if (ops->to_wait == NULL)
|
|
|
|
ops->to_wait = delegate_wait;
|
2013-12-19 05:30:22 +08:00
|
|
|
if (ops->to_fetch_registers == NULL)
|
|
|
|
ops->to_fetch_registers = delegate_fetch_registers;
|
add target method delegation
This patch replaces some code in the record targets with target method
delegation.
record-full.c stores pointers to many target methods when the record
target is pushed. Then it later delegates some calls via these. This
is wrong because it violates the target stack contract. In particular
it is ok to unpush a target at any stratum, but record-full does not
keep track of this, so it could potentially call into an unpushed
target.
This patch fixes the problem by using the newly-introduced generic
approach to target delegation for the methods in question.
2014-02-19 Tom Tromey <tromey@redhat.com>
* record-full.c (record_full_beneath_to_resume_ops)
(record_full_beneath_to_resume, record_full_beneath_to_wait_ops)
(record_full_beneath_to_wait)
(record_full_beneath_to_store_registers_ops)
(record_full_beneath_to_store_registers)
(record_full_beneath_to_xfer_partial_ops)
(record_full_beneath_to_xfer_partial)
(record_full_beneath_to_insert_breakpoint_ops)
(record_full_beneath_to_insert_breakpoint)
(record_full_beneath_to_remove_breakpoint_ops)
(record_full_beneath_to_remove_breakpoint)
(record_full_beneath_to_stopped_by_watchpoint)
(record_full_beneath_to_stopped_data_address)
(record_full_beneath_to_async, tmp_to_resume_ops, tmp_to_resume)
(tmp_to_wait_ops, tmp_to_wait, tmp_to_store_registers_ops)
(tmp_to_store_registers, tmp_to_xfer_partial_ops)
(tmp_to_xfer_partial, tmp_to_instmp_to_insert_breakpoint_ops)
(tmp_to_insert_breakpoint, tmp_to_remove_breakpoint_ops)
(tmp_to_remove_breakpoint, tmp_to_stopped_by_watchpoint)
(tmp_to_stopped_data_address, tmp_to_async): Remove.
(record_full_open_1, record_full_open): Update. Use RECORD_IS_USED.
(record_full_resume, record_full_wait_1)
(record_full_stopped_by_watchpoint, record_full_stopped_data_address)
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint)
(record_full_async, record_full_core_xfer_partial): Use target
delegation.
* target-delegates.c: Rebuild.
* target.c (current_xfer_partial): Remove.
(update_current_target): Do not INHERIT or de_fault
to_insert_breakpoint, to_remove_breakpoint,
to_stopped_data_address, to_stopped_by_watchpoint, to_can_async_p,
to_is_async_p, to_async. Do not set to_xfer_partial field.
(default_xfer_partial): Simplify.
(current_xfer_partial): Remove.
(target_wait, target_resume): Simplify.
(find_default_can_async_p, find_default_is_async_p): Update.
(init_dummy_target): Don't set to_can_async_p, to_is_async_p,
to_xfer_partial, to_stopped_by_watchpoint,
to_stopped_data_address.
(target_store_registers): Simplify.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
(target_remove_breakpoint, target_insert_breakpoint)
(debug_to_insert_breakpoint, debug_to_remove_breakpoint): Update.
* target.h (struct target_ops) <to_resume, to_wait,
to_store_registers, to_insert_breakpoint, to_remove_breakpoint,
to_stopped_by_watchpoint, to_stopped_data_address, to_can_async_p,
to_is_async_p, to_async, to_xfer_partial>: Add TARGET_DEFAULT
markup.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
* record-btrace.c (record_btrace_remove_breakpoint): Delegate
directly.
(record_btrace_insert_breakpoint): Delegate directly.
2013-07-13 03:00:34 +08:00
|
|
|
if (ops->to_store_registers == NULL)
|
|
|
|
ops->to_store_registers = delegate_store_registers;
|
2013-12-19 00:47:18 +08:00
|
|
|
if (ops->to_prepare_to_store == NULL)
|
|
|
|
ops->to_prepare_to_store = delegate_prepare_to_store;
|
2013-12-19 00:51:47 +08:00
|
|
|
if (ops->to_files_info == NULL)
|
|
|
|
ops->to_files_info = delegate_files_info;
|
add target method delegation
This patch replaces some code in the record targets with target method
delegation.
record-full.c stores pointers to many target methods when the record
target is pushed. Then it later delegates some calls via these. This
is wrong because it violates the target stack contract. In particular
it is ok to unpush a target at any stratum, but record-full does not
keep track of this, so it could potentially call into an unpushed
target.
This patch fixes the problem by using the newly-introduced generic
approach to target delegation for the methods in question.
2014-02-19 Tom Tromey <tromey@redhat.com>
* record-full.c (record_full_beneath_to_resume_ops)
(record_full_beneath_to_resume, record_full_beneath_to_wait_ops)
(record_full_beneath_to_wait)
(record_full_beneath_to_store_registers_ops)
(record_full_beneath_to_store_registers)
(record_full_beneath_to_xfer_partial_ops)
(record_full_beneath_to_xfer_partial)
(record_full_beneath_to_insert_breakpoint_ops)
(record_full_beneath_to_insert_breakpoint)
(record_full_beneath_to_remove_breakpoint_ops)
(record_full_beneath_to_remove_breakpoint)
(record_full_beneath_to_stopped_by_watchpoint)
(record_full_beneath_to_stopped_data_address)
(record_full_beneath_to_async, tmp_to_resume_ops, tmp_to_resume)
(tmp_to_wait_ops, tmp_to_wait, tmp_to_store_registers_ops)
(tmp_to_store_registers, tmp_to_xfer_partial_ops)
(tmp_to_xfer_partial, tmp_to_instmp_to_insert_breakpoint_ops)
(tmp_to_insert_breakpoint, tmp_to_remove_breakpoint_ops)
(tmp_to_remove_breakpoint, tmp_to_stopped_by_watchpoint)
(tmp_to_stopped_data_address, tmp_to_async): Remove.
(record_full_open_1, record_full_open): Update. Use RECORD_IS_USED.
(record_full_resume, record_full_wait_1)
(record_full_stopped_by_watchpoint, record_full_stopped_data_address)
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint)
(record_full_async, record_full_core_xfer_partial): Use target
delegation.
* target-delegates.c: Rebuild.
* target.c (current_xfer_partial): Remove.
(update_current_target): Do not INHERIT or de_fault
to_insert_breakpoint, to_remove_breakpoint,
to_stopped_data_address, to_stopped_by_watchpoint, to_can_async_p,
to_is_async_p, to_async. Do not set to_xfer_partial field.
(default_xfer_partial): Simplify.
(current_xfer_partial): Remove.
(target_wait, target_resume): Simplify.
(find_default_can_async_p, find_default_is_async_p): Update.
(init_dummy_target): Don't set to_can_async_p, to_is_async_p,
to_xfer_partial, to_stopped_by_watchpoint,
to_stopped_data_address.
(target_store_registers): Simplify.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
(target_remove_breakpoint, target_insert_breakpoint)
(debug_to_insert_breakpoint, debug_to_remove_breakpoint): Update.
* target.h (struct target_ops) <to_resume, to_wait,
to_store_registers, to_insert_breakpoint, to_remove_breakpoint,
to_stopped_by_watchpoint, to_stopped_data_address, to_can_async_p,
to_is_async_p, to_async, to_xfer_partial>: Add TARGET_DEFAULT
markup.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
* record-btrace.c (record_btrace_remove_breakpoint): Delegate
directly.
(record_btrace_insert_breakpoint): Delegate directly.
2013-07-13 03:00:34 +08:00
|
|
|
if (ops->to_insert_breakpoint == NULL)
|
|
|
|
ops->to_insert_breakpoint = delegate_insert_breakpoint;
|
|
|
|
if (ops->to_remove_breakpoint == NULL)
|
|
|
|
ops->to_remove_breakpoint = delegate_remove_breakpoint;
|
Teach GDB about targets that can tell whether a trap is a breakpoint event
The moribund locations heuristics are problematic. This patch teaches
GDB about targets that can reliably tell whether a trap was caused by
a software or hardware breakpoint, and thus don't need moribund
locations, thus bypassing all the problems that mechanism has.
The non-stop-fair-events.exp test is frequently failing currently.
E.g., see https://sourceware.org/ml/gdb-testers/2015-q1/msg03148.html.
The root cause is a fundamental problem with moribund locations. For
example, the stepped_breakpoint logic added by af48d08f breaks in this
case (which is what happens with that test):
- Step thread A, no breakpoint is set at PC.
- The kernel doesn't schedule thread A yet.
- Insert breakpoint at A's PC, for some reason (e.g., a step-resume
breakpoint for thread B).
- Kernel finally schedules thread A.
- thread A's stepped_breakpoint flag is not set, even though it now
stepped a breakpoint instruction.
- adjust_pc_after_break gets the PC wrong, because PC == PREV_PC, but
stepped_breakpoint is not set.
We needed the stepped_breakpoint logic to workaround moribund
locations, because otherwise adjust_pc_after_break could apply an
adjustment when it shouldn't just because there _used_ to be a
breakpoint at PC (a moribund breakpoint location). For example, on
x86, that's wrong if the thread really hasn't executed an int3, but
instead executed some other 1-byte long instruction. Getting the PC
adjustment wrong of course leads to the inferior executing the wrong
instruction.
Other problems with moribund locations are:
- if a true SIGTRAP happens to be raised when the program is
executing the PC that used to have a breakpoint, GDB will assume
that is a trap for a breakpoint that has recently been removed, and
thus we miss reporting the random signal to the user.
- to minimize that, we get rid of moribund location after a while.
That while is defined as just a certain number of events being
processed. That number of events sometimes passes by before a
delayed breakpoint is processed, and GDB confuses the trap for a
random signal, thus reporting the random trap. Once the user
resumes the thread, the program crashes because the PC was not
adjusted...
The fix for all this is to bite the bullet and get rid of heuristics
and instead rely on the target knowing accurately what caused the
SIGTRAP. The target/kernel/stub is in the best position to know what
that, because it can e.g. consult priviledged CPU flags GDB has no
access to, or by knowing which exception vector entry was called when
the instruction trapped, etc. Most debug APIs I've seen to date
report breakpoint hits as a distinct event in some fashion. For
example, on the Linux kernel, whether a breakpoint was executed is
exposed to userspace in the si_code field of the SIGTRAP's siginfo.
On Windows, the debug API reports a EXCEPTION_BREAKPOINT exception
code.
We needed to keep around deleted breakpoints in an on-the-side list
(the moribund locations) for two main reasons:
- Know that a SIGTRAP actually is a delayed event for a hit of a
breakpoint that was removed before the event was processed, and
thus should not be reported as a random signal.
- So we still do the decr_pc_after_break adjustment in that case, so
that the thread is resumed at the correct address.
In the new model, if GDB processes an event the target tells is a
breakpoint trap, and GDB doesn't find the corresponding breakpoint in
its breakpoint tables, it means that event is a delayed event for a
breakpoint that has since been removed, and thus the event should be
ignored.
For the decr_pc_after_after issue, it ends up being much simpler that
on targets that can reliably tell whether a breakpoint trapped, for
the breakpoint trap to present the PC already adjusted. Proper
multi-threading support already implies that targets needs to be doing
decr_pc_after_break adjustment themselves, otherwise for example, in
all-stop if two threads hit a breakpoint simultaneously, and the user
does "info threads", he'll see the non-event thread that hit the
breakpoint stopped at the wrong PC.
This way (target adjusts) also ends up eliminating the need for some
awkward re-incrementing of the PC in the record-full and Linux targets
that we do today, and the need for the target_decr_pc_after_break
hook.
If the target always adjusts, then there's a case where GDB needs to
re-increment the PC. Say, on x86, an "int3" instruction that was
explicitly written in the program traps. In this case, GDB should
report a random SIGTRAP signal to the user, with the PC pointing at
the instruction past the int3, just like if GDB was not debugging the
program. The user may well decide to pass the SIGTRAP to the program
because the program being debugged has a SIGTRAP handler that handles
its own breakpoints, and expects the PC to be unadjusted.
Tested on x86-64 Fedora 20.
gdb/ChangeLog:
2015-03-04 Pedro Alves <palves@redhat.com>
* breakpoint.c (need_moribund_for_location_type): New function.
(bpstat_stop_status): Don't skipping checking moribund locations
of breakpoint types which the target tell caused a stop.
(program_breakpoint_here_p): New function, factored out from ...
(bp_loc_is_permanent): ... this.
(update_global_location_list): Don't create a moribund location if
the target supports reporting stops of the type of the removed
breakpoint.
* breakpoint.h (program_breakpoint_here_p): New declaration.
* infrun.c (adjust_pc_after_break): Return early if the target has
already adjusted the PC. Add comments.
(handle_signal_stop): If nothing explains a signal, and the target
tells us the stop was caused by a software breakpoint, check if
there's a breakpoint instruction in the memory. If so, adjust the
PC before presenting the stop to the user. Otherwise, ignore the
trap. If nothing explains a signal, and the target tells us the
stop was caused by a hardware breakpoint, ignore the trap.
* target.h (struct target_ops) <to_stopped_by_sw_breakpoint,
to_supports_stopped_by_sw_breakpoint, to_stopped_by_hw_breakpoint,
to_supports_stopped_by_hw_breakpoint>: New fields.
(target_stopped_by_sw_breakpoint)
(target_supports_stopped_by_sw_breakpoint)
(target_stopped_by_hw_breakpoint)
(target_supports_stopped_by_hw_breakpoint): Define.
* target-delegates.c: Regenerate.
2015-03-05 04:41:15 +08:00
|
|
|
if (ops->to_stopped_by_sw_breakpoint == NULL)
|
|
|
|
ops->to_stopped_by_sw_breakpoint = delegate_stopped_by_sw_breakpoint;
|
|
|
|
if (ops->to_supports_stopped_by_sw_breakpoint == NULL)
|
|
|
|
ops->to_supports_stopped_by_sw_breakpoint = delegate_supports_stopped_by_sw_breakpoint;
|
|
|
|
if (ops->to_stopped_by_hw_breakpoint == NULL)
|
|
|
|
ops->to_stopped_by_hw_breakpoint = delegate_stopped_by_hw_breakpoint;
|
|
|
|
if (ops->to_supports_stopped_by_hw_breakpoint == NULL)
|
|
|
|
ops->to_supports_stopped_by_hw_breakpoint = delegate_supports_stopped_by_hw_breakpoint;
|
2013-12-19 00:58:16 +08:00
|
|
|
if (ops->to_can_use_hw_breakpoint == NULL)
|
|
|
|
ops->to_can_use_hw_breakpoint = delegate_can_use_hw_breakpoint;
|
2013-12-19 05:31:42 +08:00
|
|
|
if (ops->to_ranged_break_num_registers == NULL)
|
|
|
|
ops->to_ranged_break_num_registers = delegate_ranged_break_num_registers;
|
2013-12-19 01:01:11 +08:00
|
|
|
if (ops->to_insert_hw_breakpoint == NULL)
|
|
|
|
ops->to_insert_hw_breakpoint = delegate_insert_hw_breakpoint;
|
2013-12-19 01:05:18 +08:00
|
|
|
if (ops->to_remove_hw_breakpoint == NULL)
|
|
|
|
ops->to_remove_hw_breakpoint = delegate_remove_hw_breakpoint;
|
2013-12-19 01:11:49 +08:00
|
|
|
if (ops->to_remove_watchpoint == NULL)
|
|
|
|
ops->to_remove_watchpoint = delegate_remove_watchpoint;
|
2013-12-19 01:08:59 +08:00
|
|
|
if (ops->to_insert_watchpoint == NULL)
|
|
|
|
ops->to_insert_watchpoint = delegate_insert_watchpoint;
|
2013-12-19 05:32:43 +08:00
|
|
|
if (ops->to_insert_mask_watchpoint == NULL)
|
|
|
|
ops->to_insert_mask_watchpoint = delegate_insert_mask_watchpoint;
|
2013-12-19 05:33:28 +08:00
|
|
|
if (ops->to_remove_mask_watchpoint == NULL)
|
|
|
|
ops->to_remove_mask_watchpoint = delegate_remove_mask_watchpoint;
|
add target method delegation
This patch replaces some code in the record targets with target method
delegation.
record-full.c stores pointers to many target methods when the record
target is pushed. Then it later delegates some calls via these. This
is wrong because it violates the target stack contract. In particular
it is ok to unpush a target at any stratum, but record-full does not
keep track of this, so it could potentially call into an unpushed
target.
This patch fixes the problem by using the newly-introduced generic
approach to target delegation for the methods in question.
2014-02-19 Tom Tromey <tromey@redhat.com>
* record-full.c (record_full_beneath_to_resume_ops)
(record_full_beneath_to_resume, record_full_beneath_to_wait_ops)
(record_full_beneath_to_wait)
(record_full_beneath_to_store_registers_ops)
(record_full_beneath_to_store_registers)
(record_full_beneath_to_xfer_partial_ops)
(record_full_beneath_to_xfer_partial)
(record_full_beneath_to_insert_breakpoint_ops)
(record_full_beneath_to_insert_breakpoint)
(record_full_beneath_to_remove_breakpoint_ops)
(record_full_beneath_to_remove_breakpoint)
(record_full_beneath_to_stopped_by_watchpoint)
(record_full_beneath_to_stopped_data_address)
(record_full_beneath_to_async, tmp_to_resume_ops, tmp_to_resume)
(tmp_to_wait_ops, tmp_to_wait, tmp_to_store_registers_ops)
(tmp_to_store_registers, tmp_to_xfer_partial_ops)
(tmp_to_xfer_partial, tmp_to_instmp_to_insert_breakpoint_ops)
(tmp_to_insert_breakpoint, tmp_to_remove_breakpoint_ops)
(tmp_to_remove_breakpoint, tmp_to_stopped_by_watchpoint)
(tmp_to_stopped_data_address, tmp_to_async): Remove.
(record_full_open_1, record_full_open): Update. Use RECORD_IS_USED.
(record_full_resume, record_full_wait_1)
(record_full_stopped_by_watchpoint, record_full_stopped_data_address)
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint)
(record_full_async, record_full_core_xfer_partial): Use target
delegation.
* target-delegates.c: Rebuild.
* target.c (current_xfer_partial): Remove.
(update_current_target): Do not INHERIT or de_fault
to_insert_breakpoint, to_remove_breakpoint,
to_stopped_data_address, to_stopped_by_watchpoint, to_can_async_p,
to_is_async_p, to_async. Do not set to_xfer_partial field.
(default_xfer_partial): Simplify.
(current_xfer_partial): Remove.
(target_wait, target_resume): Simplify.
(find_default_can_async_p, find_default_is_async_p): Update.
(init_dummy_target): Don't set to_can_async_p, to_is_async_p,
to_xfer_partial, to_stopped_by_watchpoint,
to_stopped_data_address.
(target_store_registers): Simplify.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
(target_remove_breakpoint, target_insert_breakpoint)
(debug_to_insert_breakpoint, debug_to_remove_breakpoint): Update.
* target.h (struct target_ops) <to_resume, to_wait,
to_store_registers, to_insert_breakpoint, to_remove_breakpoint,
to_stopped_by_watchpoint, to_stopped_data_address, to_can_async_p,
to_is_async_p, to_async, to_xfer_partial>: Add TARGET_DEFAULT
markup.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
* record-btrace.c (record_btrace_remove_breakpoint): Delegate
directly.
(record_btrace_insert_breakpoint): Delegate directly.
2013-07-13 03:00:34 +08:00
|
|
|
if (ops->to_stopped_by_watchpoint == NULL)
|
|
|
|
ops->to_stopped_by_watchpoint = delegate_stopped_by_watchpoint;
|
|
|
|
if (ops->to_stopped_data_address == NULL)
|
|
|
|
ops->to_stopped_data_address = delegate_stopped_data_address;
|
2013-12-19 01:15:23 +08:00
|
|
|
if (ops->to_watchpoint_addr_within_range == NULL)
|
|
|
|
ops->to_watchpoint_addr_within_range = delegate_watchpoint_addr_within_range;
|
2013-12-19 01:18:05 +08:00
|
|
|
if (ops->to_region_ok_for_hw_watchpoint == NULL)
|
|
|
|
ops->to_region_ok_for_hw_watchpoint = delegate_region_ok_for_hw_watchpoint;
|
2013-12-19 01:20:48 +08:00
|
|
|
if (ops->to_can_accel_watchpoint_condition == NULL)
|
|
|
|
ops->to_can_accel_watchpoint_condition = delegate_can_accel_watchpoint_condition;
|
2013-12-19 05:34:15 +08:00
|
|
|
if (ops->to_masked_watch_num_registers == NULL)
|
|
|
|
ops->to_masked_watch_num_registers = delegate_masked_watch_num_registers;
|
2013-12-19 01:24:07 +08:00
|
|
|
if (ops->to_terminal_init == NULL)
|
|
|
|
ops->to_terminal_init = delegate_terminal_init;
|
2013-12-19 01:29:01 +08:00
|
|
|
if (ops->to_terminal_inferior == NULL)
|
|
|
|
ops->to_terminal_inferior = delegate_terminal_inferior;
|
2013-12-19 01:29:46 +08:00
|
|
|
if (ops->to_terminal_ours_for_output == NULL)
|
|
|
|
ops->to_terminal_ours_for_output = delegate_terminal_ours_for_output;
|
2013-12-19 01:30:16 +08:00
|
|
|
if (ops->to_terminal_ours == NULL)
|
|
|
|
ops->to_terminal_ours = delegate_terminal_ours;
|
2013-12-19 01:31:10 +08:00
|
|
|
if (ops->to_terminal_info == NULL)
|
|
|
|
ops->to_terminal_info = delegate_terminal_info;
|
2013-12-19 05:35:15 +08:00
|
|
|
if (ops->to_kill == NULL)
|
|
|
|
ops->to_kill = delegate_kill;
|
2013-12-19 01:31:48 +08:00
|
|
|
if (ops->to_load == NULL)
|
|
|
|
ops->to_load = delegate_load;
|
2013-12-19 01:32:56 +08:00
|
|
|
if (ops->to_post_startup_inferior == NULL)
|
|
|
|
ops->to_post_startup_inferior = delegate_post_startup_inferior;
|
2013-12-19 01:33:43 +08:00
|
|
|
if (ops->to_insert_fork_catchpoint == NULL)
|
|
|
|
ops->to_insert_fork_catchpoint = delegate_insert_fork_catchpoint;
|
2013-12-19 01:34:15 +08:00
|
|
|
if (ops->to_remove_fork_catchpoint == NULL)
|
|
|
|
ops->to_remove_fork_catchpoint = delegate_remove_fork_catchpoint;
|
2013-12-19 01:44:22 +08:00
|
|
|
if (ops->to_insert_vfork_catchpoint == NULL)
|
|
|
|
ops->to_insert_vfork_catchpoint = delegate_insert_vfork_catchpoint;
|
2013-12-19 01:44:57 +08:00
|
|
|
if (ops->to_remove_vfork_catchpoint == NULL)
|
|
|
|
ops->to_remove_vfork_catchpoint = delegate_remove_vfork_catchpoint;
|
2013-12-19 05:38:04 +08:00
|
|
|
if (ops->to_follow_fork == NULL)
|
|
|
|
ops->to_follow_fork = delegate_follow_fork;
|
2013-12-19 01:45:38 +08:00
|
|
|
if (ops->to_insert_exec_catchpoint == NULL)
|
|
|
|
ops->to_insert_exec_catchpoint = delegate_insert_exec_catchpoint;
|
2013-12-19 01:46:02 +08:00
|
|
|
if (ops->to_remove_exec_catchpoint == NULL)
|
|
|
|
ops->to_remove_exec_catchpoint = delegate_remove_exec_catchpoint;
|
2013-12-19 01:46:38 +08:00
|
|
|
if (ops->to_set_syscall_catchpoint == NULL)
|
|
|
|
ops->to_set_syscall_catchpoint = delegate_set_syscall_catchpoint;
|
2013-12-19 01:47:22 +08:00
|
|
|
if (ops->to_has_exited == NULL)
|
|
|
|
ops->to_has_exited = delegate_has_exited;
|
2013-12-19 05:40:23 +08:00
|
|
|
if (ops->to_mourn_inferior == NULL)
|
|
|
|
ops->to_mourn_inferior = delegate_mourn_inferior;
|
2013-12-21 03:19:37 +08:00
|
|
|
if (ops->to_can_run == NULL)
|
|
|
|
ops->to_can_run = delegate_can_run;
|
2013-12-19 05:42:10 +08:00
|
|
|
if (ops->to_pass_signals == NULL)
|
|
|
|
ops->to_pass_signals = delegate_pass_signals;
|
2013-12-19 05:42:54 +08:00
|
|
|
if (ops->to_program_signals == NULL)
|
|
|
|
ops->to_program_signals = delegate_program_signals;
|
2013-12-19 22:21:56 +08:00
|
|
|
if (ops->to_thread_alive == NULL)
|
|
|
|
ops->to_thread_alive = delegate_thread_alive;
|
Push pruning old threads down to the target
When GDB wants to sync the thread list with the target's (e.g., due to
"info threads"), it calls update_thread_list:
update_thread_list (void)
{
prune_threads ();
target_find_new_threads ();
update_threads_executing ();
}
And then prune_threads does:
prune_threads (void)
{
struct thread_info *tp, *next;
for (tp = thread_list; tp; tp = next)
{
next = tp->next;
if (!thread_alive (tp))
delete_thread (tp->ptid);
}
}
Calling thread_live on each thread one by one is expensive.
E.g., on Linux, it ends up doing kill(SIG0) once for each thread. Not
a big deal, but still a bunch of syscalls...
With the remote target, it's cumbersome. That thread_alive call ends
up generating one T packet per thread:
Sending packet: $Tp2141.2150#82...Packet received: OK
Sending packet: $Tp2141.214f#b7...Packet received: OK
Sending packet: $Tp2141.2141#82...Packet received: OK
Sending packet: $qXfer:threads:read::0,fff#03...Packet received: l<threads>\n<thread id="p2141.2141" core="2"/>\n<thread id="p2141.214f" core="1"/>\n<thread id="p2141.2150" core="2"/>\n</threads>\n
That seems a bit silly when target_find_new_threads method
implementations will always fetch the whole current set of target
threads, and then add those that are not in GDB's thread list, to
GDB's thread list.
This patch thus pushes down the responsibility of pruning dead threads
to the target_find_new_threads method instead, so a target may
implement pruning dead threads however it wants.
Once we do that, target_find_new_threads becomes a misnomer, so the
patch renames it to target_update_thread_list.
The patch doesn't attempt to do any optimization to any target yet.
It simply exports prune_threads, and makes all implementations of
target_update_thread_list call that. It's meant to be a no-op.
gdb/
2014-10-15 Pedro Alves <palves@redhat.com>
* ada-tasks.c (print_ada_task_info, task_command_1): Adjust.
* bsd-uthread.c (bsd_uthread_find_new_threads): Rename to ...
(bsd_uthread_update_thread_list): ... this. Call prune_threads.
(bsd_uthread_target): Adjust.
* corelow.c (core_open): Adjust.
* dec-thread.c (dec_thread_find_new_threads): Update comment.
(dec_thread_update_thread_list): New function.
(init_dec_thread_ops): Adjust.
* gdbthread.h (prune_threads): New declaration.
* linux-thread-db.c (thread_db_find_new_threads): Rename to ...
(thread_db_update_thread_list): ... this. Call prune_threads.
(init_thread_db_ops): Adjust.
* nto-procfs.c (procfs_find_new_threads): Rename to ...
(procfs_update_thread_list): ... this. Call prune_threads.
(procfs_attach, procfs_create_inferior, init_procfs_targets):
Adjust.
* obsd-nat.c (obsd_find_new_threads): Rename to ...
(obsd_update_thread_list): ... this. Call prune_threads.
(obsd_add_target): Adjust.
* procfs.c (procfs_target): Adjust.
(procfs_notice_thread): Update comment.
(procfs_find_new_threads): Rename to ...
(procfs_update_thread_list): ... this. Call prune_threads.
* ravenscar-thread.c (ravenscar_update_inferior_ptid): Update
comment.
(ravenscar_wait): Adjust.
(ravenscar_find_new_threads): Rename to ...
(ravenscar_update_thread_list): ... this. Call prune_threads.
(init_ravenscar_thread_ops): Adjust.
* record-btrace.c (record_btrace_find_new_threads): Rename to ...
(record_btrace_update_thread_list): ... this. Adjust comment.
(init_record_btrace_ops): Adjust.
* remote.c (remote_threads_info): Rename to ...
(remote_update_thread_list): ... this. Call prune_threads.
(remote_start_remote, extended_remote_attach_1, init_remote_ops):
Adjust.
* sol-thread.c (check_for_thread_db): Adjust.
(sol_find_new_threads_callback): Rename to ...
(sol_update_thread_list_callback): ... this.
(sol_find_new_threads): Rename to ...
(sol_update_thread_list): ... this. Call prune_threads. Adjust.
(sol_get_ada_task_ptid, init_sol_thread_ops): Adjust.
* target-delegates.c: Regenerate.
* target.c (target_find_new_threads): Rename to ...
(target_update_thread_list): ... this.
* target.h (struct target_ops): Rename to_find_new_threads field
to to_update_thread_list.
(target_find_new_threads): Rename to ...
(target_update_thread_list): ... this.
* thread.c (prune_threads): Make extern.
(update_thread_list): Adjust.
2014-10-16 05:44:00 +08:00
|
|
|
if (ops->to_update_thread_list == NULL)
|
|
|
|
ops->to_update_thread_list = delegate_update_thread_list;
|
2013-12-19 05:46:03 +08:00
|
|
|
if (ops->to_pid_to_str == NULL)
|
|
|
|
ops->to_pid_to_str = delegate_pid_to_str;
|
2013-12-19 01:48:36 +08:00
|
|
|
if (ops->to_extra_thread_info == NULL)
|
|
|
|
ops->to_extra_thread_info = delegate_extra_thread_info;
|
2013-12-19 01:49:35 +08:00
|
|
|
if (ops->to_thread_name == NULL)
|
|
|
|
ops->to_thread_name = delegate_thread_name;
|
2013-12-19 05:28:07 +08:00
|
|
|
if (ops->to_stop == NULL)
|
|
|
|
ops->to_stop = delegate_stop;
|
2013-12-19 00:35:21 +08:00
|
|
|
if (ops->to_rcmd == NULL)
|
|
|
|
ops->to_rcmd = delegate_rcmd;
|
2013-12-19 01:51:10 +08:00
|
|
|
if (ops->to_pid_to_exec_file == NULL)
|
|
|
|
ops->to_pid_to_exec_file = delegate_pid_to_exec_file;
|
2013-12-19 01:52:58 +08:00
|
|
|
if (ops->to_log_command == NULL)
|
|
|
|
ops->to_log_command = delegate_log_command;
|
2013-12-19 05:47:06 +08:00
|
|
|
if (ops->to_get_section_table == NULL)
|
|
|
|
ops->to_get_section_table = delegate_get_section_table;
|
add target method delegation
This patch replaces some code in the record targets with target method
delegation.
record-full.c stores pointers to many target methods when the record
target is pushed. Then it later delegates some calls via these. This
is wrong because it violates the target stack contract. In particular
it is ok to unpush a target at any stratum, but record-full does not
keep track of this, so it could potentially call into an unpushed
target.
This patch fixes the problem by using the newly-introduced generic
approach to target delegation for the methods in question.
2014-02-19 Tom Tromey <tromey@redhat.com>
* record-full.c (record_full_beneath_to_resume_ops)
(record_full_beneath_to_resume, record_full_beneath_to_wait_ops)
(record_full_beneath_to_wait)
(record_full_beneath_to_store_registers_ops)
(record_full_beneath_to_store_registers)
(record_full_beneath_to_xfer_partial_ops)
(record_full_beneath_to_xfer_partial)
(record_full_beneath_to_insert_breakpoint_ops)
(record_full_beneath_to_insert_breakpoint)
(record_full_beneath_to_remove_breakpoint_ops)
(record_full_beneath_to_remove_breakpoint)
(record_full_beneath_to_stopped_by_watchpoint)
(record_full_beneath_to_stopped_data_address)
(record_full_beneath_to_async, tmp_to_resume_ops, tmp_to_resume)
(tmp_to_wait_ops, tmp_to_wait, tmp_to_store_registers_ops)
(tmp_to_store_registers, tmp_to_xfer_partial_ops)
(tmp_to_xfer_partial, tmp_to_instmp_to_insert_breakpoint_ops)
(tmp_to_insert_breakpoint, tmp_to_remove_breakpoint_ops)
(tmp_to_remove_breakpoint, tmp_to_stopped_by_watchpoint)
(tmp_to_stopped_data_address, tmp_to_async): Remove.
(record_full_open_1, record_full_open): Update. Use RECORD_IS_USED.
(record_full_resume, record_full_wait_1)
(record_full_stopped_by_watchpoint, record_full_stopped_data_address)
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint)
(record_full_async, record_full_core_xfer_partial): Use target
delegation.
* target-delegates.c: Rebuild.
* target.c (current_xfer_partial): Remove.
(update_current_target): Do not INHERIT or de_fault
to_insert_breakpoint, to_remove_breakpoint,
to_stopped_data_address, to_stopped_by_watchpoint, to_can_async_p,
to_is_async_p, to_async. Do not set to_xfer_partial field.
(default_xfer_partial): Simplify.
(current_xfer_partial): Remove.
(target_wait, target_resume): Simplify.
(find_default_can_async_p, find_default_is_async_p): Update.
(init_dummy_target): Don't set to_can_async_p, to_is_async_p,
to_xfer_partial, to_stopped_by_watchpoint,
to_stopped_data_address.
(target_store_registers): Simplify.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
(target_remove_breakpoint, target_insert_breakpoint)
(debug_to_insert_breakpoint, debug_to_remove_breakpoint): Update.
* target.h (struct target_ops) <to_resume, to_wait,
to_store_registers, to_insert_breakpoint, to_remove_breakpoint,
to_stopped_by_watchpoint, to_stopped_data_address, to_can_async_p,
to_is_async_p, to_async, to_xfer_partial>: Add TARGET_DEFAULT
markup.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
* record-btrace.c (record_btrace_remove_breakpoint): Delegate
directly.
(record_btrace_insert_breakpoint): Delegate directly.
2013-07-13 03:00:34 +08:00
|
|
|
if (ops->to_can_async_p == NULL)
|
|
|
|
ops->to_can_async_p = delegate_can_async_p;
|
|
|
|
if (ops->to_is_async_p == NULL)
|
|
|
|
ops->to_is_async_p = delegate_is_async_p;
|
|
|
|
if (ops->to_async == NULL)
|
|
|
|
ops->to_async = delegate_async;
|
fix regressions with target-async
A patch in the target cleanup series caused a regression when using
record with target-async. Version 4 of the patch is here:
https://sourceware.org/ml/gdb-patches/2014-03/msg00159.html
The immediate problem is that record supplies to_can_async_p and
to_is_async_p methods, but does not supply a to_async method. So,
when target-async is set, record claims to support async -- but if the
underlying target does not support async, then the to_async method
call will end up in that method's default implementation, namely
tcomplain.
This worked previously because the record target used to provide a
to_async method; one that (erroneously, only at push time) checked the
other members of the target stack, and then simply dropped to_async
calls in the "does not implement async" case.
My first thought was to simply drop tcomplain as the default for
to_async. This works, but Pedro pointed out that the only reason
record has to supply to_can_async_p and to_is_async_p is that these
default to using the find_default_run_target machinery -- and these
defaults are only needed by "run" and "attach".
So, a nicer solution presents itself: change run and attach to
explicitly call into the default run target when needed; and change
to_is_async_p and to_can_async_p to default to "return 0". This makes
the target stack simpler to use and lets us remove the method
implementations from record. This is also in harmony with other plans
for the target stack; namely trying to reduce the impact of
find_default_run_target. This approach makes it clear that
find_default_is_async_p is not needed -- it is asking whether a target
that may not even be pushed is actually async, which seems like a
nonsensical question.
While an improvement, this approach proved to introduce the same bug
when using the core target. Looking a bit deeper, the issue is that
code in "attach" and "run" may need to use either the current target
stack or the default run target -- but different calls into the target
API in those functions could wind up querying different targets.
This new patch makes the target to use more explicit in "run" and
"attach". Then these commands explicitly make the needed calls
against that target. This ensures that a single target is used for
all relevant operations. This lets us remove a couple find_default_*
functions from various targets, including the dummy target. I think
this is a decent understandability improvement.
One issue I see with this patch is that the new calls in "run" and
"attach" are not very much like the rest of the target API. I think
fundamentally this is due to bad factoring in the target API, which
may need to be fixed for multi-target. Tackling that seemed ambitious
for a regression fix.
While working on this I noticed that there don't seem to be any test
cases that involve both target-async and record, so this patch changes
break-precsave.exp to add some. It also changes corefile.exp to add
some target-async tests; these pass with current trunk and with this
patch applied, but fail with the v1 patch.
This patch differs from v4 in that it moves initialization of
to_can_async_p and to_supports_non_stop into inf-child, adds some
assertions to complete_target_initialization, and adds some comments
to target.h.
Built and regtested on x86-64 Fedora 20.
2014-03-12 Tom Tromey <tromey@redhat.com>
* inf-child.c (return_zero): New function.
(inf_child_target): Set to_can_async_p, to_supports_non_stop.
* aix-thread.c (aix_thread_inferior_created): New function.
(aix_thread_attach): Remove.
(init_aix_thread_ops): Don't set to_attach.
(_initialize_aix_thread): Register inferior_created observer.
* corelow.c (init_core_ops): Don't set to_attach or
to_create_inferior.
* exec.c (init_exec_ops): Don't set to_attach or
to_create_inferior.
* infcmd.c (run_command_1): Use find_run_target. Make direct
target calls.
(attach_command): Use find_attach_target. Make direct target
calls.
* record-btrace.c (init_record_btrace_ops): Don't set
to_create_inferior.
* record-full.c (record_full_can_async_p, record_full_is_async_p):
Remove.
(init_record_full_ops, init_record_full_core_ops): Update. Don't
set to_create_inferior.
* target.c (complete_target_initialization): Add assertion.
(target_create_inferior): Remove.
(find_default_attach, find_default_create_inferior): Remove.
(find_attach_target, find_run_target): New functions.
(find_default_is_async_p, find_default_can_async_p)
(target_supports_non_stop, target_attach): Remove.
(init_dummy_target): Don't set to_create_inferior or
to_supports_non_stop.
* target.h (struct target_ops) <to_attach>: Add comment. Remove
TARGET_DEFAULT_FUNC.
<to_create_inferior>: Add comment.
<to_can_async_p, to_is_async_p, to_supports_non_stop>: Use
TARGET_DEFAULT_RETURN.
<to_can_async_p, to_supports_non_stop, to_can_run>: Add comments.
(find_attach_target, find_run_target): Declare.
(target_create_inferior): Remove.
(target_has_execution_1): Update comment.
(target_supports_non_stop): Remove.
* target-delegates.c: Rebuild.
2014-03-12 Tom Tromey <tromey@redhat.com>
* gdb.base/corefile.exp (corefile_test_run, corefile_test_attach):
New procs. Add target-async tests.
* gdb.reverse/break-precsave.exp (precsave_tests): New proc.
Add target-async tests.
2014-03-01 00:47:34 +08:00
|
|
|
if (ops->to_supports_non_stop == NULL)
|
|
|
|
ops->to_supports_non_stop = delegate_supports_non_stop;
|
2013-12-19 01:55:34 +08:00
|
|
|
if (ops->to_find_memory_regions == NULL)
|
|
|
|
ops->to_find_memory_regions = delegate_find_memory_regions;
|
2013-12-19 01:57:18 +08:00
|
|
|
if (ops->to_make_corefile_notes == NULL)
|
|
|
|
ops->to_make_corefile_notes = delegate_make_corefile_notes;
|
2013-12-19 02:10:32 +08:00
|
|
|
if (ops->to_get_bookmark == NULL)
|
|
|
|
ops->to_get_bookmark = delegate_get_bookmark;
|
2013-12-19 02:11:25 +08:00
|
|
|
if (ops->to_goto_bookmark == NULL)
|
|
|
|
ops->to_goto_bookmark = delegate_goto_bookmark;
|
2014-06-26 00:16:55 +08:00
|
|
|
if (ops->to_get_thread_local_address == NULL)
|
|
|
|
ops->to_get_thread_local_address = delegate_get_thread_local_address;
|
add target method delegation
This patch replaces some code in the record targets with target method
delegation.
record-full.c stores pointers to many target methods when the record
target is pushed. Then it later delegates some calls via these. This
is wrong because it violates the target stack contract. In particular
it is ok to unpush a target at any stratum, but record-full does not
keep track of this, so it could potentially call into an unpushed
target.
This patch fixes the problem by using the newly-introduced generic
approach to target delegation for the methods in question.
2014-02-19 Tom Tromey <tromey@redhat.com>
* record-full.c (record_full_beneath_to_resume_ops)
(record_full_beneath_to_resume, record_full_beneath_to_wait_ops)
(record_full_beneath_to_wait)
(record_full_beneath_to_store_registers_ops)
(record_full_beneath_to_store_registers)
(record_full_beneath_to_xfer_partial_ops)
(record_full_beneath_to_xfer_partial)
(record_full_beneath_to_insert_breakpoint_ops)
(record_full_beneath_to_insert_breakpoint)
(record_full_beneath_to_remove_breakpoint_ops)
(record_full_beneath_to_remove_breakpoint)
(record_full_beneath_to_stopped_by_watchpoint)
(record_full_beneath_to_stopped_data_address)
(record_full_beneath_to_async, tmp_to_resume_ops, tmp_to_resume)
(tmp_to_wait_ops, tmp_to_wait, tmp_to_store_registers_ops)
(tmp_to_store_registers, tmp_to_xfer_partial_ops)
(tmp_to_xfer_partial, tmp_to_instmp_to_insert_breakpoint_ops)
(tmp_to_insert_breakpoint, tmp_to_remove_breakpoint_ops)
(tmp_to_remove_breakpoint, tmp_to_stopped_by_watchpoint)
(tmp_to_stopped_data_address, tmp_to_async): Remove.
(record_full_open_1, record_full_open): Update. Use RECORD_IS_USED.
(record_full_resume, record_full_wait_1)
(record_full_stopped_by_watchpoint, record_full_stopped_data_address)
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint)
(record_full_async, record_full_core_xfer_partial): Use target
delegation.
* target-delegates.c: Rebuild.
* target.c (current_xfer_partial): Remove.
(update_current_target): Do not INHERIT or de_fault
to_insert_breakpoint, to_remove_breakpoint,
to_stopped_data_address, to_stopped_by_watchpoint, to_can_async_p,
to_is_async_p, to_async. Do not set to_xfer_partial field.
(default_xfer_partial): Simplify.
(current_xfer_partial): Remove.
(target_wait, target_resume): Simplify.
(find_default_can_async_p, find_default_is_async_p): Update.
(init_dummy_target): Don't set to_can_async_p, to_is_async_p,
to_xfer_partial, to_stopped_by_watchpoint,
to_stopped_data_address.
(target_store_registers): Simplify.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
(target_remove_breakpoint, target_insert_breakpoint)
(debug_to_insert_breakpoint, debug_to_remove_breakpoint): Update.
* target.h (struct target_ops) <to_resume, to_wait,
to_store_registers, to_insert_breakpoint, to_remove_breakpoint,
to_stopped_by_watchpoint, to_stopped_data_address, to_can_async_p,
to_is_async_p, to_async, to_xfer_partial>: Add TARGET_DEFAULT
markup.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
* record-btrace.c (record_btrace_remove_breakpoint): Delegate
directly.
(record_btrace_insert_breakpoint): Delegate directly.
2013-07-13 03:00:34 +08:00
|
|
|
if (ops->to_xfer_partial == NULL)
|
|
|
|
ops->to_xfer_partial = delegate_xfer_partial;
|
2013-12-19 22:47:11 +08:00
|
|
|
if (ops->to_memory_map == NULL)
|
|
|
|
ops->to_memory_map = delegate_memory_map;
|
2013-12-19 05:50:56 +08:00
|
|
|
if (ops->to_flash_erase == NULL)
|
|
|
|
ops->to_flash_erase = delegate_flash_erase;
|
2013-12-19 05:52:02 +08:00
|
|
|
if (ops->to_flash_done == NULL)
|
|
|
|
ops->to_flash_done = delegate_flash_done;
|
2014-01-14 00:30:30 +08:00
|
|
|
if (ops->to_read_description == NULL)
|
|
|
|
ops->to_read_description = delegate_read_description;
|
2013-12-19 04:53:09 +08:00
|
|
|
if (ops->to_get_ada_task_ptid == NULL)
|
|
|
|
ops->to_get_ada_task_ptid = delegate_get_ada_task_ptid;
|
2013-12-19 22:56:20 +08:00
|
|
|
if (ops->to_auxv_parse == NULL)
|
|
|
|
ops->to_auxv_parse = delegate_auxv_parse;
|
2013-12-19 23:12:26 +08:00
|
|
|
if (ops->to_search_memory == NULL)
|
|
|
|
ops->to_search_memory = delegate_search_memory;
|
2013-12-19 02:12:28 +08:00
|
|
|
if (ops->to_can_execute_reverse == NULL)
|
|
|
|
ops->to_can_execute_reverse = delegate_can_execute_reverse;
|
2013-12-19 02:15:21 +08:00
|
|
|
if (ops->to_execution_direction == NULL)
|
|
|
|
ops->to_execution_direction = delegate_execution_direction;
|
2013-12-19 04:54:06 +08:00
|
|
|
if (ops->to_supports_multi_process == NULL)
|
|
|
|
ops->to_supports_multi_process = delegate_supports_multi_process;
|
2013-12-19 04:54:59 +08:00
|
|
|
if (ops->to_supports_enable_disable_tracepoint == NULL)
|
|
|
|
ops->to_supports_enable_disable_tracepoint = delegate_supports_enable_disable_tracepoint;
|
2013-12-19 04:56:04 +08:00
|
|
|
if (ops->to_supports_string_tracing == NULL)
|
|
|
|
ops->to_supports_string_tracing = delegate_supports_string_tracing;
|
2013-12-19 05:20:06 +08:00
|
|
|
if (ops->to_supports_evaluation_of_breakpoint_conditions == NULL)
|
|
|
|
ops->to_supports_evaluation_of_breakpoint_conditions = delegate_supports_evaluation_of_breakpoint_conditions;
|
2013-12-19 05:20:36 +08:00
|
|
|
if (ops->to_can_run_breakpoint_commands == NULL)
|
|
|
|
ops->to_can_run_breakpoint_commands = delegate_can_run_breakpoint_commands;
|
2013-12-19 02:16:31 +08:00
|
|
|
if (ops->to_thread_architecture == NULL)
|
|
|
|
ops->to_thread_architecture = delegate_thread_architecture;
|
2014-02-22 01:33:42 +08:00
|
|
|
if (ops->to_thread_address_space == NULL)
|
|
|
|
ops->to_thread_address_space = delegate_thread_address_space;
|
2015-04-02 20:38:28 +08:00
|
|
|
if (ops->to_filesystem_is_local == NULL)
|
|
|
|
ops->to_filesystem_is_local = delegate_filesystem_is_local;
|
2013-12-19 04:57:05 +08:00
|
|
|
if (ops->to_trace_init == NULL)
|
|
|
|
ops->to_trace_init = delegate_trace_init;
|
2013-12-19 04:57:41 +08:00
|
|
|
if (ops->to_download_tracepoint == NULL)
|
|
|
|
ops->to_download_tracepoint = delegate_download_tracepoint;
|
2013-12-19 05:00:23 +08:00
|
|
|
if (ops->to_can_download_tracepoint == NULL)
|
|
|
|
ops->to_can_download_tracepoint = delegate_can_download_tracepoint;
|
2013-12-19 05:01:07 +08:00
|
|
|
if (ops->to_download_trace_state_variable == NULL)
|
|
|
|
ops->to_download_trace_state_variable = delegate_download_trace_state_variable;
|
2013-12-19 05:01:51 +08:00
|
|
|
if (ops->to_enable_tracepoint == NULL)
|
|
|
|
ops->to_enable_tracepoint = delegate_enable_tracepoint;
|
2013-12-19 05:02:30 +08:00
|
|
|
if (ops->to_disable_tracepoint == NULL)
|
|
|
|
ops->to_disable_tracepoint = delegate_disable_tracepoint;
|
2013-12-19 05:03:28 +08:00
|
|
|
if (ops->to_trace_set_readonly_regions == NULL)
|
|
|
|
ops->to_trace_set_readonly_regions = delegate_trace_set_readonly_regions;
|
2013-12-19 05:04:27 +08:00
|
|
|
if (ops->to_trace_start == NULL)
|
|
|
|
ops->to_trace_start = delegate_trace_start;
|
2013-12-19 05:06:18 +08:00
|
|
|
if (ops->to_get_trace_status == NULL)
|
|
|
|
ops->to_get_trace_status = delegate_get_trace_status;
|
2013-12-19 05:06:52 +08:00
|
|
|
if (ops->to_get_tracepoint_status == NULL)
|
|
|
|
ops->to_get_tracepoint_status = delegate_get_tracepoint_status;
|
2013-12-19 05:07:28 +08:00
|
|
|
if (ops->to_trace_stop == NULL)
|
|
|
|
ops->to_trace_stop = delegate_trace_stop;
|
2013-12-19 05:08:14 +08:00
|
|
|
if (ops->to_trace_find == NULL)
|
|
|
|
ops->to_trace_find = delegate_trace_find;
|
2013-12-19 05:09:04 +08:00
|
|
|
if (ops->to_get_trace_state_variable_value == NULL)
|
|
|
|
ops->to_get_trace_state_variable_value = delegate_get_trace_state_variable_value;
|
2013-12-19 05:09:37 +08:00
|
|
|
if (ops->to_save_trace_data == NULL)
|
|
|
|
ops->to_save_trace_data = delegate_save_trace_data;
|
2013-12-19 05:10:14 +08:00
|
|
|
if (ops->to_upload_tracepoints == NULL)
|
|
|
|
ops->to_upload_tracepoints = delegate_upload_tracepoints;
|
2013-12-19 05:10:40 +08:00
|
|
|
if (ops->to_upload_trace_state_variables == NULL)
|
|
|
|
ops->to_upload_trace_state_variables = delegate_upload_trace_state_variables;
|
2013-12-19 05:11:12 +08:00
|
|
|
if (ops->to_get_raw_trace_data == NULL)
|
|
|
|
ops->to_get_raw_trace_data = delegate_get_raw_trace_data;
|
2013-12-19 05:11:53 +08:00
|
|
|
if (ops->to_get_min_fast_tracepoint_insn_len == NULL)
|
|
|
|
ops->to_get_min_fast_tracepoint_insn_len = delegate_get_min_fast_tracepoint_insn_len;
|
2013-12-19 05:12:29 +08:00
|
|
|
if (ops->to_set_disconnected_tracing == NULL)
|
|
|
|
ops->to_set_disconnected_tracing = delegate_set_disconnected_tracing;
|
2013-12-19 05:13:09 +08:00
|
|
|
if (ops->to_set_circular_trace_buffer == NULL)
|
|
|
|
ops->to_set_circular_trace_buffer = delegate_set_circular_trace_buffer;
|
2013-12-19 05:14:58 +08:00
|
|
|
if (ops->to_set_trace_buffer_size == NULL)
|
|
|
|
ops->to_set_trace_buffer_size = delegate_set_trace_buffer_size;
|
2013-12-19 05:15:23 +08:00
|
|
|
if (ops->to_set_trace_notes == NULL)
|
|
|
|
ops->to_set_trace_notes = delegate_set_trace_notes;
|
2013-12-19 05:55:06 +08:00
|
|
|
if (ops->to_core_of_thread == NULL)
|
|
|
|
ops->to_core_of_thread = delegate_core_of_thread;
|
2013-12-19 05:55:44 +08:00
|
|
|
if (ops->to_verify_memory == NULL)
|
|
|
|
ops->to_verify_memory = delegate_verify_memory;
|
2013-12-19 05:15:55 +08:00
|
|
|
if (ops->to_get_tib_address == NULL)
|
|
|
|
ops->to_get_tib_address = delegate_get_tib_address;
|
2013-12-19 05:16:24 +08:00
|
|
|
if (ops->to_set_permissions == NULL)
|
|
|
|
ops->to_set_permissions = delegate_set_permissions;
|
2013-12-19 05:16:51 +08:00
|
|
|
if (ops->to_static_tracepoint_marker_at == NULL)
|
|
|
|
ops->to_static_tracepoint_marker_at = delegate_static_tracepoint_marker_at;
|
2013-12-19 05:17:35 +08:00
|
|
|
if (ops->to_static_tracepoint_markers_by_strid == NULL)
|
|
|
|
ops->to_static_tracepoint_markers_by_strid = delegate_static_tracepoint_markers_by_strid;
|
2013-12-19 05:18:10 +08:00
|
|
|
if (ops->to_traceframe_info == NULL)
|
|
|
|
ops->to_traceframe_info = delegate_traceframe_info;
|
2013-12-19 05:18:35 +08:00
|
|
|
if (ops->to_use_agent == NULL)
|
|
|
|
ops->to_use_agent = delegate_use_agent;
|
2013-12-19 05:19:04 +08:00
|
|
|
if (ops->to_can_use_agent == NULL)
|
|
|
|
ops->to_can_use_agent = delegate_can_use_agent;
|
2013-12-14 04:26:04 +08:00
|
|
|
if (ops->to_supports_btrace == NULL)
|
|
|
|
ops->to_supports_btrace = delegate_supports_btrace;
|
2013-12-19 23:19:41 +08:00
|
|
|
if (ops->to_enable_btrace == NULL)
|
|
|
|
ops->to_enable_btrace = delegate_enable_btrace;
|
2013-12-19 23:17:16 +08:00
|
|
|
if (ops->to_disable_btrace == NULL)
|
|
|
|
ops->to_disable_btrace = delegate_disable_btrace;
|
2013-12-19 23:18:04 +08:00
|
|
|
if (ops->to_teardown_btrace == NULL)
|
|
|
|
ops->to_teardown_btrace = delegate_teardown_btrace;
|
2013-12-19 23:19:02 +08:00
|
|
|
if (ops->to_read_btrace == NULL)
|
|
|
|
ops->to_read_btrace = delegate_read_btrace;
|
2013-11-28 22:44:13 +08:00
|
|
|
if (ops->to_btrace_conf == NULL)
|
|
|
|
ops->to_btrace_conf = delegate_btrace_conf;
|
2013-12-19 23:21:20 +08:00
|
|
|
if (ops->to_stop_recording == NULL)
|
|
|
|
ops->to_stop_recording = delegate_stop_recording;
|
2014-07-16 22:05:03 +08:00
|
|
|
if (ops->to_info_record == NULL)
|
|
|
|
ops->to_info_record = delegate_info_record;
|
2013-12-19 11:26:34 +08:00
|
|
|
if (ops->to_save_record == NULL)
|
|
|
|
ops->to_save_record = delegate_save_record;
|
2013-12-19 11:25:47 +08:00
|
|
|
if (ops->to_delete_record == NULL)
|
|
|
|
ops->to_delete_record = delegate_delete_record;
|
2013-12-19 11:25:01 +08:00
|
|
|
if (ops->to_record_is_replaying == NULL)
|
|
|
|
ops->to_record_is_replaying = delegate_record_is_replaying;
|
2013-12-19 11:24:04 +08:00
|
|
|
if (ops->to_goto_record_begin == NULL)
|
|
|
|
ops->to_goto_record_begin = delegate_goto_record_begin;
|
2013-12-19 11:23:23 +08:00
|
|
|
if (ops->to_goto_record_end == NULL)
|
|
|
|
ops->to_goto_record_end = delegate_goto_record_end;
|
2013-12-19 11:22:36 +08:00
|
|
|
if (ops->to_goto_record == NULL)
|
|
|
|
ops->to_goto_record = delegate_goto_record;
|
2013-12-19 11:18:49 +08:00
|
|
|
if (ops->to_insn_history == NULL)
|
|
|
|
ops->to_insn_history = delegate_insn_history;
|
2013-12-19 11:16:56 +08:00
|
|
|
if (ops->to_insn_history_from == NULL)
|
|
|
|
ops->to_insn_history_from = delegate_insn_history_from;
|
2013-12-19 11:15:44 +08:00
|
|
|
if (ops->to_insn_history_range == NULL)
|
|
|
|
ops->to_insn_history_range = delegate_insn_history_range;
|
2013-12-19 11:13:40 +08:00
|
|
|
if (ops->to_call_history == NULL)
|
|
|
|
ops->to_call_history = delegate_call_history;
|
2013-12-19 11:11:49 +08:00
|
|
|
if (ops->to_call_history_from == NULL)
|
|
|
|
ops->to_call_history_from = delegate_call_history_from;
|
2013-12-19 11:10:20 +08:00
|
|
|
if (ops->to_call_history_range == NULL)
|
|
|
|
ops->to_call_history_range = delegate_call_history_range;
|
2013-12-19 05:19:33 +08:00
|
|
|
if (ops->to_augmented_libraries_svr4_read == NULL)
|
|
|
|
ops->to_augmented_libraries_svr4_read = delegate_augmented_libraries_svr4_read;
|
2014-01-17 04:00:07 +08:00
|
|
|
if (ops->to_get_unwinder == NULL)
|
|
|
|
ops->to_get_unwinder = delegate_get_unwinder;
|
|
|
|
if (ops->to_get_tailcall_unwinder == NULL)
|
|
|
|
ops->to_get_tailcall_unwinder = delegate_get_tailcall_unwinder;
|
2014-05-20 21:22:53 +08:00
|
|
|
if (ops->to_prepare_to_generate_core == NULL)
|
|
|
|
ops->to_prepare_to_generate_core = delegate_prepare_to_generate_core;
|
|
|
|
if (ops->to_done_generating_core == NULL)
|
|
|
|
ops->to_done_generating_core = delegate_done_generating_core;
|
2013-12-20 00:38:11 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
install_dummy_methods (struct target_ops *ops)
|
|
|
|
{
|
2013-12-19 00:42:24 +08:00
|
|
|
ops->to_post_attach = tdefault_post_attach;
|
2013-12-14 04:33:08 +08:00
|
|
|
ops->to_detach = tdefault_detach;
|
2013-12-21 01:30:13 +08:00
|
|
|
ops->to_disconnect = tdefault_disconnect;
|
add target method delegation
This patch replaces some code in the record targets with target method
delegation.
record-full.c stores pointers to many target methods when the record
target is pushed. Then it later delegates some calls via these. This
is wrong because it violates the target stack contract. In particular
it is ok to unpush a target at any stratum, but record-full does not
keep track of this, so it could potentially call into an unpushed
target.
This patch fixes the problem by using the newly-introduced generic
approach to target delegation for the methods in question.
2014-02-19 Tom Tromey <tromey@redhat.com>
* record-full.c (record_full_beneath_to_resume_ops)
(record_full_beneath_to_resume, record_full_beneath_to_wait_ops)
(record_full_beneath_to_wait)
(record_full_beneath_to_store_registers_ops)
(record_full_beneath_to_store_registers)
(record_full_beneath_to_xfer_partial_ops)
(record_full_beneath_to_xfer_partial)
(record_full_beneath_to_insert_breakpoint_ops)
(record_full_beneath_to_insert_breakpoint)
(record_full_beneath_to_remove_breakpoint_ops)
(record_full_beneath_to_remove_breakpoint)
(record_full_beneath_to_stopped_by_watchpoint)
(record_full_beneath_to_stopped_data_address)
(record_full_beneath_to_async, tmp_to_resume_ops, tmp_to_resume)
(tmp_to_wait_ops, tmp_to_wait, tmp_to_store_registers_ops)
(tmp_to_store_registers, tmp_to_xfer_partial_ops)
(tmp_to_xfer_partial, tmp_to_instmp_to_insert_breakpoint_ops)
(tmp_to_insert_breakpoint, tmp_to_remove_breakpoint_ops)
(tmp_to_remove_breakpoint, tmp_to_stopped_by_watchpoint)
(tmp_to_stopped_data_address, tmp_to_async): Remove.
(record_full_open_1, record_full_open): Update. Use RECORD_IS_USED.
(record_full_resume, record_full_wait_1)
(record_full_stopped_by_watchpoint, record_full_stopped_data_address)
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint)
(record_full_async, record_full_core_xfer_partial): Use target
delegation.
* target-delegates.c: Rebuild.
* target.c (current_xfer_partial): Remove.
(update_current_target): Do not INHERIT or de_fault
to_insert_breakpoint, to_remove_breakpoint,
to_stopped_data_address, to_stopped_by_watchpoint, to_can_async_p,
to_is_async_p, to_async. Do not set to_xfer_partial field.
(default_xfer_partial): Simplify.
(current_xfer_partial): Remove.
(target_wait, target_resume): Simplify.
(find_default_can_async_p, find_default_is_async_p): Update.
(init_dummy_target): Don't set to_can_async_p, to_is_async_p,
to_xfer_partial, to_stopped_by_watchpoint,
to_stopped_data_address.
(target_store_registers): Simplify.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
(target_remove_breakpoint, target_insert_breakpoint)
(debug_to_insert_breakpoint, debug_to_remove_breakpoint): Update.
* target.h (struct target_ops) <to_resume, to_wait,
to_store_registers, to_insert_breakpoint, to_remove_breakpoint,
to_stopped_by_watchpoint, to_stopped_data_address, to_can_async_p,
to_is_async_p, to_async, to_xfer_partial>: Add TARGET_DEFAULT
markup.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
* record-btrace.c (record_btrace_remove_breakpoint): Delegate
directly.
(record_btrace_insert_breakpoint): Delegate directly.
2013-07-13 03:00:34 +08:00
|
|
|
ops->to_resume = tdefault_resume;
|
|
|
|
ops->to_wait = tdefault_wait;
|
2013-12-19 05:30:22 +08:00
|
|
|
ops->to_fetch_registers = tdefault_fetch_registers;
|
add target method delegation
This patch replaces some code in the record targets with target method
delegation.
record-full.c stores pointers to many target methods when the record
target is pushed. Then it later delegates some calls via these. This
is wrong because it violates the target stack contract. In particular
it is ok to unpush a target at any stratum, but record-full does not
keep track of this, so it could potentially call into an unpushed
target.
This patch fixes the problem by using the newly-introduced generic
approach to target delegation for the methods in question.
2014-02-19 Tom Tromey <tromey@redhat.com>
* record-full.c (record_full_beneath_to_resume_ops)
(record_full_beneath_to_resume, record_full_beneath_to_wait_ops)
(record_full_beneath_to_wait)
(record_full_beneath_to_store_registers_ops)
(record_full_beneath_to_store_registers)
(record_full_beneath_to_xfer_partial_ops)
(record_full_beneath_to_xfer_partial)
(record_full_beneath_to_insert_breakpoint_ops)
(record_full_beneath_to_insert_breakpoint)
(record_full_beneath_to_remove_breakpoint_ops)
(record_full_beneath_to_remove_breakpoint)
(record_full_beneath_to_stopped_by_watchpoint)
(record_full_beneath_to_stopped_data_address)
(record_full_beneath_to_async, tmp_to_resume_ops, tmp_to_resume)
(tmp_to_wait_ops, tmp_to_wait, tmp_to_store_registers_ops)
(tmp_to_store_registers, tmp_to_xfer_partial_ops)
(tmp_to_xfer_partial, tmp_to_instmp_to_insert_breakpoint_ops)
(tmp_to_insert_breakpoint, tmp_to_remove_breakpoint_ops)
(tmp_to_remove_breakpoint, tmp_to_stopped_by_watchpoint)
(tmp_to_stopped_data_address, tmp_to_async): Remove.
(record_full_open_1, record_full_open): Update. Use RECORD_IS_USED.
(record_full_resume, record_full_wait_1)
(record_full_stopped_by_watchpoint, record_full_stopped_data_address)
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint)
(record_full_async, record_full_core_xfer_partial): Use target
delegation.
* target-delegates.c: Rebuild.
* target.c (current_xfer_partial): Remove.
(update_current_target): Do not INHERIT or de_fault
to_insert_breakpoint, to_remove_breakpoint,
to_stopped_data_address, to_stopped_by_watchpoint, to_can_async_p,
to_is_async_p, to_async. Do not set to_xfer_partial field.
(default_xfer_partial): Simplify.
(current_xfer_partial): Remove.
(target_wait, target_resume): Simplify.
(find_default_can_async_p, find_default_is_async_p): Update.
(init_dummy_target): Don't set to_can_async_p, to_is_async_p,
to_xfer_partial, to_stopped_by_watchpoint,
to_stopped_data_address.
(target_store_registers): Simplify.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
(target_remove_breakpoint, target_insert_breakpoint)
(debug_to_insert_breakpoint, debug_to_remove_breakpoint): Update.
* target.h (struct target_ops) <to_resume, to_wait,
to_store_registers, to_insert_breakpoint, to_remove_breakpoint,
to_stopped_by_watchpoint, to_stopped_data_address, to_can_async_p,
to_is_async_p, to_async, to_xfer_partial>: Add TARGET_DEFAULT
markup.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
* record-btrace.c (record_btrace_remove_breakpoint): Delegate
directly.
(record_btrace_insert_breakpoint): Delegate directly.
2013-07-13 03:00:34 +08:00
|
|
|
ops->to_store_registers = tdefault_store_registers;
|
2013-12-19 00:47:18 +08:00
|
|
|
ops->to_prepare_to_store = tdefault_prepare_to_store;
|
2013-12-19 00:51:47 +08:00
|
|
|
ops->to_files_info = tdefault_files_info;
|
add target method delegation
This patch replaces some code in the record targets with target method
delegation.
record-full.c stores pointers to many target methods when the record
target is pushed. Then it later delegates some calls via these. This
is wrong because it violates the target stack contract. In particular
it is ok to unpush a target at any stratum, but record-full does not
keep track of this, so it could potentially call into an unpushed
target.
This patch fixes the problem by using the newly-introduced generic
approach to target delegation for the methods in question.
2014-02-19 Tom Tromey <tromey@redhat.com>
* record-full.c (record_full_beneath_to_resume_ops)
(record_full_beneath_to_resume, record_full_beneath_to_wait_ops)
(record_full_beneath_to_wait)
(record_full_beneath_to_store_registers_ops)
(record_full_beneath_to_store_registers)
(record_full_beneath_to_xfer_partial_ops)
(record_full_beneath_to_xfer_partial)
(record_full_beneath_to_insert_breakpoint_ops)
(record_full_beneath_to_insert_breakpoint)
(record_full_beneath_to_remove_breakpoint_ops)
(record_full_beneath_to_remove_breakpoint)
(record_full_beneath_to_stopped_by_watchpoint)
(record_full_beneath_to_stopped_data_address)
(record_full_beneath_to_async, tmp_to_resume_ops, tmp_to_resume)
(tmp_to_wait_ops, tmp_to_wait, tmp_to_store_registers_ops)
(tmp_to_store_registers, tmp_to_xfer_partial_ops)
(tmp_to_xfer_partial, tmp_to_instmp_to_insert_breakpoint_ops)
(tmp_to_insert_breakpoint, tmp_to_remove_breakpoint_ops)
(tmp_to_remove_breakpoint, tmp_to_stopped_by_watchpoint)
(tmp_to_stopped_data_address, tmp_to_async): Remove.
(record_full_open_1, record_full_open): Update. Use RECORD_IS_USED.
(record_full_resume, record_full_wait_1)
(record_full_stopped_by_watchpoint, record_full_stopped_data_address)
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint)
(record_full_async, record_full_core_xfer_partial): Use target
delegation.
* target-delegates.c: Rebuild.
* target.c (current_xfer_partial): Remove.
(update_current_target): Do not INHERIT or de_fault
to_insert_breakpoint, to_remove_breakpoint,
to_stopped_data_address, to_stopped_by_watchpoint, to_can_async_p,
to_is_async_p, to_async. Do not set to_xfer_partial field.
(default_xfer_partial): Simplify.
(current_xfer_partial): Remove.
(target_wait, target_resume): Simplify.
(find_default_can_async_p, find_default_is_async_p): Update.
(init_dummy_target): Don't set to_can_async_p, to_is_async_p,
to_xfer_partial, to_stopped_by_watchpoint,
to_stopped_data_address.
(target_store_registers): Simplify.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
(target_remove_breakpoint, target_insert_breakpoint)
(debug_to_insert_breakpoint, debug_to_remove_breakpoint): Update.
* target.h (struct target_ops) <to_resume, to_wait,
to_store_registers, to_insert_breakpoint, to_remove_breakpoint,
to_stopped_by_watchpoint, to_stopped_data_address, to_can_async_p,
to_is_async_p, to_async, to_xfer_partial>: Add TARGET_DEFAULT
markup.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
* record-btrace.c (record_btrace_remove_breakpoint): Delegate
directly.
(record_btrace_insert_breakpoint): Delegate directly.
2013-07-13 03:00:34 +08:00
|
|
|
ops->to_insert_breakpoint = memory_insert_breakpoint;
|
|
|
|
ops->to_remove_breakpoint = memory_remove_breakpoint;
|
Teach GDB about targets that can tell whether a trap is a breakpoint event
The moribund locations heuristics are problematic. This patch teaches
GDB about targets that can reliably tell whether a trap was caused by
a software or hardware breakpoint, and thus don't need moribund
locations, thus bypassing all the problems that mechanism has.
The non-stop-fair-events.exp test is frequently failing currently.
E.g., see https://sourceware.org/ml/gdb-testers/2015-q1/msg03148.html.
The root cause is a fundamental problem with moribund locations. For
example, the stepped_breakpoint logic added by af48d08f breaks in this
case (which is what happens with that test):
- Step thread A, no breakpoint is set at PC.
- The kernel doesn't schedule thread A yet.
- Insert breakpoint at A's PC, for some reason (e.g., a step-resume
breakpoint for thread B).
- Kernel finally schedules thread A.
- thread A's stepped_breakpoint flag is not set, even though it now
stepped a breakpoint instruction.
- adjust_pc_after_break gets the PC wrong, because PC == PREV_PC, but
stepped_breakpoint is not set.
We needed the stepped_breakpoint logic to workaround moribund
locations, because otherwise adjust_pc_after_break could apply an
adjustment when it shouldn't just because there _used_ to be a
breakpoint at PC (a moribund breakpoint location). For example, on
x86, that's wrong if the thread really hasn't executed an int3, but
instead executed some other 1-byte long instruction. Getting the PC
adjustment wrong of course leads to the inferior executing the wrong
instruction.
Other problems with moribund locations are:
- if a true SIGTRAP happens to be raised when the program is
executing the PC that used to have a breakpoint, GDB will assume
that is a trap for a breakpoint that has recently been removed, and
thus we miss reporting the random signal to the user.
- to minimize that, we get rid of moribund location after a while.
That while is defined as just a certain number of events being
processed. That number of events sometimes passes by before a
delayed breakpoint is processed, and GDB confuses the trap for a
random signal, thus reporting the random trap. Once the user
resumes the thread, the program crashes because the PC was not
adjusted...
The fix for all this is to bite the bullet and get rid of heuristics
and instead rely on the target knowing accurately what caused the
SIGTRAP. The target/kernel/stub is in the best position to know what
that, because it can e.g. consult priviledged CPU flags GDB has no
access to, or by knowing which exception vector entry was called when
the instruction trapped, etc. Most debug APIs I've seen to date
report breakpoint hits as a distinct event in some fashion. For
example, on the Linux kernel, whether a breakpoint was executed is
exposed to userspace in the si_code field of the SIGTRAP's siginfo.
On Windows, the debug API reports a EXCEPTION_BREAKPOINT exception
code.
We needed to keep around deleted breakpoints in an on-the-side list
(the moribund locations) for two main reasons:
- Know that a SIGTRAP actually is a delayed event for a hit of a
breakpoint that was removed before the event was processed, and
thus should not be reported as a random signal.
- So we still do the decr_pc_after_break adjustment in that case, so
that the thread is resumed at the correct address.
In the new model, if GDB processes an event the target tells is a
breakpoint trap, and GDB doesn't find the corresponding breakpoint in
its breakpoint tables, it means that event is a delayed event for a
breakpoint that has since been removed, and thus the event should be
ignored.
For the decr_pc_after_after issue, it ends up being much simpler that
on targets that can reliably tell whether a breakpoint trapped, for
the breakpoint trap to present the PC already adjusted. Proper
multi-threading support already implies that targets needs to be doing
decr_pc_after_break adjustment themselves, otherwise for example, in
all-stop if two threads hit a breakpoint simultaneously, and the user
does "info threads", he'll see the non-event thread that hit the
breakpoint stopped at the wrong PC.
This way (target adjusts) also ends up eliminating the need for some
awkward re-incrementing of the PC in the record-full and Linux targets
that we do today, and the need for the target_decr_pc_after_break
hook.
If the target always adjusts, then there's a case where GDB needs to
re-increment the PC. Say, on x86, an "int3" instruction that was
explicitly written in the program traps. In this case, GDB should
report a random SIGTRAP signal to the user, with the PC pointing at
the instruction past the int3, just like if GDB was not debugging the
program. The user may well decide to pass the SIGTRAP to the program
because the program being debugged has a SIGTRAP handler that handles
its own breakpoints, and expects the PC to be unadjusted.
Tested on x86-64 Fedora 20.
gdb/ChangeLog:
2015-03-04 Pedro Alves <palves@redhat.com>
* breakpoint.c (need_moribund_for_location_type): New function.
(bpstat_stop_status): Don't skipping checking moribund locations
of breakpoint types which the target tell caused a stop.
(program_breakpoint_here_p): New function, factored out from ...
(bp_loc_is_permanent): ... this.
(update_global_location_list): Don't create a moribund location if
the target supports reporting stops of the type of the removed
breakpoint.
* breakpoint.h (program_breakpoint_here_p): New declaration.
* infrun.c (adjust_pc_after_break): Return early if the target has
already adjusted the PC. Add comments.
(handle_signal_stop): If nothing explains a signal, and the target
tells us the stop was caused by a software breakpoint, check if
there's a breakpoint instruction in the memory. If so, adjust the
PC before presenting the stop to the user. Otherwise, ignore the
trap. If nothing explains a signal, and the target tells us the
stop was caused by a hardware breakpoint, ignore the trap.
* target.h (struct target_ops) <to_stopped_by_sw_breakpoint,
to_supports_stopped_by_sw_breakpoint, to_stopped_by_hw_breakpoint,
to_supports_stopped_by_hw_breakpoint>: New fields.
(target_stopped_by_sw_breakpoint)
(target_supports_stopped_by_sw_breakpoint)
(target_stopped_by_hw_breakpoint)
(target_supports_stopped_by_hw_breakpoint): Define.
* target-delegates.c: Regenerate.
2015-03-05 04:41:15 +08:00
|
|
|
ops->to_stopped_by_sw_breakpoint = tdefault_stopped_by_sw_breakpoint;
|
|
|
|
ops->to_supports_stopped_by_sw_breakpoint = tdefault_supports_stopped_by_sw_breakpoint;
|
|
|
|
ops->to_stopped_by_hw_breakpoint = tdefault_stopped_by_hw_breakpoint;
|
|
|
|
ops->to_supports_stopped_by_hw_breakpoint = tdefault_supports_stopped_by_hw_breakpoint;
|
2013-12-19 00:58:16 +08:00
|
|
|
ops->to_can_use_hw_breakpoint = tdefault_can_use_hw_breakpoint;
|
2013-12-19 05:31:42 +08:00
|
|
|
ops->to_ranged_break_num_registers = tdefault_ranged_break_num_registers;
|
2013-12-19 01:01:11 +08:00
|
|
|
ops->to_insert_hw_breakpoint = tdefault_insert_hw_breakpoint;
|
2013-12-19 01:05:18 +08:00
|
|
|
ops->to_remove_hw_breakpoint = tdefault_remove_hw_breakpoint;
|
2013-12-19 01:11:49 +08:00
|
|
|
ops->to_remove_watchpoint = tdefault_remove_watchpoint;
|
2013-12-19 01:08:59 +08:00
|
|
|
ops->to_insert_watchpoint = tdefault_insert_watchpoint;
|
2013-12-19 05:32:43 +08:00
|
|
|
ops->to_insert_mask_watchpoint = tdefault_insert_mask_watchpoint;
|
2013-12-19 05:33:28 +08:00
|
|
|
ops->to_remove_mask_watchpoint = tdefault_remove_mask_watchpoint;
|
add target method delegation
This patch replaces some code in the record targets with target method
delegation.
record-full.c stores pointers to many target methods when the record
target is pushed. Then it later delegates some calls via these. This
is wrong because it violates the target stack contract. In particular
it is ok to unpush a target at any stratum, but record-full does not
keep track of this, so it could potentially call into an unpushed
target.
This patch fixes the problem by using the newly-introduced generic
approach to target delegation for the methods in question.
2014-02-19 Tom Tromey <tromey@redhat.com>
* record-full.c (record_full_beneath_to_resume_ops)
(record_full_beneath_to_resume, record_full_beneath_to_wait_ops)
(record_full_beneath_to_wait)
(record_full_beneath_to_store_registers_ops)
(record_full_beneath_to_store_registers)
(record_full_beneath_to_xfer_partial_ops)
(record_full_beneath_to_xfer_partial)
(record_full_beneath_to_insert_breakpoint_ops)
(record_full_beneath_to_insert_breakpoint)
(record_full_beneath_to_remove_breakpoint_ops)
(record_full_beneath_to_remove_breakpoint)
(record_full_beneath_to_stopped_by_watchpoint)
(record_full_beneath_to_stopped_data_address)
(record_full_beneath_to_async, tmp_to_resume_ops, tmp_to_resume)
(tmp_to_wait_ops, tmp_to_wait, tmp_to_store_registers_ops)
(tmp_to_store_registers, tmp_to_xfer_partial_ops)
(tmp_to_xfer_partial, tmp_to_instmp_to_insert_breakpoint_ops)
(tmp_to_insert_breakpoint, tmp_to_remove_breakpoint_ops)
(tmp_to_remove_breakpoint, tmp_to_stopped_by_watchpoint)
(tmp_to_stopped_data_address, tmp_to_async): Remove.
(record_full_open_1, record_full_open): Update. Use RECORD_IS_USED.
(record_full_resume, record_full_wait_1)
(record_full_stopped_by_watchpoint, record_full_stopped_data_address)
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint)
(record_full_async, record_full_core_xfer_partial): Use target
delegation.
* target-delegates.c: Rebuild.
* target.c (current_xfer_partial): Remove.
(update_current_target): Do not INHERIT or de_fault
to_insert_breakpoint, to_remove_breakpoint,
to_stopped_data_address, to_stopped_by_watchpoint, to_can_async_p,
to_is_async_p, to_async. Do not set to_xfer_partial field.
(default_xfer_partial): Simplify.
(current_xfer_partial): Remove.
(target_wait, target_resume): Simplify.
(find_default_can_async_p, find_default_is_async_p): Update.
(init_dummy_target): Don't set to_can_async_p, to_is_async_p,
to_xfer_partial, to_stopped_by_watchpoint,
to_stopped_data_address.
(target_store_registers): Simplify.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
(target_remove_breakpoint, target_insert_breakpoint)
(debug_to_insert_breakpoint, debug_to_remove_breakpoint): Update.
* target.h (struct target_ops) <to_resume, to_wait,
to_store_registers, to_insert_breakpoint, to_remove_breakpoint,
to_stopped_by_watchpoint, to_stopped_data_address, to_can_async_p,
to_is_async_p, to_async, to_xfer_partial>: Add TARGET_DEFAULT
markup.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
* record-btrace.c (record_btrace_remove_breakpoint): Delegate
directly.
(record_btrace_insert_breakpoint): Delegate directly.
2013-07-13 03:00:34 +08:00
|
|
|
ops->to_stopped_by_watchpoint = tdefault_stopped_by_watchpoint;
|
|
|
|
ops->to_stopped_data_address = tdefault_stopped_data_address;
|
2013-12-19 01:15:23 +08:00
|
|
|
ops->to_watchpoint_addr_within_range = default_watchpoint_addr_within_range;
|
2013-12-19 01:18:05 +08:00
|
|
|
ops->to_region_ok_for_hw_watchpoint = default_region_ok_for_hw_watchpoint;
|
2013-12-19 01:20:48 +08:00
|
|
|
ops->to_can_accel_watchpoint_condition = tdefault_can_accel_watchpoint_condition;
|
2013-12-19 05:34:15 +08:00
|
|
|
ops->to_masked_watch_num_registers = tdefault_masked_watch_num_registers;
|
2013-12-19 01:24:07 +08:00
|
|
|
ops->to_terminal_init = tdefault_terminal_init;
|
2013-12-19 01:29:01 +08:00
|
|
|
ops->to_terminal_inferior = tdefault_terminal_inferior;
|
2013-12-19 01:29:46 +08:00
|
|
|
ops->to_terminal_ours_for_output = tdefault_terminal_ours_for_output;
|
2013-12-19 01:30:16 +08:00
|
|
|
ops->to_terminal_ours = tdefault_terminal_ours;
|
2013-12-19 01:31:10 +08:00
|
|
|
ops->to_terminal_info = default_terminal_info;
|
2013-12-19 05:35:15 +08:00
|
|
|
ops->to_kill = tdefault_kill;
|
2013-12-19 01:31:48 +08:00
|
|
|
ops->to_load = tdefault_load;
|
2013-12-19 01:32:56 +08:00
|
|
|
ops->to_post_startup_inferior = tdefault_post_startup_inferior;
|
2013-12-19 01:33:43 +08:00
|
|
|
ops->to_insert_fork_catchpoint = tdefault_insert_fork_catchpoint;
|
2013-12-19 01:34:15 +08:00
|
|
|
ops->to_remove_fork_catchpoint = tdefault_remove_fork_catchpoint;
|
2013-12-19 01:44:22 +08:00
|
|
|
ops->to_insert_vfork_catchpoint = tdefault_insert_vfork_catchpoint;
|
2013-12-19 01:44:57 +08:00
|
|
|
ops->to_remove_vfork_catchpoint = tdefault_remove_vfork_catchpoint;
|
2013-12-19 05:38:04 +08:00
|
|
|
ops->to_follow_fork = default_follow_fork;
|
2013-12-19 01:45:38 +08:00
|
|
|
ops->to_insert_exec_catchpoint = tdefault_insert_exec_catchpoint;
|
2013-12-19 01:46:02 +08:00
|
|
|
ops->to_remove_exec_catchpoint = tdefault_remove_exec_catchpoint;
|
2013-12-19 01:46:38 +08:00
|
|
|
ops->to_set_syscall_catchpoint = tdefault_set_syscall_catchpoint;
|
2013-12-19 01:47:22 +08:00
|
|
|
ops->to_has_exited = tdefault_has_exited;
|
2013-12-19 05:40:23 +08:00
|
|
|
ops->to_mourn_inferior = default_mourn_inferior;
|
2013-12-21 03:19:37 +08:00
|
|
|
ops->to_can_run = tdefault_can_run;
|
2013-12-19 05:42:10 +08:00
|
|
|
ops->to_pass_signals = tdefault_pass_signals;
|
2013-12-19 05:42:54 +08:00
|
|
|
ops->to_program_signals = tdefault_program_signals;
|
2013-12-19 22:21:56 +08:00
|
|
|
ops->to_thread_alive = tdefault_thread_alive;
|
Push pruning old threads down to the target
When GDB wants to sync the thread list with the target's (e.g., due to
"info threads"), it calls update_thread_list:
update_thread_list (void)
{
prune_threads ();
target_find_new_threads ();
update_threads_executing ();
}
And then prune_threads does:
prune_threads (void)
{
struct thread_info *tp, *next;
for (tp = thread_list; tp; tp = next)
{
next = tp->next;
if (!thread_alive (tp))
delete_thread (tp->ptid);
}
}
Calling thread_live on each thread one by one is expensive.
E.g., on Linux, it ends up doing kill(SIG0) once for each thread. Not
a big deal, but still a bunch of syscalls...
With the remote target, it's cumbersome. That thread_alive call ends
up generating one T packet per thread:
Sending packet: $Tp2141.2150#82...Packet received: OK
Sending packet: $Tp2141.214f#b7...Packet received: OK
Sending packet: $Tp2141.2141#82...Packet received: OK
Sending packet: $qXfer:threads:read::0,fff#03...Packet received: l<threads>\n<thread id="p2141.2141" core="2"/>\n<thread id="p2141.214f" core="1"/>\n<thread id="p2141.2150" core="2"/>\n</threads>\n
That seems a bit silly when target_find_new_threads method
implementations will always fetch the whole current set of target
threads, and then add those that are not in GDB's thread list, to
GDB's thread list.
This patch thus pushes down the responsibility of pruning dead threads
to the target_find_new_threads method instead, so a target may
implement pruning dead threads however it wants.
Once we do that, target_find_new_threads becomes a misnomer, so the
patch renames it to target_update_thread_list.
The patch doesn't attempt to do any optimization to any target yet.
It simply exports prune_threads, and makes all implementations of
target_update_thread_list call that. It's meant to be a no-op.
gdb/
2014-10-15 Pedro Alves <palves@redhat.com>
* ada-tasks.c (print_ada_task_info, task_command_1): Adjust.
* bsd-uthread.c (bsd_uthread_find_new_threads): Rename to ...
(bsd_uthread_update_thread_list): ... this. Call prune_threads.
(bsd_uthread_target): Adjust.
* corelow.c (core_open): Adjust.
* dec-thread.c (dec_thread_find_new_threads): Update comment.
(dec_thread_update_thread_list): New function.
(init_dec_thread_ops): Adjust.
* gdbthread.h (prune_threads): New declaration.
* linux-thread-db.c (thread_db_find_new_threads): Rename to ...
(thread_db_update_thread_list): ... this. Call prune_threads.
(init_thread_db_ops): Adjust.
* nto-procfs.c (procfs_find_new_threads): Rename to ...
(procfs_update_thread_list): ... this. Call prune_threads.
(procfs_attach, procfs_create_inferior, init_procfs_targets):
Adjust.
* obsd-nat.c (obsd_find_new_threads): Rename to ...
(obsd_update_thread_list): ... this. Call prune_threads.
(obsd_add_target): Adjust.
* procfs.c (procfs_target): Adjust.
(procfs_notice_thread): Update comment.
(procfs_find_new_threads): Rename to ...
(procfs_update_thread_list): ... this. Call prune_threads.
* ravenscar-thread.c (ravenscar_update_inferior_ptid): Update
comment.
(ravenscar_wait): Adjust.
(ravenscar_find_new_threads): Rename to ...
(ravenscar_update_thread_list): ... this. Call prune_threads.
(init_ravenscar_thread_ops): Adjust.
* record-btrace.c (record_btrace_find_new_threads): Rename to ...
(record_btrace_update_thread_list): ... this. Adjust comment.
(init_record_btrace_ops): Adjust.
* remote.c (remote_threads_info): Rename to ...
(remote_update_thread_list): ... this. Call prune_threads.
(remote_start_remote, extended_remote_attach_1, init_remote_ops):
Adjust.
* sol-thread.c (check_for_thread_db): Adjust.
(sol_find_new_threads_callback): Rename to ...
(sol_update_thread_list_callback): ... this.
(sol_find_new_threads): Rename to ...
(sol_update_thread_list): ... this. Call prune_threads. Adjust.
(sol_get_ada_task_ptid, init_sol_thread_ops): Adjust.
* target-delegates.c: Regenerate.
* target.c (target_find_new_threads): Rename to ...
(target_update_thread_list): ... this.
* target.h (struct target_ops): Rename to_find_new_threads field
to to_update_thread_list.
(target_find_new_threads): Rename to ...
(target_update_thread_list): ... this.
* thread.c (prune_threads): Make extern.
(update_thread_list): Adjust.
2014-10-16 05:44:00 +08:00
|
|
|
ops->to_update_thread_list = tdefault_update_thread_list;
|
2013-12-19 05:46:03 +08:00
|
|
|
ops->to_pid_to_str = default_pid_to_str;
|
2013-12-19 01:48:36 +08:00
|
|
|
ops->to_extra_thread_info = tdefault_extra_thread_info;
|
2013-12-19 01:49:35 +08:00
|
|
|
ops->to_thread_name = tdefault_thread_name;
|
2013-12-19 05:28:07 +08:00
|
|
|
ops->to_stop = tdefault_stop;
|
2013-12-19 00:35:21 +08:00
|
|
|
ops->to_rcmd = default_rcmd;
|
2013-12-19 01:51:10 +08:00
|
|
|
ops->to_pid_to_exec_file = tdefault_pid_to_exec_file;
|
2013-12-19 01:52:58 +08:00
|
|
|
ops->to_log_command = tdefault_log_command;
|
2013-12-19 05:47:06 +08:00
|
|
|
ops->to_get_section_table = tdefault_get_section_table;
|
fix regressions with target-async
A patch in the target cleanup series caused a regression when using
record with target-async. Version 4 of the patch is here:
https://sourceware.org/ml/gdb-patches/2014-03/msg00159.html
The immediate problem is that record supplies to_can_async_p and
to_is_async_p methods, but does not supply a to_async method. So,
when target-async is set, record claims to support async -- but if the
underlying target does not support async, then the to_async method
call will end up in that method's default implementation, namely
tcomplain.
This worked previously because the record target used to provide a
to_async method; one that (erroneously, only at push time) checked the
other members of the target stack, and then simply dropped to_async
calls in the "does not implement async" case.
My first thought was to simply drop tcomplain as the default for
to_async. This works, but Pedro pointed out that the only reason
record has to supply to_can_async_p and to_is_async_p is that these
default to using the find_default_run_target machinery -- and these
defaults are only needed by "run" and "attach".
So, a nicer solution presents itself: change run and attach to
explicitly call into the default run target when needed; and change
to_is_async_p and to_can_async_p to default to "return 0". This makes
the target stack simpler to use and lets us remove the method
implementations from record. This is also in harmony with other plans
for the target stack; namely trying to reduce the impact of
find_default_run_target. This approach makes it clear that
find_default_is_async_p is not needed -- it is asking whether a target
that may not even be pushed is actually async, which seems like a
nonsensical question.
While an improvement, this approach proved to introduce the same bug
when using the core target. Looking a bit deeper, the issue is that
code in "attach" and "run" may need to use either the current target
stack or the default run target -- but different calls into the target
API in those functions could wind up querying different targets.
This new patch makes the target to use more explicit in "run" and
"attach". Then these commands explicitly make the needed calls
against that target. This ensures that a single target is used for
all relevant operations. This lets us remove a couple find_default_*
functions from various targets, including the dummy target. I think
this is a decent understandability improvement.
One issue I see with this patch is that the new calls in "run" and
"attach" are not very much like the rest of the target API. I think
fundamentally this is due to bad factoring in the target API, which
may need to be fixed for multi-target. Tackling that seemed ambitious
for a regression fix.
While working on this I noticed that there don't seem to be any test
cases that involve both target-async and record, so this patch changes
break-precsave.exp to add some. It also changes corefile.exp to add
some target-async tests; these pass with current trunk and with this
patch applied, but fail with the v1 patch.
This patch differs from v4 in that it moves initialization of
to_can_async_p and to_supports_non_stop into inf-child, adds some
assertions to complete_target_initialization, and adds some comments
to target.h.
Built and regtested on x86-64 Fedora 20.
2014-03-12 Tom Tromey <tromey@redhat.com>
* inf-child.c (return_zero): New function.
(inf_child_target): Set to_can_async_p, to_supports_non_stop.
* aix-thread.c (aix_thread_inferior_created): New function.
(aix_thread_attach): Remove.
(init_aix_thread_ops): Don't set to_attach.
(_initialize_aix_thread): Register inferior_created observer.
* corelow.c (init_core_ops): Don't set to_attach or
to_create_inferior.
* exec.c (init_exec_ops): Don't set to_attach or
to_create_inferior.
* infcmd.c (run_command_1): Use find_run_target. Make direct
target calls.
(attach_command): Use find_attach_target. Make direct target
calls.
* record-btrace.c (init_record_btrace_ops): Don't set
to_create_inferior.
* record-full.c (record_full_can_async_p, record_full_is_async_p):
Remove.
(init_record_full_ops, init_record_full_core_ops): Update. Don't
set to_create_inferior.
* target.c (complete_target_initialization): Add assertion.
(target_create_inferior): Remove.
(find_default_attach, find_default_create_inferior): Remove.
(find_attach_target, find_run_target): New functions.
(find_default_is_async_p, find_default_can_async_p)
(target_supports_non_stop, target_attach): Remove.
(init_dummy_target): Don't set to_create_inferior or
to_supports_non_stop.
* target.h (struct target_ops) <to_attach>: Add comment. Remove
TARGET_DEFAULT_FUNC.
<to_create_inferior>: Add comment.
<to_can_async_p, to_is_async_p, to_supports_non_stop>: Use
TARGET_DEFAULT_RETURN.
<to_can_async_p, to_supports_non_stop, to_can_run>: Add comments.
(find_attach_target, find_run_target): Declare.
(target_create_inferior): Remove.
(target_has_execution_1): Update comment.
(target_supports_non_stop): Remove.
* target-delegates.c: Rebuild.
2014-03-12 Tom Tromey <tromey@redhat.com>
* gdb.base/corefile.exp (corefile_test_run, corefile_test_attach):
New procs. Add target-async tests.
* gdb.reverse/break-precsave.exp (precsave_tests): New proc.
Add target-async tests.
2014-03-01 00:47:34 +08:00
|
|
|
ops->to_can_async_p = tdefault_can_async_p;
|
|
|
|
ops->to_is_async_p = tdefault_is_async_p;
|
add target method delegation
This patch replaces some code in the record targets with target method
delegation.
record-full.c stores pointers to many target methods when the record
target is pushed. Then it later delegates some calls via these. This
is wrong because it violates the target stack contract. In particular
it is ok to unpush a target at any stratum, but record-full does not
keep track of this, so it could potentially call into an unpushed
target.
This patch fixes the problem by using the newly-introduced generic
approach to target delegation for the methods in question.
2014-02-19 Tom Tromey <tromey@redhat.com>
* record-full.c (record_full_beneath_to_resume_ops)
(record_full_beneath_to_resume, record_full_beneath_to_wait_ops)
(record_full_beneath_to_wait)
(record_full_beneath_to_store_registers_ops)
(record_full_beneath_to_store_registers)
(record_full_beneath_to_xfer_partial_ops)
(record_full_beneath_to_xfer_partial)
(record_full_beneath_to_insert_breakpoint_ops)
(record_full_beneath_to_insert_breakpoint)
(record_full_beneath_to_remove_breakpoint_ops)
(record_full_beneath_to_remove_breakpoint)
(record_full_beneath_to_stopped_by_watchpoint)
(record_full_beneath_to_stopped_data_address)
(record_full_beneath_to_async, tmp_to_resume_ops, tmp_to_resume)
(tmp_to_wait_ops, tmp_to_wait, tmp_to_store_registers_ops)
(tmp_to_store_registers, tmp_to_xfer_partial_ops)
(tmp_to_xfer_partial, tmp_to_instmp_to_insert_breakpoint_ops)
(tmp_to_insert_breakpoint, tmp_to_remove_breakpoint_ops)
(tmp_to_remove_breakpoint, tmp_to_stopped_by_watchpoint)
(tmp_to_stopped_data_address, tmp_to_async): Remove.
(record_full_open_1, record_full_open): Update. Use RECORD_IS_USED.
(record_full_resume, record_full_wait_1)
(record_full_stopped_by_watchpoint, record_full_stopped_data_address)
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint)
(record_full_async, record_full_core_xfer_partial): Use target
delegation.
* target-delegates.c: Rebuild.
* target.c (current_xfer_partial): Remove.
(update_current_target): Do not INHERIT or de_fault
to_insert_breakpoint, to_remove_breakpoint,
to_stopped_data_address, to_stopped_by_watchpoint, to_can_async_p,
to_is_async_p, to_async. Do not set to_xfer_partial field.
(default_xfer_partial): Simplify.
(current_xfer_partial): Remove.
(target_wait, target_resume): Simplify.
(find_default_can_async_p, find_default_is_async_p): Update.
(init_dummy_target): Don't set to_can_async_p, to_is_async_p,
to_xfer_partial, to_stopped_by_watchpoint,
to_stopped_data_address.
(target_store_registers): Simplify.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
(target_remove_breakpoint, target_insert_breakpoint)
(debug_to_insert_breakpoint, debug_to_remove_breakpoint): Update.
* target.h (struct target_ops) <to_resume, to_wait,
to_store_registers, to_insert_breakpoint, to_remove_breakpoint,
to_stopped_by_watchpoint, to_stopped_data_address, to_can_async_p,
to_is_async_p, to_async, to_xfer_partial>: Add TARGET_DEFAULT
markup.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
* record-btrace.c (record_btrace_remove_breakpoint): Delegate
directly.
(record_btrace_insert_breakpoint): Delegate directly.
2013-07-13 03:00:34 +08:00
|
|
|
ops->to_async = tdefault_async;
|
fix regressions with target-async
A patch in the target cleanup series caused a regression when using
record with target-async. Version 4 of the patch is here:
https://sourceware.org/ml/gdb-patches/2014-03/msg00159.html
The immediate problem is that record supplies to_can_async_p and
to_is_async_p methods, but does not supply a to_async method. So,
when target-async is set, record claims to support async -- but if the
underlying target does not support async, then the to_async method
call will end up in that method's default implementation, namely
tcomplain.
This worked previously because the record target used to provide a
to_async method; one that (erroneously, only at push time) checked the
other members of the target stack, and then simply dropped to_async
calls in the "does not implement async" case.
My first thought was to simply drop tcomplain as the default for
to_async. This works, but Pedro pointed out that the only reason
record has to supply to_can_async_p and to_is_async_p is that these
default to using the find_default_run_target machinery -- and these
defaults are only needed by "run" and "attach".
So, a nicer solution presents itself: change run and attach to
explicitly call into the default run target when needed; and change
to_is_async_p and to_can_async_p to default to "return 0". This makes
the target stack simpler to use and lets us remove the method
implementations from record. This is also in harmony with other plans
for the target stack; namely trying to reduce the impact of
find_default_run_target. This approach makes it clear that
find_default_is_async_p is not needed -- it is asking whether a target
that may not even be pushed is actually async, which seems like a
nonsensical question.
While an improvement, this approach proved to introduce the same bug
when using the core target. Looking a bit deeper, the issue is that
code in "attach" and "run" may need to use either the current target
stack or the default run target -- but different calls into the target
API in those functions could wind up querying different targets.
This new patch makes the target to use more explicit in "run" and
"attach". Then these commands explicitly make the needed calls
against that target. This ensures that a single target is used for
all relevant operations. This lets us remove a couple find_default_*
functions from various targets, including the dummy target. I think
this is a decent understandability improvement.
One issue I see with this patch is that the new calls in "run" and
"attach" are not very much like the rest of the target API. I think
fundamentally this is due to bad factoring in the target API, which
may need to be fixed for multi-target. Tackling that seemed ambitious
for a regression fix.
While working on this I noticed that there don't seem to be any test
cases that involve both target-async and record, so this patch changes
break-precsave.exp to add some. It also changes corefile.exp to add
some target-async tests; these pass with current trunk and with this
patch applied, but fail with the v1 patch.
This patch differs from v4 in that it moves initialization of
to_can_async_p and to_supports_non_stop into inf-child, adds some
assertions to complete_target_initialization, and adds some comments
to target.h.
Built and regtested on x86-64 Fedora 20.
2014-03-12 Tom Tromey <tromey@redhat.com>
* inf-child.c (return_zero): New function.
(inf_child_target): Set to_can_async_p, to_supports_non_stop.
* aix-thread.c (aix_thread_inferior_created): New function.
(aix_thread_attach): Remove.
(init_aix_thread_ops): Don't set to_attach.
(_initialize_aix_thread): Register inferior_created observer.
* corelow.c (init_core_ops): Don't set to_attach or
to_create_inferior.
* exec.c (init_exec_ops): Don't set to_attach or
to_create_inferior.
* infcmd.c (run_command_1): Use find_run_target. Make direct
target calls.
(attach_command): Use find_attach_target. Make direct target
calls.
* record-btrace.c (init_record_btrace_ops): Don't set
to_create_inferior.
* record-full.c (record_full_can_async_p, record_full_is_async_p):
Remove.
(init_record_full_ops, init_record_full_core_ops): Update. Don't
set to_create_inferior.
* target.c (complete_target_initialization): Add assertion.
(target_create_inferior): Remove.
(find_default_attach, find_default_create_inferior): Remove.
(find_attach_target, find_run_target): New functions.
(find_default_is_async_p, find_default_can_async_p)
(target_supports_non_stop, target_attach): Remove.
(init_dummy_target): Don't set to_create_inferior or
to_supports_non_stop.
* target.h (struct target_ops) <to_attach>: Add comment. Remove
TARGET_DEFAULT_FUNC.
<to_create_inferior>: Add comment.
<to_can_async_p, to_is_async_p, to_supports_non_stop>: Use
TARGET_DEFAULT_RETURN.
<to_can_async_p, to_supports_non_stop, to_can_run>: Add comments.
(find_attach_target, find_run_target): Declare.
(target_create_inferior): Remove.
(target_has_execution_1): Update comment.
(target_supports_non_stop): Remove.
* target-delegates.c: Rebuild.
2014-03-12 Tom Tromey <tromey@redhat.com>
* gdb.base/corefile.exp (corefile_test_run, corefile_test_attach):
New procs. Add target-async tests.
* gdb.reverse/break-precsave.exp (precsave_tests): New proc.
Add target-async tests.
2014-03-01 00:47:34 +08:00
|
|
|
ops->to_supports_non_stop = tdefault_supports_non_stop;
|
2013-12-19 01:55:34 +08:00
|
|
|
ops->to_find_memory_regions = dummy_find_memory_regions;
|
2013-12-19 01:57:18 +08:00
|
|
|
ops->to_make_corefile_notes = dummy_make_corefile_notes;
|
2013-12-19 02:10:32 +08:00
|
|
|
ops->to_get_bookmark = tdefault_get_bookmark;
|
2013-12-19 02:11:25 +08:00
|
|
|
ops->to_goto_bookmark = tdefault_goto_bookmark;
|
2014-06-26 00:16:55 +08:00
|
|
|
ops->to_get_thread_local_address = tdefault_get_thread_local_address;
|
add target method delegation
This patch replaces some code in the record targets with target method
delegation.
record-full.c stores pointers to many target methods when the record
target is pushed. Then it later delegates some calls via these. This
is wrong because it violates the target stack contract. In particular
it is ok to unpush a target at any stratum, but record-full does not
keep track of this, so it could potentially call into an unpushed
target.
This patch fixes the problem by using the newly-introduced generic
approach to target delegation for the methods in question.
2014-02-19 Tom Tromey <tromey@redhat.com>
* record-full.c (record_full_beneath_to_resume_ops)
(record_full_beneath_to_resume, record_full_beneath_to_wait_ops)
(record_full_beneath_to_wait)
(record_full_beneath_to_store_registers_ops)
(record_full_beneath_to_store_registers)
(record_full_beneath_to_xfer_partial_ops)
(record_full_beneath_to_xfer_partial)
(record_full_beneath_to_insert_breakpoint_ops)
(record_full_beneath_to_insert_breakpoint)
(record_full_beneath_to_remove_breakpoint_ops)
(record_full_beneath_to_remove_breakpoint)
(record_full_beneath_to_stopped_by_watchpoint)
(record_full_beneath_to_stopped_data_address)
(record_full_beneath_to_async, tmp_to_resume_ops, tmp_to_resume)
(tmp_to_wait_ops, tmp_to_wait, tmp_to_store_registers_ops)
(tmp_to_store_registers, tmp_to_xfer_partial_ops)
(tmp_to_xfer_partial, tmp_to_instmp_to_insert_breakpoint_ops)
(tmp_to_insert_breakpoint, tmp_to_remove_breakpoint_ops)
(tmp_to_remove_breakpoint, tmp_to_stopped_by_watchpoint)
(tmp_to_stopped_data_address, tmp_to_async): Remove.
(record_full_open_1, record_full_open): Update. Use RECORD_IS_USED.
(record_full_resume, record_full_wait_1)
(record_full_stopped_by_watchpoint, record_full_stopped_data_address)
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint)
(record_full_async, record_full_core_xfer_partial): Use target
delegation.
* target-delegates.c: Rebuild.
* target.c (current_xfer_partial): Remove.
(update_current_target): Do not INHERIT or de_fault
to_insert_breakpoint, to_remove_breakpoint,
to_stopped_data_address, to_stopped_by_watchpoint, to_can_async_p,
to_is_async_p, to_async. Do not set to_xfer_partial field.
(default_xfer_partial): Simplify.
(current_xfer_partial): Remove.
(target_wait, target_resume): Simplify.
(find_default_can_async_p, find_default_is_async_p): Update.
(init_dummy_target): Don't set to_can_async_p, to_is_async_p,
to_xfer_partial, to_stopped_by_watchpoint,
to_stopped_data_address.
(target_store_registers): Simplify.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
(target_remove_breakpoint, target_insert_breakpoint)
(debug_to_insert_breakpoint, debug_to_remove_breakpoint): Update.
* target.h (struct target_ops) <to_resume, to_wait,
to_store_registers, to_insert_breakpoint, to_remove_breakpoint,
to_stopped_by_watchpoint, to_stopped_data_address, to_can_async_p,
to_is_async_p, to_async, to_xfer_partial>: Add TARGET_DEFAULT
markup.
(forward_target_remove_breakpoint)
(forward_target_insert_breakpoint): Remove.
* record-btrace.c (record_btrace_remove_breakpoint): Delegate
directly.
(record_btrace_insert_breakpoint): Delegate directly.
2013-07-13 03:00:34 +08:00
|
|
|
ops->to_xfer_partial = tdefault_xfer_partial;
|
2013-12-19 22:47:11 +08:00
|
|
|
ops->to_memory_map = tdefault_memory_map;
|
2013-12-19 05:50:56 +08:00
|
|
|
ops->to_flash_erase = tdefault_flash_erase;
|
2013-12-19 05:52:02 +08:00
|
|
|
ops->to_flash_done = tdefault_flash_done;
|
2014-01-14 00:30:30 +08:00
|
|
|
ops->to_read_description = tdefault_read_description;
|
2013-12-19 04:53:09 +08:00
|
|
|
ops->to_get_ada_task_ptid = default_get_ada_task_ptid;
|
2013-12-19 22:56:20 +08:00
|
|
|
ops->to_auxv_parse = default_auxv_parse;
|
2013-12-19 23:12:26 +08:00
|
|
|
ops->to_search_memory = default_search_memory;
|
2013-12-19 02:12:28 +08:00
|
|
|
ops->to_can_execute_reverse = tdefault_can_execute_reverse;
|
2013-12-19 02:15:21 +08:00
|
|
|
ops->to_execution_direction = default_execution_direction;
|
2013-12-19 04:54:06 +08:00
|
|
|
ops->to_supports_multi_process = tdefault_supports_multi_process;
|
2013-12-19 04:54:59 +08:00
|
|
|
ops->to_supports_enable_disable_tracepoint = tdefault_supports_enable_disable_tracepoint;
|
2013-12-19 04:56:04 +08:00
|
|
|
ops->to_supports_string_tracing = tdefault_supports_string_tracing;
|
2013-12-19 05:20:06 +08:00
|
|
|
ops->to_supports_evaluation_of_breakpoint_conditions = tdefault_supports_evaluation_of_breakpoint_conditions;
|
2013-12-19 05:20:36 +08:00
|
|
|
ops->to_can_run_breakpoint_commands = tdefault_can_run_breakpoint_commands;
|
2013-12-19 02:16:31 +08:00
|
|
|
ops->to_thread_architecture = default_thread_architecture;
|
2014-02-22 01:33:42 +08:00
|
|
|
ops->to_thread_address_space = default_thread_address_space;
|
2015-04-02 20:38:28 +08:00
|
|
|
ops->to_filesystem_is_local = tdefault_filesystem_is_local;
|
2013-12-19 04:57:05 +08:00
|
|
|
ops->to_trace_init = tdefault_trace_init;
|
2013-12-19 04:57:41 +08:00
|
|
|
ops->to_download_tracepoint = tdefault_download_tracepoint;
|
2013-12-19 05:00:23 +08:00
|
|
|
ops->to_can_download_tracepoint = tdefault_can_download_tracepoint;
|
2013-12-19 05:01:07 +08:00
|
|
|
ops->to_download_trace_state_variable = tdefault_download_trace_state_variable;
|
2013-12-19 05:01:51 +08:00
|
|
|
ops->to_enable_tracepoint = tdefault_enable_tracepoint;
|
2013-12-19 05:02:30 +08:00
|
|
|
ops->to_disable_tracepoint = tdefault_disable_tracepoint;
|
2013-12-19 05:03:28 +08:00
|
|
|
ops->to_trace_set_readonly_regions = tdefault_trace_set_readonly_regions;
|
2013-12-19 05:04:27 +08:00
|
|
|
ops->to_trace_start = tdefault_trace_start;
|
2013-12-19 05:06:18 +08:00
|
|
|
ops->to_get_trace_status = tdefault_get_trace_status;
|
2013-12-19 05:06:52 +08:00
|
|
|
ops->to_get_tracepoint_status = tdefault_get_tracepoint_status;
|
2013-12-19 05:07:28 +08:00
|
|
|
ops->to_trace_stop = tdefault_trace_stop;
|
2013-12-19 05:08:14 +08:00
|
|
|
ops->to_trace_find = tdefault_trace_find;
|
2013-12-19 05:09:04 +08:00
|
|
|
ops->to_get_trace_state_variable_value = tdefault_get_trace_state_variable_value;
|
2013-12-19 05:09:37 +08:00
|
|
|
ops->to_save_trace_data = tdefault_save_trace_data;
|
2013-12-19 05:10:14 +08:00
|
|
|
ops->to_upload_tracepoints = tdefault_upload_tracepoints;
|
2013-12-19 05:10:40 +08:00
|
|
|
ops->to_upload_trace_state_variables = tdefault_upload_trace_state_variables;
|
2013-12-19 05:11:12 +08:00
|
|
|
ops->to_get_raw_trace_data = tdefault_get_raw_trace_data;
|
2013-12-19 05:11:53 +08:00
|
|
|
ops->to_get_min_fast_tracepoint_insn_len = tdefault_get_min_fast_tracepoint_insn_len;
|
2013-12-19 05:12:29 +08:00
|
|
|
ops->to_set_disconnected_tracing = tdefault_set_disconnected_tracing;
|
2013-12-19 05:13:09 +08:00
|
|
|
ops->to_set_circular_trace_buffer = tdefault_set_circular_trace_buffer;
|
2013-12-19 05:14:58 +08:00
|
|
|
ops->to_set_trace_buffer_size = tdefault_set_trace_buffer_size;
|
2013-12-19 05:15:23 +08:00
|
|
|
ops->to_set_trace_notes = tdefault_set_trace_notes;
|
2013-12-19 05:55:06 +08:00
|
|
|
ops->to_core_of_thread = tdefault_core_of_thread;
|
Make compare-sections work against all targets; add compare-sections [-r] tests.
This does two things:
1. Adds a test.
Recently compare-sections got a new "-r" switch, but given no test
existed for compare-sections, the patch was allowed in with no
testsuite addition. This now adds a test for both compare-sections
and compare-sections -r.
2. Makes the compare-sections command work against all targets.
Currently, compare-sections only works with remote targets, and only
those that support the qCRC packet. The patch makes it so that if the
target doesn't support accelerating memory verification, then GDB
falls back to comparing memory itself. This is of course slower, but
it's better than nothing, IMO. While testing against extended-remote
GDBserver I noticed that we send the qCRC request to the target if
we're connected, but not yet running a program. That can't work of
course -- the patch fixes that. This all also goes in the direction
of bridging the local/remote parity gap.
I didn't decouple 1. from 2., because that would mean that the test
would need to handle the case of the target not supporting the
command.
Tested on x86_64 Fedora 17, native, remote GDBserver, and
extended-remote GDBserver. I also hack-disabled qCRC support to make
sure the fallback paths in remote.c work.
gdb/doc/
2014-05-20 Pedro Alves <palves@redhat.com>
* gdb.texinfo (Memory) <compare-sections>: Generalize comments to
not be remote specific. Add cross reference to the qCRC packet.
(Separate Debug Files): Update cross reference to the qCRC packet.
(General Query Packets) <qCRC packet>: Add anchor.
gdb/
2014-05-20 Pedro Alves <palves@redhat.com>
* NEWS: Mention that compare-sections now works with all targets.
* remote.c (PACKET_qCRC): New enum value.
(remote_verify_memory): Don't send qCRC if the target has no
execution. Use packet_support/packet_ok. If the target doesn't
support the qCRC packet, fallback to a deep memory copy.
(compare_sections_command): Say "target image" instead of "remote
executable".
(_initialize_remote): Add PACKET_qCRC to the list of config
packets that have no associated command. Extend comment.
* target.c (simple_verify_memory, default_verify_memory): New
function.
* target.h (struct target_ops) <to_verify_memory>: Default to
default_verify_memory.
(simple_verify_memory): New declaration.
* target-delegates.c: Regenerate.
gdb/testsuite/
2014-05-20 Pedro Alves <palves@redhat.com>
* gdb.base/compare-sections.c: New file.
* gdb.base/compare-sections.exp: New file.
2014-05-21 02:11:39 +08:00
|
|
|
ops->to_verify_memory = default_verify_memory;
|
2013-12-19 05:15:55 +08:00
|
|
|
ops->to_get_tib_address = tdefault_get_tib_address;
|
2013-12-19 05:16:24 +08:00
|
|
|
ops->to_set_permissions = tdefault_set_permissions;
|
2013-12-19 05:16:51 +08:00
|
|
|
ops->to_static_tracepoint_marker_at = tdefault_static_tracepoint_marker_at;
|
2013-12-19 05:17:35 +08:00
|
|
|
ops->to_static_tracepoint_markers_by_strid = tdefault_static_tracepoint_markers_by_strid;
|
2013-12-19 05:18:10 +08:00
|
|
|
ops->to_traceframe_info = tdefault_traceframe_info;
|
2013-12-19 05:18:35 +08:00
|
|
|
ops->to_use_agent = tdefault_use_agent;
|
2013-12-19 05:19:04 +08:00
|
|
|
ops->to_can_use_agent = tdefault_can_use_agent;
|
2013-12-14 04:26:04 +08:00
|
|
|
ops->to_supports_btrace = tdefault_supports_btrace;
|
2013-12-19 23:19:41 +08:00
|
|
|
ops->to_enable_btrace = tdefault_enable_btrace;
|
2013-12-19 23:17:16 +08:00
|
|
|
ops->to_disable_btrace = tdefault_disable_btrace;
|
2013-12-19 23:18:04 +08:00
|
|
|
ops->to_teardown_btrace = tdefault_teardown_btrace;
|
2013-12-19 23:19:02 +08:00
|
|
|
ops->to_read_btrace = tdefault_read_btrace;
|
2013-11-28 22:44:13 +08:00
|
|
|
ops->to_btrace_conf = tdefault_btrace_conf;
|
2013-12-19 23:21:20 +08:00
|
|
|
ops->to_stop_recording = tdefault_stop_recording;
|
2014-07-16 22:05:03 +08:00
|
|
|
ops->to_info_record = tdefault_info_record;
|
2013-12-19 11:26:34 +08:00
|
|
|
ops->to_save_record = tdefault_save_record;
|
2013-12-19 11:25:47 +08:00
|
|
|
ops->to_delete_record = tdefault_delete_record;
|
2013-12-19 11:25:01 +08:00
|
|
|
ops->to_record_is_replaying = tdefault_record_is_replaying;
|
2013-12-19 11:24:04 +08:00
|
|
|
ops->to_goto_record_begin = tdefault_goto_record_begin;
|
2013-12-19 11:23:23 +08:00
|
|
|
ops->to_goto_record_end = tdefault_goto_record_end;
|
2013-12-19 11:22:36 +08:00
|
|
|
ops->to_goto_record = tdefault_goto_record;
|
2013-12-19 11:18:49 +08:00
|
|
|
ops->to_insn_history = tdefault_insn_history;
|
2013-12-19 11:16:56 +08:00
|
|
|
ops->to_insn_history_from = tdefault_insn_history_from;
|
2013-12-19 11:15:44 +08:00
|
|
|
ops->to_insn_history_range = tdefault_insn_history_range;
|
2013-12-19 11:13:40 +08:00
|
|
|
ops->to_call_history = tdefault_call_history;
|
2013-12-19 11:11:49 +08:00
|
|
|
ops->to_call_history_from = tdefault_call_history_from;
|
2013-12-19 11:10:20 +08:00
|
|
|
ops->to_call_history_range = tdefault_call_history_range;
|
2013-12-19 05:19:33 +08:00
|
|
|
ops->to_augmented_libraries_svr4_read = tdefault_augmented_libraries_svr4_read;
|
2014-01-17 04:00:07 +08:00
|
|
|
ops->to_get_unwinder = tdefault_get_unwinder;
|
|
|
|
ops->to_get_tailcall_unwinder = tdefault_get_tailcall_unwinder;
|
2014-05-20 21:22:53 +08:00
|
|
|
ops->to_prepare_to_generate_core = tdefault_prepare_to_generate_core;
|
|
|
|
ops->to_done_generating_core = tdefault_done_generating_core;
|
2013-12-20 00:38:11 +08:00
|
|
|
}
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
|
|
|
|
static void
|
|
|
|
init_debug_target (struct target_ops *ops)
|
|
|
|
{
|
|
|
|
ops->to_post_attach = debug_post_attach;
|
|
|
|
ops->to_detach = debug_detach;
|
|
|
|
ops->to_disconnect = debug_disconnect;
|
|
|
|
ops->to_resume = debug_resume;
|
|
|
|
ops->to_wait = debug_wait;
|
|
|
|
ops->to_fetch_registers = debug_fetch_registers;
|
|
|
|
ops->to_store_registers = debug_store_registers;
|
|
|
|
ops->to_prepare_to_store = debug_prepare_to_store;
|
|
|
|
ops->to_files_info = debug_files_info;
|
|
|
|
ops->to_insert_breakpoint = debug_insert_breakpoint;
|
|
|
|
ops->to_remove_breakpoint = debug_remove_breakpoint;
|
Teach GDB about targets that can tell whether a trap is a breakpoint event
The moribund locations heuristics are problematic. This patch teaches
GDB about targets that can reliably tell whether a trap was caused by
a software or hardware breakpoint, and thus don't need moribund
locations, thus bypassing all the problems that mechanism has.
The non-stop-fair-events.exp test is frequently failing currently.
E.g., see https://sourceware.org/ml/gdb-testers/2015-q1/msg03148.html.
The root cause is a fundamental problem with moribund locations. For
example, the stepped_breakpoint logic added by af48d08f breaks in this
case (which is what happens with that test):
- Step thread A, no breakpoint is set at PC.
- The kernel doesn't schedule thread A yet.
- Insert breakpoint at A's PC, for some reason (e.g., a step-resume
breakpoint for thread B).
- Kernel finally schedules thread A.
- thread A's stepped_breakpoint flag is not set, even though it now
stepped a breakpoint instruction.
- adjust_pc_after_break gets the PC wrong, because PC == PREV_PC, but
stepped_breakpoint is not set.
We needed the stepped_breakpoint logic to workaround moribund
locations, because otherwise adjust_pc_after_break could apply an
adjustment when it shouldn't just because there _used_ to be a
breakpoint at PC (a moribund breakpoint location). For example, on
x86, that's wrong if the thread really hasn't executed an int3, but
instead executed some other 1-byte long instruction. Getting the PC
adjustment wrong of course leads to the inferior executing the wrong
instruction.
Other problems with moribund locations are:
- if a true SIGTRAP happens to be raised when the program is
executing the PC that used to have a breakpoint, GDB will assume
that is a trap for a breakpoint that has recently been removed, and
thus we miss reporting the random signal to the user.
- to minimize that, we get rid of moribund location after a while.
That while is defined as just a certain number of events being
processed. That number of events sometimes passes by before a
delayed breakpoint is processed, and GDB confuses the trap for a
random signal, thus reporting the random trap. Once the user
resumes the thread, the program crashes because the PC was not
adjusted...
The fix for all this is to bite the bullet and get rid of heuristics
and instead rely on the target knowing accurately what caused the
SIGTRAP. The target/kernel/stub is in the best position to know what
that, because it can e.g. consult priviledged CPU flags GDB has no
access to, or by knowing which exception vector entry was called when
the instruction trapped, etc. Most debug APIs I've seen to date
report breakpoint hits as a distinct event in some fashion. For
example, on the Linux kernel, whether a breakpoint was executed is
exposed to userspace in the si_code field of the SIGTRAP's siginfo.
On Windows, the debug API reports a EXCEPTION_BREAKPOINT exception
code.
We needed to keep around deleted breakpoints in an on-the-side list
(the moribund locations) for two main reasons:
- Know that a SIGTRAP actually is a delayed event for a hit of a
breakpoint that was removed before the event was processed, and
thus should not be reported as a random signal.
- So we still do the decr_pc_after_break adjustment in that case, so
that the thread is resumed at the correct address.
In the new model, if GDB processes an event the target tells is a
breakpoint trap, and GDB doesn't find the corresponding breakpoint in
its breakpoint tables, it means that event is a delayed event for a
breakpoint that has since been removed, and thus the event should be
ignored.
For the decr_pc_after_after issue, it ends up being much simpler that
on targets that can reliably tell whether a breakpoint trapped, for
the breakpoint trap to present the PC already adjusted. Proper
multi-threading support already implies that targets needs to be doing
decr_pc_after_break adjustment themselves, otherwise for example, in
all-stop if two threads hit a breakpoint simultaneously, and the user
does "info threads", he'll see the non-event thread that hit the
breakpoint stopped at the wrong PC.
This way (target adjusts) also ends up eliminating the need for some
awkward re-incrementing of the PC in the record-full and Linux targets
that we do today, and the need for the target_decr_pc_after_break
hook.
If the target always adjusts, then there's a case where GDB needs to
re-increment the PC. Say, on x86, an "int3" instruction that was
explicitly written in the program traps. In this case, GDB should
report a random SIGTRAP signal to the user, with the PC pointing at
the instruction past the int3, just like if GDB was not debugging the
program. The user may well decide to pass the SIGTRAP to the program
because the program being debugged has a SIGTRAP handler that handles
its own breakpoints, and expects the PC to be unadjusted.
Tested on x86-64 Fedora 20.
gdb/ChangeLog:
2015-03-04 Pedro Alves <palves@redhat.com>
* breakpoint.c (need_moribund_for_location_type): New function.
(bpstat_stop_status): Don't skipping checking moribund locations
of breakpoint types which the target tell caused a stop.
(program_breakpoint_here_p): New function, factored out from ...
(bp_loc_is_permanent): ... this.
(update_global_location_list): Don't create a moribund location if
the target supports reporting stops of the type of the removed
breakpoint.
* breakpoint.h (program_breakpoint_here_p): New declaration.
* infrun.c (adjust_pc_after_break): Return early if the target has
already adjusted the PC. Add comments.
(handle_signal_stop): If nothing explains a signal, and the target
tells us the stop was caused by a software breakpoint, check if
there's a breakpoint instruction in the memory. If so, adjust the
PC before presenting the stop to the user. Otherwise, ignore the
trap. If nothing explains a signal, and the target tells us the
stop was caused by a hardware breakpoint, ignore the trap.
* target.h (struct target_ops) <to_stopped_by_sw_breakpoint,
to_supports_stopped_by_sw_breakpoint, to_stopped_by_hw_breakpoint,
to_supports_stopped_by_hw_breakpoint>: New fields.
(target_stopped_by_sw_breakpoint)
(target_supports_stopped_by_sw_breakpoint)
(target_stopped_by_hw_breakpoint)
(target_supports_stopped_by_hw_breakpoint): Define.
* target-delegates.c: Regenerate.
2015-03-05 04:41:15 +08:00
|
|
|
ops->to_stopped_by_sw_breakpoint = debug_stopped_by_sw_breakpoint;
|
|
|
|
ops->to_supports_stopped_by_sw_breakpoint = debug_supports_stopped_by_sw_breakpoint;
|
|
|
|
ops->to_stopped_by_hw_breakpoint = debug_stopped_by_hw_breakpoint;
|
|
|
|
ops->to_supports_stopped_by_hw_breakpoint = debug_supports_stopped_by_hw_breakpoint;
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
ops->to_can_use_hw_breakpoint = debug_can_use_hw_breakpoint;
|
|
|
|
ops->to_ranged_break_num_registers = debug_ranged_break_num_registers;
|
|
|
|
ops->to_insert_hw_breakpoint = debug_insert_hw_breakpoint;
|
|
|
|
ops->to_remove_hw_breakpoint = debug_remove_hw_breakpoint;
|
|
|
|
ops->to_remove_watchpoint = debug_remove_watchpoint;
|
|
|
|
ops->to_insert_watchpoint = debug_insert_watchpoint;
|
|
|
|
ops->to_insert_mask_watchpoint = debug_insert_mask_watchpoint;
|
|
|
|
ops->to_remove_mask_watchpoint = debug_remove_mask_watchpoint;
|
|
|
|
ops->to_stopped_by_watchpoint = debug_stopped_by_watchpoint;
|
|
|
|
ops->to_stopped_data_address = debug_stopped_data_address;
|
|
|
|
ops->to_watchpoint_addr_within_range = debug_watchpoint_addr_within_range;
|
|
|
|
ops->to_region_ok_for_hw_watchpoint = debug_region_ok_for_hw_watchpoint;
|
|
|
|
ops->to_can_accel_watchpoint_condition = debug_can_accel_watchpoint_condition;
|
|
|
|
ops->to_masked_watch_num_registers = debug_masked_watch_num_registers;
|
|
|
|
ops->to_terminal_init = debug_terminal_init;
|
|
|
|
ops->to_terminal_inferior = debug_terminal_inferior;
|
|
|
|
ops->to_terminal_ours_for_output = debug_terminal_ours_for_output;
|
|
|
|
ops->to_terminal_ours = debug_terminal_ours;
|
|
|
|
ops->to_terminal_info = debug_terminal_info;
|
|
|
|
ops->to_kill = debug_kill;
|
|
|
|
ops->to_load = debug_load;
|
|
|
|
ops->to_post_startup_inferior = debug_post_startup_inferior;
|
|
|
|
ops->to_insert_fork_catchpoint = debug_insert_fork_catchpoint;
|
|
|
|
ops->to_remove_fork_catchpoint = debug_remove_fork_catchpoint;
|
|
|
|
ops->to_insert_vfork_catchpoint = debug_insert_vfork_catchpoint;
|
|
|
|
ops->to_remove_vfork_catchpoint = debug_remove_vfork_catchpoint;
|
|
|
|
ops->to_follow_fork = debug_follow_fork;
|
|
|
|
ops->to_insert_exec_catchpoint = debug_insert_exec_catchpoint;
|
|
|
|
ops->to_remove_exec_catchpoint = debug_remove_exec_catchpoint;
|
|
|
|
ops->to_set_syscall_catchpoint = debug_set_syscall_catchpoint;
|
|
|
|
ops->to_has_exited = debug_has_exited;
|
|
|
|
ops->to_mourn_inferior = debug_mourn_inferior;
|
|
|
|
ops->to_can_run = debug_can_run;
|
|
|
|
ops->to_pass_signals = debug_pass_signals;
|
|
|
|
ops->to_program_signals = debug_program_signals;
|
|
|
|
ops->to_thread_alive = debug_thread_alive;
|
Push pruning old threads down to the target
When GDB wants to sync the thread list with the target's (e.g., due to
"info threads"), it calls update_thread_list:
update_thread_list (void)
{
prune_threads ();
target_find_new_threads ();
update_threads_executing ();
}
And then prune_threads does:
prune_threads (void)
{
struct thread_info *tp, *next;
for (tp = thread_list; tp; tp = next)
{
next = tp->next;
if (!thread_alive (tp))
delete_thread (tp->ptid);
}
}
Calling thread_live on each thread one by one is expensive.
E.g., on Linux, it ends up doing kill(SIG0) once for each thread. Not
a big deal, but still a bunch of syscalls...
With the remote target, it's cumbersome. That thread_alive call ends
up generating one T packet per thread:
Sending packet: $Tp2141.2150#82...Packet received: OK
Sending packet: $Tp2141.214f#b7...Packet received: OK
Sending packet: $Tp2141.2141#82...Packet received: OK
Sending packet: $qXfer:threads:read::0,fff#03...Packet received: l<threads>\n<thread id="p2141.2141" core="2"/>\n<thread id="p2141.214f" core="1"/>\n<thread id="p2141.2150" core="2"/>\n</threads>\n
That seems a bit silly when target_find_new_threads method
implementations will always fetch the whole current set of target
threads, and then add those that are not in GDB's thread list, to
GDB's thread list.
This patch thus pushes down the responsibility of pruning dead threads
to the target_find_new_threads method instead, so a target may
implement pruning dead threads however it wants.
Once we do that, target_find_new_threads becomes a misnomer, so the
patch renames it to target_update_thread_list.
The patch doesn't attempt to do any optimization to any target yet.
It simply exports prune_threads, and makes all implementations of
target_update_thread_list call that. It's meant to be a no-op.
gdb/
2014-10-15 Pedro Alves <palves@redhat.com>
* ada-tasks.c (print_ada_task_info, task_command_1): Adjust.
* bsd-uthread.c (bsd_uthread_find_new_threads): Rename to ...
(bsd_uthread_update_thread_list): ... this. Call prune_threads.
(bsd_uthread_target): Adjust.
* corelow.c (core_open): Adjust.
* dec-thread.c (dec_thread_find_new_threads): Update comment.
(dec_thread_update_thread_list): New function.
(init_dec_thread_ops): Adjust.
* gdbthread.h (prune_threads): New declaration.
* linux-thread-db.c (thread_db_find_new_threads): Rename to ...
(thread_db_update_thread_list): ... this. Call prune_threads.
(init_thread_db_ops): Adjust.
* nto-procfs.c (procfs_find_new_threads): Rename to ...
(procfs_update_thread_list): ... this. Call prune_threads.
(procfs_attach, procfs_create_inferior, init_procfs_targets):
Adjust.
* obsd-nat.c (obsd_find_new_threads): Rename to ...
(obsd_update_thread_list): ... this. Call prune_threads.
(obsd_add_target): Adjust.
* procfs.c (procfs_target): Adjust.
(procfs_notice_thread): Update comment.
(procfs_find_new_threads): Rename to ...
(procfs_update_thread_list): ... this. Call prune_threads.
* ravenscar-thread.c (ravenscar_update_inferior_ptid): Update
comment.
(ravenscar_wait): Adjust.
(ravenscar_find_new_threads): Rename to ...
(ravenscar_update_thread_list): ... this. Call prune_threads.
(init_ravenscar_thread_ops): Adjust.
* record-btrace.c (record_btrace_find_new_threads): Rename to ...
(record_btrace_update_thread_list): ... this. Adjust comment.
(init_record_btrace_ops): Adjust.
* remote.c (remote_threads_info): Rename to ...
(remote_update_thread_list): ... this. Call prune_threads.
(remote_start_remote, extended_remote_attach_1, init_remote_ops):
Adjust.
* sol-thread.c (check_for_thread_db): Adjust.
(sol_find_new_threads_callback): Rename to ...
(sol_update_thread_list_callback): ... this.
(sol_find_new_threads): Rename to ...
(sol_update_thread_list): ... this. Call prune_threads. Adjust.
(sol_get_ada_task_ptid, init_sol_thread_ops): Adjust.
* target-delegates.c: Regenerate.
* target.c (target_find_new_threads): Rename to ...
(target_update_thread_list): ... this.
* target.h (struct target_ops): Rename to_find_new_threads field
to to_update_thread_list.
(target_find_new_threads): Rename to ...
(target_update_thread_list): ... this.
* thread.c (prune_threads): Make extern.
(update_thread_list): Adjust.
2014-10-16 05:44:00 +08:00
|
|
|
ops->to_update_thread_list = debug_update_thread_list;
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
ops->to_pid_to_str = debug_pid_to_str;
|
|
|
|
ops->to_extra_thread_info = debug_extra_thread_info;
|
|
|
|
ops->to_thread_name = debug_thread_name;
|
|
|
|
ops->to_stop = debug_stop;
|
|
|
|
ops->to_rcmd = debug_rcmd;
|
|
|
|
ops->to_pid_to_exec_file = debug_pid_to_exec_file;
|
|
|
|
ops->to_log_command = debug_log_command;
|
|
|
|
ops->to_get_section_table = debug_get_section_table;
|
|
|
|
ops->to_can_async_p = debug_can_async_p;
|
|
|
|
ops->to_is_async_p = debug_is_async_p;
|
|
|
|
ops->to_async = debug_async;
|
|
|
|
ops->to_supports_non_stop = debug_supports_non_stop;
|
|
|
|
ops->to_find_memory_regions = debug_find_memory_regions;
|
|
|
|
ops->to_make_corefile_notes = debug_make_corefile_notes;
|
|
|
|
ops->to_get_bookmark = debug_get_bookmark;
|
|
|
|
ops->to_goto_bookmark = debug_goto_bookmark;
|
|
|
|
ops->to_get_thread_local_address = debug_get_thread_local_address;
|
|
|
|
ops->to_xfer_partial = debug_xfer_partial;
|
|
|
|
ops->to_memory_map = debug_memory_map;
|
|
|
|
ops->to_flash_erase = debug_flash_erase;
|
|
|
|
ops->to_flash_done = debug_flash_done;
|
|
|
|
ops->to_read_description = debug_read_description;
|
|
|
|
ops->to_get_ada_task_ptid = debug_get_ada_task_ptid;
|
|
|
|
ops->to_auxv_parse = debug_auxv_parse;
|
|
|
|
ops->to_search_memory = debug_search_memory;
|
|
|
|
ops->to_can_execute_reverse = debug_can_execute_reverse;
|
|
|
|
ops->to_execution_direction = debug_execution_direction;
|
|
|
|
ops->to_supports_multi_process = debug_supports_multi_process;
|
|
|
|
ops->to_supports_enable_disable_tracepoint = debug_supports_enable_disable_tracepoint;
|
|
|
|
ops->to_supports_string_tracing = debug_supports_string_tracing;
|
|
|
|
ops->to_supports_evaluation_of_breakpoint_conditions = debug_supports_evaluation_of_breakpoint_conditions;
|
|
|
|
ops->to_can_run_breakpoint_commands = debug_can_run_breakpoint_commands;
|
|
|
|
ops->to_thread_architecture = debug_thread_architecture;
|
|
|
|
ops->to_thread_address_space = debug_thread_address_space;
|
2015-04-02 20:38:28 +08:00
|
|
|
ops->to_filesystem_is_local = debug_filesystem_is_local;
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
ops->to_trace_init = debug_trace_init;
|
|
|
|
ops->to_download_tracepoint = debug_download_tracepoint;
|
|
|
|
ops->to_can_download_tracepoint = debug_can_download_tracepoint;
|
|
|
|
ops->to_download_trace_state_variable = debug_download_trace_state_variable;
|
|
|
|
ops->to_enable_tracepoint = debug_enable_tracepoint;
|
|
|
|
ops->to_disable_tracepoint = debug_disable_tracepoint;
|
|
|
|
ops->to_trace_set_readonly_regions = debug_trace_set_readonly_regions;
|
|
|
|
ops->to_trace_start = debug_trace_start;
|
|
|
|
ops->to_get_trace_status = debug_get_trace_status;
|
|
|
|
ops->to_get_tracepoint_status = debug_get_tracepoint_status;
|
|
|
|
ops->to_trace_stop = debug_trace_stop;
|
|
|
|
ops->to_trace_find = debug_trace_find;
|
|
|
|
ops->to_get_trace_state_variable_value = debug_get_trace_state_variable_value;
|
|
|
|
ops->to_save_trace_data = debug_save_trace_data;
|
|
|
|
ops->to_upload_tracepoints = debug_upload_tracepoints;
|
|
|
|
ops->to_upload_trace_state_variables = debug_upload_trace_state_variables;
|
|
|
|
ops->to_get_raw_trace_data = debug_get_raw_trace_data;
|
|
|
|
ops->to_get_min_fast_tracepoint_insn_len = debug_get_min_fast_tracepoint_insn_len;
|
|
|
|
ops->to_set_disconnected_tracing = debug_set_disconnected_tracing;
|
|
|
|
ops->to_set_circular_trace_buffer = debug_set_circular_trace_buffer;
|
|
|
|
ops->to_set_trace_buffer_size = debug_set_trace_buffer_size;
|
|
|
|
ops->to_set_trace_notes = debug_set_trace_notes;
|
|
|
|
ops->to_core_of_thread = debug_core_of_thread;
|
|
|
|
ops->to_verify_memory = debug_verify_memory;
|
|
|
|
ops->to_get_tib_address = debug_get_tib_address;
|
|
|
|
ops->to_set_permissions = debug_set_permissions;
|
|
|
|
ops->to_static_tracepoint_marker_at = debug_static_tracepoint_marker_at;
|
|
|
|
ops->to_static_tracepoint_markers_by_strid = debug_static_tracepoint_markers_by_strid;
|
|
|
|
ops->to_traceframe_info = debug_traceframe_info;
|
|
|
|
ops->to_use_agent = debug_use_agent;
|
|
|
|
ops->to_can_use_agent = debug_can_use_agent;
|
|
|
|
ops->to_supports_btrace = debug_supports_btrace;
|
|
|
|
ops->to_enable_btrace = debug_enable_btrace;
|
|
|
|
ops->to_disable_btrace = debug_disable_btrace;
|
|
|
|
ops->to_teardown_btrace = debug_teardown_btrace;
|
|
|
|
ops->to_read_btrace = debug_read_btrace;
|
2013-11-28 22:44:13 +08:00
|
|
|
ops->to_btrace_conf = debug_btrace_conf;
|
auto-generate most target debug methods
The target debug methods are inconsistently maintained. Most to_*
methods have some kind of targetdebug awareness, but not all of them
do. The ones that do vary in the quantity and quality of output they
generate.
This patch changes most of the target debug methods to be
automatically generated. All the arguments are printed, and separate
lines are printed for entering and existing the outermost call to the
target stack.
For example now you'd see:
-> multi-thread->to_terminal_ours (...)
-> multi-thread->to_is_async_p (...)
<- multi-thread->to_is_async_p (0x1ebb580) = 1
<- multi-thread->to_terminal_ours (0x1ebb580)
-> multi-thread->to_thread_address_space (...)
<- multi-thread->to_thread_address_space (0x1ebb580, 26802) = 1
In this case you can see nested calls. The "multi-thread" on the left
hand side is the topmost target's shortname.
There are some oddities with this patch. I'm on the fence about it
all, I really just wrote it on a whim.
It's not simple to convert every possible method, since a few don't
participate in target delegation.
Printing is done by type, so I introduced some new
debug-printing-specific typedefs to handle cases where it is nicer to
do something else.
On the plus side, this lays the groundwork for making targetdebug
affect every layer of the target stack. The idea would be to wrap
each target_ops in the stack with its own debug_target, and then you
could see calls propagate down the stack and back up; I suppose with
indentation to make it prettier. (That said there are some gotchas
lurking in this idea due to target stack introspection.)
Regtested on x86-64 Fedora 20.
2014-07-24 Tom Tromey <tromey@redhat.com>
* make-target-delegates (munge_type, write_debugmethod): New
functions.
(debug_names): New global.
($TARGET_DEBUG_PRINTER): New global.
(write_function_header): Strip TARGET_DEBUG_PRINTER from the type
name.
Write debug methods. Generate init_debug_target.
* target-debug.h: New file.
* target-delegates.c: Rebuild.
* target.c: Include target-debug.h.
(debug_target): Hoist definition.
(target_kill, target_get_section_table, target_memory_map)
(target_flash_erase, target_flash_done, target_detach)
(target_disconnect, target_wait, target_resume)
(target_pass_signals, target_program_signals, target_follow_fork)
(target_mourn_inferior, target_search_memory)
(target_thread_address_space, target_close)
(target_find_new_threads, target_core_of_thread)
(target_verify_memory, target_insert_mask_watchpoint)
(target_remove_mask_watchpoint): Remove targetdebug code.
(debug_to_post_attach, debug_to_prepare_to_store)
(debug_to_files_info, debug_to_insert_breakpoint)
(debug_to_remove_breakpoint, debug_to_can_use_hw_breakpoint)
(debug_to_region_ok_for_hw_watchpoint)
(debug_to_can_accel_watchpoint_condition)
(debug_to_stopped_by_watchpoint, debug_to_stopped_data_address)
(debug_to_watchpoint_addr_within_range)
(debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint)
(debug_to_insert_watchpoint, debug_to_remove_watchpoint)
(debug_to_terminal_init, debug_to_terminal_inferior)
(debug_to_terminal_ours_for_output, debug_to_terminal_ours)
(debug_to_terminal_save_ours, debug_to_terminal_info)
(debug_to_load, debug_to_post_startup_inferior)
(debug_to_insert_fork_catchpoint)
(debug_to_remove_fork_catchpoint)
(debug_to_insert_vfork_catchpoint)
(debug_to_remove_vfork_catchpoint)
(debug_to_insert_exec_catchpoint)
(debug_to_remove_exec_catchpoint, debug_to_has_exited)
(debug_to_can_run, debug_to_thread_architecture, debug_to_stop)
(debug_to_rcmd, debug_to_pid_to_exec_file): Remove.
(setup_target_debug): Call init_debug_target.
* target.h (TARGET_DEBUG_PRINTER): New macro.
(struct target_ops) <to_resume, to_wait, to_pass_signals,
to_program_signals>: Use TARGET_DEBUG_PRINTER.
2014-06-16 11:28:57 +08:00
|
|
|
ops->to_stop_recording = debug_stop_recording;
|
|
|
|
ops->to_info_record = debug_info_record;
|
|
|
|
ops->to_save_record = debug_save_record;
|
|
|
|
ops->to_delete_record = debug_delete_record;
|
|
|
|
ops->to_record_is_replaying = debug_record_is_replaying;
|
|
|
|
ops->to_goto_record_begin = debug_goto_record_begin;
|
|
|
|
ops->to_goto_record_end = debug_goto_record_end;
|
|
|
|
ops->to_goto_record = debug_goto_record;
|
|
|
|
ops->to_insn_history = debug_insn_history;
|
|
|
|
ops->to_insn_history_from = debug_insn_history_from;
|
|
|
|
ops->to_insn_history_range = debug_insn_history_range;
|
|
|
|
ops->to_call_history = debug_call_history;
|
|
|
|
ops->to_call_history_from = debug_call_history_from;
|
|
|
|
ops->to_call_history_range = debug_call_history_range;
|
|
|
|
ops->to_augmented_libraries_svr4_read = debug_augmented_libraries_svr4_read;
|
|
|
|
ops->to_get_unwinder = debug_get_unwinder;
|
|
|
|
ops->to_get_tailcall_unwinder = debug_get_tailcall_unwinder;
|
|
|
|
ops->to_prepare_to_generate_core = debug_prepare_to_generate_core;
|
|
|
|
ops->to_done_generating_core = debug_done_generating_core;
|
|
|
|
}
|